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Abstract—Integer overflow is a common cause of software fail-
ure and security vulnerability. Existing approaches to detecting
integer overflow errors rely on traditional static code analysis and
dynamic testing. This paper presents a novel machine learning-
based approach that predicts integer overflow errors by treating
source code as text. It exploits text classifiers to determine
whether each method in a given Java program contains an
integer overflow error. As the training data is essential, we
have constructed a comprehensive dataset to accounts for (a)
integer overflow errors of all integer types and operations in
Java (i.e., positive samples); (b) various programming techniques
for preventing integer overflow errors (i.e., negative samples);
and (c) malicious scenarios that may mislead text classifiers (i.e.,
adversarial samples). We have trained three classifiers, BERT,
fastText, and NBSVM, that represent different text embedding
techniques. BERT, as a representative deep-learning transformer,
has achieved the highest performance scores and remained robust
even when tested with the adversarial samples.

Index Terms—integer overflow, machine learning, static code
analysis, text classification, BERT

I. INTRODUCTION

Unanticipated arithmetic overflow is a common cause of
software failure and security vulnerability. This paper presents
a machine-learning approach for detecting integer overflow
errors through automated classification of Java source code. It
assigns “positive” (existence of integer overflow) and “nega-
tive” (absence of integer overflow) tags to each method in the
given source code.

The contributions of this paper are twofold. First, this paper
is the first to exploit machine learning-based text classification
to detect integer overflow errors. We have evaluated and com-
pared three state-of-the-art text embedding techniques repre-
sented by BERT, fastText, and NBSVM. BERT (Bidirectional
Encoder Representation from Transformer) is a recent NLP
language model from Google Al Language [1]. fastText is an
efficient text classifier created by Facebook’s Al Research lab
[2]. NBSVM is a text classifier that integrates Support Vector
Machines (SVM) with Naive Bayes (NB) features [10]. They
deal with input sentences (i.e., Java methods in this paper)
in different ways. BERT considers bi-directional contexts
of words. fastText treats a sentence as a bag of n-grams
where word order is observed. NBSVM transforms sentences
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in terms of word frequency. The results show that BERT
outperforms fastText and NBSVM. Second, this paper offers
a comprehensive dataset that accounts for integer overflow
errors of all integer types and operations in Java programs
(i.e., positive samples), various programming techniques for
preventing integer overflow errors (negative samples), and
malicious scenarios that may be used to trick text classifiers
(i.e., adversarial samples).

The remainder of this paper is organized as follows. Section
II introduces integer overflow errors in Java programs. Section
IIT presents the overall approach; Section IV introduces the
baseline dataset and experiment; Section V presents the com-
plete dataset; Section VI evaluates and compares the three
classifiers; Section VII reviews related work; Section VIII
concludes this paper.

II. INTEGER OVERFLOW IN JAVA PROGRAMS

The integer data types in Java include byte, short, int,
long, and char (16-bit unsigned). An integer overflow occurs
when an integer operation evaluates to a value that is either
greater than the maximum or less than the minimum repre-
sentable value, i.e., out of the range of the underlying integer
type. In this case, Java’s built-in integer operators silently wrap
the result, which leads to an incorrect computation and unan-
ticipated outcome. Overflow errors are typically introduced by
the use of a wrong integer type or inappropriate assumption
about the operands’ ranges.

Integer overflow happens to binary operations and unary
operations because the ranges of each integer type are not
symmetric. For an integer type other than char, the minimum
value’s negation is one more than the maximum value. There-
fore, unary negation overflows when applied to the minimum
value. Even the java.lang.math.abs() method can overflow
if used to obtain the absolute value of a minimum number.

Not all integer operators are relevant to integer overflow
errors. The operators subject to integer overflow include +,
-, ¥ I, ++, —, +=, -=, *=, /=, unary -. The other operators,
such as %, %=, <, >, >=, <=, ==, |=, and unary +, are
usually overflow-free. They may indirectly contribute to the
occurrence of integer overflow in another expression. Some
integer operators are overloaded with other data types. For



example, the + operator for string concatenation does not in-
volve integer overflow. However, a machine learning algorithm
may incorrectly treat it as an integer operator.

Effective software development should prevent potential
integer overflow errors from the production code before it
is tested or verified. Systematic prevention requires careful
program design and good coding practices. The primary
methods for Java programming are precondition test, built-
in safe methods (Math. x Exact() in Java 8), upcasting, and
Biglnteger [5].

