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Abstract—Machine learning algorithms typically assume that
the training and test samples come from the same distributions,
i.e., in-distribution. However, in open-world scenarios, streaming
big data can be Out-Of-Distribution (OOD), rendering these
algorithms ineffective. Prior solutions to the OOD challenge seek
to identify invariant features across different training domains.
The underlying assumption is that these invariant features should
also work reasonably well in the unlabeled target domain. By
contrast, this work is interested in the domain-specific features
that include both invariant features and features unique to the
target domain. We propose a simple yet effective approach that
relies on correlations in general regardless of whether the features
are invariant or not. Our approach uses the most confidently
predicted samples identified by an OOD base model (teacher
model) to train a new model (student model) that effectively
adapts to the target domain. Empirical evaluations on benchmark
datasets show that the performance is improved over the SOTA
by ∼10-20%.

I. INTRODUCTION

Standard machine learning models (i.e., models trained
by Empirical Risk Minimization (ERM) [1]) rely on a key
assumption that the training and test data are independent and
identically distributed (i.i.d.), or in-distribution. However, in
practice, streaming big data can be out-of-distribution (OOD),
rendering significant performance degradation of ERM-based
models. To overcome this critical OOD challenge, a variety
of methods have been proposed, such as the Distributionally
Robust Optimization (DRO) [2], and Invariant Risk Minimiza-
tion (IRM) [3]. Most of these methods assume that invariant
features for prediction across different training domains can
also generalize well to the test domain [4,5]. However, a
comprehensive comparison of different OOD methods by the
authors in [6,7] showed that ERM can outperform such methods
across different datasets. One potential explanation is that
learning invariant features alone may be insufficient. This work
aims to exploit domain-related features to further improve
the OOD prediction performance. Take the benchmark dataset
CMNIST [3] as an example. In Fig. 1, we observe that there is
a slight difference between the color-label correlation and the
digit-label correlation in the training domains. However, the
domain-related correlation (color-label) is significantly different
between the training and the test domains. This suggests that
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Fig. 1: CMNIST dataset sample with color-label and digit-
label correlations that vary marginally in the training domains.
The test domain has different domain-specific correlations. GT
represents the scale of the digit.

learning the domain-related features can help predict the label
since they capture correlations unique to the test domain.

With the growing popularity of publicly accessible applica-
tions and websites, unlabeled data is ubiquitous and contains
greater variety, arriving in increasing volumes and with more
velocity. Platforms such as Apache Kafka aid in analytics,
integrating big data streams. When machine learning models
are deployed at scale, the deployment domain might differ from
the domains in which the model was trained. Especially, since
the model might be trained on a relatively smaller quantity of
data compared to the stream of big data it encounters in practice.
The incoming unlabeled data, however, might help the model
adapt by learning from the distribution of features specific to
the deployment domain. This work thereby seeks to leverage
domain-specific features (including both invariant features and
domain-related features) to address the OOD challenge. To
achieve this, we assume that the unlabeled data from the target
domain is available during deployment for adaptive training.

We identify three primary challenges. First, the latent repre-
sentations learned during training are often entangled between
the invariant features and domain-related features [2,8,9]. Disen-



tangling these features in the latent space is a challenging task.
It is suggested that well-grounded disentanglement approaches
must rely on assumptions about the model or data [10]. Second,
how do we identify features related to the target domain with
only the labeled training data and unlabeled target data? We
need to design a feedback mechanism to enforce the model to
learn domain-related features. Finally, with no access to labels
for the target domain, it is difficult to determine the optimization
direction when adapting the model to the target domain, i.e.,
determining whether there are positive correlations or negative
correlations. This highlights the importance of model selection
based on the training data.

To address these challenges, we propose a simple yet
effective approach – Simprov1 – that learns domain-specific
features for OOD prediction using labeled training data and
unlabeled target domain data. In particular, we first identify
the high confidence predictions in the target domain by using
an OOD base model such as IRM and then use these to train a
runtime classifier for the target domain. Our major contributions
include: (i) a novel framework that uses domain-specific
features for OOD prediction, (ii) an effective model selection
criterion for fast adapting the model to the target domain,
and (iii) empirical analyses on three benchmark datasets from
DomainBed [11] and WILDS [12,13].

II. RELATED WORK

Standard machine learning uses ERM to optimize the
objective function. A key assumption is that random variables
in the data are i.i.d. Thus, in scenarios involving distribution
shift, ERM performance degrades significantly [14,15]. OOD
methods aim to address the issue by using data from related
domains that differ in distributions.

