
December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

International Journal on Artificial Intelligence Tools

© World Scientific Publishing Company

Predicting Integer Overflow Errors via Supervised Learning

Yu Luo

Computer Science Electrical Engineering

University of Missouri-Kansas City, Kansas City, USA

ylzqn@umsystem.edu

Weifeng Xu

School of Criminal Justice

The University of Baltimore, Baltimore, USA
wxu@ubalt.edu

Dianxiang Xu

Computer Science Electrical Engineering

University of Missouri-Kansas City, Kansas City, USA
dxu@umkc.edu

Received (Day Month Year)

Revised (Day Month Year)

Accepted (Day Month Year)

An integer overflow error occurs when an integer operation in computer software evalu-

ates a value out of the integer range. It can lead to a fatal system failure. The existing

approaches to detecting integer overflow errors rely on data/control-flow analysis of the
code or execution of the code with test cases. This paper presents a supervised learning

approach to predicting whether each method in a given Java program has an integer over-

flow error by treating the source code as text. Built upon real-world programs, our Java
dataset covers all integer data types and operations in Java, the methods for prevent-

ing integer overflow errors, and adversarial samples. We have evaluated six classification

models, BERT, DistilBERT, codeBERT, Code2Vec, fastText, and NBSVM. They repre-
sent different text embedding techniques for dealing with source code. The experiment

results show that BERT and its variants have outperformed other models. We have ap-
plied the resultant BERT model to eleven real-world projects, including JDK13.0 and
ten top-ranked GitHub projects, and revealed 181 integer overflow errors. In addition,
we have evaluated the classification models with a C/C++ dataset. The result is similar
to that of the Java dataset.

Keywords: integer overflow; machine learning; static code analysis; text classification;

BERT.

1. Introduction

Unanticipated arithmetic overflow is a common cause of software failure and secu-

rity vulnerability. It occurs when an arithmetic operation results in a value outside

the range of the pre-defined or assumed integer type. Consider the arithmetic mean

1

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

2 Luo et al.

of two integer numbers, which is calculated by adding the two numbers and then

dividing by two. An integer overflow happens when the sum is too large to be

represented. Sample consequences of arithmetic overflow errors include the possi-

ble power loss in Boeing 787 reported in 2015 [25], and the lawsuit of the prize

ticket of $42,949,672.76 printed by a Casino machine at Resorts World Casino in

2016 although the stated maximum payout was $10,000 [14]. Vulnerabilities due

to integer overflows have been reported widely in popular software products, such

as OpenOffice, Adobe Flash Player, Adobe Reader, RealPlayer, QuickTime Player,

and Microsoft Linker [44].

While the concept of integer overflow seems straightforward, and it is not difficult

to identify integer operations that potentially overflow, it can be hard to automat-

ically determine “which potential overflows are true errors and which are intended

by the programmer” [20]. Beyond industry tools that provide a partial solution

to the problem, many research publications fall into two broad categories: static

analysis and dynamic testing. They usually rely on code semantics (e.g., data flow

and control flow) or functional specification. As a unique static analysis technique,

machine learning-based detection of code defects and vulnerabilities has recently

gained increasing attention. The existing machine learning methods, however, have

not yet explicitly targeted integer overflow. Other related work on static analysis

and dynamic testing has focused on C/C++ programs.

This paper aims at the prediction of integer overflow errors in Java source code,

although the proposed approach applies to other languages. In Java, various integer

types and operators are subject to integer overflow. There are also different methods

for preventing integer overflow. Existing static code analysis tools such as SpotBugs

(evolved from FindBugs) [40], Coverity Scan [5], and PMD [30] cannot reveal integer

overflow errors. In principle, model checkers such as Java Pathfinder [27] may deal

with overflow errors. However, they require the formalization and specification of

overflow-related properties.

This paper presents a supervised learning approach for predicting integer over-

flow errors through automated classification of Java source code. Text classification

is a fundamental task in Natural Language Processing (NLP) with broad applica-

tions such as spam detection, topic labeling, and sentiment analysis. It is the process

of assigning tags or categories to natural language text according to its content. In

this paper, the text classification approach aims to assign “positive” (existence of

integer overflow) and “negative” (absence of integer overflow) tags to each method

in the given source code. The dataset is built upon real-world programs, covering

all integer data types and operations in Java, the methods for preventing integer

overflow errors, and adversarial samples. We have evaluated six models, BERT,

DistilBERT, CodeBERT, Code2Vec, fastText and NBSVM, representing different

text embedding techniques for dealing with Java source code. BERT [6] considers

bi-directional contexts of words. It is pretrained with natural language text. Distil-

BERT [34] is a lighter and faster version of BERT trained with knowledge distillation

technology. Based on BERT, CodeBERT [8] is trained with both natural language

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

Predicting Integer Overflow Errors via Supervised Learning 3

text and programming language code. Code2Vec [1] is a machine learning model

of source code learned from the abstract syntax trees of Java source code. fastText

[12] treats a sentence as a bag of n-grams where word order is observed. NBSVM

[43] transforms sentences in terms of word frequency. Our experiment results show

that BERT has outperformed other models. Applying the resultant BERT model

to eleven real-world projects has revealed many integer overflow errors.

The remainder of this paper is organized as follows. Section 2 introduces various

forms of integer overflow errors in Java programs and the main methods for pre-

venting integer overflows. Section 3 presents the framework for predicting integer

overflow errors via text classification; Section 4 presents the dataset and experiment

results; Section 5 applies the resultant models to real-world Java projects; Section

6 reviews related work; Section 7 concludes this paper.

2. Integer Overflow in Java Programs

In this section, we first describe various integer overflow errors in Java programs and

then present the methods for preventing such errors. Programs with integer overflow

errors are called positive samples, whereas programs that have prevented potential

integer overflows are negative samples. In addition to using existing programs for

machine learning purposes, positive and negative samples can be created according

to the ideas in subsections 2.1 and 2.2, respectively. This paper does not consider

programs without integer operations, which can be easily determined. Thus, all

negative samples involve integer operations without overflows.

2.1. Integer Overflow Errors

An integer overflow occurs when an integer operation evaluates to a value that is

either greater than the maximum or less than the minimum representable value,

i.e., out of the range of the underlying integer type. In this case, Java’s built-in

integer operators silently wrap the result, which leads to an incorrect computation

and unanticipated outcome. Overflow errors are typically introduced by the use of a

wrong integer type or inappropriate assumption about the operands’ ranges. Table

1 presents the list of integer data types in Java. Note that char is a 16-bit unsigned

integer type. Its values represent UTF-16 code units to which integer operations

apply.

Integer overflow happens to binary operations and unary operations because

the ranges of each integer type are not symmetric. For an integer type other

than char, the minimum value’s negation is one more than the maximum value.

Therefore, unary negation overflows when applied to the minimum value. Even the

java.lang.math.abs() method can overflow if used to obtain the absolute value of

a minimum number.

Another common mistake is the incorrect evaluation order of multiple operators

in a compound expression. The order of these operators may not matter in the

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

4 Luo et al.

Table 1. Integer Data Types in Java.

Table Size Inclusive Range

byte 1 byte -128 .. 127
short 2 bytes -32,768 .. 32,767

int 4 bytes -2,147,483,648 .. 2,147,483,647

long 8 bytes - 9,223,372,036,854,775,808 ..
9,223,372,036,854,775,807

char 2 bytes 0 .. 65,535

mathematical sense. However, it is important in computer programs because over-

flow can occur to an intermediate calculation. Consider a mathematical formula,

y = x ∗ 2/5, which is independent of whether the multiplication is performed before

or after the division. Integer overflow happens to the statement int y = x ∗ 2/5;
when the int variable x is greater than Integer.MAX V alue/2. Similarly, the order

of addition and subtraction operators is also important. Incorrect order may lead

to overflow or underflow.