III. DETECTION OF INTEGER OVERFLOWS

Given the source code of a Java program, we first filter
out the methods without integer operations because they are
always free from integer overflows. For each method with
integer operations, we aim to classify it either positive (i.e.,
the existence of integer overflow) or negative (i.e., absence
of integer overflow). To do so, we convert it to a text string,
like a natural language paragraph. As text classifiers ignore
special symbols, including integer operators, we replace them
with predefined words (e.g., SYMZPLUS for '+).

Words (e.g., class names, method names, variable names)
in Java source code are different from those in natural lan-
guage texts. A word not contained in the classifier’s built-in
dictionary will be broken into multiple tokens. For example,
the tokenization of ‘fsReader’ may result in four tokens: ‘f’,
‘H#sr’, ‘H##ead’ and ‘##er’, where ##° indicates this token is
connected to the previous token. The tokenizer checks whether
’fsReader’ is in the dictionary. If not, the last letter ’r’ is
removed and the tokenizer checks whether ’fsReade’ is in
the dictionary until it finds ’f’ is in the dictionary, and ’f’
is extracted as the first token. The tokenizer repeats the above
process until all four tokens are extracted.

Text classifiers typically limit the input to 512 tokens for
balancing performance and memory consumption. When the
input is too long, it is not easy to learn the relationship from the
first word to the last. It will also cause a memory overload. In
this work, the limit of 512 tokens has caused no problem. No
method of the real-world Java projects in Section VII exceeds
the limit. If a method under evaluation has more than 512
tokens, we break it into multiple inputs. It is positive if one
of the inputs is classified as positive. Section IV will discuss
how to deal with lengthy methods with known integer overflow
errors (i.e., positive samples for training purposes) because we
need to include all lines of the flawed code in the samples.

Any text classifier can be adopted in our approach. The
main research issues are creating a comprehensive dataset and
finding a high-performing classifier. This paper focuses on
three state-of-the-art text classifiers, BERT [1], fastText [2],
and NBSVM [10]. They represent different text-embedding
techniques for dealing with input sentences: BERT considers
bi-directional contexts of words. fastText treats a sentence as
a bag of n-grams where word order is observed. NBSVM
transforms input sentences in terms of word frequency.

IV. BASELINE DATASET AND EXPERIMENT

This work builds upon the JARPA STONESOUP3.0 dataset,
part of the NIST SARD (Software Assurance Reference
Dataset) suites [7] for testing static analysis tools with seeded
security flaws. As demonstrated below, the STONESOUP’s
integer overflow samples are very limited. We refer to it as
the baseline dataset.

A. Baseline Dataset

Table I lists the Java applications in the STONESOUP
dataset. There are 2,711 seeded vulnerabilities, including 93
integer overflow errors. The dataset accounts for 46 CWE
(Common Weakness Enumeration) vulnerability types.

Table 1
JAVA PROGRAMS IN THE STONESOUP DATASET

Subject KLOC Files Vul. Int. Overflow
Coffee MUD 54 4,475 478 17
Elastic Search 36 4,836 478 20
Apache Jena 41 10,700 476 14
Apache JMeter 11 1,921 160 6

Apache Lucene 45 4,190 480 14
Apache POI 33 7,916 479 16
JTree 1 123 160 6
Total 221 34,161 | 2,711 93

The dataset provides an XML file that contains the informa-
tion on each vulnerability, including the test case id, the source
code file with the flaw, and the lines of the code where the
vulnerability is located. The following is an example where

the integer overflow code consists of two lines (716 and 717):
<testcase id="154934" type="Source Code" language="Java">
<file path:"/src/main/java/org/index/ﬁervice.java">
<flaw line="716" name="CWE-198: Integer Overflow"/>
<flaw line="717" name="CWE-190: Integer Overflow"/>

We treat each method with an integer overflow flaw as a
positive sample. If it does not exceed 512 tokens, we include
its entire source code in the sample. If it has more than 512
tokens, we ensure that all flaw code lines are included in the
sample. To do so, we first extract the entire code block of the
integer overflow error according to the XML file. If the code
block has more than 512 tokens, we take the first 512 tokens
for the positive sample; otherwise, we find the enclosing code
block with the maximum token size where the integer overflow
code is centered. If there is no more text before (or after) the
flawed code, we keep adding text on the other side where the
text is still available until the maximum is reached.

A negative sample is a method with integer operations
but free from integer overflow errors. We exclude those
methods that have no integer operations because they will
never have integer overflows. For each negative method in the
STONESOUP dataset with more than 512 tokens, we break
its source code into multiple negative samples in sequential
order. Thus, we treat lengthy positive and negative samples
differently. However, no underfitting or overfitting was found
in our experiments.

