Compact Abstract Graphs for Detecting Code Vulnerability with
GNN Models

Yu Luo
University of Missouri-Kansas City
Kansas City, MO, USA
ylzqn@mail.umkc.edu

ABSTRACT

Source code representation is critical to the machine-learning-based
approach to detecting code vulnerability. This paper proposes Com-
pact Abstract Graphs (CAGs) of source code in different program-
ming languages for predicting a broad range of code vulnerabilities
with Graph Neural Network (GNN) models. CAGs make the source
code representation aligned with the task of vulnerability classi-
fication and reduce the graph size to accelerate model training
with minimum impact on the prediction performance. We have
applied CAGs to six GNN models and large Java/C datasets with
114 vulnerability types in Java programs and 106 vulnerability
types in C programs. The experiment results show that the GNN
models have performed well, with accuracy ranging from 94.7% to
96.3% on the Java dataset and from 91.6% to 93.2% on the C dataset.
The resultant GNN models have achieved promising performance
when applied to more than 2,500 vulnerabilities collected from real-
world software projects. The results also show that using CAGs
for GNN models is significantly better than ASTs, CFGs (Control
Flow Graphs), and PDGs (Program Dependence Graphs). A com-
parative study has demonstrated that the CAG-based GNN models
can outperform the existing methods for machine learning-based
vulnerability detection.

CCS CONCEPTS

« Security and privacy — Software and application security.

KEYWORDS

Software vulnerability, machine learning, graph neural networks,
static code analysis

ACM Reference Format:

Yu Luo, Weifeng Xu, and Dianxiang Xu. 2022. Compact Abstract Graphs
for Detecting Code Vulnerability with GNN Models. In Annual Computer
Security Applications Conference (ACSAC), December 5-9, 2022, Austin, TX,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3564625.
3564655

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC’22, December 5-9, 2022, Austin, TX

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9759-9/22/12...$15.00
https://doi.org/10.1145/3564625.3564655

Weifeng Xu
The University of Baltimore
Baltimore, MD, USA
wxu@ubalt.edu

Dianxiang Xu
University of Missouri-Kansas City
Kansas City, MO, USA
dxu@umkec.edu

1 INTRODUCTION

Software vulnerability is a major source of cybersecurity risks. For
example, 419 of the 924 Common Weakness Enumerations (CWE)
fall into the category of software vulnerability. While academia
and industry have devoted significant effort to cybersecurity, new
vulnerabilities are continually identified in various products. Many
are publicly disclosed via the Common Vulnerabilities and Expo-
sures (CVE) [8] and National Vulnerability Database (NVD) [33].
In 2021, the number of vulnerability reports in NVD had increased
to 20,138, up 9.7% from 2020.

Detecting software vulnerability is a challenging task. Tradi-
tional approaches include static analysis and dynamic testing of
binary [50] [16] [52] [5] [17] and source code [6] [31] [15] [21]
[4]. They usually target specific types of code vulnerability. For
instance, code clone-based methods are limited to the vulnerabili-
ties caused by code cloning. Pattern-based methods rely on certain
vulnerability rules pre-defined by human experts. As a promising
technique for static code analysis, machine learning has gained
increasing attention [41] [53] [43] [32] [19] [34]. The existing work
falls into three categories: (a) treating source code as text to ex-
ploit NLP (Natural Language Processing) models (e.g., N-gram and
bag-of-words), (b) extracting different paths from the source code’s
abstract syntax trees (ASTs) for learning from sequence samples. (c)
representing source code as graphs to apply Graph Neural Network
(GNN) models.

This paper aims to address the practical issue of source code
representation for exploiting the state-of-the-art GNN models to
detect a broad range of code vulnerabilities. We propose Compact
Abstract Graphs (CAGs) of source code in different programming
languages (e.g., Java and C) for efficient vulnerability prediction
with various GNN models. We construct the CAG of a routine (Java
method or C function) from its AST (Abstract Syntax Tree) in two
stages: (a) converting the AST into an Abstract Graph (AG), which
keeps all AST nodes with reversed edges and connects each token
node to the AST root and the next token, (b) reducing the AG by
merging the longest sequences of single-entry property nodes and
the aggregation structures. The first stage makes the source code
representation aligned with the GNN-based vulnerability classifica-
tion, which aims to map the code features (e.g., source code tokens
and their relations) to pre-defined vulnerability labels (e.g., “posi-
tive” for the existence and “negative” for the absence). The second
stage reduces the graph size to accelerate GNN model training with
minimum impact on their prediction performance (e.g., with little
sacrifice of accuracy and precision).

We have applied CAGs to six GNN models: Graph Convolu-
tional Networks (GCNs) [20], Graph Attention Networks (GATs)
[46], Unified Message Passing Model (UniMP) [44], GNNs with

https://doi.org/10.1145/3564625.3564655
https://doi.org/10.1145/3564625.3564655
https://doi.org/10.1145/3564625.3564655

ACSAC’22, December 5-9, 2022, Austin, TX

auto-regressive moving average filter (ARMAConv) [2], Residual
Gated Graph ConvNets (RGGCNs) [3], and Feature-Steered Graph
Convolutions (FeaStNet) [47]. They represent various strategies
for graph modeling and learning. To evaluate the approach, our
Java dataset includes 37,350 vulnerable methods (covering 114 vul-
nerability types) and 68,480 non-vulnerable methods and our C
dataset has 58,459 vulnerable functions of 106 vulnerability types
and 126,170 non-vulnerable functions. The samples are collected
from NVD [33], Software Assurance Reference Dataset (SARD) [40]
and other publications [30][48]. The experiment results show that
all six models performed well, with accuracy ranging from 94.7%
to 96.3% on the Java dataset and from 91.6% to 93.2% on the C
dataset. The resultant GNN models have achieved promising per-
formance when applied to more than 2,500 vulnerabilities collected
from real-world software projects. The results also show that us-
ing CAGs for GNN models is significantly better than ASTs, CFGs
(Control Flow Graghs), and PDGs (Program Dependence Graphs).
Compared to AGs, CAGs reduce 53.7% nodes, 39.7% edges, and
54.9% file sizes. It saves 27.4% of the training time while preserving
the prediction performance in terms of accuracy, precision, recall
and F1 scores. Moreover, a comparative study has demonstrated
that the CAG-based GNN models can outperform the existing meth-
ods for machine learning-based vulnerability detection. In brief,
CAGs are an effective representation of source code for GNN-based
vulnerability detection.

The remainder of this paper is organized as follows. Section 2
reviews related work; Section 3 describes the CAGs of source code;
Section 4 introduces the framework for vulnerability detection with
GNN models; Section 5 presents the experiment results; Section 6
applies the vulnerability prediction models to real-world programs.
Section 7 concludes this paper.

2 RELATED WORK

This paper is related to the work on detecting code vulnerability
via machine learning. It falls into three categories in terms of how
the code is represented for machine learning: (a) code as text, (b)
code as trees, and (c) code as graphs.