Not all integer operators are relevant to integer overflow errors. The operators

subject to integer overflow include +, -, *, /, ++, –, +=, -=, *=, /=, unary -.

The other operators, such as %, %=, <, >, >=, <=, ==, !=, and unary +, are

usually overflow-free. They may indirectly contribute to the occurrence of integer

overflow in another expression. Some integer operators are overloaded with other

data types. For example, the + operator for string concatenation does not involve

integer overflow. However, a machine learning algorithm may incorrectly treat it as

an integer operator.

2.2. Debugging and Prevention of Integer Overflow

Some integer overflow errors, once detected, can be fixed by simply changing the

expressions where the overflow occurs. For example, int y = x∗2/5; may be rewritten

as int y = x/5 ∗ 2; For other cases, however, bug fixes may apply to statements or

expressions that do not exhibit overflow behavior themselves but cause an overflow

elsewhere.

Effective software development should prevent potential integer overflow errors

from the production code before it is tested or verified. Systematic prevention re-

quires careful program design and good coding practices. In the following, we de-

scribe the primary methods for Java programming: precondition test, built-in safe

methods (Math. ∗ Exact() in Java 8), upcasting, and BigInteger [20].

The precondition test is to ensure safe calculation by checking the operands of

each arithmetic operator. The following method, safeAdd, performs the addition

only when overflow will not happen. It will throw an exception when right is greater

than 0 and left is greater than MAX V ALUE−right, or when right is not greater

than 0 and left is less than MIN V ALUE − right.

The Java 8 release introduced several safe arithmetic methods in the Math class,

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

Predicting Integer Overflow Errors via Supervised Learning 5

such as addExact, subtractExact, negateExact and multiplyExact. They either

return a mathematically correct value or throw ArithmeticException. To avoid

integer overflow, for example, the expression oldAcc+(newV al∗scale) can be coded

as Math.addExact(oldAcc,Math.multiplyExact(newV al, scale)). The Math class

does not provide any methods for safe division or absolute value, though.

The upcasting method uses the next larger primitive integer type to store the

operands and perform the calculation to ensure the overflow does not happen. Each

intermediate result stored in the larger primitive integer type in the calculation

can compare with the range of the original smaller type. If it is within the range,

the result is downcast to the original smaller type before assigned to a variable of

the smaller type; otherwise, it throws an exception. In this case, the range check

must be performed after each arithmetic operation. Larger expressions without per-

operation bounds checking can overflow the larger type.

BigInteger is the standard arbitrary-precision integer type provided by the Java

standard libraries. The BigInteger methods convert the operands into BigInteger

objects and perform all arithmetic operations using overflow-free methods. A single

range check is needed before converting the result to the original smaller type.

3. Prediction of Integer Overflow Errors

3.1. The Framework

Figure 1 illustrates the framework for predicting integer overflow errors via auto-

mated text classification. Given the source code of a Java program with a number

of classes and methods, the goal is to classify each method either positive (i.e., the

existence of integer overflow) or negative (i.e., absence of integer overflow). In this

approach, we first convert each method into a text string, like a natural language

sentence, and transform the text into the internal representation (e.g., feature vec-

tor) of a classifier. The classifier assigns a tag of either positive or negative to the

text and provides an explanation of what features have contributed to the pre-

diction. In the visualized result, each word with green (or red) background has a

positive (or negative) correlation to the result. The correlation weight is indicated

by the level of greenness or redness. In general, many words may be correlated to

a prediction result. However, when only a few words are highlighted in green for a

positive prediction, debugging may focus on these locations.

When the text string of a Java method is transformed for text classification,

non-word symbols including integer operators are typically ignored. To address this

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

6 Luo et al.

Figure 1. The framework for predicting integer overflow errors

issue, we substitute these symbols for predefined words because they are critical

to integer overflows. Table 2 shows the list of symbols and their substitutions. It

also indicates whether each symbol is related to integer overflow. “(” and “)” may

involve overflow because they affect how an expression is evaluated.

3.2. Classification Models

While any classification models can be adopted in the above framework, this pa-

per focuses on six models that represent different text embedding techniques for

dealing with input sentences (i.e., Java methods). BERT, DistilBERT and code-

BERT consider bi-directional contexts of words. Code2Vec extracts path-contexts

from the abstract syntax trees of source code. fastText treats a sentence as a bag

of n-grams where word order is observed. NBSVM transforms sentences in terms of

word frequency.

3.2.1. BERT

BERT [6] is a recent NLP language model from Google AI Language. Previous mod-

els often suffer from polysemy or memory loss. BERT resolves these symptoms using

an attention mechanism to enable contextual learning and long sentence learning.

Attention is, to some extent, motivated by how we pay visual attention to different

regions of an image or correlate words in one sentence. For example, the word “key”

would have the same context-free representation in “a lock key” and “the key to

this problem.” An attention mechanism enables contextual learning by computing

a representation of each word, e.g., word embedding, based on the left and right

context of the word ”key” in the sentence. The attention mechanism does not dis-

criminate against these words that are positioned a distance away from the word

that machines try to interpret, and thus, it solves the memory loss issue caused by

the vanished gradient descendent problem.

BERT is designed to pre-train deep bidirectional representations from unlabeled

texts, such as Wikipedia, by jointly conditioning on both left and right context in

all layers. The pre-trained BERT model can be fine-tuned with just one additional

output layer to create new state-of-the-art models for a wide range of NLP tasks.

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

Predicting Integer Overflow Errors via Supervised Learning 7

Table 2. Substitutions of Symbols.

Symbol Overflow? Substitution

+ Yes SYMZPLUS
- Yes SYMZMINU

* Yes SYMZMUL

/ Yes SYMZDIV
++ Yes SYMZDOUBPLUS

– Yes SYMZDOUBMINU

+= Yes SYMZPLUS SYMZEQAL
-= Yes SYMZMINU SYMZEQAL

*= Yes SYMZMUL SYMZEQAL

/= Yes SYMZDIV SYMZEQAL
(Yes SYMZLETPARE

) Yes SYMZRITPARE

unary - Yes SYMZMINU
unary + No SYMZPLUS

% No SYMZPERC
= No SYMZEQAL

%= No SYMZPERC SYMZEQAL

<<= No SYMZLESS SYMZLESS SYMZEQAL
>>= No SYMZGREAT SYMZGREAT SYMZEQAL

&= No SYMZAND SYMZEQAL

| = No SYMZVERT SYMZEQAL
= No SYMZCARET SYMZEQAL

<< No SYMZLESS SYMZLESS

>> No SYMZGREAT SYMZGREAT
& No SYMZAND

\ No SYMZSLASH

ˆ No SYMZCARET
˜ No SYMZTILDE

! No SYMZTEXCLA
< No SYMZLESS

> No SYMZGREAT

>= No SYMZGREAT SYMZEQAL
<= No SYMZLESS SYMZEQAL

== No SYMZEQAL SYMZEQAL

!= No SYMZTEXCLA SYMZEQAL

This paper uses a forwarding neural network as the additional output layer. We

obtain the BERT-based classifier through fine-tuning (re-learning) and validation.

The fine-tuning process takes a set of vulnerable and non-vulnerable Java methods

(i.e., positive and negative samples) to fine-tune BERT with the forwarding neural

network. The validation process produces a list of contextual word embeddings for

each word in a given validation sample. The forwarding neural network reduces the

semantics to a vector and further converts the vector to a vulnerability probability

using a softmax function.

