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Abstract

This paper explores learning emulators for parameter estimation with uncertainty
estimation of high-dimensional dynamical systems. We assume access to a com-
putationally complex simulator that inputs a candidate parameter and outputs a
corresponding multichannel time series. Our task is to accurately estimate a range
of likely values of the underlying parameters. Standard iterative approaches neces-
sitate running the simulator many times, which is computationally prohibitive. This
paper describes a novel framework for learning feature embeddings of observed
dynamics jointly with an emulator that can replace high-cost simulators for param-
eter estimation. Leveraging a contrastive learning approach, our method exploits
intrinsic data properties within and across parameter and trajectory domains. On a
coupled 396-dimensional multiscale Lorenz 96 system, our method significantly
outperforms a typical parameter estimation method based on predefined metrics
and a classical numerical simulator, and with only 1.19% of the baseline’s compu-
tation time. Ablation studies highlight the potential of explicitly designing learned
emulators for parameter estimation by leveraging contrastive learning.

1 Introduction

Physics-based simulators play a vital role in many domains of science and engineering, from energy
infrastructure to atmospheric sciences. They are frequently critical for assessing risk and exploring
“what if”” scenarios, which require running models many times [Snyder et al., 2019, Beusch et al.,
2020, Helgeson et al., 2021, Zhao et al., 2021]. However, the increasing complexity of operational
computer models makes running such simulators a major challenge. Emulators (also known as
surrogate models) are models trained to mimic numerical simulations at a much lower computational
cost, particularly for parameters or inputs that have not been simulated.

This paper considers the problem of estimating the parameters of a physics simulation that provide
the best fit to data. The estimation problem can generally be thought of as a nonlinear inverse problem
in which our goal is to estimate parameters ¢ € R” from a noisy multichannel time series Z € R >4,
Z = H(¢;Zoy) + n, where H(¢; Zo) represents running is a physics simulator with parameters ¢
and initial condition Z¢ for 7" time steps, and 7 ~ N/ (0,T) is observation noise. To ease the notation,
we drop the initial condition Zg in H(¢; Z). We are particularly interested in complex simulators
for which we do not have analytic expressions for H, evaluating H(¢) is a computational bottleneck
and we cannot readily compute its gradients.

One important application of this problem arises in climate science, where climate scientists have
spent decades developing sophisticated physics-based models corresponding to H, often implemented
using large-scale software systems that solve complex systems of differential equations [Kay et al.,
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2015]. In this case, evaluating H can be computationally demanding. Furthermore, tools like
physics-informed neural networks [Raissi et al., 2019] are inapplicable because we cannot compute
losses that depend upon knowing the form of H. Estimating the parameters of such models based
on observational data is essential for accurate climate forecasting, and we typically seek not only
point estimates of parameters, but also quantifiable uncertainty measures that allow us to forecast
the full range of possible future outcomes. Parameter uncertainty quantification is vital here [Cleary
et al., 2021, Souza et al., 2020, Hansen, 2022], especially when dealing with noisy observations
where a small error in ¢ might lead to a dramatically different forecasts of the dynamics; uncertainty
quantification also plays a vital role in the decision-making process to prevent hazardous loss under
tail events [Hansen, 2022].

We explore an alternative framework in which we use our simulator to generate training samples
of the form (¢;, Z;) fori = 1,...,n and train a machine learning model for parameter estimation.
Our approach, which we call EMBED & EMULATE, jointly trains two neural networks. The first,
fo, maps an observation Z to a low-dimensional embedding. The second, gy, emulates the map
go = fo o H, and so maps a parameter vector ¢ to the same low-dimensional embedding space. The
learned gy may be used in place of H within an optimization-based framework such as Ensemble
Kalman Inversion (EnKI, §2).

More specifically, our method uses the learned low-dimensional embedding to specify an objective
function well-suited to parameter estimation without expert knowledge and the learned emulator as
a surrogate for classical numerical methods used to compute H. Furthermore, inspired by empirical
Bayes methods, our learned network suggests a natural mechanism for specifying the EnKI prior
based on the trained network.

2 Related work

Brief parameter estimation background: A widely-used approach for parameter estimation is En-
semble Kalman Inversion (EnKI; §A.1) [Iglesias et al., 2013]. EnKI is a derivative-free optimization
framework allows a user to specify a prior distribution over the parameter vector ¢ and results in
samples from the corresponding posterior distribution. As a result, this method provides users with
important information about the uncertainty of estimates of ¢. The clear and thought-provoking
paper of Schneider et al. [2017] highlighted the use of the EnKI in earth system modeling.

Despite its success in the perfect-model setting (i.e., where H(¢) can be computed exactly and
perfectly represents the dynamics in Z for some ¢), using such methods in practice presents several
challenges. To use the EnKI for parameter estimation, we must specify three key elements: (a) the
objective function that EnKI is attempting to minimize; (b) the tool used to compute the forward
mapping H (or a surrogate for H); and (c) a prior pg. For instance, Schneider et al. [2017] uses
a Gaussian prior pg, computes 1 using Runge-Kutta methods [Dormand and Prince, 1980], and
attempts to minimize the Mahalanobis distance

Tmoment (@) = [|m(Z:) — m(H ()% (m(z.))» M

where m(Z;) is a vector of first and second moments of different spatial channels of Z; and 3; is
a diagonal matrix with the j-th diagonal entry X; ; ; := Var[m(H(¢;));]. Using a loss based on

K3
moments within the EnKI framework provides critical robustness to the chaotic nature of Z;.

This framework presents two central challenges. First, choosing the objective for EnKI to minimize
requires non-trivial domain knowledge, and a poor choice may lead to biased parameter estimates
or unpredictable sensitivities to certain features in Z. Second, high-resolution simulations used to
evaluate H for a given ¢ (e.g. Runge-Kutta or other classical numerical solvers) can be computation-
ally demanding. In particular, the EnKI method uses a collection of particles to represent samples of
the posterior, and the forward model H must be calculated for each particle at each iteration. For
complex optimization landscapes or in high-dimensional settings, the number of particles must be
large. This is further complicated by the fact that often the parameter estimation task is conducted
repeatedly, e.g., each time new climate data is acquired.

Simulation-based inference (SBI): A large body of work in SBI focuses on parameter estimation
for physics-based simulators [Beaumont et al., 2009, Papamakarios et al., 2019, Cranmer et al., 2020,
Lueckmann et al., 2019, Chen et al., 2020b, Alsing et al., 2019]. Advanced SBI methods focus
on adaptive generation of new training data to approximate the posterior and could be classified
into different categories based on how they adaptively choose informative simulations [Lueckmann
et al., 2021]. One approach, likelihood estimation, proposes to approximate an intractable likelihood



function [Drovandi et al., 2018]. For instance, Sequential Neural Likelihood estimation (SNL,
Papamakarios et al. [2019]) trains a conditional neural density estimator (e.g., Masked Autoregressive
Flow (MAF)) which models the conditional distribution of data given parameters [Papamakarios et al.,
2017]). While SNL does not readily scale to high-dimensional data, a recent variant called SNL+
[Chen et al., 2020b] addresses this limitation by learning sufficient statistics (embeddings) of the
data based on the infomax principle, and it iteratively updates the network used to compute sufficient
statistics and the neural density estimators during sequential sampling. An alternative approach,
(sequential) neural posterior estimation ((S)NPE), aims to approximate directly the target posterior
(SNPE-A in Papamakarios and Murray [2016], SNPE-B in Lueckmann et al. [2017], SNPE-C in
Greenberg et al. [2019]), where SNPE-C forces fewer restrictions on the form of prior and posterior
by leveraging neural conditional density estimation.