Text-based methods exploit NLP models by treating source code
as text. Peng et al. [35] used the n-gram model to convert Java
source code into vectors and optimized each vector through the
Wilcoxon rank-sum [51]. Hovsepyan et al. [19] and Pang et al. [34]
predicted software weakness using SVM on a bag-of-words (BOW)
and n-grams representation of basic tokenization of Java source
code. Scandariato et al. [41] presented a text-mining-based vulnera-
bility prediction algorithm for Java applications. To build feature
vectors, the original code is tokenized into monograms and com-
bined with frequency. They used the Nave Bayes and Random Forest
algorithms to forecast vulnerability. Lee et al. [23] developed an In-
struction2vec model to capture vulnerable features from assembly
codes and trained on CNNs to detect bugs in C programs. Yamaguchi
et al. [53] applied NLP approaches to vulnerability assessment. This
method captures API symbols, embeds API symbols in a vector
space, and uses machine learning to predict API use trends. Luo
et al. [30] applied natural language syntax on Java source code
and detected integer overflows through BERT [10]. Russell et al.

Luo, et al.

[38] utilized CNNs and RNNs for extracting features from embed-
ded source representations parsed by a custom lexer. A random
forest classifier is trained to identify whether the C/C++ source
code includes five sorts of weakness. Le et al. [22] proposed the
maximal divergence sequential autoencoder as a features extractor
and built a full connected neural network to detect vulnerabilities
on binary code. Choi et al. [7] and Sestili et al. [42] encoded the raw
source code line by line to one-hot vectors that used as the input of
a memory network. The model contains an attention mechanism
to locate buffer overflows. These methods focus on the semantic
information of the source code and ignore the overall structural
features of programs.

Tree-based approaches extract features by traversing the ASTs
and their variants. Dong et al. [11] utilized code sequences extracted
from ASTs as semantic features and the frequency as token features
to build a full connected neural network for detecting vulnerabili-
ties in Android binary executables. Wang et al. [49] preserved three
types of nodes, and converted them into code sequences. These
sequences are mapped into high dimension vectors to train deep
belief networks (DBNs) for detecting software weakness. POSTER
[27] and Lin et al. [28] discovers vulnerabilities in function level by
building a bidirectional LSTM network with ASTs-based sequences.
Dam et al. [9] built a sequence to sequence LSTM network to learn
the semantic and syntactic features from ASTs in Java methods.
Shabtai et al. [43] applied principal component analysis to the ASTs
of source code to identify vulnerable code. Similarly, Mokhov et
al. [32] used numerous methods from WEKA [18] and the ASTs as
characteristics to construct prediction models. SySeVR [25] divided
programs into small pieces and generated multiple representations
from ASTs to exhibit the syntax and semantics characteristics of vul-
nerabilities. These approaches are incapable of capturing intricate
program structural properties (branches or parallel statements).

Graph-based techniques generally capture structural features
from multiple graphs, such as control-flow graphs (CFGs), data-flow
graphs (DFGs), data dependence graphs (DDGs), etc., and utilize
GNNs, CNNs or RNNs to build vulnerability detection models. DE-
VIGN [55] generated a joint graph representation of code snippets
by merging ASTs, CFGs and DFGs. It built a GNN-based model
with three layers (a graph embedding layer, a gated graph recurrent
layer, and a convolutional layer) to detect vulnerabilities in C pro-
grams. FUNDED [48] created a method-level graph representation
by creating nine types of edges to ASTs. The node embeddings are
calculated through a pre-trained word2vec network updated by a
gate recurrent unit (GRU). It has achieved an average accuracy of
92%. VulDeePecker [26] seeks to identify buffer errors and resource
management mistakes in C/C++ programs. It extracts API function
calls and forward/backward program slices from CDGs and DDGs.
A forward slice relates to statements influenced by the argument,
whereas a backward slice corresponds to statements that can affect
the argument. uVulDeePecker [56] is an extension of VulDeePecker
that extracted data and control dependencies from system depen-
dency graphs (SDGs). The code attention and localized information
help the model deal with 40 types of vulnerabilities. Wang et al. [29]
trained a GNN model on contract graphs to detect smart contract
vulnerabilities, which obtained an average accuracy of 89%.

In addition to vulnerability detection, there are other source
code representations for program analysis. CodeBERT [14] is a

Compact Abstract Graphs for Detecting Code Vulnerability with GNN Models

bimodal pre-trained model by adding programming language to
base BERT [10], which supports downstream NL-PL applications.
SourcererCC [39] transformed programs into regularized token
sequences and ordered by optimized inverted index for code clone
detection. Based on program CFGs and PDGs, Allamanis et al. [1]
applied Gated Graph Neural Networks to predict variable names
and detect variable misuses, and DeepSim [54] encoded flows into
a semantic matrix for measuring code functional similarity.

3 COMPACT ABSTRACT GRAPHS

The proposed compact abstract graphs of source code are a compact
representation of abstract graphs built from the abstract syntax
trees (ASTs) of source code. In the following, we first introduce
the abstract graphs and discuss how to compress them by merging
sequential and aggregation structures.

3.1 Abstract Graphs

The abstract graph (AG) of a routine (Java method or C function)
is a triple (N, E, s), where N is a set of nodes, E is a set of directed
edges, and s € N is the global sink (with no exiting edges) reached
by all directed edges. It is built from the routine’s AST (Np, Ny, E, r),
where N, is a set of non-terminal property nodes, N is a set of ter-
minal nodes (i.e., source code tokens), r is the root representing the
overall routine, and E is a set of directed edges between the nodes
in Np U N; U {r}. A terminal token node represents a token in the
routine’s source code, whereas a property node specifies a syntactic
property of the token connected through edges. The property nodes
depend on the syntax of the underlying programming language. An
edge from a token node to a property node means that the token
has the property (e.g., “static” is a keyword and “int” is a type). An
edge from property node A to property node B indicates that A is
more specific or A is part of B. In general, we say B is more ab-
stract than A. For example, the edge (“keyword”, “Modifier”) means
“keyword” is a “Modifier”. A property node with multiple incoming
edges means that the property consists of multiple components.

The AG of a routine has the same set of nodes as its AST, i.e., N
= Np U Nt U {r}. We also refer to N, and N; in the AG as property
nodes and token nodes, respectively. The edges are created from the
AST (Np, Nt, r, E) by: (1) reversing all edges in E, (2) adding an edge
from each token to the next, and (3) adding an edge to connect each
terminal token node to the root. Formally, E = {(a,b) : (b,a) € E} U
{(x,y) : yis the token next to x for eachx € Ny} U{(x,r) : x € N;}.
As a consequence, the AST’s root r becomes the global sink of the
AG (named “MethodDeclaration"). It has no exiting edges and is
reached by all edges in E.

Figure 1 shows a sample AG of Java method sum.

public static int sum(int[] numbers) {
int total = ©;
for (int number numbers) {
total += number;
iy

return total;
b
The text in all the token nodes, such as “static”, “public”, and
“Int”, comprises the given source code. Different from the AST, each
token node in the AG has three exiting edges that lead to their
immediate property node, next token node, and the global sink (the

ACSAC’22, December 5-9, 2022, Austin, TX

overall method declaration). For example, the immediate property
of “static” is “keyword”. An edge from property node A to prop-
erty node B represents a higher level of syntactical abstraction.
For example, the edge (“keyword”, “Modifier”) coming from the
token node “static” means that the keyword “static” is a “Modi-
fier”, which further becomes part of the “modifiers” component
of a method declaration. In general, the path from a token node
to the global sink (e.g., <“static”, “keyword”, “Modifier”, “modi-
fiers”, “MethodDeclaration”>) represents a sequence of increasing
abstractions that depicts how the source code token (e.g., “static”)
contributes to the overall method declaration. In the correspond-
ing AST, however, each path goes from the root to a token node
(i.e., from the most general to the most specific). In comparison,
the aggregative paths in the AG are more aligned with the GNN-
based classification task for determining whether the source code
tokens contribute to the existence or absence of vulnerability in
the entire method declaration. As demonstrated in Section 5, AGs
have outperformed ASTs when they are applied to GNN models for
vulnerability prediction.