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

8 Luo et al.

3.2.2. DistilBERT

DistilBert [34] is a lighter and faster model trained with knowledge distillation

technology on the basis of BERT-base, which involves three steps: 1) Use the original

BERT-base as the teacher network; 2) the number of network layers is halved on

the basis of BERT-base; 3) train a student network on the soft label and the hidden

layer parameters of the teacher network. Compared to BERT, the size of DistilBert

is reduced by 40%, and the inference speed is increased by 60%. The performance

is only reduced by about 3%.

3.2.3. CodeBERT

Based on BERT, CodeBERT [8] is trained with a hybrid objective function,

including the masked language modeling (MLM) and replaced token detection

(RTD) pre-training task. RTD corrupts the input by substituting some of the

input tokens and then trains a discriminator to predict whether the generator

sample covers each token in the corrupted input. Different from BERT, Code-

BERT uses both natural language and programming language as input in the pre-

training phase, which is a combination of two segments and a special delimiter,

i.e. [CLS], w1, w2, ..., wn, [SEP], c1, c2, ..., cm, [EOS]. One of the snippets is natu-

ral language text, and the other is code written in some programming language.

The outputs of CodeBERT include a contextual vector representation of each token

(for both natural language and code) and an aggregated vector representation of

sequence.

3.2.4. Code2Vec

Code2Vec [1] is a network structure that can embed code and develop a continuously

distributed vector representation for the code. Model inputs are code snippets and

their corresponding semantic features, such as method names. In the process of

embedding, the model captures semantic information between names, and method

names can be compared and inferred. First, distinct pathways are extracted from

the abstract syntax tree corresponding to the code fragment, and the tuple created

by the values of all nodes on the path is called path-context. Then, the nodes in each

path-context are concatenated into a vector representing the path-context. Finally,

all path-contexts merge together through an attention model and generate a final

vector to capture the features of method name.

3.2.5. fastText

fastText [12], created by Facebook’s AI Research (FAIR) lab, uses a simple archi-

tecture to achieve high speed on training and testing tasks while retaining accuracy

comparable to some deep learning models. fastText is similar to the CBOW model

in word2vec. CBOW aims to predict words, whereas fastText focuses on predict-

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

Predicting Integer Overflow Errors via Supervised Learning 9

ing labels. The architecture of fastText consists of three layers: input layer, hidden

layer, and output layer.

• Input layer: Each input sentence is treated as a bag of n-grams, rather

than a bag of words. N-gram divides the sentence into several n-window-

size fragments and composes a contiguous sequence to ensure word order

is considered as a significant feature. There are two ways to implement n-

gram: n-word and n-char. For the sentence ‘How are you?’, 2-word breaks it

into a contiguous sequence of “how are, are you”, whereas 3-char converts

it to “<ho, how, owa, war, are, rey, eyo, you, ou>”, where ‘<’ and ‘>’ are

counted as boundary symbols. Although word order is considered, there

are much more fragments need to be embedded. Hence, fastText stores all

fragments into hash buckets, and fragments in the same bucket share the

same embedding vector, which can effectively reduce duplicate encoding.

For a word that has not appeared in training samples, it still can be encoded

into a vector based on the existing n-char fragments.

• Hidden layer: This is a process of learning weight matrix through back-

propagation learning. The initial weight matrix is randomly generated.

When the input vector of a training sample comes through, the loss can

be calculated based on the expected and actual values. Then, the weight

matrix is updated by reducing the gradient of loss and weight matrix. After

multiple rounds of training, the weight matrix can be optimal.

• Output layer: A hierarchical softmax is used to calculate the probability

of each label. It can reduce the amount of calculation, especially for multi-

label tasks. The hierarchical softmax is implemented through Huffman tree.

All vectors and labels are used as leaf notes to draw the Huffman tree. High

frequency notes are close to the root, and low frequency notes are far from

the root. The label in the path with the highest probability is the output

of the model.

3.2.6. NBSVM

NBSVM [43] integrates Support Vector Machines (SVM) with Näıve Bayes (NB)

features, two traditional linear text classifiers. NBSVM is a variant of SVM by

using the ratio of logarithm and count from NB as eigenvalues. Unlike BERT and

fastText that have specialized algorithms to predict words by context, NBSVM

uses word frequency to convert sentences into a vector matrix. All words from the

dataset of an NLP task are extracted and made into a dictionary based on word

frequency. A complete sentence is then represented by a vector matrix, where each

word is encoded as a vector. Term Frequency–Inverse Document Frequency (TF-

IDF) is used to balance word frequency and its importance to avoid overstating

the influence of words with high-frequency. By measuring the word frequency and

universality (quantity of samples with related words), TF-IDF can weigh each word,

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

10 Luo et al.

reducing the influence of words with high frequency and low universality.

4. Empirical Studies

4.1. The Java Dataset

Our Java dataset is based on IARPA STONESOUP3.0, part of the NIST SARD

(Software Assurance Reference Dataset) suites [35] for testing static analysis tools

with seeded security flaws. The seven Java projects in IARPA STONESOUP3.0 con-

tain 2,711 seeded vulnerabilities, including 93 integer overflow errors. As described

in our preliminary study [19], IARPA STONESOUP3.0 has several limitations: (a)

The 93 positive samples have covered only three addition operators (+, +=, ++)

of one integer type (i.e., short). (b) No negative sample reflects how integer over-

flow errors are mitigated. (c) Although the classifiers have accurately learned the

syntactic features of the STONESOUP programs, the resultant prediction models

were worse than a random guess when applied to real-world programs with integer

overflow errors. In short, IARPA STONESOUP3.0 is not suitable for evaluating

machine learning based approaches to vulnerability prediction.

To address the above limitations, we have created 857 positive samples and 813

negative samples. The positive samples account for all types of integer overflow er-

rors discussed in Section 2.1. The negative samples cover all methods for preventing

integer overflow errors described in Section 2.2. Inspired by contrastive learning,

we created the negative samples by applying a prevention technique to fix the er-

ror in each positive sample if feasible. Thus, our dataset consists of many pairs of

contrastive samples.

Unlike contrastive learning that only uses contrastive samples, however, our

dataset also includes many negative samples that represent widely applied Java

programs of various integer types and operations without overflow errors. They orig-

inate from IARPA STONESOUP3.0. Among the new samples, 100 are adversarial

positives that are incorrect programs with the key features that usually appear in

negative samples; 111 are adversarial negatives that are correct programs with the

key features that usually appear in positive samples. Adversarial samples are essen-

tial for machine-learning-based prediction models, which could easily be fooled by

such malicious code if trained only with normal code. In brief, our dataset consists

of 6,888 samples, including 950 positive and 5,938 negative samples.

In the following, we describe how the new samples are created.

4.1.1. Normal Positive Samples

We used several methods to create normal positive samples. First, we refactored

the 93 STONESOUP samples by changing variable names, modifying arithmetic

expressions, and adding more comments (called STONESOUP refactorings). Sec-

ond, we collected samples from textbooks, websites, and bug histories of open-source

projects. Based on these samples, we further crafted positive samples by writing new

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

Predicting Integer Overflow Errors via Supervised Learning 11

code segments to cover all integer types and operations that may cause overflows and

by inserting overflow code segments into negative samples. To do so, we maintain

a set of method/variable names, a set of overflow-free code segments in addition to

the sets of integer types, operators subject to integer overflows, method modifiers,

and return types. We also strive to avoid using similar variable names.