However, in the context of this manuscript’s setting, i.e., estimating multiple ¢, for multiple different
observations Z; at test time, the key technique of SBI, sequential sampling, can require substantial
computational investments. This idea is discussed further with our experimental results.

Learned emulators: Physics models and simulations are pervasive in weather and climate science,
astrophysics, high-energy and accelerator physics, and the study of dynamical systems. These models
and simulations are used, for example, to infer the underlying physical processes and equations
that govern our observations, design new sensors or facilities, estimate errors, understand experi-
mental behavior, and estimate unknown parameters within models. Many such physics simulators
require expensive computational resources, and are difficult to fully leverage. “Learned emulators,”
“surrogate models,” or “approximants” are computationally-efficient approximate models that use
numerically simulated data to train a machine learning system to mimic these numerical simulations
at a much smaller computational cost. There have been many recent successes in the development of
surrogate model foundations [Brockherde et al., 2017, Raissi et al., 2019, Chattopadhyay et al., 2019,
2020, Raissi et al., 2017, Vlachas et al., 2018, 2020, Brajard et al., 2020, Gagne et al., 2020] and
applications [Goel et al., 2008, Mengistu and Ghaly, 2008, Brigham and Aquino, 2007, Kim et al.,
2015, Papadopoulos et al., 2018, White et al., 2019, Gentine et al., 2018, Rasp et al., 2018, Cohen
et al., 2020, Yuval and O’Gorman, 2020, Xue et al., 2021, Wang et al., 2019].

Typically, one would directly try to emulate H, and the efficacy of the learned emulator would be

evaluated on how well H(¢) matches H (¢) (often using squared error) across a range of ¢. This
formulation, however, may be suboptimal when the emulator will be used for parameter estimation.
First, as we will detail later, emulating /1 when Z is very high-dimensional is quite challenging. (In
our experiments, dim(Z) = 396, 000.) Furthermore, in many climate settings, H represents a chaotic
process in which very small changes to the initial conditions can result in very large differences later

in the process. In this setting, training an emulator with a loss akin to (1/n) 27", ||Z; — H(¢,)|3
may be overly sensitive to noise and initial conditions and not preserve statistical features of Z; that
may be essential to parameter estimation.

Inspired by the objective in (1), Cleary et al. [2021] trained a model gy to emulate the moments of
parameters using the loss function {yoment (0) 1= (1/1) Y27, |m(Z;) — go(¢;))|3;, to ease the
burden of running H. However, £,,oment (#) is not always the best choice. First, estimating 33; for
each training sample is an enormous computational burden that far exceeds the cost of generating the
original training data (unless the range of candidate ¢ is very small). Second, choosing the moment
function m (essentially fixing a particular low-dimensional embedding) is a critical design element
that requires domain expertise and often must be tuned in practice. Finally, even if one is willing
to generate accurate estimates of 3J;, one could face additional challenges. Cleary et al. [2021] is
designed for inferring parameters given one fixed test observation, and they train their emulator
for a small domain of parameter space dependent on the test observation at hand. Extending this
framework to a larger domain of parameters ¢ results in large variability among the collection of
corresponding X;s generated for training, making the loss landscape challenging to navigate.

Contrastive learning: With the above challenges in mind, we present a novel and generic framework
for parameter estimation by jointly optimizing (a) an embedding of the multichannel dynamics used to
evaluate the accuracy of a candidate parameter ¢ and (b) an emulator of the dynamics projected into
the embedding space. We leverage a contrastive framework to learn discriminative representations
for high-dimensional spatio-temporal data.

Contrastive representation learning has exploded in popularity recently for self-supervised visual
feature learning that has achieved comparable performance with its supervised counterparts [Caron



et al., 2020, Chen et al., 2020a, He et al., 2020, Grill et al., 2020, Zhang and Maire, 2020, Caron et al.,
2021]. The majority of these frameworks operate under the push-pull principle for instance-wise
discrimination: images generated from different forms of data augmentation (e.g., cropping, color
jittering) are pulled together while other images are pushed away. Apart from its common setup
in unsupervised representation learning, Khosla et al. [2020] also demonstrated selecting positive
and negative pairs in a supervised way leveraging label information can boost the performance.
Many efforts focus on understanding the mechanism of contrastive learning [Oord et al., 2018, Wei
et al., 2020, Arora et al., 2019, Wang and Isola, 2020, Zimmermann et al., 2021]. Among them,
Zimmermann et al. [2021] show that contrastive loss can be interpreted as the cross-entropy between
the latent conditional distribution and ground truth distribution.

3 Contributions

In our work, we follow the contrastive framework and learn an embedding network to capture
structural information for high-dimensional spatio-temporal data and an emulator that can be used to
compute parameter estimates with uncertainty estimates. This is effective for several reasons. First,
when the model H is bijective, representations learned using contrastive losses are highly correlated
with their underlying parameters [Zimmermann et al., 2021]. Second, most existing emulating
methods focus on approximating dynamical models for a fixed parameter ¢ and lack generalization
capacity [Krishnapriyan et al., 2021]. In part this is due to the difficulties of emulating dynamics with
high spatio-temporal resolution. We circumvent this bottleneck by training an emulator to output the
learned latent representations of the dynamics, which are much lower-dimensional and easier to learn
with fewer training samples. Finally, our method is inspired by the Contrastive Language—Image Pre-
training (CLIP) [Radford et al., 2021] framework, which is designed for contrastive learning of aligned
representations of images and language. Our approach, by analogy, learns aligned representations
of dynamics and parameters, allowing us to jointly learn the embedding function and emulator for
high-resolution data.

More specifically, this paper makes the following key contributions:

e Incorporation of a contrastive loss function for learning an embedding of the simulation outputs
(Z;) instead of relying on a known “good” moment function m, leveraging ideas from CLIP
[Radford et al., 2021];

e Development of an emulator designed to facilitate parameter estimation with uncertainty quan-
tification. We demonstrate that the proposed emulator can be used effectively within an EnKI
framework to generate parameter estimates with accurate posterior distribution estimates.

e An empirical evaluation of different methods (EnKI [Schneider et al., 2017], supervised learning,
NPE-C Greenberg et al. [2019], SNL+ [Chen et al., 2020b], and our proposed emulator-based
approach) in terms of robustness to noise or errors in training and testing data for a range of
sample sizes as well as computational costs. Compared to using numerical solvers, we show that
our method achieves higher accuracy overall in 1.08% of the computation time, even accounting
for the computational costs of generating training data.

e Evaluation of the quality of the uncertainty estimates using the Continuous Ranked Probability
Score (CRPS) for varying numbers of training samples.

Our empirical results highlight both the improved computational and empirical accuracy of our
proposed emulator-centric approach relative to competing methods and, more broadly, the benefits of
designing emulators specifically for parameter estimation tasks.

4 Proposed method

Our goal is to learn a mapping from observations of a multichannel dynamical system, Z € R7*9, to
the underlying system parameters ¢ € R*, where Z = H(¢) + 1 for some noise vector n € R7*9,
We assume we do not have access to an analytical expression for H, but can compute H (¢) for any
¢ using a computationally complex simulator. We further assume a prior pg over parameter space.

Using this prior and the simulator, we generate n training samples as follows: for: =1, ..., n, draw
¢; ~ Dy, and use the simulator to compute Z; = H(¢;) + n;. We do not explicitly generate noise
1,; rather, the numerical algorithm used to simulate /I will generally produce some errors, with
faster implementations of [ being more error-prone. The distribution pg coupled with the noise
distribution over 7 induces the joint distribution pg z.