The edges from each token node to the next corresponds to how
the source code is written. Obviously, such ordering dependency is
critical to effective code analysis. It must be represented explicitly
in the graph representation for GNN-based vulnerability prediction.

As discussed above, the path from a token node to the global sink
indicates how the token contributes to the overall method declara-
tion. The contributions of source code tokens are more significant
to the detection of vulnerability. For example, CWE-547 occurs
because of using hard-coded constants instead of symbolic names
for security-critical values, which increases the risk of mistakes
during code maintenance. Therefore, the AG connects each token
node directly to the overall declaration node (i.e., the sink).

3.2 Merging Single-Entry Node Sequences

We start reducing an abstract graph (N, E, s) by finding all longest
sequences of single-entry property nodes and merging each se-
quence into one node. A longest sequence of single-entry property
nodes is a list of property nodes (ny, nz, ...n) such that:

e Eachn; € N (0 < i < k) is a property node with exactly one
entry edge.

o (ni,ni+1) (0 <i<k)isanedgeinE.

o «, the node connecting to the sequence’s first node ny, is
either a token node or a property node with at least two
entry edges.

® o, the node connected from the sequence’s last node ny. is
either the sink node or a property node with at least two
entry edges.

Figure 2 shows two typical sequence patterns, where « in (a) is
a token node (with no entry edge) and « in (b) is a property node
with multiple entry nodes. Consider the rightmost node sequence
(“identifier”, “SimpleName”, “NameExpr”, “ReturnStmt”) in Figure
1. “total” is the token node connected to the sequence’s first node
“identifier”; whereas “statements”, the node connected from the
sequence’s last node, has three entry edges. The above sequence
represents a sequence of abstractions of “token” (i.e., source code
“return total”). We merge the sequence into a new node labeled

ACSAC’22, December 5-9, 2022, Austin, TX

Luo, et al.

\\(51....12@ <a1 ameters

(mrnnnm A

@Odlflc‘l Aodirion Parameter

/
keyword’) (keyword)

1 i

. ;
D G

;
.

- ‘ﬁ
1) Camoh‘(pl) @m@ lTo twt) (N Cam('%EXPJ

variables (lmpl eName CV\dl ements)SimpleName

de iableDec 1) (denL lme> <Ex|)1 Stm l) C;uenuu“)
i
i N
(Slmplo\l'imo) AssignExpr ~
i

@mpy xp) @,mm.) (\ ametsxpr)
»
4

Variable
DeclExp:

Variable
eclExpr

1
1
'
1
1
I
1
I
|
I
|

1
’

Figure 1: The AG of a Java Method

1
1
1
1
i
[l
1
\

Figure 2: Patterns of Single-Entry Node Sequences

by the concatenation of all node labels (to preserve the abstrac-
tion information), replace edge (“total”, “identifier”) with (“total”,
new node), and edge (“ReturnStmt”, “statements”) with (new node,
“statements”).

Formally, given abstract graph (N, E,s) and a node sequence
(n1, n, ...ng), merging the sequence results in a new abstract graph
(N’,E’,s) such that N’ = N \{ny,ny,..n .} U {n} and E’ = E
\{(n1,n2), (nz,n3), ..., (ng_1, ng)} U {(a, n), (n, 0)}, where n is the
new merged node, (@, n1) € E, (ng, w) € E. As discussed in Section
4, the encoding of a merged node into numeric data for GNN models
is obtained from the encodings of all nodes.

The abstract graph in Figure 1 has 19 node sequences. Merging
these sequences leads to the new graph in Figure 3.

3.3 Merging Aggregation Structures

We further reduce (N’, E’, s) by locating all compressible aggrega-
tion structures and merging each aggregation into one node. An
aggregation structure (z, ny, ny, ...ny) represents a child-parent re-
lation, where 7 is the “parent” and its children are nj, n, ...ny. The
structure satisfies the following conditions:

e 7 € N’\ {s} is a property node with two or more entry edges.

Each n; € N’ (0 < i < k) is a property or sequence merged
node connecting to 7.

(nj,7) (0 <i<k)isanedgein E’.

Each A; € (A1, Ay, ...Ag) (0 < i < k) is a list of property or
token node connecting to nj, {(a,n;) : @« € A;} C E'.

w, the node connected from node 7 is either the sink node
or has one or more entry edges.

Figure 4 shows the aggregation patterns. Whether an aggrega-
tion structure can be compressed depends on the following condi-
tions. (1) Each child node n; in the structure has exactly one entry
edge. If any child node has two or more entry edges, we cannot
merge the aggregation structure; Otherwise, it would lose structural
information. (2) the structure represents the part-whole relation
of a programming construct as detailed below. In Figure 4, (a) is
compressible, but (b) is not compressible.

The aggregation structures fall into seven categories: expression,
statement, declaration, argument, parameter, type, and modifier.
Each category has various nodes as shown in Table 1.

The expression structure is composed of one or more constants,
variables, functions, and operators. In an expression aggregation,
the parent node is connected by all child nodes to show the whole
expression. We can merge it into one node without losing critical
information. For example, the “AssignExpr” node consists of two
“NameExpr” nodes and one “operator” node. After merging, we use
a node with above four elements to reflect the line of code “total
+= number;”. Different from expressions, the child nodes in a state-
ment aggregation (except return statement) presents the parallel
relationship of each line of source code tokens in the same block.
They are related and independent. Merging the nodes in a statement
will lose information about their parallel connections. The return
statement is a special statement that is similar to expression. All
child nodes under a return statement form the entire return state-
ment. Statement aggregations, except the return statement,cannot
be merged.

In the declaration category, ‘variabledeclarator’ shows the pro-
cess of declaring a variable. It can be merged. Most of the argument,

Compact Abstract Graphs for Detecting Code Vulnerability with GNN Models

ACSAC’22, December 5-9, 2022, Austin, TX

SimpleName,
identifier

I
|
|
T T
\/SimpleName,
identifier
~
N
Brimitiver\
type ‘.

—
— \\
> Nariablo\ Tockstmi)\ AeturnStmt,
DeclExpr, v) (SimpleName,)(statements, NameExpr,
i~ ariables/\\identifier ExprStmt SimpleName,
il S~ \ identifier
T f oo = — —

Timitive,
type ~

-

1

Figure 4: Patterns of Aggregation Structure

Table 1: Categories of Aggregation Structures

Category Label of the Parent Node

MethodCallExpr, FieldAccessExpr, BinaryExpr,
ObjectCreationExpr, AssignExpr, ArrayCreation
-Expr, CastExpr, ArrayAccessExpr, IntegerLiteral
-Expr, UnaryExpr, InstanceOfExpr, SingleMember
-AnnotationExpr, VariableDeclarationExpr,
ConditionalExpr

statements, IfStmt, CatchClause, TryStmt,
SwitchEntry, ForStmt, WhileStmt, catchClauses,
entries, SwitchStmt, ExpressionStmt, ForEachStmt,
LabeledStmt, DoStmt, AssertStmt, ThrowStmt,
ReturnStmt, thrownExceptions, SynchronizedStmt
VariableDeclarator, variables, values

arguments, typeArguments

Parameter, parameters, typeParameters,
TypeParameter

Type ClassOrInterfaceType, ArrayType

Modifier modifiers

Expression

Statement

Declaration
Argument
Parameter

parameter and type categories comprise independent elements and
thus cannot be merged.