Algorithm 1 creates a positive sample by inserting a flawed code segment into an

existing negative sample. Given a set of method/variable names N , a set of integer

data types T , a set of integer operators O, and a negative sample Sn, we first re-

organize Sn according to the positions of ‘;’, ‘{’ and ‘}’ to ensure the code segment

will not be inserted in the middle of a statement. Next, we select an operator o from

O, a type t from T , a line number l from range [2, L− 1], where L is the number of

lines of Sn. Then we choose (a) a name n from N if the operator is ‘++’, ‘–’, ‘unary

–‘ or absolute value, (b) two names n, n1 from N if the operator is ‘+=’, ‘-=’, ‘*=’,

or ‘/=’, or (c) three names n, n1, n2 from N for other operators. The selected names

and integer type t are used to declare variables in the method parameters (only the

last two if there are three names). Finally, we compose an integer overflow code

segment with the selected names and operator o and insert it into line l of Sn to

obtain a positive sample Sp.

Algorithm 1: Create a positive sample by inserting a flawed code segment

to a negative sample

Input: a set of method/variable names N , a set of integer data types T , a

set of integer operators O, a negative sample Sn

Output: a positive sample Sp

1 L = #lines of Sn

2 Select a random operator o from O, a random type t from T, a random line

number l from [2, L-1]

3 if o = ’++’, ’- -’, ’unary –’ or absolute value then

4 Select a random name n from N

5 t, n → parameter p

6 o, n → flawed code segment c

7 else if o = ’+=’, ’-=’, ’*=’, or ’/=’ then

8 Select two random names n, n1 from N

9 t, n, n1 → p

10 o, n, n1 → c

11 else

12 Select three random names n, n1, n2 from N

13 t, n1, n2 → p

14 o, n, n1, n2 → c

15 Sp ← insert p to parameter position of Sn and c to line l of Sn

16 Return Sp

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

12 Luo et al.

Algorithm 2 creates a new Java method from scratch. Given a set of method/-

variable names N , a set of method modifiers M , a set of method return types R, a

set of integer operators O, and a set of overflow-free code segments, we first select

a method name nm from N , a method modifier m from M and a method return

type r from R to compose an empty method template Sn. Then, num (a random

number from 0 to 3) code segments are selected from C and inserted into Sn. Then

we use N (besides nm), r, O and Sn as the input of Algorithm 1 to obtain a positive

sample Sp. Finally, if the return type is not ‘void’, the first variable name, ‘return’,

and ‘;’ form a return statement as the last line (before ‘}’).

Algorithm 2: Generate a new positive sample

Input: a set of method/variable names N , a set of method modifiers M , a

set of method return types R, a set of integer operators O, a set of

overflow-free code segments C

Output: a positive sample Sp

1 Select a random method name nm from N, a random method modifier m

from M, a random return type r from R

2 nm, m and r compose an empty method → Sp

3 num = a random integer ∈ [0,3]

4 Select num random code segments from C and insert them into Sp

5 Sp = Algorithm 1(N\nm, r, O, Sp)

6 if r ̸= ’void’ then

7 insert a return statement into the last line of Sp

8 Return Sp

Table 3 shows the distributions of positive examples classified by integer oper-

ators.

Table 3. Normal Positive Samples.

Category Positive Samples

STONESOUP Refactorings 93
+ (+, +=, ++) 165
- (-, -=, –) 155

* (*, *=) 160
/ (/, /=) 50

unary - 30

absolute value 30
other operators 74

Total 757

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

Predicting Integer Overflow Errors via Supervised Learning 13

4.1.2. Normal Negative Samples

The creation of normal negative samples was inspired by contrastive learning, which

allows training models to learn the distinctiveness of positive and negative features.

The distinctiveness is achieved by pairing a positive with one or more negatives.

Specifically, we created negative samples from the existing positive samples using

the prevention techniques to fix each overflow error if feasible. There are 55 positive

samples to which the prevention techniques do not apply because concrete values

cause the overflows. The above approach can reduce the bias of syntactic features

because such features appear in both positive and negative samples.

Table 4 shows the distributions of negative samples classified by prevention

techniques. Each sample in the category of “other operators” involves an operator

that indirectly leads to integer overflow and can be fixed by changing the operator.

Table 4. Negative Samples.

Prevention Techniques Negative Samples

Precondition Test 173

Upcasting 166
BigInteger 166

Math.*Exact 123
Other Operators 74

Total 702

4.1.3. Adversarial Samples

An adversarial positive sample is a flawed Java method with the features that usu-

ally appear in negative samples. An adversarial negative sample is an overflow-free

method with specific features that usually contribute to positive samples. We cre-

ated 100 adversarial positives and 111 adversarial negatives after the classifiers have

been trained with the normal samples. From the normal samples, the classifiers

have identified critical features that contribute to their prediction. For example,

many negative samples share words, such as “ArithmeticException”, “BigInteger”,

and “Math”, representing the prevention of integer overflow errors. Example words

that contribute to positive samples are “stonesoup checked value”, “tracepointVari-

ableShort”, and “trigger-point”. Training with adversarial samples will allow the

classifiers to distinguish between normal and adversarial cases. Although adversar-

ial samples do not represent real-world software, they are essential for measuring

machine-learning approaches.

We used the following methods to create the adversarial samples:

• Refactor the existing positive and negative samples by using new variables

named after the frequent words (phrases) or replacing original variable

names with the top frequent words.

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

14 Luo et al.

• Insert print statements with top frequent words to both positive and neg-

ative samples. For example, ‘System.out.println(“ArithmeticException is

not a key word.”);’ can be inserted into a positive sample.

• For each positive sample with multiple integer overflows, fix one and keep

the others unchanged to create an adversarial positive sample.

4.2. Experiment Results of the Java Dataset

The experiments were performed on Google Colab Pro with a Tesla V100 GPU and

27.4G RAM, using ktrain v.0.28.2, transformers v.4.10.3, and scikit-learn v.0.23.2.

For BERT, we used the BERT-Base(uncased) model initially embedding each sam-

ple and train BERT with our dataset to fine-tune the parameters. We added a

softmax layer to get a value between 0 to 1 for prediction. For code2vec, distil-

BERT, codeBERT, fastText and NBSVM, we used the default training parameters.

We set the learning rate to 2e-5 and epoch to 40 for all models. If the accuracy and

loss values are satisfactory in the 40th epoch, the training terminates; otherwise, it

will continue.

We compare the classifiers with the following performance metrics:

• Accuracy: Accuracy is the ratio of correctly predicted samples to the total

number of test samples. It can reflect the general performance on both

positive and negative samples

• Precision: Precision indicates that among all samples a model predicts as

positive, how many of them are true positive. It can reflect the accuracy

of prediction on these samples. For samples predicted as positive, there

are two possible outcomes: a positive sample predicted positive (i.e., true

positive - TP) and a negative sample predicted positive (i.e., false positive

- FP).

Precision =
TP

TP + FP

• Recall: Recall indicates that among all positive samples in our dataset, how

many of them are predicted as positive. A positive sample can be predicted

as positive (i.e., true positive - TP) or negative (i.e., false negative - FN).

Recall =
TP

TP + FN

• F1 Score: F1 score is the harmonic mean of precision and recall. It ranges

from 0 to 1. A high F1 score indicates a good performance on positive

samples.

F1 score = 2 ∗ precision ∗ recall
precision+ recall

• Area Under the Curve: AUC is the area under ROC (receiver operating

characteristic curve). A high AUC means that the classifier has a high

probability to make a correct prediction.