4.1 Baseline approach — supervised learning

Given training samples (¢,, Z;) fori = 1,...,n, we train a neural network represented by hy using
a ResNet [He et al., 2016] as the backbone (see details in §B.2). 6 denotes the learned network

parameters and our prediction is qZAJz = hg(Z;). We train using the Mean Absolute Percentage Error

(MAPE) loss
n k
1
anrn(®) = 30

i=1 j=1
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As we will see in the experimental results, this approach yields point estimates of ¢ on holdout
test data with reasonable accuracy and offers a significant computational advantage over the EnKI
method. However, it does not offer uncertainty estimates, and its test accuracy is lower than that of
our proposed approach (§4.2).

2

4.2 Our approach: joint embedding and emulation via contrastive feature representation

Contrastive feature representation: Measuring the distance between a pair of dynamics, a nec-
essary task for constructing a loss function used for training, is particularly challenging when the
dynamics are chaotic. As mentioned above (§2), one alternative in the literature is to use a custom
loss function based on summary statistics of Z; this requires expert knowledge to determine which
statistics are relevant, and has demonstrated efficacy only for narrow ranges of parameters ¢.

We present an alternative framework in which we learn an embedding of Z, denoted fy(Z), that
preserves statistical and structural characteristics of Z most relevant to the parameter estimation task
and hence can be used to train an emulator. Here 6 denotes all the parameters of the neural network
defining the embedding function. Inspired by recent advances in contrastive representation learning,
from a collection of parameters and trajectories pairs {¢,, Z;}_,, we propose a trajectory encoder
fo which learns a distinguishable representation by minimizing the following variant of the Info
Noise Contrastive Estimation (InfoNCE) loss [Oord et al., 2018]:

EZZ(&T) — l i*log exp (<f9(Zz)’f9(Z7)>/T)

et ijlexp“fe(zi),fe(zj)>/7)'

3)

Here f¢(Z) € SP~! is normalized and lives in a unit hypersphere. Z; is selected through data
augmentation (see §B.1) or in a supervised way by measuring the distance in the parameter space:
Z, :=arg ming .z, 0(Z;,Z;), where 0 is a metric used in calculating distance in parameter space,
and 7 is a temperature hyperparameter balancing the impact of similar pairs and negative examples
[Zhang et al., 2018, Ravula et al., 2021]. In this way, we drive the model to embed data with
similar values of the parameter ¢ in similar locations while repulsing data with unrelated parameters,
resulting in an embedding that respects the latent structure of the parameter and trajectory pairs.

Emulators: Emulating the dynamics of a simulator by training a deep neural network gy(-) is a
natural approach to easing the computational burden of parameter estimation. However, recent works
in emulating dynamics focus on the fixed-parameter setting [Krishnapriyan et al., 2021] and cannot
be easily generalized to multi-parameter settings (i.e. the emulator only approximates H (¢) for a
single fixed ¢ instead of a range of ¢s, as we need for parameter estimation).

Learning emulators for a range of parameter values is challenging in part due to the dimension of the
dynamics to be emulated (i.e. the dimension of the Zs). To address this problem, we propose to learn
an emulator gy of gg := fg o H, which represents the mapping from the parameter space (¢) to the
latent representation space fp(Z). which is much lower-dimensional than Z and hence easier to learn
with limited training samples.

We say that the trajectory encoder and the emulator are perfectly aligned when §o(¢) =
fo(Z),¥Y (¢,Z) ~ pg z. Under perfect alignment, given a test Z, we may seek to minimize

J(D;Z, fo,90) = l|go(@) — fo(Z)II5 “4)
instead of (1) with much faster objective function evaluations.
Learning the emulator via CLIP: Pretraining an embedding fy and then learning an emulator gy

with an Ly loss is hard to optimize; the different architectures, necessitated by the very different
dimensions of ¢ and Z, make feature alignment challenging and the optimization prone to poor local
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(a) Network setup (b) Contrastive losses

Figure 1: The EMBED & EMULATE framework. (a) Components of our network and loss function.
(b) We use three contrastive learning schemes. The bottom left block denotes the intra-trajecotry
domain contrastive mechanism, the upper right denotes the intra-parameter domain contrastive
learning, and the bottom right block shows inter-trajectory-parameter domains contrastive learning.
Within each block, diagonals correspond to the dot product between the representations of positive
trajectories pairs (Z;, Zi), positive parameter pairs (¢,, ¢, ), and matched trajectory parameter pairs
(Z;, ¢;), which we aim to maximize. Off-diagonal pale pink blocks show similarities between the
anchor point and the negatives examples, which we aim to minimize.

minimizers. Alternatively, inspired by the recent success of CLIP [Radford et al., 2021, Ravula et al.,
2021] in cross-domain representation learning, we use the following variant of InfoNCE loss to align
the representation space between two networks:

L2 (0:7) = 1 zn: g P ((fo(Zi), go(d:))/T") log —XP ((fo(Z:), Go(¢:))/7")

TE T S e ((@)ale ) e ((Z)an(@)/7)
o)

Intra-parameter domain contrastive loss: In order to fully exploit data potential within parameter
space and better guide the learning of the representation and preserve similarities within the parameter
space, we add an intra-parameter contrastive loss and find empirically that it helps accelerate the
training process:

e(ﬁd)(g; T) — % i —log exp (<§9(¢1)a ge(;bz»/T)

i=1 ijl exp ((9o(9:): 9o (b)) /7) |

(6)

where ¢ is selected through data augmentation by perturbing ¢ with small amount of noise (see
§B.1) or by finding nearest neighbors in the training set.

Regression head: Zimmermann et al. [2021] shows that under certain assumptions (see §A.2),
the feature encoder fy implicitly learns to invert the data generating process H up to an affine
transformation, implying we can estimate ¢ via h(fy(Z)) for some linear function h. Inspired by
their analysis, we add a regression head hy (a single fully-connected linear layer) in our framework,
and we ensure the affine relationship between hy and fy by letting them share the same backbone up
to the last layers before the output.

Unified training procedure: To this end, we formulate the final loss of our EMBED & EMULATE
method as

0(0) = Azzlzz(0;7) + Applop (05 T) + Azgplzep(0; ') + Aiarelmare(8),
where Azz, Ay, Azg and Ayiapg control relative loss weights. We show our basic setup in Fig. 1(a)
and loss framework in Fig. 1(b).



5 Experiments

We conduct a numerical case study on the multiscale Lorenz-96 (L96) model [Lorenz, 1996], which
is a common test model for climate models with both “fast” (high-frequency) and “slow” (low-
frequency) components and other geophysical applications [Majda and Harlim, 2012, Law and Stuart,
2012, Law et al., 2016, Brajard et al., 2020]. It is a prototypical turbulent dynamical system “designed
to mimic baroclinic turbulence in the midlatitude atmosphere” [Majda et al., 2010]. Its dynamics
exhibit strong energy-conserving non-linearities, and for some settings of ¢, it can exhibit strong
chaotic turbulence. Code is available at: https://github.com/roxie62/Embed-and-Emulate The
governing equations of the L.96 system are defined as follows:

dX} _ _xk-lxk-2 _ xk+ly _ xck — heYE
ar i (X i) i T F —heYy,
1dy]* 1k 2,k i1,k ik D
P de = =YY YT Y ‘*‘ij»

where X; € R¥ denotes the slow variable at the ¢-th time stamp and Y; € R¥7 denotes the fast
variable. We use Z; := [X;, Y¢] € RE(+1) to denote the system state at the ¢-th time stamp. We
choose K = 36 and J = 10 throughout experiments in this section, as in Schneider et al. [2017].