The modifier category as a special aggregation of the routine sig-
nature can be merged. Because the source code tokens in a modifier
are never merged, merging the rest of a modifier aggregation can
still show the parallel relationship between the source code tokens.

I
i

(((variablebect)
\

NameExpr,
SimpleName

Algorithm 1 Compression of Aggression Structures

Input: (N’,E’,s), a set of mergeable aggregation types L, a func-
tion of merging node labels in an aggregation structure Mg()
Output: CAG(N,, E., s)

1: Np =0

2. for each node n € N’ do

3: if [{(x,n) : x € N’} N E’|> 2 then

4 Np = Np U {n} > Np is a list of parent nodes
5 end if

6: end for

7: for r € Ny do

8: if 7 € L then

9: {n1,ng,...ng} ={n:V(nrt) € E'}

10: if {ny,nz,...ng} " Np = © then

> m is the new

—_
—_

m = Mg({n1,ny,...ng} U {r})
merged node
12: E. = EEU{(mw) : Y(r,0) € E'} U {(a,m) :
V(a,n;) € E’ for each n; € {ny,ng,...ni}} \ {(ni,7) : n; €
{n1,ng, ...ng}}

13: Ne =N U{m}\ ({n1,ng,...n .} U1)
14: end if

15: end if

16: end for

17: Return CAG(Ng, E¢, s)

Algorithm 1 transforms the reduced AG (N’, E’, s) to a CAG by
merging all compressible aggregation structures.

Lines 1-6 extract the parent nodes N, of all aggregation struc-
tures. In N’, a node with two or more entry edges could be the
parent node 7 of an aggregation structure. The global sink is not a
compressible aggregation.

Lines 7-17 generate CAG(N,, E, s) by merging all compress-
ible aggregation structures. First, lines 7-10 determine whether an
aggregation structure {7, ny, n, ..., ng } is compressible. If so, line
11 creates the new merged node m by combining all node labels
in {r, n1, ny, ..., ng } through the function Mg(). In line 12, we cre-
ate new edges: (1) {(m,w) : Y(r,w) € E’}, connecting the new
node m to all nodes connected by 7, (2) all nodes point to each

ACSAC’22, December 5-9, 2022, Austin, TX

node in {n1, ny, ..., n } will connect to the new node m. Finally, we
remove all nodes in {r,ny, ny, ... ng} and edges in {(n,7) : n €
{n1,n2,...n }} U{(r,w) € E’}.

The CAG of the above sample code is shown in Figure 5. It has
eight aggregation structures. Four of them are compressed: one
“modifiers”, two “VariableDecl” , and one “AssignExpr” (i.e., the
nodes in blue). The aggregation structures of “ArrayType”, “Param-
eter”, “statements”, and “ForEachStmt” are not compressible.

4 VULNERABILITY DETECTION WITH GNN
MODELS

4.1 The Framework

Figure 6 shows the general framework of our approach. It involves
three phases: (1) preprocessing: creating the CAG of each routine in
source code repository, (2) embedding: aggregating and embedding
the nodes of each CAG to obtain a numeric code matrix for graph
learning, and (3) modeling: training a GNN model to construct a
predictive model. The model can then be used to determine whether
an unseen program has vulnerabilities.

Preprocessing. To generate the CAG of each routine in the
source code repository, we first parse the routine into an AST,
and build the AG. Then we reduce it to the CAG by merging the
sequences of single-entry property node and compressible aggre-
gation structures as discussed in the previous section.

Embedding. Each graph (e.g., CAG or AG) is converted into
a numerical representation before it is fed into the GNN layer. It
consists of nodes, edges, and labels. We use MPNet [45] to embed
each node token to a 768 fixed-length numeric vector. The idea is
to construct a high dimensional space so that tokens with similar
semantic features are mapped to the same area of space. For exam-
ple, “string” and “int” are both variable’s types, so their embedding
vectors are close in the space. In the AGs, the text of each node
originates from the ASTs, so it can be encoded into a vector through
the MPNet directly. In the CAGs, there are three forms of nodes.
The original node without merging directly embeds into a numeric
vector like the AG nodes. For a node that represents a merged node
sequence, its embedding vector V; is given in equation (1), where n
is the number of nodes in the sequence and T; donates the text in
node i. V; indicates that every node in the sequence has the same
contribution to the merged node.

1 n
Vo=) MPNet(Ty))
i=1

The embedding vector of the merged node of an aggregation
structure is shown in equation (2), where k is the number of nodes
in the aggregation structure, n; is the number of nodes merged in
node i (if n; > 2, it is a sequence merged node, otherwise it is an
original node), T;; is the text of index j in node i.

k ni
V, = % Z(nl . ZMPNet(Tij)) @
=1 "t =1

An edge is denoted by a vector with two numbers, an entry
node index and an exit node index, which indicates the direction
of massage passing. The label is mapped into an one-hot vector to
show the class the graph belongs to.

Luo, et al.

Modeling. It consists of two GNN layers, one pooling layer, one
classifier layer, and the final predictive model.

(1) GNN Layer. The GNN layer is responsible for updating
numerical representations of the graph, which generally in-
cludes two processing operations, message and aggregation,
for graph nodes. Message deals with the feature information
of graph nodes, and aggregation completes the aggregation
operation of the information of its neighbor nodes for the
current central node. The message and aggregation opera-
tions in different GNN models are different. The equation
(3) is a general node feature aggregating process, where i
denotes the central node, N is the number of neighbor nodes,
message is the message operation (like LSTM, Transformer),
lis alayer number, [+1 is the next layer and W is the weight
of GNN layer, xj. is the input vector of node j to layer I. We
create our model by adding two GNN layers: (1) the first
layer accepts the initial input vector with 768 features and
outputs a quadruple length (3072) vector, aiming to capture
more fine-grained features. (2) the second layer reduces the
dimensionality of the previous layer’s output to 1024, making
it easier to get the final output for prediction.

N
hﬁ” =W- Z message(xj-) (3)
j=1

(2) Pooling Layer. We use global soft attention layer [24] to
reduce the size (length, width, number of channels) of the
previous GNN layer, thereby reducing the amount of cal-
culation, memory usage, and the number of parameters to
achieve a certain scale, space invariance, and reduce the
possibility of overfitting.

(3) Classifier Layer and Prediction. We create an ‘argmax’
function as a classifier to calculate the output vector, which
consists of 0 and 1. The label where the index of ‘1’ belongs
to is the final graph predicted label.

4.2 GNN Models

In this paper, we consider six GNN-based models: Graph Convolu-
tional Networks (GCNs) [20], Graph Attention Networks (GATs)
[46], Unified Message Passing Model (UniMP) [44], GNNs with auto-
regressive moving average filter (ARMAConv) [2], Residual Gated
Graph ConvNets (ResGatedGCNs) [3], and Feature-Steered Graph
Convolutions (FeaStNet) [47], which represent various modeling
strategies for dealing with graph representations.

The graph convolutional neural networks (GCNs) [20] is a feature
extractor that operates on graphs. It is an aggregate operation on
the Laplace matrix. The basic idea is that, for each node in a graph,
its feature information is derived from all its neighbor nodes and
its own features. Then, we apply appropriate functions, such as
average, maximum, or more complex aggregate functions, to these
features. Continually, we will perform the identical action on each
node. The calculated features are then sent into the neural network.

