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Abstract—Network sampling is the task of selecting a subset
of nodes and links from a network in a way that preserves its
topological properties and other user requirements. This paper
investigates the problem of generating an unbiased network
sample that contains balanced proportion of nodes from different
groups. Creating such a representative sample would require
handling the trade-off between ensuring structural preservability
and group representativity of the selected nodes. We present
a novel max-min subgraph fairness measure that can be used
as a unifying framework to combine both criteria. A greedy
algorithm is then proposed to generate a fair and representa-
tive sample from an initial set of target nodes. A theoretical
approximation guarantee for the output of the proposed greedy
algorithm based on submodularity and curvature ratios is also
presented. Experimental results on real-world datasets show that
the proposed method will generate more fair and representative
samples compared to other existing network sampling methods.

Index Terms—Sampling; network; fairness

I. INTRODUCTION

Networks are powerful representation for modeling interac-
tions between entities in a complex social system. Given the
massive size of online social networks, performing even simple
analysis can be expensive. Besides the high computational
costs, many online social networks are only accessible through
Web crawling or the use of APIs. Such accesses are often
throttled by restrictions on the number of queries or rate limits
imposed by the data providers. Accessing the whole network
becomes near impossible for researchers, which makes sam-
pling an essential task for collecting network data.

An obvious sampling goal is to ensure that the sample
preserves the topological properties of the entire network [1]—
[3]. This objective will hereforth be referred to as structural
preservability of the sample. In graph sampling literature
[4], [5], numerous network topological measures have been
used to characterize structural preservability. These properties
can be generally categorized into two groups: (1) vector
properties such as the distribution of node degrees, clustering
coefficients, and eigenvalues, and (2) scalar properties such
as average degree, network diameter, and average clustering
coefficient. The former can be assessed using probabilistic
distance measures such as Kullback-Leibler divergence and
Kolmogorov-Smirnov statistic whereas the latter can be eval-
uated by computing the normalized root mean square error
(NRMSE) [6] between the scalar properties obtained from the
sample and those obtained from the entire network.

Each node in a social network can be characterized by its at-
tributes. Some node attributes may define certain groups (e.g.,

gender, race, or age group) of interest to network researchers.
These are known as the protected attributes. Thus, an alter-
native sampling goal would be to preserve the distribution of
such protected attribute values in the sample [6]. This objective
will be referred to herein as group representativity. Given its
broad range of applications, the importance of fair network
sampling cannot be overly emphasized. If the sampled network
is biased, this will adversely affect the results of downstream
mining tasks. For example, Wagner et al. [7] showed that
uninformed sampling may lead to biased estimation of node
centrality values and unfair ranking of nodes from minority
groups in a social network. The authors noted that an ideal
sample should not “systematically rank nodes of one group
higher and nodes of the other group lower than expected.”
Nevertheless, they did not present a fair sampling method that
will overcome the limitations of existing algorithms.

The main challenge in fair network sampling is to com-
bine the structural preservability and group representativity
objectives in a principled way and to design an algorithm that
optimizes for both. In this paper, we develop an approach that
measures structural preservability by comparing the centrality
measures of the nodes in the sampled network to their values in
the original network. Fairness of the sampled network, which
corresponds to the group representativity objective, is given by
a max-min subgroup fairness criterion [8], defined in terms of
the worst-case structural preservability value among all the
subgroups of the protected attribute. A greedy algorithm is
then proposed to obtain an approximate solution for the max-
min subgroup fairness criterion. A systematic evaluation of the
proposed algorithm on several real-world data demonstrates its
effectiveness relative to other network sampling methods.

II. PRELIMINARIES

Let G =< V, E, X > be an attributed network, where V' is
the set of nodes, £ C V x V is the set of links, and X is the
set of node attributes. We assume X can be partitioned into
protected attributes, X (p), and unprotected attributes, X (W),
Let {Pi,..., Pk} be the partitions of the nodes in V based
on the values of the protected attributes in X (), where K is
the number of distinct combination of its values.