We set our baseline following Schneider et al. [2017]. Within the EnKI framework, they use
Runge-Kutta Dormand and Prince [1980] to compute the forward model H and optimize (1). After
analyzing the physics information of the L96 system, they define the moment function as: m(Z) :=
[(X)r, (Y)r, (X1, (XY )7, (Y?)1], where (-)7 denotes an empirical average over T time steps,

Y denotes an average across the J Y channels, (Y)7 = (1/J7T) E;‘F:l Z;']:1 Y/* € RX and other

quantities are computed similarly (see details in §B.1). m(Z;) € R>%. For the SBI methods, to suit
the scenario we care about, i.e., estimating multiple ¢, for multiple different observations Z; at test
time, we compare with the non-adaptive counterpart of the algorithms referenced in these papers. For
instance, we set the round number of SNL+ [Chen et al., 2020b] to be one. And use the fixed training
dataset for SNL+ and NPE-C [Greenberg et al., 2019].

We conduct experiments and demonstrate the efficacy when measuring (1) the accuracy of averaged
point estimates, (2) the accuracy of uncertainty quantification, (3) the empirical computational
complexity. For all of our experiments (including SNL+ and NPE-C), we use ResNet-34 [He et al.,
2016] as the backbone of the trajectory encoder. We apply average pooling at the last layer to generate
a 512-d hidden vector. For contrastive learning, we project the 512-d hidden vector into a 128-d
feature vector as the output of the trajectory encoder. For the regression head, we map the 512-d
hidden vector to a 4-d parameter vector. It is important to note that activation functions are not used
in the regression head to ensure an affine mapping between two projections. We parameterize the
emulator network with a ResNet backbone, and to enhance the representation power of the network,
we use five residual connection blocks (see §B.2). We find this increases the alignment between the
two representation spaces. Within each skip block, there is a residual connection between the input
layer and the output. The implementation details for training are shown in §B.1.

5.1 Higher quality estimates with lower sample cost

In this section, we evaluate our method with different training sizes in the perfect-model setting where
no noise is injected in observations. These experiments demonstrate the usefulness of our method in
realistic scenarios where forward models are prohibitively expensive and only limited quantities of
training data are available.

We train our EMBED & EMULATE method and the supervised regression baselines when the
training size equals 500 and 1,000. The training samples are sampled uniformly from ¢, ;, =
[Fmirh hmin; Cmin, bmin] = [_51 0,0.1, 0] to ¢max = [Fmaxa Nmax, Cmax, bmax] = [QOa 9,25, 25}: and
each simulation is of length 100, with dt = 0.1. We then sample 200 testing samples uniformly from
a narrower range of [—3,0.5,2, 2] to [18,4.5, 23, 23]. As assumed in Schneider et al. [2017], each
testing sample is of length 1, 000, with d¢ = 0.1. The EnKI prior used for baselines (i.e. minimizing
(1)) is a Gaussian distribution with means at the middle of the range of the testing instances, diagonal
covariance matrix, and variances broad enough that all test samples are within 20 of the mean,
denoted pg fixea (see §B.1). Within the context of the EMBED & EMULATE approach, we adopt an

empirical Bayes approach: for each test instance, we compute c} using the regression head and use


https://github.com/roxie62/Embed-and-Emulate

these values as the prior means when using EnKI to minimize (4); we denote this prior pg empn- The
impact of the empirical Bayes approach is explored in §5.3.

n Fl hl cl bl

EnKI w/o Learning 15.48 (3.77) 0.86(0.20)  40.45(13.39) 4.60 (0.60)

he¢ w/ EMBED & EMULATE 11.19 (3.65)  3.18 (1.60) 15.52 (6.24) 8.57 (2.17)
EnKIw/ EMBED & EMULATE  10.94 (4.07)  3.74 (2.26) 16.09 (6.41)  8.84 (2.93)

500 Supervised Regression 11.97 3.10) 4.07 (2.24) 17.04 (5.88) 9.07 (2.74)
NPE-C 15.51 (4.52) 5.94 (2.59) 23.54 (8.16)  9.42 (3.70)
SNL+ 36.88(19.93) 48.71(30.69) 57.45(28.59) 23.45(17.62)

ho w/ EMBED & EMULATE 6.30 (1.86) 2.07 (1.31) 9.34 (3.71) 5.51 (1.74)
EnKIw/ EMBED & EMULATE  6.59 (2.14) 2.36 (1.54) 9.38 (4.02) 5.54 (2.35)

1000 Supervised Regression 7.57 (1.78) 3.08 (1.54) 11.46 (3.29) 6.64 (2.19)
NPE-C 11.29 (3.54) 5.62 (2.29) 16.32 (6.53)  6.81 (2.38)
SNL+ 33.29(19.68)  49.05(27.75) 48.17(23.90) 25.40(16.03)

Table 1: Averaged MAPE (MdAPE, median absolute percentage error) for varying training
size of different methods for 200 test samples. We compare EMBED & EMULATE w/ regression
head (hg) and EMBED & EMULATE plugged into EnKI to supervised regression, NPE-C [Greenberg
et al., 2019], SNL+ [Chen et al., 2020b], and a classical numerical solver (Runge-Kutta) plugged into
EnKI to minimize (1). The example illustrates that EMBED & EMULATE is able to achieve a lower
error than both the EnKI approach based on a fixed moment vector objective and classical numerical
solver [Schneider et al., 2017] and a straightforward supervised regression approach that is unable to
produce uncertainty estimates.

Training data  Training 200 test Total time (train +
generation time runs test)
EnKI w/o Learning 0.0 0.0 8,000.0 8,000 (5.5 d)
he w/ EMBED & EMULATE 21.0 72.0 1.0 94.0 (1.57 h)
EnKI w/ EMBED & EMULATE 21.0 72.0 2.0 95.0 (1.58 h)
Supervised Regression 21.0 59.0 1.0 81.0(1.35h)
NPE-C 21.0 72.0 2.0 95.0 (1.58 h)
SNL+ 21.0 73.0 400.0 494.0 (8.23 h)

Table 2: Empirical computational time for different stages of different methods (n = 1, 000).
Reported in minutes, total time for EMBED & EMULATE, the supervised regression, or NPE-C are
1.19% of EnKI with Runge-Kutta. All neural approaches are trained with 4 GPUs and tested with 1
GPU. Both training data generation and EnKI w/o Learning are run with 32 CPU Cores.

We first evaluate the accuracy of point estimates using the mean and median absolute percentage error
(MAPE and MdAPE), see §B.1. In Table 1 and Table 2, we see that EMBED & EMULATE evaluated
with the regression head (hg) and EnKI guarantees similar performance in terms of averaged accuracy.
However, the regression head (hy) is slightly better, which may be explained by our empirical
observation that when estimates from iy with EMBED & EMULATE are far from the true parameter
values, then using this estimate as the prior mean for EnKI can worsen the estimate. Despite this
challenge, the EnKI has the advantage of providing uncertainty estimates, which are discussed below
and reflected in Table 3.

Compared with other methods, it is clear that EMBED & EMULATE yields a significant improvement
in accuracy, especially for the parameter affecting high-frequency dynamics (e.g., ¢). In particular,
NPE-C [Greenberg et al., 2019] performs worse with a smaller training set size ; SNL+ [Chen et al.,
2020b] using MCMC or rejection sampling suffers from increasing evaluation time as the number of
test samples increases. Moreover, when compared to the classical method of running EnKI using a
predefined moment function and expensive numerical solvers, EMBED & EMULATE yields better
performance in terms of accuracy and computation time. Last, our EMBED & EMULATE framework
also performs well relative to supervised regression for smaller training sets.