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

Predicting Integer Overflow Errors via Supervised Learning 15

We applied 10-fold cross-validation to evaluate the classifiers, i.e., 90% of the

samples for training and 10% for testing in each fold on Java dataset (except 30

positive and 25 negative adversarial samples reserved for the purposes of compar-

ative studies) Table 5 shows the results on Java dataset. BERT outperforms the

other five classifiers in all performance measures. It has correctly identified the vast

majority of the integer overflow errors, with a minimum score of 99% for accu-

racy, precision, recall, F1 score, and AUC. A high precision can reduce the number

of false positive samples, which saves time for verification. A high recall indicates

that there are less missed integer overflow errors. CodeBERT gives the second-best

performance. Although codeBERT can handle both natural language and program-

ming language, integer overflow errors usually occur in an expression. The RTD

in codeBERT doesn’t help model understand the contextual features of an expres-

sion. DistilBERT, as a smaller and faster variant of BERT, performs 1% lower than

BERT dose. Code2Vec can be an effective approach, however, it represents source

code on AST paths for method name prediction. fastText and NBSVM give low

performance, while others have an average score of over 90%.

Table 5. Experiment Results of the Java Dataset.

Model Accuracy Precision Recall F1 AUC

fastText 0.9375 0.8603 0.9302 0.8899 0.9826
NBSVM 0.9470 0.8763 0.9468 0.9063 0.9767

Code2Vec 0.9597 0.9017 0.9681 0.9336 0.9881
DistilBERT 0.9878 0.9783 0.9868 0.9819 0.9914

CodeBERT 0.9890 0.9836 0.9897 0.9862 0.9927

BERT 0.9959 0.9939 0.9903 0.9921 0.9968

4.2.1. The Impacts of Adversarial Samples

To evaluate the impacts of the adversarial samples, we have also trained the clas-

sifiers without the adversarial samples and then applied the resultant prediction

models to the reserved 30 positive and 25 negative adversarial samples. Figure 2

compares the results of BERT prediction models trained with and without the

adversarial samples. When BERT is not trained with the adversarial samples, its

performance of predicting the 55 adversarial samples is about 70%. If trained with

the adversarial samples, however, the performance has increased to 98%.

Figure 3 compares the results of fastText prediction models trained with and

without the adversarial samples. Training with the adversarial samples only slightly

affects the prediction. In both cases, the performance scores are not satisfactory.

Figure 4 compares the results of NBSVM prediction models trained with and

without the adversarial samples. The adversarial samples have a notable impact

(e.g., increasing the performance from 60% to 70%). In both cases, however, the

performance scores are not satisfactory.

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

16 Luo et al.

In brief, fastText and NBSVM can be fooled by adversarial samples no matter

whether trained with the adversarial samples. While BERT can be fooled by adver-

sarial samples if not trained with such samples, it can perform very well if trained

with the adversarial samples.

Figure 2. BERT Prediction Models Trained with and without the Adversarial Samples

Figure 3. fastText Prediction Models Trained with and without the Adversarial Samples

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

Predicting Integer Overflow Errors via Supervised Learning 17

Figure 4. NBSVM Prediction Models Trained with and without the Adversarial Samples

4.2.2. Comparison with Contrastive Learning

To evaluate the performance of contrastive learning, we trained the classifiers with

the original 93 positive samples in IARPA STONESOUP3.0, normal positive sam-

ples, and the contrastive negative samples created from the normal positive samples

(excluding the negative samples of the Java programs in IARPA STONESOUP3.0).

The results are shown in Figures 5, 6, and 7, respectively. All classifiers have sig-

nificantly dropped their performance. It indicates that the negative samples from

real-world Java programs in IARPA STONESOUP3.0 are very useful. The samples

created through the idea of contrastive learning alone are inadequate.

Figure 5. Comparison with Contrastive Learning for BERT

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

18 Luo et al.

Figure 6. Comparison with Contrastive Learning for fastText

Figure 7. Comparison with Contrastive Learning for NBSVM

4.3. The Experiment of a C/C++ Dataset

We have applied our approach to the C/C++ programs in the NIST SARD dataset

[35]. They are listed in Table 6. There are 3,751 positive and 92,798 negative

samples.

Table 7 presents the experiment results. Code2Vec does not apply to C/C++

because it is built only from Java source code. The performance of each classifier

on the C/C++ dataset is similar to that of the Java dataset. BERT has identified

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

Predicting Integer Overflow Errors via Supervised Learning 19

Table 6. C/C++ Programs in the SARD Dataset

Subjects Version KLOC Files Integer Overflow

Apache Subversion 1.8.3 968 1,728 12

FFmpeg 1.2.2 615 3,478 10

Gimp 2.8.8 736 6,117 12
GNU Grep 2.14 77 918 3

Juliet 1.3 7,935 15,476 3,687

OpenSSL 1.0.1e 361 2,203 5
PostgreSQL 9.2.4 650 5,458 11

Tree 1.7.0 80 412 4

Wireshark 1.10.2 2,334 5,109 7

Total - 13,756 40,899 3,751

most of the C/C++ positive samples with an average score of 99% for all metrics.

CodeBERT and distilBERT have slightly lower scores than BERT. fastText and

NBSVM are not as good as the others.

Table 7. Experiment Results of the C/C++ Dataset

Model Accuracy Precision Recall F1 AUC

fastText 0.8995 0.8516 0.9131 0.8799 0.9633

NBSVM 0.9010 0.8633 0.9168 0.8801 0.9713
DistilBERT 0.9789 0.9709 0.9777 0.9743 0.9891

CodeBERT 0.9793 0.9748 0.9802 0.9787 0.9905

BERT 0.9863 0.9842 0.9827 0.9830 0.9931

4.4. Comparison with Related Work

Although this paper is the only work dedicated to integer overflow errors, sev-

eral other studies on code vulnerability detection have used integer overflow sam-

ples, including DEEPBUGS [32], VUDDY [13], DEVIGN [53], VulDeePecker [17],

µVulDeePecker [54] and FUNDED [42]. They primarily target C/C++ programs.

Figure 8 shows the results of comparison for integer overflow errors. VUDDY and

DEEPBUGS have low accuracy scores. VUDDY focuses on detecting code clones

with hash functions, whereas DEEPBUGS is built on a feed-forward neural net-

work. DEVIGN, built on GNN through source code AST, has a accuracy score of

75%. VulDeePecker and µVulDeePecker utilize BLSTM to detect multiple types of

vulnerabilities. Their accuracy scores are about 87%. FUNDED applies multiple

graph representations with different types of edges on GNN. Its accuracy is 91%.

Although DEVIGN and FUNDED build graph representations of source code to

capture structure features, integer overflow errors most commonly occur in an ex-

pression (a sequential structure). A model for contextual and long sentence learning,

like BERT and DistilBERT, would perform better on the detection of integer over-

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

20 Luo et al.

flow errors. As such, BERT, CodeBERT, and DistilBERT have outperformed other

methods.

Figure 8. Comparison of Prediction Models of Integer Overflow Errors

5. Applications

We have applied the resultant models in Table 5 to 11 real-world projects listed

in Table 8. The sizes range from 32 KLOC (thousand lines of code) to 3.2 MLOC

(million lines of code). Besides JDK 13.0, the ten applications are the most popular

GitHub Java projects ranked by GitHub stars. The eleven projects have a total of

5.714 MLOC, 34,995 classes, and 363,034 methods. 15.59% of the methods contain

integer operations. These methods are the samples used for prediction. The total

number of samples is 56,606, where 20,727 are from JDK13.0.