The Java programs in the STONESOUP dataset share many
classes and methods. We have excluded duplicate code when



converting the negative samples. In brief, the baseline dataset
consists of 93 positive and 5,032 negative samples.

B. Baseline Experiment

The baseline experiment aimed to train the classifiers with
the baseline dataset, evaluate their performance, and analyze
the baseline dataset’s limitations. It is implemented in Python
Ktrain and Tensorflow and performed on Google Colab Pro
with Tesla P100-PCIE GPU and 27.4 G high RAM. We build
the models using ktrain v0.25.x. We train BERT to fine-tune
related parameters and add a softmax layer for prediction. For
fastText and NBSVM, we use the default training parameters.
We set the learning rate to 2e-5 and epoch to 40 for all models.

We applied 10-fold cross-validation to the baseline dataset
— 90% for training and 10% for testing. The initial epoch is
40. If the accuracy and loss values are satisfactory in the 40th
epoch, the training terminates; otherwise, it will continue.

Table II
RESULT OF BASELINE EXPERIMENT
Model Accuracy | Precision | Recall F1 AUC
BERT 1.0000 1.0000 1.0000 | 1.0000 | 1.0000
fastText 0.9924 0.9962 0.8000 | 0.8731 | 1.0000
NBSVM 1.0000 1.0000 1.0000 | 1.0000 | 1.0000

Table II presents the experiment results. Both BERT and
NBSVM have achieved a perfect score on all performance
indicators, i.e., accuracy, precision, recall, F1, and AUC.
AUC stands for the Area Under the ROC (receiver operating
characteristic) Curve, a performance measure of classification
models. fastText’s scores are also very high.

Although the prediction results are correct, they are biased
because certain words overexpose the trained model. Many
words with positive correlations are not the right features.
They have weighted out or even ignored other important
features. A thorough review of all 93 positive samples reveals
a set of common words that appear in every positive sample,
such as ‘trigger, ‘tracepointmessage, ‘tracer, ‘before, and
‘after.” Obviously, such an artificial pattern was introduced into
the source code when the vulnerabilities are seeded into the
original Java programs. These words do not appear in negative
examples. It appears that BERT can quickly learn the features
that accurately separate positive samples from negative ones.
The same variable names used in all 93 positive samples,
such as ‘stonesoup_checked_value’ and ‘stonesoup_value,’
also mislead the model to consider critical features.

C. Limitations of the Baseline Dataset

The integer overflow errors (and other vulnerabilities) in the
STONESOUP dataset were created by deliberate design with
easily observable features. The artificial patterns are useful for
tracking and understanding the inserted flaws. As they can be
sorted out accurately by text classifiers, the baseline dataset is
meaningful for evaluating a vulnerability detection technique
only if the artificial patterns do not contribute to the prediction

result. We address this issue by creating negative samples with
the same patterns of positive examples.

Another limitation is that the integer overflow samples have
only covered three addition operators (+, +=, ++) of one
integer type (i.e., short). No negative sample accounts for
the prevention of integer overflows. As discussed in Section
I, various integer types and operators are subject to integer
overflows, and there are several methods for preventing integer
overflow errors. Therefore, the training dataset must cover all
of them to build effective prediction models.

Moreover, the high-performance scores in Table II do not
necessarily indicate the classifiers are good at predicting inte-
ger overflow errors in real-world Java programs. To validate
this hypothesis, we tested the classifiers with 35 positive and
35 negative samples. The positive samples are collected from
the bug history of OpenJML, apache-tomcat-6.0.32, and ical4j-
develop and created according to various integer operators in
Section II. For each positive sample, a negative sample was
created using the prevent techniques in Section II.

Table IIT
RESULTS OF BASELINE EXPERIMENT I ON DIVERSE SAMPLES
Model Accuracy | Precision | Recall F1 AUC
BERT 0.3857 0.2177 0.3857 | 0.2784 | 0.4727
fastText 0.4857 0.2464 0.4857 | 0.3269 | 0.0008
NBSVM 0.4000 0.2222 0.4000 | 0.2857 | 0.6751

Table III presents the testing results. All classifiers trained
with the baseline dataset are much worse than a random guess.
It is because the baseline dataset does not represent the typical
integer overflows in real-world applications. This paper aims
at an effective classifier with a comprehensive dataset.