We then evaluate our results based on the continuous ranked probability score (CRPS) [Hersbach,
2000, Zamo and Naveau, 2018, Pappenberger et al., 2015]. CRPS is an important metric used in
quantifying uncertainty (e.g., in weather forecasts). It measures the accuracy of estimated posterior

distributions and is defined as
oo

CRPS(C, ;) = / (Clyy) — Uly; — doy))dy;,

— 00

where (Z)*j represents the j-th component of the estimate parameter vector, ¢, ; represents the j-
th component of the true parameter vector, C' is the cumulative density function of the ensemble
estimates with C(y) = P(¢,; < y), and U is the Heaviside step function. For a deterministic
estimate from supervised regression, CRPS is equal to the mean absolute error (MAE). Table 3 shows
that EMBED & EMULATE achieves high-accuracy estimates of uncertainty.

n Fl hl cl bl

0 EnKI w/o Learning 0.910 0.019 2.443 0.393
hg w/ EMBED & EMULATE 0.698 0.076 1.715 0.824

500 EnKI w/ EMBED & EMULATE 0.615 0.073 1.561 0.720
Supervised Regression 0.707 0.104 1.785 0.917
NPE-C 0.844 0.106 2.117 0.853
SNL+ 1.399 0.616 2.426 1.822
he¢ w/ EMBED & EMULATE 0.412 0.049 0.992 0.453

1000 EnKI w/ EMBED & EMULATE 0.360 0.042 0.829 0.394
Supervised Regression 0.478 0.078 1.242 0.650
NPE-C 0.593 0.096 1.389 0.564
SNL+ 1.304 0.595 2.010 1.763

Table 3: Continuous Ranked Probability Score (CRPS) evaluated on 200 test samples. The
errors of the uncertainty estimates are almost always lower for EMBED & EMULATE than for an EnKI
method using a classical numerical solver. And compared to neural methods, EnKI with EMBED
& EMULATE yields significant improvements over a supervised regression which cannot quantify
uncertainty, defeats the simulation-based inference models NPE-C [Greenberg et al., 2019] and
SNL+ [Chen et al., 2020b] which relies on sequential sampling. Moreover, it’s clear that EMBED
& EMULATE evaluated with EnKI provides more accurate uncertainty estimates than point-wise
estimates from the regression head (hy) trained with EMBED & EMULATE.

5.2 Visualizing uncertainty with noisy observations

In this subsection, we go beyond the perfect-model setting and evaluate our method in the realistic
scenarios where observations are noisy and obtained through: Z = H(¢) + n, where n ~ N (0,7T),
where I is the temporal covariance of the trajectory Z, and r is a scaling value. Specifically, we set
¢ = [10, 1,10, 10] following Schneider et al. [2017] to ensure we are in the chaotic regime. We use
model trained with n = 4, 000 data samples and compare the results obtained in both the noiseless
and noisy cases. For this visualization, both methods use the fixed prior from §5.1 based on the
range of test values, so any differences observed are not caused by differences in the prior, but rather
differences in the choice of objective and the method of computing the forward model.

As shown in Fig. 2, EMBED & EMULATE is more robust to noise than the baseline method with
numerical solvers and predefined moments. Reconstructed posterior distributions learned with
EMBED & EMULATE in Fig. 2 are more consistent with increasing noise levels, especially for the
parameters F and b.

5.3 Ablation study: role of the regression head

In this section, we empirically verify the utility of the regression head hy in our EMBED & EMULATE
framework. We use n = 4000 training samples in two settings: first, we use the full EMBED &
EMULATE model of §5.1; second, we discard the regression head (i.e. fix hy = 0) while keeping
intra- and inter-domain contrastive losses. For both trained models, we run the EnKI. We run the
EnKI using components from the EMBED & EMULATE framework for two choices of prior: first, we
USe P fixed> and second, we use pgy empn. Note the empirical Bayes prior is only possible with the
regression head. These priors are detailed in §5.1 and §B.1.
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Figure 2: Impact of observation noise. Reconstructed posterior distributions, comparing a classical
numerical solver (Runge-Kutta) plugged into EnKI to minimize (1) (left) with EMBED & EMULATE
(right). Both variants of EnKI are run for 70 iterations with 100 particles. The green line shows
the noise-free case, the blue shows the noisy case when » = 0.1, and the red shows the noisy
case when r = 0.2. We see here that our proposed EMBED & EMULATE method (right column)
produces posterior estimates that are consistent over a range of noise levels, while the baseline EnKI
approach using a pre-defined embedding corresponding to a moments vector is much more sensitive
to variations in 7.

Table 4 shows that having the regression component of the loss complement the contrastive losses
yields a substantial improvement in parameter estimation accuracy using EMBED & EMULATE. In
other words, explicitly training the embedding function and emulator for the parameter estimation
task yields an emulator that is far more accurate during parameter estimation than training a generic
embedding and generic emulator. Furthermore, this table illustrates the efficacy of our empirical
Bayes procedure — i.e., using our learned regressor to alter the prior used by EnKI. The medians
are slightly improved while the means are strongly improved, suggesting that the empirical Bayes
procedure is particularly helpful in the tails.

Fl hl cl bl

(a) No regression head (pg fixed) 16.75 (2.62) 6.02 (1.63) 22.16 (6.35) 6.60 (1.86)
(b) EMBED & EMULATE (g, fixed) 8.39(1.12) 1.77(0.82) 15.82(1.61) 3.85(0.91)
(c) EMBED & EMULATE (P empr)  3.39 (1.03)  1.21(0.76) 4.53 (1.52)  3.02 (0.90)

Table 4: Ablation study of regression head: Average MAPE (MdAPE, median absolute percentage
error) over 200 test instances for estimating ¢ by minimizing (4) in three different settings: (a) fy
and gy correspond to a generic emulator trained without the regression loss /,c; and the original
prior pg fixed; (b) fo and gg correspond to the emulator learned with our EMBED & EMULATE
framework and the original prior pg fixed; and (c) fp and gg correspond to the emulator learned
with our EMBED & EMULATE framework and the empirical Bayes prior pg empp. This experiment
shows that having the regression component of the loss complement the contrastive losses yields a
substantial improvement in parameter estimation accuracy using EMBED & EMULATE.

6 Conclusions

The proposed EMBED & EMULATE framework trains an emulator of a complex simulation to facilitate
parameter estimation. Unlike generic emulation methods, which can lead to poor parameter estimates
and require expert domain knowledge to construct, our method (a) leverages a contrastive learning
framework coupled with a regression head to jointly learn a low-dimensional embedding of simulator
outputs that can be used to construct an objective function for parameter estimation and (b) yields an
emulator that can be used within an optimization framework such as the EnKI to produce accurate
parameter estimates in 1.19% of the computation time of an approach using classical numerical
methods, even accounting for the time required to generate training samples. We explore our approach
in the context of earth system modeling as described by Schneider et al. [2017] and Cleary et al.
[2021] and hypothesize that these tools can facilitate improved climate forecasts that account for
uncertainties and cover the full range of possible outcomes. The social impacts of improved climate
forecasting are positive if acted upon. While learned emulators are gaining in popularity, we as a
community still know little about which systems are more or less challenging to emulate or how to
design task-specific emulators more generally. There are further opportunities for exploring emulators
for parameter estimation using optimization frameworks beside the EnKI.
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A Algorithms and analysis

A.1 Ensemble Kalman Inversion

Ensemble Kalman Inversion (EnKI) gained its popularity in addressing Bayesian inverse problems
since its proposal [Iglesias et al., 2013]. It is a derivative-free optimization method for objective
functions of the form [Chada et al., 2020] :

1
JDM(¢) = §||Ymeasure - g(¢)||2R7 (7

where Ymeasure 1 the measured data, g is a given map and R is a symmetric positive definite matrix
representing the data measurement precision (we explain how different approaches in our paper using
different yeasure and R below).