One seminal work in OOD is Invariant Risk Minimization
(IRM) [3] which aims to identify the invariant features.
The hypothesis is that if the model can identify the causes
(i.e., the invariant features) of an outcome, then it should
perform reasonably well in a new unlabeled domain as it
does not rely on spurious correlations. Distributionally Robust
Optimization (DRO) family of approaches focuses on the worst-
case scenario [16,17]: optimizing for the source domain with
the greatest loss. Another line of research leverages pseudo-
labeling and data augmentation [18,19] approaches. Here, a
trained model is used to generate noisy labels for samples
in the unlabeled domain, combine them with the annotated
training data and use the resulting semi-pseudo-labeled batch
to further improve the trained model [20]. Noisy student [21]
incorporates model distillation, where it trains the teacher to
generate pseudo labels which are used for training a student
model.

More recent research [11,22] considered Domain Adaptation
(DA), where both the labeled training domains and unlabeled
test domain(s) are available during training. Our problem setting
is slightly different: we optimize prediction performance while
DA optimizes on the learned representation. Adaptive Risk

1https://github.com/aniquetahir/SimprovMinimal

Minimization (ARM) [23] studied the same problem setting
as ours by adapting the training model to the target domain
using meta-learning to update the model’s parameters. We
complement prior works by considering the importance of
learning domain-specific features for the target domain and
removing potential spurious features identified in the training
domains, that is, features useful for prediction during training
but not for the target domain.

III. PRELIMINARIES

Invariant Risk Minimization. IRM [3] aims to identify the
invariant features (often referred to as causes) by training over
multiple different domains. Thus the loss function of IRM is
designed to minimize the per domain risk, Re = Eptr(x,y|e)[l],
where x represents the features, y the labels, e the domain,
l the loss function (e.g., mean squared error), and ptr is the
distribution over the training domains. Formally, let Φ be the
invariant prediction function. The objective function of IRM,
L, can be then defined as:

L(Φ) =
∑
e∈Etr

Re(Φ) + λ||∇ŵ|ŵ=1.0R
e(ŵ ◦ Φ)||, (1)

where ŵ is a classification model that predicts from the invariant
features, λ is the regularization parameter, and Etr is the
set of training domains. The second term adds a constraint
on the learning for a particular environment by increasing
the loss when the propagation gradients are high resulting in
reduced learning towards a specific domain leading to more
generalizability.
Distillation. The distillation consists of a teacher model and
a student model. The teacher model is trained on the original
data and the student model then learns from the teacher [24,25].
In this work, we use offline and response-based distillation [26]
where the predictions (hard-labels) or logits (soft-labels) of the
teacher model are used to train the student model.

Formally, let T denote the teacher model, S the student
model, the recursive loss function L for offline distillation is:

L =

n∑
i=1

αL(yi, S(xi)) + (1− α)L(yi, T (xi)), (2)

where α denotes the ratio between the two losses (teachers and
students) and n is the number of samples. Here, the teacher
and student models are trained independently from each other.

IV. METHOD

In this section, we describe our proposed approach (Simprov)
for tackling the OOD challenge. Simprov aims to effectively
adapt an ERM-based model to the distribution of target domain
by learning domain-specific features. We first formally define
the problem setting as follows:

Definition 1. Let Eall be the set of all possible domains, Etr the
set of training domains, and Ete the set containing the target
domain. Given training samples xtr ∈ X of an input random
variable X, ytr ∈ Y of a target random variable Y, z ∈ Z of an
input domain random variable Z , and xte ∈ X of X, the goal is
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Fig. 2: An overview of Simprov. It leverages invariant fea-
tures (Teacher), distillation, and a model selection criterion
(Improvisation) to enhance performance on the target domain.
The teacher model (such as IRM) learns invariant features and
identifies target samples predicted with high confidence. Pseudo-
labels (PL) with dropout are used to estimate the confidence.
The student model (i.e., an ERM-based model) is trained over
these selected samples to make predictions in the target domain.
Since the pseudo-labels are generated without prior knowledge
of the target domain, training over them requires a positive
feedback loop between the teacher and student formed by the
combination of Improvisation (1) and Self-Distillation (2).

to learn a function f : X → Y representing P (Y |X, ete) given,
P (X,Y |ete) ̸= P (X,Y |etr), where ete ∈ Ete and etr ∈ Etr.

An overview of our approach is highlighted in Fig. 2. Sim-
prov primarily consists of three parts: Pseudo-Labeling, Self-
Distillation, and Model Selection (Improvisation). Logically, the
structure of the prediction model constitutes of a representation
learning module Φ : X → H and a classifier ŵ : H → Y ,
where H is the representation space. We aim to learn the
function f : X → Y ∼ P (Y |X, ete). Note the difference
between our problem setting and Domain Adaptation is that
the objective of the latter is to learn the invariant representation
function Φ s.t. P (Φ(X)|X, ete) = P (Φ(X)|X, etr).