We started by applying all classifiers to two medium projects RxJava-3.x and

dubbo-master. They have 4,689 and 3,334 methods with integer operations, respec-

tively. Table 9 shows the results. We cannot use the performance metrics (accuracy,

recall, F1, and AUC) in the previous sections because we do not know whether

each method has an integer overflow error. We have to verify each reported positive

manually. BERT predicted five positive methods in RxJava-3.x. Our code review

determined that three of them are true positives. fastText reported 72 positives,

and only two are true positives. NBSVM reported nothing. For dubbo-master, 6 of

11 reported by BERT are true positives. fastText reported 209 positives, and only

four are true positives. Among the six positives reported by NBSVM, 4 are true

positives. Overall, BERT is the best. fastText and NBSVM do not seem to work

well for real-world programs.

In the following, we focus on the application of BERT. Table 10 shows the

prediction results of the BERT model. The eleven projects are sorted by KLOC

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

Predicting Integer Overflow Errors via Supervised Learning 21

Table 8. Sizes of the Applications.

App # Name KLOC Classes Methods

1 retrofit-master 32 235 1,916
2 MPAndroidChart 34 223 2,117

3 okhttp-master 40 153 2,827

4 zxing-master 60 484 2,554
5 Mall 68 514 13,626

6 dubbo-master 237 2,232 17,517

7 RxJava-3.x 390 1,838 22,275
8 spring-boot-master 476 4,966 33,266

9 dbeaver-devel 506 4,152 32,058

10 guava-master 670 2,833 50,085
11 JDK13.0 3,201 17,365 184,793

Total 5,714 34,995 363,034

Table 9. Sizes of the Applications.

Program Samples Model #Positives #True Positives

BERT 5 3

RxJava-3.x 4,689 fastText 73 2
NBSVM 0 0

BERT 11 6

dubbo-master 3,334 fastText 209 4

NBSVM 6 4

in ascending order in Table 8. However, the number of methods containing integer

operations varies from project to project. The sample size is not propositional to the

KLOC number. BERT has reported a total of 529 positives. 434 are from JDK13.0

production code (excluding 196 positives in the test code). They account for 2.09%

of the samples. For the other ten projects, only 0.26% of the samples were predicted

positive. It indicates that JDK13.0 involves much more integer operations than

others. zxing-master is the second-highest – 1.1% of the samples were reported

positive.

After reviewing the reports, we determined that 181 are true positives. We

further classify them into public methods and non-public methods (private, pro-

tected, and default). Usually, the former is riskier because invocations to these

public methods will more likely cause failures. For example, the following public

method, isImageCachable, of class ImageCache is of the true positives in JDK

13.0.

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

22 Luo et al.

Table 10. BERT’s Prediction Results.

No. Samples Positives %Positive True Positives Public Methods

1 769 0 0 0 0

2 514 2 0.4 1 0
3 1,665 1 0.06 1 0

4 1,099 12 1.1 5 1

5 547 0 0 0 0
6 3,334 11 0.33 6 4

7 4,689 5 0.1 3 1

8 10,616 3 0.03 0 0
9 5,935 16 0.23 10 8

10 6,711 45 0.67 18 9

11 20,727 434 2.09 137 45

Total 56,606 529 0.93 181 68

It checks if an image is cacheable. When the product of w and h is greater than

the maximum int value, w * h results in a negative integer. isImageCachable will

return true, which is wrong.

BERT reported no positives in Mall and retrofit-master. None of the three pos-

itives reported for spring-boot-master is true positive. One of the two positives in

MPAndroidChart is a true positive, but in a non-public method. The true positive in

okhttp-master is in a non-public method. Overall, five of the ten applications have

no integer overflow errors found in their public methods, including Mall, MPAn-

droidChart, okhttp-master, retrofit-master, and spring-boot-master.

Among the 181 true positives, 137 are in JDK13.0, and 45 of them are public

methods; guava-master has 18 true positives, and 9 are public methods;dbeaver-

devel has 10 true positives, and eight are public methods; dubbo-master has six

true positives, and four are public methods; Five true positives are found in zxing-

master, and only one is in a public method.

To summarize, BERT revealed many errors in real-world applications. Although

the overall precision 46.3% (except for JDK13.0) is far from perfect, 181 true pos-

itives were found from 363,034 methods in 5.714 MLOC. This would be very ben-

eficial to the developers because no additional work beyond the source code is re-

quired. In comparison, to reveal the above errors with model checkers such as Java

Pathfinder [27], the specifications of overflow-related properties for all relevant code

can be a daunting task. We have also evaluated several static code analyzers pub-

licly available for Java programs, including Spotbugs [40], PMD [30], and Coverity

Scan [5]. None of them can detect the overflow errors in our dataset.

6. Related Work

The related work falls into three categories: detecting integer overflow errors, de-

tecting code vulnerability via machine learning, and machine learning-based source

code representation. The first has focused on binary code or C/C++ source code,

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

Predicting Integer Overflow Errors via Supervised Learning 23

such as SIFT [18], TAP [38], SoupInt [44], Indio [52], IntEQ [41], Diode [39], Int-

Flow [31], IntFinder [2], IOC [7]. The second has not yet targeted integer overflow

errors. The third builds source code representation through machine learning for

other tasks, such as code understanding and code clone detection.

6.1. Detection of Integer Overflow Errors

6.1.1. Binary Code Analysis.

IntScope [45] can detect integer overflow errors in binary code through static anal-

ysis. It translates x86 binaries into an intermediate representation for symbolic

execution. It uses taint analysis to determine bounds of tainted data and locates

sensitive points that probably contain integer overflows. The sensitive points need

to be confirmed manually. UQBTng [48] detects integer overflows in Win 32 bina-

ries by de-compiling the binaries into C code and checking the properties through

C.assert statements. Zhang et al. [50] combines static analysis and dynamic analy-

sis. The static analysis translates the binary code into intermediate representations

such as control flow graph and call graph. It extracts all sensitive code related

to integer as input to the dynamic analysis. The dynamic analysis further uses

taint analysis to construct the relative paths and explore all symbolic execution to

check integer overflow errors. Brick [3] and SmartFuzz [23] are dynamic analysis

tools based on Valgrind [28], a dynamic binary analysis framework. Brick works

on compiled executables, and SmartFuzz needs to generate inputs. SAGE [9] keeps

track of execution traces of binary code and generate new inputs through symbolic

execution.

6.1.2. Static Analysis of C/C++ Source Code

Sample methods for integer overflow detection include ARCHER [4], PREfast [21],

and Prefix [26]. PREfast checks integer overflows during runtime. It only works on

a small section of code and returns a log recording code defect. Prefix can work

on a large range of source code and use a ranking mechanism to detect integer

overflow. Laguna and Martin [15] detected integer overflow errors in large-scale

parallel applications. They identify integer variables from a large scale and run

them at a small scale to detect whether overflow occurs on the original scale.

6.2. Detection of Code Vulnerability via Machine Learning

Scandariato et al. [36] proposed a vulnerability prediction model for Java projects

through text-mining source code. The source code is tokenized into monograms and

integrated with frequency to generate feature vectors. They used Näıve Bayes and

Random Forest to predict vulnerability. Yamaguchi et al. [49] extended NLP tech-

niques towards vulnerability assessment by using vulnerability extrapolation. This

approach extracts API symbols, embeds API symbols in a vector space, and deter-

mines API usage patterns using machine learning. Shabtai et al. [37] used principal

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

24 Luo et al.

component analysis on the abstract syntax tree of source code to detect malicious

code. Similarly, Mokhov et al. [22] used multiple algorithms from WEKA [10] and

the abstract syntax tree as features to build prediction models. Hovsepyan et al. [11],

and Pang et al. [29] used SVM on a bag-of-words (BOW) and n-grams representa-

tion of simple tokenization of Java source code to predict vulnerable code. VUDDY

[13] utilize a robust parser of C/C++ and a hash function to detect vulnerable code

clones.