The EnKI estimates a posterior distribution of ¢, which is approximated using an ensemble of
particles. At each iteration, the EnKI consists of two steps: the prediction step and the analysis
step. In the prediction step, we apply the forward model g to each particle of the ensemble. In the
analysis step, each particle is updated by using artificially perturbed observations and forward-mapped
particles. The EnKI is summarized in Algorithm 1.

Algorithm 1 EnKI (ymeasure; 9, P, &, R, M, N)

Input: Data ycasure, forward model g, prior distribution pg, step size «, variance R, ensemble
size M, number of iterations V.

Initialize: {J)(O’m) }M_ | sampled from the prior distribution p.
1: fori=1,---N do

2:  Prediction step: propagate the ensemble of particles to data space {g ((ﬁ(i7m))}%:1 by
applying the forward model g M times. From the ensemble, calculate the empirical means
and covariance matrices:

& e T
¢IZMZ¢(2’m)7§l:Mmz::1.g(¢ )a

G, =22 > (96" ~7) (46 - 7).

3:  Analysis step: calculate the Kalman gain matrix
K'=C,,(C,+o 'R)",
artificially perturb the data y'simdure = Ymeasure + 71™ where (™ ~ A/(0,a~'R), and
update the ensemble of particles:

"(i7m)

+K (v = 9(8")) 1 < m < A

4: end for N
Output: {é( ’m)}

When using EMBED & EMULATE to minimize the objective function (4), Ymeasure cOrresponds to
the embedding of the raw trajectory fy(Z), the forward model g corresponds to the emulator gy, and
R corresponds to an identity matrix. When using the baseline method to minimize the objective
function (1), ¥measure corresponds to the moment vector m(Z), g corresponds to the m o H where
H is computed using Runge-Kutta method, and R is a diagonal matrix with j-th diagonal entry
Rj,j = Var[m(Z)]]
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A.2 Contrastive learning and inverse problems

In this section, we briefly reviewed the assumptions and results of Zimmermann et al. [2021] and
explain how we relate the analysis to our work in addressing the parameter estimation problem.

Recent literature studies the reason why contrastive learned representations can be successfully
extended to multiple downstream tasks [Arora et al., 2019, Wang and Isola, 2020, Zimmermann et al.,
2021]. Among them, a recent work from Zimmermann et al. [2021] points out that under certain
assumptions, the representations fy learned in the contrastive framework to minimize ¢zz(6;7)
(shown in (3)) inverts the underlying data generating process H ~!(Z) of observed data up to an
affine transformation.

Assumptions: Zimmermann et al. [2021] firstly make assumptions on the data generating process.
They assume the generator H : ® — Z is an injective function with ® € S¥~! in a unit hypersphere
and the distribution of ¢ € ® is uniform. Second, they assume the conditional distribution p((}b|¢)
of a “positive parameter” ¢ given ¢ is a von Mises-Fisher (vMF) distribution with p(6§|¢) =
o ! exp(n(&), ¢)) where c,, is the normalizing constant and « is the concentration parameter. Third,

they assume the learned representation fy : Z — S¥~1 is in the unit hypersphere where the dimension
of the representation is equal to the dimension of the parameters. They further assume the learned

conditional distribution of (}5 given ¢ with the contrastive trained neural network is a VYMF distribution
with go(@p|p) = Cy(@) "L exp({fo(H (), fo(H(p))/T)) where C, () is the partition function.

In the context of the parameter estimation problem of this paper, the relationship proved by Zim-
mermann et al. [2021], that fo(Z) = AH 1(Z) = A¢ where A is a full rank matrix, is clearly a
desirable property as, if A were known, we could simply invert A to obtain an unbiased estimate of ¢.
Empirically, we find that directly adding a linear regression head on top of fy (which effectively serves
as a mechanism for learning A~!; see Fig. 1) provides faster convergence and better performance (as
shown in §5.3).

B Implementation details

B.1 Experiment details

Lorenz 96 dataset: Initial conditions of the ODE/PDE systems affect the values of dynamical
variables at future times. To better fit in real-world scenarios, we simulate the training data used for
EMBED & EMULATE and the supervised regression, as well as the testing data used for evaluations
of all methods, with random initial conditions sampled from the normal distributions. During EnKI
evaluations of the baseline we are required to specify initial conditions. We follow Schneider et al.
[2017] and set the initial conditions of all simulations in the EnKI evaluations as random samples
drawn from the observation. Note that, unlike the baseline method, EMBED & EMULATE directly
learns the structural embeddings of ¢ and does not require initial conditions. Beyond the setup of
initial conditions, there are two stages to generate our train and test data. In the first stage, we generate
a collection of ¢;, and for each one, we run a Runge-Kutta solver to compute a corresponding Z;. In
the second stage, we filter out some of the {¢,;, Z; } generated during the first stage —whenever the
Runge-Kutta iterations are unsuccessful, generating NaN values, and whenever the Z; are degenerate,
resulting in a standard deviation below 5e-5.

Data processing : (a)Trajectory cropping: during the training of EMBED & EMULATE and the
supervised regression, we randomly crop a collection of length-250 trajectories from length-1000
trajectories, where each crop Zcop € R250%396 (b) “positive” data selection: EMBED & EMULATE
trained with contrastive learning objectives tries to pull “anchor” data Z (or ¢) towards “positive”
data Z in (3) (or ¢ in (6)) and at the same time push “negative” data away. To identify a “positive’
trajectory Z (or parameter ¢), we use a two-step approach. First, we select it in a supervised
manner by measuring the distance between the “anchor” data Z; (or ¢,) and a sample Z; (or
¢;) in the parameter space. We find the index i of the nearest neighbor of the “anchor” data

i

in the parameter space with i = arg min;; 0(¢;, d)j), where 0 is a metric function defined as:
5(;, b;) = 1{APE(¢,; ®;) + APE(¢;; ¢,)} (see APE in §B.3). However, since the training
data is sampled from finite grids with limited size, the distance between the “anchor” data and
its nearest neighbor 6(¢;, ¢;) could be very large. We apply a threshold filter and only accept a
candidate nearest neighbor as “positive” data when the empirical distance §(¢;, ¢;) is below some
threshold (e.g., 0.45 for n = 500, 0.4 for n = 1,000 and 4, 000 ). Second, for the cases where no
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sample passes the threshold filter, we set Z and ¢ in two different ways. For Z, we simply set it in an
unsupervised way by randomly making another crop on Z;. For &S, we set it by randomly adding a
small amount of noise on ¢, with ‘251‘]‘ = ¢;; + &by, 7 = 1,2, 3,4 with a certain probability (e.g.,
50%), where £ is a normal variable with mean 0 and a small standard deviation (e.g., 0.04).

Training Hyperparameters: We train EMBED & EMULATE and the supervised regression using the
AdamW optimizer. For both methods, we linearly warm up the learning rate to 0.01 at the beginning
of the training and then gradually decay the learning rate with a cosine decay scheduler. We use
A =le-5 for weight decay. We train NPE-C [Greenberg et al., 2019] and SNL+ [Chen et al., 2020b]
with learning rate le-4 and 5e-4 as we find lower learning rate leads to better performance. We
train all the methods with 1,000 epochs. We use batch size 1000 for large sized training data with
n > 1,000. For the small size training data with n = 500, we set it as 500.