Consider a pair of networks, G; =< Vi, E;,X; > and
Gy =< Vi, Fy, Xo >. We say that GG is a subgraph of Go,
denoted as G1 C Go, if V1 C V5 and E; C Es. If E; includes
all the links in G2 that have endpoints in V7, then G is an
induced subgraph of Gs.



Definition 1 (Network Sampling). Given an attributed net-
work G =< V,E, X > and a sample size n, the network
sampling task is to extract an induced subgraph G =<
Vi, EY XE > of G such that:

Gy = argmaxg ¢ |v,=n0(Gs) (1)

where o is an objective function that considers both structural
preservability and group representativity of the sample.

A. Structural Preservability Objective

A natural starting point for measuring the ability of a sample
to preserve the topological properties of a network is at the
individual node level. More specifically, node centrality mea-
sures [9]-[11] such as degree, closeness, clustering coefficient,
Katz index, and PageRank have been widely used to gauge
the importance of a node in a network. By comparing the
centrality measure of each node computed from the sample
to its corresponding value from the original network, the
structural preservability of a sample can therefore be evaluated.

Definition 2 (Centrality Ratio). Given a network G =<
V,E, X > and a subgraph Gy, the centrality ratio p of a
node v in G is defined as

C(v,Gy)

w(v,Gs) = Tw.G) 2

where C corresponds to a node centrality measure.

Intuitively, if p is close to 1, then the sample G preserves
the centrality measure of node v in the original network G.
The structural preservability objective aims to find a subgraph
G of order n that minimizes the following function:

Ostruct(Gs) = Z |/1’(’U7 GS) - 1‘ (3)

velG

One potential caveat of using Equations (2) and (3) is that
they both require knowledge of the entire network in order
to compute the denominator term C(v,G). If the sampling
algorithm 1is restricted to have access only to the sampled
network (e.g., while crawling the network) without any prior
knowledge about the entire network, it would not be possible
to compute p(v,G,). To circumvent this issue, we consider
the following relaxed centrality ratio measure instead:

(v, Gs) = C(v, Gy) )

For greedy algorithms that incrementally expand the sampled
subgraph by adding one node at a time, the relaxed measure
provides a good approximation to the structural preservability
objective in (3) when knowledge about the entire network is
unavailable. The true centrality ratio given by Equation (2) can
be used when evaluating the performance of such algorithms.
For a greedy sampling algorithm, the following are 3 desir-
able properties of the centrality and centrality ratio measures:
Pl: i(v,Gs) =0if v € V.
P2: Vv € Vi : fi(v,Gs) < oo even if G, is not a connected
graph.
P3: Yo e Vi : ﬂ(U,Gl) < ﬂ(U,GQ) if G; C Gs.

The first property ensures that the centrality ratio can be com-
puted using information from the sample G5 alone. The second
property ensures that the centrality ratio remains bounded even
when the subgraph has multiple connected components. The
third property, which is analogous to the score monotonicity
axiom for node centrality defined in [10], implies that the
centrality ratio of the subgraph should be monotonically non-
decreasing as the order (|V;|) of the subgraph increases.

Our algorithm considers harmonic centrality [10] as the
node centrality measure. The harmonic centrality of a node
u with respect to graph G, H(u, @), is defined as:

H(u,G) = Z H(u,xz) = Z m, 5)

zeV\{u} zeV\{u}

where dg(u, x) denotes the shortest path distance between u
and z in G. We choose harmonic centrality for several reasons.
First, unlike other path-based node centrality measures such as
closeness and betweenness, which are restricted to connected
graphs, harmonic distance is applicable to both connected and
disconnected graphs (property P2). Furthermore, the measure
is intuitive as it considers the relative influence of the nodes
in a network by giving higher weights to nodes that are closer
than those located further away. Another advantage of using
harmonic centrality is that it is only one of two popular
measures (besides PageRank) that is strictly rank monotone
[11], i.e., adding a new edge to a node will not demote its
rank relative to other lower-ranked nodes in the network.

Lemma 1. Harmonic centrality satisfies the desired properties
Pl1, P2, and P3 of a greedy, graph sampling algorithm.