Graph attention networks (GATs) [46] leverage the masked at-
tention mechanism to aggregate the features of neighbor nodes
in graphs to the central node. First, utilizing a linear mapping of
shared parameters to increase the dimension of the feature of a

Compact Abstract Graphs for Detecting Code Vulnerability with GNN Models

ACSAC’22, December 5-9, 2022, Austin, TX

\
e MethodDeclaration ’I ~

modifiers]| !
Modifier, keyword)]

S 7
Modifier, keyword

2 el ——

] v
1 ' i 1
1 ' ' H
1 ' ' H
1 1 1 B L
1 ' 1]
H Source Code ' H "]
' ! ' ' T H
1 Repository ' [- - "
! 1
' | : 1 GNN Layer :
1 ' 1 v
H Preprocessing : H :
1 ' ' H
H ' H o) 3]
[1 i Ly I
1 ' 1 € ‘- v
1 ' ' H
Ll 1 1 H
1 ' 1 H
1 ' 1) i\ H
' ' ' % & als H
1 ' f H
H ' 1 GNN Layer H
1l] ' 1)
1 H ' H
i [' : :
1 ' 1]
1 i ' 1 '
H Embedding H H !
! ' ' Pooling i
1 ' 1]
1 ' 1 '
1l] 1)
1 ' f H
| : : :
1 . ' H
1 1 H
1 ' ' H
' Numerical] ']
1l 1 1 1)
1 Data ' 1 H
\ ' ! Predicti '
y ’ \ rediction H
~ - ~ -

Generating numerical
representation of CAGs

Vulnerability
detection model

Figure 6: Framework for GNN-based Vulnerability Detection

node, and the transformed feature of the node is concatenated;
Then, the concatenated high-dimensional feature is mapped to a
real number and then using the softmax function to get the atten-
tion coefficient. Finally, the features are then weighted and summed
in accordance with the attention coefficient to produce the new
feature of the node.

Unified message passing model (UniMP) [44] predicts the label
of a node in the graph based on the label information of the sur-
rounding nodes. GCNs transform and propagate node features and
predict the labels relying on the node features. UniMP uses both
node features and label information in the training and prediction
phases. In order to prevent information leakage caused by the use
of label features during training, the model uses a mask model to
hide some labels and then predicts the masked labels.

GNN s with auto-regressive moving average filter (ARMAConv)
[2] uses the ARMA filter to improve the expressiveness of the model,

> @A
~ o

_er
L VariableDecl |
Primitive, type|
SimpleName, identifier|
MIntegerLiteralExpr,

N~ value

\

1

! -

1 .BlockblmL

1

1

1

-
—

\ —

b T

(ForEachstmt_ —

Variable
DeclExpr,

ReturnStmt,
NameExpr,

SimpleName,

identifier

lockStmt,
statements,
ExprStmt

Variable
DeclExpr,

NameExpr,
SimpleName,

SimpleName,
identifier

capturing the global structure of the graph with few parameters.
The residual gated graph convnets (ResGatedGCNs) [3] is a variant
of GCNs by adding gated margins and residuals, which has a bet-
ter performance on the semi-supervised clustering and subgraph
matching problem. Feature-Steered Graph Convolutions (FeaStNet)
[47] acquires network features through dynamic learning instead
of relying on static coordinates.

5 EXPERIMENTS

The construction of AGs and CAGs of source code is based on
‘eclipse.cdt.core’ [12] for C and ‘eclipse.jdt.core’ [13] for Java. The
six GNN models are implemented with Pytorch v1.11.0 [37] and
PyG v2.0.1 [36] and executed on a multi-core server with 4 Tesla
V100S-PCIE GPUs.

The performance metrics include accuracy, precision, recall, and
F1 score. They are defined with respect to the numbers of true
positive (TP), true negative (TN), false positive (FP), and false neg-
ative (FN). Accuracy is the percentage of total samples, includ-
ing both positive and negative, that are predicted correctly, i.e.,
(TP+TN)/(TP+TN +FP + FN). Precision measures that, among
all samples that are predicted positive, how many of them are ac-
tually positive. For all the samples predicted as positive, there are
two possible outcomes: TP and FP. Thus, precision is calculated by
TP/(TP+FP).Recall measures that, among all the positive samples
in the dataset, how many of them are predicted as positive. It is de-
fined as TP/(TP + FN). F1 score is the harmonic mean of precision
and recall, i.e., 2 x (precision = recall) / (precision + recall).

We apply 5-fold cross-validation to the dataset in each experi-
ment, 90% of the samples are used to build the classifier (including
training and validation) and the remaining 10% to test the predic-
tion model and report the results. The epoch of each experiment is
initially set to 40. If the accuracy and loss values are satisfactory in
the 40th epoch, the training is terminated, otherwise the training
will continue. We report the geometric mean of the aforementioned
evaluation metrics across 5 cross-validation folds.

5.1 The Datasets

We have compiled two datasets, one for Java and the other for
C, as shown in Table 2. The Java dataset originates from three
sources: the national vulnerability database (NVD), the software

ACSAC’22, December 5-9, 2022, Austin, TX

Table 2: The Datasets

Dataset Language #Vul. #Positive #Negative

Types Samples Samples
Java Dataset Java 114 37,350 68,480
C Dataset C 106 58,459 126,170

assurance reference dataset (SARD), and Luo et al.[4]. It has 37,350
positive samples with 114 vulnerability types and 68,480 negative
samples. The C dataset, created from NVD and SARD, contains
58,459 positive samples with 106 vulnerability types and 126,170
negative samples. The above vulnerabilities have covered 37 of the
40 general categories of software vulnerability.

As mentioned in Luo et al. [30], the SARD samples have the fol-
lowing features that cause critical bias for machine learning: (1) the
methods have logging statements before and after the vulnerable
code to indicate the vulnerability location, (2) there are comments
that describe vulnerability details, (3) many vulnerability samples
use the same variable and method names. The avoid the effects of
these features, we clean up the samples as follows: (1) removing
all the comments. (2) removing the logging statements, (3) replac-
ing the variable and method names recurring in the vulnerability
samples with the names from non-vulnerable code.

5.2 GNN Models with CAGs

We have trained the six GNN models with the CAGs of the source
code in the Java and C datasets. Tabel 3 presents the experiment
results on the Java dataset. UniMP has achieved the best score on
all performance indicators (accuracy, precision, recall, and F1). The
96.33% of accuracy and 96.08% of F1 score indicate UniMP has a
good performance on both vulnerable and non-vulnerable samples.
That is because it uses both node features and label information in
the training and prediction phases help capture the vulnerability-
related features. GATs’ scores are close to UniMP (only 0.1% less
on each indicator), so the attention mechanism is also helpful in
capturing vulnerability features. GCNs’ scores are 1% lower than
UniMP. RGGCNs and ARMAConv, as new variants of GCNs, have
slightly under-performed GCNs. The strategies of FeaStNet mostly
applied to other domains and its performances are a bit lower
than the other models. Table 4 shows the experiment result on C
dataset. The evaluation scores of each model on C are 3% lower than
the scores on Java. The main reason is that the syntax of Java in
CAGs is more detailed than in C - Java CAGs carry more structural
information. However, the overall performance of each model on C
is still very good. UniMP remains the best among the six models.