V. BUILDING THE DATASET

High-quality datasets are essential to effective machine
learning. This section extends the baseline dataset to account
for all types of integer overflow errors (normal positive
samples), prevention methods (normal negative samples), and
various malicious code that may mislead the classifiers (i.e.,
adversarial samples). Inspired by contrastive learning, we
create negative samples by applying a prevention technique to
fix the error in each positive sample if feasible. Therefore, our
dataset consists of many pairs of contrastive samples. Unlike
contrastive learning that only uses contrastive samples, our
dataset includes the 5,032 negative samples in the baseline
dataset. They represent widely applied Java programs of
various integer types and operations without overflow errors.
A comparative experiment will be presented in Section VI-C.

A. Normal Positive Samples

Normal positive samples are created as follows:

o Refactor the 93 STONESOUP samples by changing vari-
able names, modifying arithmetic expressions, and adding
more comments (called STONESOUP refactorings).

¢ Collect integer overflow samples from textbooks, web-
sites, and bug histories of open-source projects.



« Insert overflow code segments into negative samples.
« Write new code to cover all integer types and operations
that may cause overflows, as described in Section II.

For the last two methods, we maintain a set of method/vari-
able names, a set of overflow-free code segments in addition to
the sets of integer types, operators subject to integer overflows,
method modifiers, and return types. We also strive to avoid
using similar variable names. Table IV shows the distributions
of positive examples classified by integer operators. The total
number is 757.

Table IV
NORMAL POSITIVE SAMPLES

Category #Positive Samples
STONESOUP Refactorings 93
+ (+, +=, ++) 165
- (- =) 155
NGRS 160
/(, I=) 50
unary - 30
absolute value 30
other operators 74
Total 757

B. Normal Negative Samples

We created 702 negative samples from the existing positive
samples using the prevention techniques to fix each overflow
error if feasible. It will reduce the bias of certain syntactic
features because they will appear in both positive and negative
samples. It was inspired by contrastive learning that allows
training models to learn the distinctiveness of positive and
negative features. The distinctiveness is achieved by pairing a
positive with one or more negatives.

C. Adversarial Samples

We created a total of 211 adversarial samples (100 positives
and 111 negatives) after the classifiers have been trained with
the normal samples (i.e., Dataset I in the next section). From
the normal samples, the classifiers have identified critical
features that contribute to their prediction. For example, many
negative samples share words, such as “ArithmeticException”,
“Biglnteger”, and “Math”, representing the prevention of
integer overflow errors. Example words that contribute to
positive samples are “stonesoup_checked_value”, “tracepoint-
VariableShort”, and “trigger-point”.

An adversarial positive sample is a flawed method with
the features that usually appear in negative samples. An
adversarial negative sample is an overflow-free method with
specific features that usually contribute to positive samples.
Training with adversarial samples will allow the classifiers to
distinguish between normal and adversarial cases. Although
adversarial samples do not represent real-world software, they
are essential for measuring machine-learning approaches.

The adversarial samples are created as follows:

« Refactor the existing positive and negative samples by
using new variables named after the frequent words

(phrases) or replacing original variable names with the
top frequent words.

o Insert print statements with top frequent words to
both positive and negative samples. For example,
‘System.out.println(“ArithmeticException is not a key
word.”);” can be inserted into a positive sample.

« For each positive sample with multiple integer overflows,
fix one and keep the others unchanged to create an
adversarial positive sample.

VI. EMPIRICAL STUDIES

The complete dataset includes the baseline dataset and the
new normal and adversarial samples. It is referred to as Dataset
IT in Table V. To investigate the impacts of adversarial
samples, we refer to the combination of the baseline and the
normal samples as Dataset I (i.e., with no adversarial samples).

Table V
DATASETS FOR EMPIRICAL STUDIES
Dataset Name Postives | Negatives | Total
Baseline dataset 93 5,032 5,125
Dataset I 850 5,827 6,677
Dataset 11 950 5,938 6,888

Our studies aim at the following research questions.

o RQI1: How well do the classifiers perform on the dataset
without the adversarial samples? Are they robust when
tested with adversarial samples?

o RQ2: How well do the classifiers perform on the dataset
with adversarial samples? Are they robust when tested
with adversarial samples?

A. Training without Adversarial Samples (Dataset I)

Table VI shows the results of training the classifiers with
Dataset I without the adversarial samples. Compared to the
baseline experiment in Table II, the new normal and negative
samples have slightly reduced the scores. All of the classifiers
have performed well, although perfect scores no longer exist.
BERT is the best per each performance indicator (accuracy,
precision, recall, F1, and AUC). Its scores are all above 98.7%.