A. Pseudo-Labeling

Simprov’s learning is initiated by pseudo-labeling the target
data. It then relies on a positive feedback loop for learning
about the target distribution. Simprov first identifies the subset
of the high confidence target predictions using a base model
for OOD generalization. The intuition is that the predictions
with the highest confidence are the most accurate since the
confidence represents the reliance on invariant features for the
predictions. Simprov then uses these predictions with high
confidence as pseudo-labels to start a feedback loop.

Particularly, we use a trained OOD base model such as IRM
to pseudo-label target data with prediction confidence values
generated using Monte Carlo (MC) dropout for uncertainty
estimation [27]. Specifically, we perform label inference after
changing the dropout mask for the same batch of target
data. The variance between the inferences then determines the
confidence in the predictions. Formally, let C = {1, 2, ..., k} be
the set of k classes, d the dropout probability, m the number

of confirmations for the pseudo-labeling process, and f the
labeling function parameterized by θ. The pseudo-label l̃i of
the i-th inference for target sample j can be obtained by:

l̃j,i = fθ(xj , dj,i) ∀i ∈ {1, 2, ...,m}, xj ∈ Ete. (3)

Let ℓj be the set of all inferred pseudo labels of j i.e., ℓj =
{l̃j,1, l̃j,2, ..., l̃j,m}. A simple majority voting strategy is used
to infer the final pseudo label ỹj :

ỹj = argmax
c

∑
a

1(a, c) ∀a ∈ ℓj , c ∈ C. (4)

where 1 is the indicator function. Finally, the confidence score
κj of ỹj is defined as κj = −Var(ℓj), i.e., the variance of ℓj .

B. Self-Distillation

With the high confidence target samples predicted by an
OOD base model, Simprov trains an ERM-based student model
with dropouts over the target distribution. To further improve
the quality of the pseudo-labels, it creates a positive feedback
loop where it re-trains the student model using the previous
student model as the teacher. At the end of the feedback loop,
Simprov learns domain-specific features in the target domain.

At t=0, fθ0 is the function learned by the base model (e.g.,
IRM on training domains). It encourages Simprov to predict
using invariant features. fθ0 is then used to infer pseudo labels
for the target data. Next, we train the student model fθ1 on
the target data using the pseudo labels. We update the pseudo
labels for the target data using re-trained fθ1 . The iterative
process improves the student model towards positive feedback
as judged by the model selection criterion detailed below.

C. Random Chance-based Model Selection

Although the self-distillation process can help improve the
quality of the pseudo-labels, it might turn into a negative
feedback loop as the correct direction of the feedback loop
is unknown. Incorrect pseudo labels will only reinforce the
teacher’s inconsistencies.

To address this challenge, we propose to use the student
model’s pseudo-labels for training domains to maneuver the
direction of the feedback loop in the self-distillation process.
The base model learns invariant features in the training domains.
However, due to issues such as sufficiency [28], it may learn
some spurious features. Between training and target domains,
these spurious features (Xspur) may be (i) positively corre-
lated i.e., P (Y |Xspur, ete) ∝ P (Y |Xspur, etr), (ii) negatively
correlated i.e., P (Y |Xspur, ete) ∝ 1

P (Y |Xspur,etr)
, or (iii)

independent. By definition, P (Y |Xinv, etr) = P (Y |Xinv, ets),
where Xinv represents the invariant latent features. If the
training and target distributions have the same correlation (cases
(i) and (iii)), then a model trained on the target distribution
works similarly on the training distribution. Otherwise (case
(ii)), the model would give an accuracy that is lower than
random chance on Etr. We propose a new metric dtrand to
help identify the direction of the self-distillation feedback loop:
the difference between the training prediction accuracy and



CMNIST Camelyon17 Waterbirds
IRM 67.1 (2.5) 64.2 (8.1) 75.3 (0.6)
Group DRO 38.7 (1.8) 68.4 (7.3) 91.4 (0.3)
DANN 51.5 (0.3) 68.4 (9.2) 77.8 (0.0)
ARM 56.2 (0.2) 87.2 (0.9) 94.1 (0.0)
Pseudolabel 42.9 (1.1) 67.7 (8.2) 74.2 (8.0)
NoisyStudent 27.1 (3.8) 86.7 (1.7) 22.2 (0.0)
Simprov-IRM (Ours) 89.8 (0.1) 92.8 (6.2) 81.6 (8.1)
Simprov-DRO (Ours) 12.3 (0.0) 87.7 (3.5) 95.0 (3.0)

TABLE I: Average accuracy and standard deviations over five
trials of different methods under three benchmark datasets.

the random chance of a model trained on target pseudo-labels.
Formally, the model selection metric is defined as:

dtrand =
∣∣∣fθt(x)− 1

k

∣∣∣ , x ∈ Etr. (5)

If dtrand is greater than dt−1
rand, it indicates that the model

has learned informative features. Thus, during self-distillation,
Simprov only replaces the teacher model at t − 1 with the
student model when this metric increases. This ensures that
there is information gain from the target distribution to de-noise
the pseudo-labels, i.e., the model is learning the domain-specific
features, including both the domain-relevant and invariant
features in the target domain.