Temperature values in contrastive learning balance the influence between barely distinguishable
samples and easily distinguishable “negative” samples [Ravula et al., 2021]. They are commonly
chosen to be less than one where smaller values indicate a larger influence of barely distinguishable
“hard” samples. For EMBED & EMULATE, we initialize the temperature values 7 in (3) and (6) and
7/ in (5) at 0.15. We keep 7 and 7’ fixed at 0.15 for the first 500 epochs to make sure “hard” samples
get large gradients and are updated sufficiently. We then adopt the “heating-up” strategy from Zhang
et al. [2018] and linearly increase 7 in (3) and (6) to 0.5 to increase the impact of “easier”” samples.
We keep 7’ in (5) fixed all the time so that the learned emulator gy is capable of distinguishing
embeddings of “hard” samples from the embedding network fy, and vice versa.

In training a contrastive learning target, we usually need sufficient amount of “negative” samples
to approximate the uniform repulsion. We follow He et al. [2020] and construct a first-in-first-out
queue with a rolling updating scheme. Practically, the memory bank size should be no less than the
training size. In our experiments, we set the size of the memory bank as 5,000 when the training size
n = 4,000; the size of the memory bank as 2, 000 when the training size n = 1, 000; and the size of
the memory bank as 1, 500 when the training size n = 500.

All the hyperparameters are chosen using a grid search with a reserved validation set consisting of 5
samples. The range of values searched over are as follows:

e The initialized learning rates for EMBED & EMULATE and the supervised regression were selected
from the set {0.001,0.01}.

e The initialized temperature values of 7 in (3) and (6) and 7’ in (5) were selected from the set
{0.10,0.15,0.20}. The heated up maximum value of 7 in (3) and (6) were selected from the set
{0.1,0.2,0.3,0.4,0.5}.

Priors Initialization of the EnKI: As Schneider et al. [2017], for the initialization of the EnKI prior,
we use a normal prior for (¢, o, ¢,) = (F, h,b) and a log-normal prior for ¢p; = ¢ in order to
enforce positivity. For the baseline method minimizing (1) in §5.1 and §5.2, we use a fixed prior
D, fixed- FOr the normal variables, we choose the mean at the middle of the range of testing instances:
K fixed (Fy h,b) = (7.5,2.5,12.5) and variances broad enough so that all test samples are within
20 of the mean: 03, 4 .4 (F, h,b) = (36.0,2.25,36.0). For the log-normal variable log ¢, we set its

mean [ig fixed (l10g ¢) = log(11.5) and variance oiﬁxed(log ¢) = 0.15 (i.e., a mean value of 12.5 for
c). For EMBED & EMULATE, we can choose between the instance-wise prior pg empn and the fixed
prior defined above. Specifically, we alter the mean of pg .mpp With the empirical estimate provided
by the regression head and use a relatively small variance. ai,emp(F, h,b) = (18.0,1.125, 18.0) for

normal variables and U?p,emp(l()g ¢) = 0.075 for log-normal variable c.

Setup of the EnKI: For experiments in §5.1, we set the ensemble size M = 100, step size a = 0.3
and iteration number N = 50 for the baseline method with pg fixea and EMBED & EMULATE
with pg empp. For the study of noise impact in §5.2 when evaluating the baseline and EMBED &
EMULATE, we use pg fixed- For the ablation study in §5.3 when evaluating EMBED & EMULATE and
no regression head contrastive learning with pg fixed, We set a large ensemble size M = 10, 000 to
prevent potential collapse in a local minimum and N = 100 to ensure convergence. Arguably, this
could slow down the computational times. However, empirically we only increased the time from
2 seconds to 16 seconds per instance, which is significantly lower than the times consumed by the
baseline method.
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Computational resources: Experiments of EMBED & EMULATE and the supervised regression
were performed on a system with 4x Nvidia A40 GPUs, 2 AMD EPYC 7302 CPUs, and 128GB of
RAM. The baseline methods and data generating process were performed on 2x Xeon Gold 6130
CPUs.

B.2 Network Architecture

P?gjselg:;gln Residual Residual
(in) ¢ . Block Projection
l i X4 (out)
A
Residual FC (512. 128)
Block x 5 ? + E s
EC (s [EC (512. 1281
1 4.._1._2.&”
Residual
Projection
(out)
Residual < <
PEram:ter 5] Projection
~ ncoder i
&), (in)
A Y

(a) Encoder network (b) Residual projection (in) (c) Residual block (d) Residual projection (out)

Figure 3: Architecture of emulator gy of EMBED & EMULATE (a) The emulator network consists
of one residual projection (in), three residual projection blocks, and one residual projection (out). (b)
The residual projection (in) independently maps the j-th item of ¢ into a high-dimensional (e.g., 128)
latent representation, which is then concatenated (shown as the & operator) as a single vector as the
output. (c) The residual block has the same input and output dimension. (4) The residual projection
(out) projects a high-dimensional input latent vector into a low-dimensional embedding.

Emulator gg: To enhance the representation power of the emulator gy and enlarge the alignment
between two learned representation spaces, we design the emulator using residual blocks as in Fig. 3.

Embedding network f, : We use Resnet34 [He et al., 2016] as the backbone of the trajectory branch
of EMBED & EMULATE in Fig. 1(a) and the supervised regression. We apply average pooling at the
last layer to generate a 512-d hidden vector. To respect the temporal periodic pattern of Lorenz 96, we
replace the standard zero padding with the circular padding on the temporal axis. For the regression
head hy, we project the 512-d hidden vector into a 4-d output using only a single fully connected
layer. For the embedding network, we project the 512-d hidden vector into a 128-d feature vector
using a similar structured branch as projection residual (out) in Fig. 3(d) except that the residual
block skips two layers instead of one.

B.3 Performance metrics

Absolute Percentage Error (APE): : APE is used in selecting “positive” samples of EMBED &
EMULATE and is calculated on pairs of training samples:
k
[Pi — il
APE(¢ji¢:) =) — ', )
(#5580 = 2 534

here k is the dimension of ¢, ¢, j represent indexes of two data samples, and ¢ is a small value to
address overflow issues.

Mean Absolute Percentage Error (MAPE): MAPE is a measure of prediction accuracy over the
entire testing data and is expressed as a ratio with the formula:

- 1~ [ — ¢
MAPE(. ;i ¢.;) = = )
A ; bl + €
where dA)* ; represents the j-th component of the estimate parameter vector, ¢, ; represents the j-th

component of the true parameter vector (e.g., [@.1, .o, D3, P.4] = [F, h, ¢, b] for Lorenz 96), and
€ is a small value to address overflow issues.

; (€))
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Continuous Ranked Probability Score(CRPS): As described in §5.1, CRPS is a probability metric
to evaluate the performance of a probabilistic estimation. CRPS is computed as a quadratic mea-
surement of cumulative distribution function (CDF) between the predicted distribution C' and the
empirical distribution of the observation. CRPS is defined as [Hersbach, 2000, Zamo and Naveau,
2018, Pappenberger et al., 2015]:

oo

CRPS(C..,) = [ (Cluy)~Uls - 6.,) . (10)
where qb*j and qg* ; are defined above, C' is the CDF of the ensemble estimation with C(y;) =

P(qg*j < y;), and U is the CDF of the Heaviside step function with U(y; — ¢,;) = 1{y; > ¢.,}.
Practically estimating C' is difficult since it has no analytic form. In our case, using EnKI with
ensemble size M, we can estimate (10) using the empirical distribution calculated from the particles

{¢*] m 1 :

CRPS(C, b,

M PRI 1 <% om)
ZZ — by |+ D 1~y AD

m=1

B.4 Visualizing the objective functions
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(a) Marginal heatmap of (1) using Runge-Kutta (b) Marginal heatmap of (4) using learned emulator.