Table 5 presents the experiment results of combining the Java
and C datasets. The overall performance of each model is between
those of the individual Java and C datasets. UniMP and GATs still
have the best scores — 94.0% of accuracy and 93.4% of F1 score. The
accuracy and recall are over 92%, and precision and F1 are over 91%
of the other four models. Overall, the six models range from 91% to
96% on each performance indicator. This demonstrates that CAGs
are an effective representation of source code for vulnerability
detection with GNN models.

Luo, et al.

Table 3: Results of the Java Dataset (%)

GNN Model Accuracy Precision Recall F1

FeaStNet 94.70 94.14 93.97 94.05
ARMAConv 95.01 95.35 94.02 94.14
RGGCNs 95.05 95.88 93.99 94.34
GCNs 95.30 95.60 94.22 94.91
GATs 96.27 96.50 95.04 95.84
UniMP 96.33 96.67 95.28 96.08

Table 4: Experiment Results of the C Dataset (%)

GNN Model Accuracy Precision Recall F1

FeaStNet 91.55 90.77 92.14 91.29
ARMAConv 92.01 90.71 92.75 91.78
RGGCNs 92.49 90.79 92.98 91.91
GCNs 92.50 90.92 92.61 91.93
GATs 93.14 92.51 93.43 92.89
UniMP 93.21 92.48 93.47 92.90

Table 5: Results of the Combined Java/C Dataset (%)

GNN Model Accuracy Precision Recall F1

FeaStNet 92.59 91.39 93.00 91.68
ARMAConv 92.75 91.72 92.05 91.88
RGGCNs 93.54 91.83 94.59 92.38
GCNs 93.49 91.39 93.74 9243
GATs 94.07 92.28 94.72 93.39
UniMP 94.09 92.29 94.77 93.40

5.3 Effectiveness of Graph Reduction

To evaluate the usefulness of the reduction from AGs to CAGs, we
have also applied the AGs of the datasets to the six GNN models.
The AGs have 19 million nodes and 23.1 million edges. Training 10
epochs takes 31 minutes and 422 GB of numeric vector data. After
the reduction, CAGs have 8.8 million and 12.9 million edges. In
other words, 53.70% of the AG nodes and 44.23% of the AG edges
are reduced. The vector data reduces to 190.3GB. The training time
is deceased by 27.42%.

Figure 7 compares the result of CAGs and AGs on UniMP (the
best performer of the six GNN models) of the Java dataset. After
epoch 30, both models achieve optimum, and they have similar
accuracy, precision, recall and F1 scores. The CAGs also make the
learning faster for the same learning rate. Thus, CAGs are more
efficient.

5.4 Comparison with ASTs, CFGs and PDGs

We have compared CAGs to ASTs, CFGs, and PDGs, which are
among the most applied source code representations for program
analysis. CFGs depict the flow of program execution, whereas PDGs
capture data and control dependencies of code. Figure 8 shows the

Compact Abstract Graphs for Detecting Code Vulnerability with GNN Models

ACSAC’22, December 5-9, 2022, Austin, TX

Table 6: Compression Ratios

Graph Node Node Edge Edge Time Training Time Storage
Representation # Reduction # Reduction (min/10Epoch) Reduction Size (GB)
AGs 23,186,375 - 31,325,795 - 31.0 - 422
CAGs 10,746,584 53.65% 18,885,202 39.71% 22.5 27.42% 190.3
1.0 1.0 1.00 AST PDG . CFG wmm CAG 1.00 AST PDG mmm CFG wmm CAG
00l — 0ol —
0.8 0.8 0.95 0.95
0.7 07 0.90 0.90
0.6 0.6
0.5 0.5 0.85 0.85
0.4 0.4
03 0.3 0.80 0.80
02 02 0.75 075
0.1 0.1
0.0 0.0 0. 0.7
0 5 10 15 Epzoghs 25 30 35 40 0 5 10 15 Epighs 25 30 35 40 Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score
(a) Accuracy (b) Precision (a) FeaStNet (b) ARMAConv
1.0 1.0 1.00 AST PDG mE CFG mEm CAG 1.00 AST PDG mEm CFG mEm CAG
09 s 09] s
0.8 0.8 0.95 0.95
0.7 07 0.90 0.90
0.6 0.6
0.5 0.5 0.85 0.85
04 04
03 0.3 0.80 0.80
0.2 02 0.75 0.75
0.1 0.1
0.0 0.0 0.7 ! 0.7 A
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score
(c) Recall (d) F1 Score (c) RGGCNs (d) GCNs
100 A wm e wm GO w06 100 T w0 GG GG
Figure 7: Comparison of CAGs and AGs
0.95 0.95
0.90 0.90
0.85 0.85
experiment results. CAGs have significantly outperformed ASTs, 080 080
CFGs, and PDGs. ASTs are poor for GNN-based vulnerability detec- 075 075
tion. All six GNN models have an average 84% accuracy and 81% F1 070 pccuracy Precision Recall F1 Score 70 Accuracy Precision Recall F1 Score
score. It indicates that the models are inefficient for both positive .
P (e) GATs (f) UniMP

and negative samples. PDG-based models achieve an average 90%
on both accuracy and F1 score, whereas CFG-based models got an
average score of 92% on accuracy and F1 score.

5.5 Comparison with the Related Works

We have compared our approach with the recent related works:
VulDeePecker [26], uVulDeePecker [56], Luo et al. [30], DEVIGN
[55], Lin et al. [28], and FUNDED [48]. VulDeePecker and uVulDeeP-
ecker utilize BiLSTM on code segments. Luo et al. treats source
code as text and checks integer overflow errors trough a fine-tuned
BERT model. DEVIGN uses GNN models to learn features through
an AST variant. FUNDED uses a GNN to operate on graph repre-
sentation, which has multiple types of edges based-on ASTs and
combines them through a GRU.

The above methods, except FUNDED, only work for C programs.
Our comparative study uses the TIFS dataset from FUNDED [48],
which has 38,845 negative and 34,035 positive samples. They ac-
count for 28 vulnerability types in C programs. Figure 10 shows
the results of comparison. The UniMP model with AGs and CAGs
has the best performance. GATs and GCNs with CAGs are slightly
better than FUNDED, but much better than the other five models.

Figure 8: Comparison of Different Graph Representations

Figure 9 shows the performance of each method on individual
vulnerability types. The BiLSTM-based models, VULDEEPECKER
and uVULDEEPECKER, have performed well for CWE-190, CWE-
191, and CWE-665, but their accuracy is less than 75% for other
vulnerabilities. Luo’s method focused on integer overflow errors
(CWE-190). When applied to other vulnerabilities, its accuracy
dropped to 70%. Even on CWE-190, UniMP with CAGs is 3% more
accurate. Lin’s method achieves over 80% accuracy for some vul-
nerabilities, 10 of which are over 90%, while UniMP with CAGs
achieves the same or even better scores. DEVIGN using a standard
GNN model achieves high accuracy only on several vulnerabilities.
For example, DEVIGN’s accuracy is only 63% for CWE-191, while
UniMP with CAGs has a score of over 91%. For most vulnerabil-
ity types, FUNDED has an average score of over 85%; however,
it still achieves a low accuracy in detecting CWE-191, CWE-400,
and CWE-404. The UniMP model with AGs and CAGs achieved
over 90% accuracy on 27 of the 28 vulnerability types. For seven

ACSAC’22, December 5-9, 2022, Austin, TX

VULDEEPECKER MVULDEEPECKER & wo

100.0%

95.0%

85.0%
80.0%
75.0%
70.0% I

65.0%

60.0% -

Luo, et al.

mmm DEVIGN S LN @ EEE FUNDED EEEN UNiMP+AG EEEE UNiMP+CAG

e T e 0T e 018 e 33D e 13 100 o 20 o 200 e a8] 36T 0562 o 400 e 808 o s8] e 1S 0S¥ e a0 e 687 e 680 0 66 e 610 e 610 108 e 15 e 158 e 110 e 11T ot

Figure 9: Comparison of Individual Vulnerabilities in the TIFS Dataset

Table 7: The Applications

Project Lan. KLOC Classes Methods #Vul.
Apache JMeter Java 122 1,921 9,306 160
Elasticsearch Java 366 4,836 26,646 405
FFmpeg C 615 3,478 36,505 627
OpenSSL C 361 2,203 19,922 630
GitHub J&C - - 1,506 1,506
Total - 1,464 12,438 93,132 2,575

vulnerability types, the accuracy is even 100%. The accuracy of
CWE-404 is 82%, the only one below 90%.