VulDeePecker [17] aims to detect buffer error and resource management error in

C/C++ code. It applies Bidirectional Long Short-Term Memory (BLSTM) to API

function calls and forward/backward program slices. A forward slice corresponds to

the statements affected by the argument in question, whereas a backward slice cor-

responds to the statements that can affect the argument in question. uVulDeePecker

[54] extends VulDeePecker by dealing with 40 vulnerability types. Code attention

and its extraction method are used to help pinpoint vulnerability types.

Li et al. [16] labeled each function as sensitive or nonsensitive, vectorized it

with the one-hot encoding method, and built the prediction model with a Dense

layer, multiple BLSTM layers, and an output layer. Russell et al. [33] explored both

CNNs and RNNs for feature extraction from the embedded source representations.

A random forest classifier is used to determine if the C/C++ source code contains

five types of vulnerabilities, including buffer overflow and NULL pointer dereference.

Based on the graph learning, DEVIGN [53] generates a graph representation of code

snippets based on their AST, control flow graph (CFG) and data flow graph (DFG).

It builds a vulnerability detector through graph neural network (GNN). FUNDED

[42] uses word2vec network to generate node embedding in AST and update each

node by analyzing nine types of edges. It has achieved an average accuracy of 91%

on integer overflow.

Unlike the above work, our approach focuses on detecting integer overflow errors

via text classification. Our dataset has covered all integer types and operators in

Java, methods for preventing integer overflows, and adversarial samples.

6.3. Machine Learning-Based Source Code Representation

White et al. [47] applied source code abstract syntax tree (AST) through Recursive

Neural Network (RNN) to learn lexical and syntactic features, which has a accu-

racy score of 93% on code clone detection. Mou et al. [24] designed a tree-based

convolutional neural network (TBCNN) and add a convolution kernel on program

AST to capture structural information. CDLH [46] is a functional clone detection

tool that transfer source code through an AST-based LSTM and a hash function

to hash code. DeepBugs represents code via word2vec for detecting name-based

bugs. DeepBugs [32] learned code representation by building a word2vec network

to detect name-based bugs. Zhang et al. [51] split an entire program AST into some

small statement trees, use a bidirectional RNN model to leverage small statements,

and generate a vector representation of source code.

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

REFERENCES 25

Code2Vec [1] first decompose the code into its corresponding set of paths in

the AST, then use a neural network to learn the representation of each path and

learn how to integrate the representations of all paths. CodeBERT [8] is built on

a multi-layer transformer. It can handle both natural and programming languages.

It captures the semantic connections between natural and programming languages

and outputs a general representation that broadly supports NL-PL understanding

tasks and generation tasks.

7. Conclusions

We have presented the supervised learning approach to the prediction of integer

overflow errors in Java source code and evaluated six models with a comprehensive

dataset built from real-world Java programs and an existing C/C++ dataset. The

models represent different text embedding techniques for dealing with source code.

The Java dataset covers all integer data types and operations in Java, the methods

for preventing integer overflow errors, and adversarial samples. The experiment

results have demonstrated that BERT as a representative deep-learning transformer

has outperformed other models. It can reveal integer overflow errors in real-world

Java programs.

Automated detection of software vulnerabilities in source code is a major chal-

lenge because there are many types of vulnerabilities. For instance, the National

Vulnerability Database (nvd.nist.gov) has identified 839 vulnerability types, called

Common Weakness Enumerations (CWEs). However, there is no existing Java vul-

nerability dataset suitable for machine learning-based vulnerability prediction. This

paper offers a unique dataset for the systematic study of integer overflow errors in

Java programs. Our future work will expand the approach to other types of code

vulnerabilities and discover effective classifiers for identifying multiple types of er-

rors.

8. Acknowledgment

This work was supported in part by US National Science Foundation (NSF) under

grant 1820685.

References

[1] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. “code2vec: Learning distributed
representations of code”. In: Proceedings of the ACM on Programming Languages
3.POPL (2019), pp. 1–29.

[2] P. Chen, H. Han, Y. Wang, X. Shen, X. Yin, B. Mao, and L. Xie. “IntFinder: Auto-
matically detecting integer bugs in x86 binary program”. In: International Confer-
ence on Information and Communications Security. Springer. 2009, pp. 336–345.

[3] P. Chen, Y. Wang, Z. Xin, B. Mao, and L. Xie. “Brick: A binary tool for run-time de-
tecting and locating integer-based vulnerability”. In: 2009 International Conference
on Availability, Reliability and Security. IEEE. 2009, pp. 208–215.

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

26 REFERENCES

[4] R. Chinchani, A. Iyer, B. Jayaraman, and S Upadhyaya. “ARCHERR: Runtime
Environment Driven Program Safety”. In: Proceedings of the European Symposium
on Research in Computer Security. 2004, pp. 385–406.

[5] Coverity Scan. https://scan.coverity.com.
[6] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirec-

tional Transformers for Language Understanding. 2018. arXiv: 1810.04805 [cs.CL].
[7] W. Dietz, P. Li, J. Regehr, and V. Adve. “Understanding Integer Overflow in

C/C++”. In: ACM Transactions on Software Engineering & Methodology 25.1
(2015), pp. 1–29.

[8] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang, et al. “Codebert: A pre-trained model for programming and natural lan-
guages”. In: arXiv preprint arXiv:2002.08155 (2020).

[9] P. Godefroid, M. Levin, and D. Molnar. “Automated whitebox fuzz testing”. In:
Network and Distributed System Security Symposium. 2008.

[10] G. Holmes, A. Donkin, and I.H. Witten. “Weka: A machine learning workbench”. In:
Proceedings of ANZIIS’94-Australian New Zealnd Intelligent Information Systems
Conference. IEEE. 1994, pp. 357–361.

[11] A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden. “Software vulnerability
prediction using text analysis techniques”. In: Proceedings of the 4th international
workshop on Security measurements and metrics. 2012, pp. 7–10.

[12] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of Tricks for Efficient Text
Classification. 2016. arXiv: 1607.01759 [cs.CL].

[13] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. “Vuddy: A scalable ap-
proach for vulnerable code clone discovery”. In: 2017 IEEE Symposium on Security
and Privacy (SP). IEEE. 2017, pp. 595–614.

[14] D. Kravets. Sorry ma’am you didn’t win $43M – there was a slot machine ’mal-
function’. Ed. by Ars Technica. June 2017. url: https://arstechnica.com/tech-
policy/2017/06/sorry-maam-you-didnt-win-43m-there-was-a-slot-machine-

malfunction/.
[15] I. Laguna and M. Schulz. “Pinpointing scale-dependent integer overflow bugs in

large-scale parallel applications”. In: SC’16: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis. IEEE.
2016, pp. 216–227.

[16] R. Li, C. Feng, X. Zhang, and C. Tang. “A Lightweight Assisted Vulnerability Dis-
covery Method Using Deep Neural Networks”. In: IEEE Access 7 (2019), pp. 80079–
80092.

[17] Z. Li, D. Zou, S. Xu, X. Ou, and Y. Zhong. “VulDeePecker: A Deep Learning-Based
System for Vulnerability Detection”. In: Network and Distributed System Security
Symposium. Feb. 2018.

[18] F. Long, S. Sidiroglou-Douskos, D. Kim, and M. Rinard. “Sound input filter gener-
ation for integer overflow errors”. In: Proceedings of the Symposium on Principles of
Programming Languages (POPL2014). 2014.