V. EXPERIMENTS

We aim to answer the following research questions in the
experiments: RQ. 1 Can Simprov outperform SOTA for OOD
over different datasets? RQ. 2 How effective is the proposed
model selection criterion? RQ. 3 How sensitive is Simprov to
different values of hyperparameters?

A. Experimental Setup

Our implementation extends the boilerplate provided by the
Stanford’s WILDS benchmark repository [13].

Datasets. We use three benchmark datasets with different
classification tasks. (i) CMNIST [3] contains images of digits
that have either of the two colors: green and red. The label is ‘1’
if the digit is less than five, otherwise it is ‘0’. (ii) Camelyon17-
Wilds [29] is related to tumor detection. (iii) Waterbirds [2]
aim to classify images of landbirds and waterbirds with land
or water backgrounds. For the model architecture, we followed
the default setting of WILDS [12].

Baselines. We compare Simprov with two popular OOD
models (i.e., IRM [3] and Group DRO [16]) and four SOTA
domain-adaptation models (i.e., DANN [11], ARM [23],
Pseudolabel [30], and NoisyStudent [21]). IRM and Group
DRO aim to learn invariant features across domains. DANN,
ARM, Pseudolabel, and NoisyStudent employ techniques to
ensure the distributions of learned representations are aligned
across domain. Using IRM and DRO base models leads to two
versions of Simprov: Simprov-IRM and Simprov-DRO.

B. Results

We report the mean and standard deviations of the accuracy
on the target domain over five trials of the selected models.

We present the results in Table I. We used the same train/test
splits (i.e., the hardest case) for CMNIST as in [3], different
from most of other implementations that report results over
a combination of splits. The best results are in bold font and
the second best ones are underlined. We make the following
observations answering RQ1:
• Simprov mostly outperforms the corresponding base models

across different tasks (e.g., Simprov-IRM outperforms IRM
for CMNIST), indicating that learning domain-specific
features is critical for achieving high accuracy in OOD
tasks. Simprov improves accuracy by ∼20% on the hardest
dataset (CMNIST) as it optimizes the feature representation
using target domain data.

• Simprov reinforces the feature correlations learned in the base
models. This is supported by the observation that when the
base models perform relatively well (e.g., Camelyon17 and
Waterbirds), it can improve the prediction performance by a
large margin; however, its performance degrades significantly
if the base models fail (e.g., Group DRO for CMNIST). This
further implies that learning invariant features is necessary
for the OOD challenge.

• Compared to the SOTA models for domain adaption, our
models consistently achieve the best performance. For
example, Simprov has an ∼10% improvement on average
over three datasets on compared to ARM. There are two
reasons for this improvement. First, by using only the pseudo-
labels predicted by the OOD base models rather than their
latent features, By using pseudo labels instead of the features
for the training data during distillation, Simprov does not rely
on the strong feedback regarding the training domains while
retaining feedback for the target domain via backpropagation;
(ii) Our model selection strategy leads the training process in
a direction of information gain, i.e., when the random-chance
difference is large, Simprov has high information about the
target domain, leading to comparatively better performance.
We perform further analysis to answer RQ2 and RQ3.

Fig. 3(a) shows that increasing the deepness (i.e. the number of
distillation iterations) of the self-distillation process generally
helps Simprov learn better domain-specific features in the target
domain. We believe this is in part due to the feedback loop
created during training on the target data. Fig. 3(b) shows
that the proposed model selection strategy is effective. When
the random chance difference is low, there is high variation
in the accuracy of the models on the target domain. This is
because the closer the model’s performance to random chance
accuracy on the training data, the less Simprov knows about
the domain-specific features. By contrast, at a higher random
chance difference, Simprov presents more minor variations and
higher accuracy on the target domain.

VI. CONCLUSION

Our approach (Simprov) leveraged both labeled training data
and target data to learn domain-specific features guided by an
effective model selection criterion. We showed that our method
can outperform SOTA over three benchmark datasets. We draw
two main conclusions. First, our approach relies on invariants
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Fig. 3: (a) effects of deepness on the accuracy, and (b) accuracy
changes relative to our model selection metric.

from OOD models in prior works. Second, our approach does
not find purely invariant features in the data in lieu of the
domain-specific features. We leave these to future work.
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