Table VI
TRAINING WITHOUT ADVERSARIAL SAMPLES (DATASET I)
Method | Accuracy | Precision | Recall F1 AUC
BERT 0.9956 0.9871 0.9922 | 0.9897 | 0.9955
fastText 0.9648 0.8968 0.9537 | 0.9224 | 0.9941
NBSVM 0.9677 0.9005 0.9658 | 0.9296 | 0.9924

We further tested the classifiers with 30 positive and 25
negative adversarial samples. Table VII shows the results. All
classifiers have suffered a significant performance reduction.
The scores range from 50-74%. These scores indicate that the
adversarial samples can fool them. BERT has outperformed
fastText and NBSVM.



Table VII
TESTING THE CLASSIFIERS WITH ADVERSARIAL SAMPLES (A)

Method | Accuracy | Precision | Recall F1 AUC
BERT 0.7091 0.7393 0.7233 | 0.7067 | 0.6947

fastText 0.6727 0.6917 0.6533 | 0.6464 | 0.7947

NBSVM 0.5636 0.5560 0.5533 | 0.5516 | 0.5053

B. Training with Adversarial Samples (Dataset 1)

Table VIII shows the results of training the classifiers with
Dataset II, excluding the above 55 adversarial examples for
comparison purposes. The resultant models will be applied to
real-world projects in the next section. With the adversarial
samples, BERT has slightly improved the performance, with
all scores above 99%. fastText and NBSVM have slightly
decreased their performance. BERT is still the best per each
performance indicator.

Table VIII
RESULT OF TRAINING WITH ADVERSARIAL SAMPLES (DATASET II)
Method | Accuracy | Precision | Recall F1 AUC
BERT 0.9959 0.9939 0.9903 | 0.9921 | 0.9968
fastText 0.9375 0.8603 0.9302 | 0.8899 | 0.9826
NBSVM 0.9470 0.8763 0.9468 | 0.9063 | 0.9767

We further tested the classifiers with the aforementioned
55 adversarial samples. Table IX shows the results. BERT is
robust as its performance scores are all above 97%. fastText
and NBSVM still performed poorly even when they have been
trained with adversarial samples.

Table IX
TESTING THE CLASSIFIERS WITH ADVERSARIAL SAMPLES (B)
Method | Accuracy | Precision | Recall F1 AUC
BERT 0.9818 0.9908 0.9833 | 0.9817 | 0.9733
fastText 0.6909 0.7221 0.6700 | 0.6623 | 0.8360
NBSVM 0.6909 0.7422 0.6667 | 0.6538 | 0.6227
C. Summary

To summarize, the main findings are as follows:

o The three classifiers can achieve high performance scores
(all over 90%) for normal positive and negative samples.

« fastText and NBSVM can be fooled by adversarial sam-
ples no matter whether trained with adversarial samples.

« BERT can be fooled by adversarial samples if not trained
with such samples. However, it performs very well if
trained with adversarial samples.

o BERT, as a representative of the new generation text-
embedding technique for NLP, has always outperformed
fastText and NBSVM.

VII. RELATED WORK

Scandariato et al. [8] proposed a vulnerability prediction
model for Java projects through text-mining source code and
used Naive Bayes and Random Forest to predict vulnerability.

VulDeePecker [4] aims to detect buffer error and resource
management error in C/C++ code. It applies Bidirectional
Long Short-Term Memory (BLSTM) to API function calls
and forward/backward program slices. uVulDeePecker [11]
extends VulDeePecker by dealing with 40 vulnerability types.
Code attention and its extraction method are used to help
pinpoint vulnerability types.

Li et al. [3] labeled each function as sensitive or nonsensi-
tive, vectorized it with the one-hot encoding method, and built
the prediction model with a Dense layer, multiple BLSTM
layers, and an output layer. Russell et al. [6] explored both
CNNs and RNNs for feature extraction from the embedded
source representations. A random forest classifier is used to
determine if the C/C++ source code contains five types of
vulnerabilities. Based on graph learning, FUNDED [9] uses
word2vec network to generate node embedding in AST and
update each node by analyzing nine types of edges.

Unlike the above work, our approach focuses on detecting
integer overflow errors via text classification.

VIII. CONCLUSIONS

We have presented the approach for detecting integer over-
flow errors in Java code via text classification. The evaluations
with a comprehensive dataset and real-world applications
demonstrate that BERT as a representative deep-learning trans-
former is a viable solution. It has achieved very high perfor-
mance scores and found many errors in real-world projects.
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