100.0%

VULDEEPECKER wo - LN = GCNs+CAG mmm UniMP+AG
WULDEEPECKER ~ mmm DEVIGN mmm FUNDED mmm GATs+CAG mmm UniMP+CAG

95.0%
90.0%
85.0%
80.0%

75.0%

70.0%- .
Accuracy Precision Recall F1 Score

Figure 10: Comparison Result on TIFS Dataset

6 APPLICATIONS

We have applied the resultant GNN models trained with the CAGs
(Section 5.2) to four open-source projects and many GitHub projects
with historic vulnerabilities. Table 7 shows the list of applications.
The project sizes range from 122 KLOC (thousand lines of code)
to 615 KLOC. They have a total of 1,464 KLOC, 12,438 classes, and
92,379 methods. We also extracted 1,506 vulnerable routines from
GitHub projects according to their commits data using a pre-trained
expert model [29]. In total, there are 2,575 vulnerable routines.
Table 8 shows the prediction results. All six GNN models have
achieved high scores on accuracy (from 93.3% to 96.9%) and pre-
cision (from 87.4% to 94.3%). UniMP’s recall and F1 scores, 88.5%
and 91.3%, are significantly higher than the other models. The false

Table 8: Prediction Results for Real-World Applications (%)

GNN Model A P R F1 FPR FNR

FeaStNet 933 874 746 805 25 254
ARMAConv 933 91.1 707 79.6 1.6 29.3
RGGCNs 933 903 708 794 1.7 29.2
GCNs 951 969 76.0 852 0.6 24.0
GATs 953 946 79.2 86.2 1.0 20.8
UniMP 96.9 943 885 913 1.2 11.5

positive rates (FPRs) of the models are similar. However, UniMP’s
false negative rate (FNR) is much lower than the other models. Com-
pared to the training results in Tables 3, 4, and 5, the performances
for the real-world applications have dropped but remain promising.
In particular, the UniMP model is outstanding.

7 CONCLUSIONS

We have presented CAGs as a novel source code representation
for predicting software vulnerabilities with GNN models. The ex-
periments using two large Java and C datasets with 220 types of
vulnerabilities have demonstrated that CAGs are much more ef-
ficient than ASTs, CFGs, and PDGs, which are among the widely
applied source code representations. The resultant GNN models
have achieved promising performance when applied to more than
2,500 vulnerabilities collected from real-world software projects.
The comparative study has also shown that the CAG-based GNN
models can outperform the existing machine-learning based meth-
ods for vulnerability detection.

In this paper, CAGs are applied to Java and C programs. As a
language-agnostic representation of source code, they can be used
for different programming languages. Our future work will expand
this paper to detect vulnerabilities in other popular languages, such
as C#, C++, and Python.

ACKNOWLEDGMENTS

This work was supported in part by US National Science Foundation
(NSF) under grants 1820685 and 2101118. Ruoyao Xiao assisted in
the control flow graph (CFG) experiment.

Compact Abstract Graphs for Detecting Code Vulnerability with GNN Models

REFERENCES

(1]
(2]

[11]

[12]

[13]
[14]

[15]
[16]

[17]

(18]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Allamanis, M. Brockschmidt, and M. Khademi. 2017. Learning to represent
programs with graphs. arXiv preprint arXiv:1711.00740.

F.M. Bianchi, D. Grattarola, L. Livi, and C. Alippi. 2021. Graph neural net-
works with convolutional arma filters. IEEE transactions on pattern analysis
and machine intelligence.

X. Bresson and T. Laurent. 2017. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553.

Checkmarx. 2006. Checkmarx. https://www.checkmarx.com. (2006).

P. Chen, Y. Wang, Z. Xin, B. Mao, and L. Xie. 2009. Brick: a binary tool for run-
time detecting and locating integer-based vulnerability. In 2009 International
Conference on Availability, Reliability and Security. IEEE, 208-215.

R. Chinchani, A. Iyer, B. Jayaraman, and S Upadhyaya. 2004. Archerr: runtime
environment driven program safety, 385-406.

M. Choi, S. Jeong, H. Oh, and J. Choo. 2017. End-to-end prediction of buffer
overruns from raw source code via neural memory networks. arXiv preprint
arXiv:1703.02458.

[n. d.] Common vulnerabilities and exposures. https://cve.mitre.org. ().

HXK. Dam, T. Tran, T. Pham, SW. Ng, J. Grundy, and A. Ghose. 2017. Automatic
feature learning for vulnerability prediction. arXiv preprint arXiv:1708.02368.
J. Devlin, M. Chang, K. Lee, and K. Toutanova. 2018. Bert: pre-training of
deep bidirectional transformers for language understanding. (2018). arXiv:
1810.04805 [cs.CL1.

F. Dong, J. Wang, Q. Li, G. Xu, and S. Zhang. 2018. Defect prediction in android
binary executables using deep neural network. Wireless Personal Communica-
tions, 102, 3, 2261-2285.

[n. d.] Eclipse cdt. https://wiki.eclipse.org/Getting_started_with_CDT_develop
ment. ().

[n. d.] Eclipse jdt. https://www.eclipse.org/jdt/core/. ().

Z.Feng et al. 2020. Codebert: a pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155.

Flawfinder. [n. d.] Flawfinder. http://www.dwheeler.com/flawfinder. ().

J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun. 2018. Vulseeker: a semantic learning
based vulnerability seeker for cross-platform binary. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 896~
899.

P. Godefroid, M. Levin, and D. Molnar. 2008. Automated whitebox fuzz testing.
In Network and Distributed System Security Symposium.

G. Holmes, A. Donkin, and LH. Witten. 1994. Weka: a machine learning work-
bench. In Proceedings of ANZIIS 94-Australian New Zealnd Intelligent Informa-
tion Systems Conference. IEEE, 357-361.

A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden. 2012. Software vul-
nerability prediction using text analysis techniques. In Proceedings of the 4th
international workshop on Security measurements and metrics, 7-10.

Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning Repre-
sentations.

D. Kravets. 2017. Sorry ma’am you didn’t win $43m — there was a slot machine
‘malfunction’. Ars Technica, editor. (June 2017). https://arstechnica.com/tech-
policy/2017/06/sorry-maam-you-didnt-win-43m-there-was-a- slot-machine-
malfunction/.