[19] Y. Luo, W. Xu, and D. Xu. “Detecting Integer Overflow Errors in Java Source Code
via Machine Learning”. In: The 33rd IEEE International Conference on Tools with
Artificial Intelligence (ICTAI2021). 2021.

[20] E. Mertikas. NUM00-J. Detect or prevent integer overflow. https://wiki.sei.
cmu.edu/confluence/display/java/NUM00- J.+Detect+or+prevent+integer+

overflow. 2018.
[21] Microsoft. PREfast Analysis Tool. https://msdn.microsoft.com/en-us/library/

ms933794.aspx. 2012.

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

REFERENCES 27

[22] S. A Mokhov, J. Paquet, and M. Debbabi. “MARFCAT: Fast code analysis for
defects and vulnerabilities”. In: 2015 IEEE 1st International Workshop on Software
Analytics. IEEE. 2015, pp. 35–38.

[23] D. Molnar, X. Li, and D.A. Wagner. “Dynamic Test Generation to Find Integer
Bugs in x86 Binary Linux Programs”. In: USENIX Security Symposium. Vol. 9.
2009, pp. 67–82.

[24] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. “Convolutional neural networks over
tree structures for programming language processing”. In: Thirtieth AAAI conference
on artificial intelligence. 2016.

[25] J. Mouawad. F.A.A. Orders Fix for Possible Power Loss in Boeing 787. Ed. by New
York Times. Apr. 2015. url: https://www.nytimes.com/2015/05/01/business/
faa-orders-fix-for-possible-power-loss-in-boeing-787.html?_r=0.

[26] Y. Moy, N. Bjørner, and D. Sielaff. “Modular bug-finding for integer overflows in the
large: Sound, efficient, bit-precise static analysis”. In: Tech. Rep. MSR-TR-2009–57
(2009).

[27] NASA. Java Pathfinder. https://github.com/javapathfinder/jpf-core. 2005.
[28] N. Nethercote and J. Seward. “Valgrind: a framework for heavyweight dynamic

binary instrumentation”. In: ACM Sigplan notices 42.6 (2007), pp. 89–100.
[29] Y. Pang, X. Xue, and A. Namin. “Predicting vulnerable software components

through n-gram analysis and statistical feature selection”. In: 2015 IEEE 14th Inter-
national Conference on Machine Learning and Applications (ICMLA). IEEE. 2015,
pp. 543–548.

[30] PMD. https://github.com/pmd/pmd.
[31] M. Pomonis, T. Petsios, K. Jee, M. Polychronakis, and A.D. Keromytis. “IntFlow:

improving the accuracy of arithmetic error detection using information flow track-
ing”. In: Proceedings of the 30th Annual Computer Security Applications Confer-
ence(ACSAC 2014). 2014, pp. 416–425.

[32] M. Pradel and K. Sen. “Deepbugs: A learning approach to name-based bug detec-
tion”. In: Proceedings of the ACM on Programming Languages 2.OOPSLA (2018),
pp. 1–25.

[33] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood,
and M. McConley. “Automated vulnerability detection in source code using deep
representation learning”. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA). IEEE. 2018, pp. 757–762.

[34] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. “DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter”. In: arXiv preprint arXiv:1910.01108
(2019).

[35] SARD. NIST Software Assurance Reference Dataset Project. https://samate.nist.
gov/SRD/testsuite.php. 2019.

[36] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen. “Predicting vulnerable
software components via text mining”. In: IEEE Transactions on Software Engi-
neering 40.10 (2014), pp. 993–1006.

[37] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer. “Detection of malicious code
by applying machine learning classifiers on static features: A state-of-the-art survey”.
In: information security technical report 14.1 (2009), pp. 16–29.

[38] S. Sidiroglou-douskos, E. Lahtinen, and M. Rinard. Automatic discovery and patch-
ing of buffer and integer overflow errors. Tech. rep. 2015.

[39] S. Sidiroglou-Douskos, E. Lahtinen, N. Rittenhouse, P. Piselli, F. Long, D. Kim, and
M. Rinard. “Targeted automatic integer overflow discovery using goal-directed con-
ditional branch enforcement”. In: Proceedings of the Twentieth International Confer-

December 9, 2022 17:56 WSPC/INSTRUCTION FILE output

28 REFERENCES

ence on Architectural Support for Programming Languages and Operating Systems.
2015, pp. 473–486.

[40] Spotbugs. https://github.com/spotbugs/spotbugs.
[41] H. Sun, X. Zhang, Y. Zheng, and Q. Zeng. “Inteq: recognizing benign integer over-

flows via equivalence checking across multiple precisions”. In: Proceedings of the 38th
International Conference on Software Engineering. 2016, pp. 1051–1062.

[42] H. Wang, G. Ye, Z. Tang, S.H. Tan, S. Huang, D. Fang, Y. Feng, L. Bian, and
Z. Wang. “Combining Graph-based Learning with Automated Data Collection for
Code Vulnerability Detection”. In: IEEE Transactions on Information Forensics and
Security 16 (2020), pp. 1943–1958.

[43] S. Wang and C. Manning. “Baselines and bigrams: Simple, good sentiment and
topic classification”. In: 50th Annual Meeting of the Association for Computational
Linguistics, ACL 2012 - Proceedings of the Conference. 2012, pp. 90–94.

[44] T. Wang, C. Song, and W. Lee. “Diagnosis and Emergency Patch Generation for
Integer Overflow Exploits”. In: Detection of Intrusions & Malware & Vulnerability
Assessment (DIMVA 2014). 2014, pp. 255–275.

[45] T. Wang, T. Wei, Z. Lin, and W. Zou. “IntScope: Automatically Detecting Integer
Overflow Vulnerability In X86 Binary Using Symbolic Execution”. In: Network &
Distributed System Security Symposium (NDSS2009). 2009.

[46] H. Wei and M. Li. “Supervised Deep Features for Software Functional Clone Detec-
tion by Exploiting Lexical and Syntactical Information in Source Code.” In: IJCAI.
2017, pp. 3034–3040.

[47] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. “Deep learning code frag-
ments for code clone detection”. In: 2016 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE. 2016, pp. 87–98.

[48] R. Wojtczuk. “UQBTng: a tool capable of automatically nding integer overows in
Win32 binaries”. In: Proceedings of Chaos Communication Congress (2005).

[49] F. Yamaguchi, F. Lindner, and K. Rieck. “Vulnerability extrapolation: Assisted dis-
covery of vulnerabilities using machine learning”. In: Proceedings of the 5th USENIX
conference on Offensive technologies. 2011, pp. 13–13.

[50] B. Zhang, C. Feng, B. Wu, and C. Tang. “Detecting integer overflow in Windows
binary executables based on symbolic execution”. In: 2016 17th IEEE/ACIS In-
ternational Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD). 2016, pp. 385–390.

[51] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu. “A novel neural
source code representation based on abstract syntax tree”. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE. 2019, pp. 783–794.

[52] Y. Zhang, X. Sun, Y. Deng, L. Cheng, S. Zeng, Y. Fu, and D. Feng. Improving Ac-
curacy of Static Integer Overflow Detection in Binary. Springer International Pub-
lishing, 2015, pp. 247–269.

[53] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu. “Devign: Effective vulnerability identi-
fication by learning comprehensive program semantics via graph neural networks”.
In: Advances in neural information processing systems 32 (2019).

[54] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin. “µVulDeePecker: A Deep Learning-
Based System for Multiclass Vulnerability Detection”. In: IEEE Transactions on
Dependable and Secure Computing (2019).