Proof: For property P1, it is easy to show that ji(v,Gs) =0
for v & V5 since Yu € V; : dg(v,u) = oo = H(v,u) = 0.
For property P2, if there is no path between nodes w and
x, then dg(u,x) = oo. Thus, H(u,z) = 1/dg(u,z) = 0
when u and x belong to different connected components.
The corresponding term in the sum given in Equation (5)
will be zero, which means H(u,G) is bounded even if G
is not a connected graph. To prove the third property, let
G1 =< Vi, E; > and Gy =< Vo, By >. If G C G5 then
Yo,u € Vit dg, (v,u) > da,(v,u). As a result,

1
dg,(v,u) ~ dg,(v,u)’

Furthermore, since V; C V5, we have Yv € Vj:

Yo, u € Vi :

1 1
H©v,Go) = ) =52 ). s
ueVa\{v} da, (v, u) ueVi\{v} da, (v, u)
1
> ——— =H@,G
S VR o
u€Vi\{v}
Thus, the third property holds for Equation (4). [

B. Group Representativity Objective

The group representativity objective ensures that the sample
contains adequate representation from different groups of the
protected attribute(s). To address the challenge of combining



structural preservability with group representativity, we intro-
duce a max-min subgraph fairness criterion, which is inspired
by the minimax Pareto fairness concept proposed in [8] for
satisfying group fairness. Specifically, our max-min subgraph
fairness criterion evaluates the average centrality ratio of each
group and uses the minimum value as its fairness score.

Let P = {Py, P5, -+, Px} be a partitioning of the nodes
based on the protected attribute(s), X ?). For each group P; €
P, we define the following group centrality ratio measure:

Definition 3 (Group Centrality Ratio). Given a network G =<
V,E, X > and centrality ratio u, the group centrality ratio
for the node group P; € P is

1
7i(G) = gy 2 (G

ueP;

(6)

where | P;| denotes cardinality of the set of nodes in P;.

For sampling algorithms without full access to the entire
network, we replace u by £ in the above definition. Further-
more, since harmonic centrality satisfies property P1, the group
centrality ratio can be computed efficiently as follows:

—% > ww,Gy)

| ’| ueP;NV,

)

Definition 4 (Subgraph Fairness Criterion). Given a network
sample Gs =< Vs, Es, X5 >, a partitioning of node groups,
P={P, P, - ,Px}, and a group centrality ratio function
o, we define the fairness function for a subgraph G as:

0fair(Gs) = 0™ (Vy) = 121;1}({01-(6’5)} (8)
Our network sampling goal is to maximize the fairness cri-
terion defined in Equation (8). Replacing the measure into
the objective function in Equation (1), our max-min subgraph
fairness sampling objective is to find a subgraph G} such that:

Gt = argmaxc e (v, |=n miin(ai(Gs)) 9
Lemma 2. If [i satisfies the property P3 stated in Lemma 1,
then o™ (V) is a monotonically non-decreasing function of
the order of the subgraph.

Proof: Let ™" (V) = mini<;<k(0i(Gs)), where K is
the number of group partitions. In order to show o™ is a
monotonically non-decreasing function, we have to show that
amm(Vl) < O'mm(‘/g) if G1 C Ga, where G; =< Vi, E; >.
Since [i satisfies the property P3 in Lemma 1 and o; is
a summation over u, therefore o; must be a monotonically
nondecreasing function for all 1 < ¢ < K. Furthermore, as
o™ is the minimum value of o; over i, it must also be
monotonically nondecreasing, which completes the proof. [

III. GENS: GREEDY FAIR NETWORK SAMPLING

Our proposed greedy algorithm to address the max-min sub-
graph fairness criterion given in (9) is based on the following
notion of marginal gain of a set of nodes A C V.

Definition 5 (Marginal Gain). Given a network G = (V, E),
a subgraph G5 = (Vy, Ey), and a set of nodes A C V' \ Vj,
the marginal gain 0(.) of adding A to Vy is

3(A|Gy) = o™ (V, U A) — o™ (V)
where o™ (V) = mini<;<x {0;(Gs)} as defined in (8).