Figure 4: Heatmap visualization showing values of objective functions. (a) the marginal heatmap
of predefined moments objective function (1); and (b) the marginal heatmap of (4) with EMBED
& EMULATE using learned emulator. The red stars in both plots show the locations of the true
parameters, while the black stars show the locations of the points with the minimum function value.
All objective values are greater or equal to zero, but we intentionally set the limit of z-axis to be
negative for clear visualization of “star” points. z-axes between different marginal heatmaps using the
same objective function are aligned with post-processing. Unlike the value of the objective function
(4) are bounded between [0, 4], values of (1) have no upper bound and might contain extremely
large numbers. For better visualization, we manually truncate values of (1) by a threshold number
(e.g.,100) for better visualization.

In this section, we visualize the objective function of (1) with predefined moments function and
Runge-Kutta and (4) of EMBED & EMULATE with emulator fy and gg. We use the same instance
in §5.2 as the observation with the ground truth ¢ = [10, 1, 10, 10] and the noiseless Z is of length
10, 000. Fig. 4 shows the marginal heatmaps of the objective functions when holding two parameters
fixed at the ground truth values and sampling the other two parameters uniformly in a fixed range.
We can see that the objective function learned with EMBED & EMULATE can accurately reflect the
dynamics in the parameter space with smooth curves. In contrast, the predefined objective function is
insensitive to the parameter ¢ with a flat curve showing in the marginal heatmap of (h, ¢) pairs.

C Further Experiments

In this section, we study the 1-d Kuramoto-Sivashinsky equation (KSE). Kuramoto-Sivashinsky
equation is known for its chaotic dynamics and can be applied in describing a variety of physical
phenomena, including flows in pipes, plasmas, chemical reaction dynamics, etc. [Hyman and

'nttps://pypi.org/project/properscoring/
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Nicolaenko, 1986] The Kuramoto-Sivashinsky equation is a fourth-order partial differential equation
with the form:

ove
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where V7 is the state of KSE, A2, A4 and Aponlinear are the coefficients of second-order derivative,
fourth-order derivative and nonlinear term. In all, we define ¢ := [A2, A4, Anonlinear|> and our goal is
to learn ¢ from sequences of observations V € R7*4,

Choosing the moments function: We choose the first order statistics of V to define the moments
function: m(V) = [(V)] where () denotes empirical average over time. Note here we have tried
multiple combinations of moments, including second-order and third-order statistics but found no
choice of moments performs better than using only the first-order.

Preparation of dataset: We set L = 32 and d = 256 to ensure we are in a chaotic regime. Initial
conditions are randomly sampled from a uniform range [—, 7r]. All simulations performed here are
completed with a Runge-Kutta 4-stage method as Pachev et al. [2021]. Training data are sampled
uniformly for all three components of ¢ ranging from min = 0.1 to max = 10.0 with length
T = 400,dt = 0.5 and size n = 500. 100 testing data are sampled in a narrower range from
min = 0.5 and max = 9.5 with length 800 and dt = 0.5.

Setup of the EnKI: We set the fixed Gaussian prior pg fixed With mean at the middle of the testing
range and variance broader enough to cover all testing instances in 20 fig_ fixed = 9, 0'3,7 fixed =
o

6.25,7 = 1,2, 3. We use the same variance for py ompp and alter its mean with the empirical estimate
provided by the regression head. For both baseline and EMBED & EMULATE, we set ensemble size
M = 100, iteration number N = 40, step size a = 0.3.

Setup of the training: We train both EMBED & EMULATE and the supervised regression for 1,000
epochs. We set the memory bank size of EMBED & EMULATE for 1,000. We set the dimension of
learned representation, i.e., fp(V) and go(¢p) to be 120. We use the same learning rate and cosine
decay scheduler. We initialize 7, 7" = 0.1, and linearly warm up 7’ from 500 to 900 epochs with the
maximum value 0.6.

)\2 l, /\4 \L Anonlinear i

(a) EnKI w/o Learning 34.73(25.44) 56.14 (38.27) 68.64(33.90)
(b) hy w/ EMBED & EMULATE 3.24 (1.56) 3.70 (1.68) 2.69 (1.45)
(c) EnKI w/ EMBED & EMULATE  3.48 (1.42) 3.29 (1.50) 3.30 (1.69)
(d) Supervised regression 3.27 (1.16) 3.34 (0.97) 3.14 (1.36)
(e) NPE-C 4.30 (2.14) 4.86 (2.59) 3.30 (1.83)

Table 5: Averaged MAPE (MdAPE, median absolute percentage error) over 100 test instances.
(a) EnKI plugged in the Runge-Kutta solver and predefined moments function in minimizing (1); (b)
EMBED & EMULATE with Regresssion head (hg); and (c) EnKI plugged in our EMBED & EMULATE
with the empirical Bayes prior pg empn; (d) Supervised regression; (e) NPE-C [Greenberg et al.,
2019].

Results: We first evaluate the accuracy of point estimates using the mean absolute percentage error
(MAPE) and the median absolute percentage error (MdAPE). In Table 5, we see that EMBED &
EMULATE significantly outperforms EnKI using the predefined moments function and the expensive
numerical solver. This experiment demonstrates that designing moments function like Schneider
et al. [2017] did for the Lorenz 96 system needs physical information of the dynamical system and in
applications (e.g., climatology) this requires extra domain expertise. We then evaluate the quantified
uncertainty using the continuous ranked probability score (CRPS). In Table 6, we see that EMBED &
EMULATE outperforms the baselines of the EnKI without learning and the supervised regression. This
experiment demonstrates that EMBED & EMULATE with the EnKI is capable of providing a reliable
probabilistic estimation with low errors than the EnKI without learning which requires domain
knowledge to perform well, the supervised regression which only provides points estimates, and
NPE-C which lacks competence when trying to estimate multiple different observations at test time.
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(a) EnKI w/o Learning 1.14 1.50 1.47
(b) hg w/ EMBED & EMULATE 0.148 0.149 0.125
(c) EnKI w/ EMBED & EMULATE 0.121 0.101 0.114
(d) Supervised regression 0.149 0.124 0.150
(e) NPE-C 0.175 0.217 0.131

Table 6: Averaged continuous ranked probability score (CRPS) over 100 test instances. (a)
EnKI plugged in the Runge-Kutta solver and predefined moments function in minimizing (1); (b)
EMBED & EMULATE with Regresssion head (hg); and (c) EnKI plugged in our EMBED & EMULATE
with the empirical Bayes prior pg empn; (d) Supervised regression; (e) NPE-C [Greenberg et al.,
2019].

Training data  Training 100 testing  Total time(training+
generation Time runs testing)
EnKI w/o Learning 0.0 0.0 3,600.0 3,600.0 (60h)
ho w/ EMBED & EMULATE 9.0 34.0 0.5 43.5(0.73 h)
EnKI w/ EMBED & EMULATE 9.0 34.0 1.0 44.0 (0.74 h)
Supervised Regression 9.0 28.0 0.5 39.5(0.62 h)
NPE-C 9.0 31.0 1.0 40.0 (0.66 h)

Table 7: Empirical computational time for different stages of different methods. Reported in
minutes, total time needed for EMBED & EMULATE or the supervised regression are 1.23% of EnKI
with Runge-Kutta.

Lastly, we show the empirical computational time needed for EMBED & EMULATE, the supervised
regression, NPE-C, and the EnKI with Runge-Kutta for different stages. From Table 7, we see that
EMBED & EMULATE, the supervised regression, and NPE-C only require 1.23% (or below) of the
time needed by the EnKI with Runge-Kutta.
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