T. Le, T. Nguyen, T. Le, D. Phung, P. Montague, O. De Vel, and L. Qu. 2018.
Maximal divergence sequential autoencoder for binary software vulnerability
detection. In International Conference on Learning Representations.

Y.Lee, S. Choi, C. Kim, S. Lim, and K. Park. 2017. Learning binary code with deep
learning to detect software weakness. In KSII the 9th international conference
on internet (ICONI) 2017 symposium.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. 2015. Gated graph sequence
neural networks. arXiv preprint arXiv:1511.05493.

Z.Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen. 2021. Sysevr: a framework for
using deep learning to detect software vulnerabilities. IEEE Transactions on
Dependable and Secure Computing.

Z.Li,D. Zou, S. Xu, X. Ou, and Y. Zhong. 2018. Vuldeepecker: a deep learning-
based system for vulnerability detection. In Network and Distributed System
Security Symposium. (Feb. 2018).

G. Lin, J. Zhang, W. Luo, L. Pan, and Y. Xiang. 2017. Poster: vulnerability
discovery with function representation learning from unlabeled projects. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2539-2541.

G. Lin, J. Zhang, W. Luo, L. Pan, Y. Xiang, O. De Vel, and P. Montague. 2018.
Cross-project transfer representation learning for vulnerable function discov-
ery. IEEE Transactions on Industrial Informatics, 14, 7, 3289-3297.

Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang. 2021. Combining
graph neural networks with expert knowledge for smart contract vulnerability
detection. IEEE Transactions on Knowledge and Data Engineering.

[42]

[43]

[44]

[49]

(50]

[51]
(52]

(53]

[54]

ACSAC’22, December 5-9, 2022, Austin, TX

Y. Luo, W. Xu, and D. Xu. 2021. Detecting integer overflow errors in java source
code via machine learning. In 2021 IEEE 33rd International Conference on Tools
with Artificial Intelligence (ICTAI). IEEE, 724-728.

Microsoft. 2012. Prefast analysis tool. https://msdn.microsoft.com/en-us/librar
y/ms933794.aspx. (2012).

S. A Mokhov, J. Paquet, and M. Debbabi. 2015. Marfcat: fast code analysis for
defects and vulnerabilities. In 2015 IEEE 1st International Workshop on Software
Analytics. IEEE, 35-38.

[n. d.] National vulnerability database. https://nvd.nist.gov. ().

Y. Pang, X. Xue, and A. Namin. 2015. Predicting vulnerable software compo-
nents through n-gram analysis and statistical feature selection. In 2015 IEEE
14th International Conference on Machine Learning and Applications (ICMLA).
IEEE, 543-548.

H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin. 2015. Building program vector
representations for deep learning. In International conference on knowledge
science, engineering and management. Springer, 547-553.

[n. d.] Pyg. https://pytorch-geometric.readthedocs.io/en/latest/. ().

[n. d.] Pytorch. https://pytorch.org/. ().

R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood,
and M. McConley. 2018. Automated vulnerability detection in source code using
deep representation learning. In 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA). IEEE, 757-762.

H. Sajnani, V. Saini, J. Svajlenko, C.K. Roy, and C.V. Lopes. 2016. Sourcerercc:
scaling code clone detection to big-code. In Proceedings of the 38th International
Conference on Software Engineering, 1157-1168.

SARD. 2019. Nist software assurance reference dataset project. https://samate
.nist.gov/SRD/testsuite.php. (2019).

R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen. 2014. Predicting
vulnerable software components via text mining. IEEE Transactions on Software
Engineering, 40, 10, 993-1006.

C.D. Sestili, W.S. Snavely, and N.M. VanHoudnos. 2018. Towards security defect
prediction with ai. arXiv preprint arXiv:1808.09897.

A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer. 2009. Detection of malicious
code by applying machine learning classifiers on static features: a state-of-the-
art survey. information security technical report, 14, 1, 16-29.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and
Yu Sun. 2020. Masked label prediction: unified message passing model for
semi-supervised classification. arXiv preprint arXiv:2009.03509.

K. Song, X. Tan, T. Qin, J. Lu, and T. Liu. 2020. Mpnet: masked and permuted pre-
training for language understanding. Advances in Neural Information Processing
Systems, 33, 16857-16867.

Petar V., Guillem C., Arantxa C., Adriana R., Pietro L., and Yoshua B. 2018. Graph
attention networks. In International Conference on Learning Representations.
N. Verma, E. Boyer, and J. Verbeek. 2018. Feastnet: feature-steered graph convo-
lutions for 3d shape analysis. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2598-2606.

H. Wang, G. Ye, Z. Tang, S.H. Tan, S. Huang, D. Fang, Y. Feng, L. Bian, and Z.
Wang. 2020. Combining graph-based learning with automated data collection
for code vulnerability detection. IEEE TIFS, 16, 1943-1958.

S. Wang, T. Liu, and L. Tan. 2016. Automatically learning semantic features for
defect prediction. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE). IEEE, 297-308.

T. Wang, T. Wei, Z. Lin, and W. Zou. 2009. Intscope: automatically detecting
integer overflow vulnerability in x86 binary using symbolic execution. In
Network & Distributed System Security Symposium (NDSS2009).

F. Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics. Springer, 196-202.

R. Wojtczuk. 2005. Ugbtng: a tool capable of automatically nding integer
overows in win32 binaries. Proceedings of Chaos Communication Congress.

F. Yamaguchi, F. Lindner, and K. Rieck. 2011. Vulnerability extrapolation: as-
sisted discovery of vulnerabilities using machine learning. In Proceedings of
the 5th USENIX conference on Offensive technologies, 13-13.

G. Zhao and J. Huang. 2018. Deepsim: deep learning code functional similarity.
In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
141-151.

Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu. 2019. Devign: effective vulnerability
identification by learning comprehensive program semantics via graph neural
networks. Advances in neural information processing systems, 32.

D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin. 2019. gVuldeepecker: a deep learning-
based system for multiclass vulnerability detection. IEEE Transactions on De-
pendable and Secure Computing.

https://arxiv.org/abs/1810.04805
https://wiki.eclipse.org/Getting_started_with_CDT_development
https://wiki.eclipse.org/Getting_started_with_CDT_development
https://www.eclipse.org/jdt/core/
http://www.dwheeler.com/flawfinder
https://arstechnica.com/tech-policy/2017/06/sorry-maam-you-didnt-win-43m-there-was-a-slot-machine-malfunction/
https://arstechnica.com/tech-policy/2017/06/sorry-maam-you-didnt-win-43m-there-was-a-slot-machine-malfunction/
https://arstechnica.com/tech-policy/2017/06/sorry-maam-you-didnt-win-43m-there-was-a-slot-machine-malfunction/
https://msdn.microsoft.com/en-us/library/ms933794.aspx
https://msdn.microsoft.com/en-us/library/ms933794.aspx
https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch.org/
https://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SRD/testsuite.php

	Abstract
	1 Introduction
	2 Related Work
	3 Compact Abstract Graphs
	3.1 Abstract Graphs
	3.2 Merging Single-Entry Node Sequences
	3.3 Merging Aggregation Structures

	4 Vulnerability Detection with GNN Models
	4.1 The Framework
	4.2 GNN Models

	5 Experiments
	5.1 The Datasets
	5.2 GNN Models with CAGs
	5.3 Effectiveness of Graph Reduction
	5.4 Comparison with ASTs, CFGs and PDGs
	5.5 Comparison with the Related Works

	6 Applications
	7 Conclusions
	Acknowledgments