(10)

A greedy algorithm can be developed to optimize (9) by
incrementally adding a node v and its corresponding edges in
FE into the sample G in a way that maximizes the marginal
gain. However, computing the harmonic centrality can be very
expensive when the sampled graph is large. To improve its
efficiency, we present the following fast implementation of
our greedy algorithm based on a reference set of target nodes.

Definition 6 (Target Set). Given a network G =<V, E, X >
and a partitioning of the node groups P = {Py, Py, -+ , Px},
where V = UK | P, the target set T = {T1,...,T}} is a set
of node subsets such that T; C P;, for 1 <i < K.

We will use the target set to compute the following approx-
imate group centrality ratio:

~ 1
7i(G) = g D e Go)

ueT;

Y

for each group. The marginal gain in Equation (10) can then be
computed using the approximate group centrality ratio instead.
Our greedy algorithm is summarized below.

Greedy Fair Network Sampling (GFNS) Algorithm

Input: network G, sample size n, and target set T.
Output: sampled subgraph, G(™).

GUTD + Induced-subgraph(T, G).
fort=|T|+1ton—1do
X {u]| (u,v) € Gue V\VED e yt-1y
v* ¢+ argmax, ¢, 6(v|GU7Y)
G® ¢ Induced-subgraph(V;_; U {v*}, G)
end for

A. Theoretical Bounds on Greedy Approximation

Note that the max-min subgraph fairness criterion is not
a submodular function. However, as shown in Lemma 2, it
is a monotonically nondecreasing function. This allows us
to use the result of [12] to obtain a theoretical bound on
the greedy approximated solution. Before presenting the main
theorem, we first introduce some notations and definitions.
Let GO G ... G(™ be the sequence of subgraph samples
generated from a network G, where G =< V() E(®) > and
V| =t

Definition 7 (Submodularity ratio [13]). The submodularity
ratio of a function o is the largest scalar v such that
> GV > 45(AIGY), VACV:|Al=n
u€ A\ V (t)

where 0(-) is the marginal gain defined for o and t €
{0,1,...n—1}.



TABLE I: Statistics of network data used for experiments.

[ Network | #nodes | #edges | CC | protected feature ]
Facebook [14] 4,039 88234 0.6055 gender
Tagged [15] 71,127 71,265 0.0005 gender
German [16] 1,000 24,970 0.3801 gender
Credit [17] 30,000 | 2,174,014 | 0.6466 Age

Note that, for a non-decreasing function o, v € [0, 1] [12].
Furthermore, the function is submodular if and only if v = 1.

Definition 8 (Greedy curvature [12]). The greedy curvature
of a function o is the smallest scalar o such that

S(v |GV U A) > (1 — a)d(v|GP), VACV : |Al =n

where 0(-) is the marginal gain defined for o and t €
{0,1,...n—1}.

Theorem 1. Let o be the group centrality measure defined in
Equation (6) and 6(-) be its marginal gain with submodularity
ratio and greedy curvature as defined in Definitions 7 and
8, respectively. The proposed greedy fair network sampling
algorithm has the following approximation guarantee

S C

1 .
> (] — e @ )gmin(yx
> (1 eV

O_min(v(n))

where G =< V() EM) > s the output of the greedy
algorithm and G* =< V*, E* > is the optimum solution.

The proof of the theorem can be shown using Lemma 2 of
this paper and by applying Theorem 1 of [12].

IV. EXPERIMENTAL EVALUATION

This section describes the experiments performed to eval-
uate the efficacy of our proposed sampling algorithm. All
the code and datasets for our experiments are available at
https://github.com/frsantosp/FairSampling.

A. Experimental Setup

We performed experiments on 4 real-world datasets, whose
properties are summarized in Table I. Gender is chosen as
the protected attribute for the first 3 datasets while age is the
protected attribute for the credit default dataset. We evaluated
the structural preservability of the sampling algorithm using
the following metrics:

o Degree distribution distance (Ddist): Following the
approach in [1], we compare the degree distribution of
the sampled graph against the original network using the
Kolmogorov-Smirnov (K-S) statistic:

Ddist(Gs) = sup |Fs(d) — F(d)]
d
where F's and F' are the cumulative distribution function

(CDF) for the degree distributions of the sampled graph
and the original networks, respectively.

o Clustering Coefficient(5-CC): We compare the differ-
ence in average clustering coefficients of the nodes in
the original network to the sampled graph as follows:

11 g Aelv) Ac, (v)
scC = |1 2 2; =50l

Ta(v)  |Vil 1,

where A\g(v) is the number of triangles in G involving

the node v while 7 (v) is the corresponding number of

open triangles (i.e., subgraphs with 2 links and 3 nodes)

in G with v being the bridge between two other nodes.
« Harmonic: the average centrality ratio (see Equation (2))

of all the nodes in the sampled network using harmonic

distance as centrality measure.

For group representativity, we employed the metrics below:

o Normalized Cumulative Group Relevance (nCGR) [7],
which measures the extent to which the rank of a node
from each group has changed in the sampled graph
compared to the original graph. To do this, we first
compute the relevance of a node v in a given graph:

(rank(v))~*
2uev Tank(v)

The cumulative protected group relevance [7] for group
7 is then calculated as follows:

Zvetopk(Gs)ﬁPi Tel(’l}) te
Z'Uetopk(G)ﬁPi TEZ(U) te

Note that nCGR; determines whether the nodes belong-
ing to the group P; are more or less relevant compared
to their expected value in the original network. We set
e = 0.001 to avoid division by zero [7] and report the
minority group nCGR in our experiments. The closer the
nCGR value is to 1, the less biased is the algorithm.

o min-o: The subgraph fairness criterion using the group
centrality ratio defined in Equation (8). We consider all
the nodes in the sampled subgraph when computing o.

rel(v) =

The following commonly used sampling methods are chosen
as baseline algorithms for comparison:

« Random Node Sampling: We consider two variations of
this approach: (1) NS, which randomly selects a subset of
the nodes from a uniform probability distribution and (2)
NSD, which randomly selects a subset of the nodes with
sampling probability proportional to the node degree.

o Breadth/Depth-first search BFS/ DFS: Both algorithms
start from an initial set of target nodes and iteratively
expand the sample based on their graph traversal strategy.

o Random Walk: RW starts from a set of seed nodes and
expands the sample by simulating a random walk on the
network. Fair Random Walk (FRW) [18] is a variation of
the method that accounts for fairness by partitioning the
neighboring nodes into groups based on their protected
attribute(s). Each group has equal probability to be chosen
as the next node to visit regardless of their cardinality.

¢ Metropolis-Hastings Random Walk (MHRW): MHRW
sampling allows the RW to remain at its current node


https://github.com/frsantosp/FairSampling

TABLE II: Performance comparison among various methods in terms of structural preservability (§-CC, Ddist, and Harmonic) and group
representativity (nCGR and min-o) objectives. Note that FRW and GENS are fairness-aware sampling methods while the rest are conventional
sampling methods. The rank of each method (per evaluation metric) in increasing (") or decreasing (\,) order is shown in parenthesis.

6-CC () Ddist () Harmonic (\) nCGR () min-o (\) Average rank
NS 0.0078+/-0.0000 (1) | 0.6159+/-0.0005 (8) | 0.3680+/-0.0000 (8) 1.0105+/-0.0000 (2) | 0.3647+/-0.0000 (8) 5.4
NSD 0.0093+/-0.0000 (4) | 0.4118+/-0.0002 (6) | 0.3996+/-0.0000 (6) 1.0107+/-0.0000 (3) | 0.3978+/-0.0000 (6) 5.0
DFS 0.0082+/-0.0000 (2) | 0.5860+/-0.0000 (7) | 0.3717+/-0.0000 (7) 1.0108+/-0.0000 (4) | 0.3689+/-0.0000 (7) 54
BFS 0.0272+/-0.0000 (7) | 0.3330+/-0.0000 (2) | 0.4087+/-0.0000 (2) 1.0177+/-0.0000 (7) | 0.4085+/-0.0000 (2) 4.0
RW 0.0158+/-0.0001 (6) | 0.3514+/-0.0012 (3) | 0.4079+/-0.0000 (3) 1.0144+/-0.0000 (6) | 0.4071+/-0.0000 (3) 4.2
MHRW | 0.0082+/-0.0000 (2) | 0.3550+/-0.0014 (4) | 0.4054+/-0.0000 (5) 1.0083+/-0.0000 (1) | 0.4013+/-0.0000 (5) 34
FRW 0.0108+/-0.0000 (5) | 0.3569+/-0.0010 (5) | 0.4061+/-0.0000 (4) 1.0143+/-0.0000 (5) | 0.4047+/-0.0000 (4) 4.6
GFNS 0.0374+/-0.0000 (8) | 0.2485+/-0.0000 (1) | 0.4432+/-0.0000 (1) 1.0193+/-0.0000 (8) | 0.4408+/-0.0000 (1) 3.8

(a) Results for German credit dataset.

4-CC (L) Ddist (L) Harmonic (\) nCGR () min-o (\) Average rank
NS 0.1770+/-0.0017 (8) | 0.6586+/-0.0013 (8) | 0.0150+/-0.0000 (8) 1.0390+/-0.0002 (8) | 0.0145+/-0.0000 (8) 8.0
NSD 0.0766+/-0.0001 (4) | 0.2243+/-0.0007 (3) | 0.0794+/-0.0002 (6) 1.0183+/-0.0000 (6) | 0.0779+/-0.0002 (6) 5.0
DFS 0.0196+/-0.0000 (2) | 0.5384+/-0.0000 (7) | 0.0238+/-0.0000 (7) 1.0248+/-0.0000 (7) | 0.0233+/-0.0000 (7) 6.0
BFS 0.1050+/-0.0000 (7) | 0.3077+/-0.0000 (4) | 0.1094+/-0.0000 (3) 1.0072+/-0.0000 (1) | 0.1093+/-0.0000 (3) 3.6
RW 0.1029+/-0.0001 (6) | 0.3388+/-0.0008 (5) | 0.0933+/-0.0000 (4) 1.0117+/-0.0000 (3) | 0.0918+/-0.0001 (4) 44
MHRW | 0.0406+/-0.0004 (3) | 0.1919+/-0.0050 (2) | 0.1455+/-0.0002 (1) 1.0130+/-0.0000 (5) | 0.1444+/-0.0002 (1) 2.4
FRW 0.0957+/-0.0003 (5) | 0.3412+/-0.0024 (6) | 0.0893+/-0.0001 (5) 1.0125+/-0.0000 (4) | 0.0874+/-0.0002 (5) 5.0
GFNS 0.0143+/-0.0000 (1) | 0.1824+/-0.0000 (1) | 0.1353+/-0.0000 (2) 1.0087+/-0.0000 (2) | 0.1351+/-0.0000 (2) 1.6

(b) Results for Facebook dataset.

0-CC () Ddist () Harmonic (\) nCGR (") min-o (\) Average rank
NS 0.5235+/-0.0060 (8) | 0.9989+/-0.0000 (8) | 0.0004+/-0.0000 (8) 1.0124+/-0.0003 (6) | 0.0003+/-0.0000 (8) 7.6
NSD 0.2419+/-0.0074 (7) | 0.9970+/-0.0000 (7) | 0.0012+/-0.0000 (7) 1.0000+/-0.0000 (1) | 0.0004+/-0.0000 (7) 5.8
DFS 0.1463+/-0.0000 (6) | 0.9844+/-0.0000 (6) | 0.0061+/-0.0000 (6) 1.0000+/-0.0000 (1) | 0.0057+/-0.0000 (6) 5.0
BFS 0.1207+/-0.0000 (4) | 0.8677+/-0.0000 (5) | 0.0084+/-0.0000 (3) 1.0506+/-0.0000 (8) | 0.0067+/-0.0000 (3) 4.6
RW 0.0192+/-0.0003 (1) | 0.8082+/-0.0020 (4) | 0.0074+/-0.0000 (4) 1.0175+4/-0.0004 (7) | 0.0067+/-0.0000 (3) 3.8
MHRW | 0.0806+/-0.0024 (3) | 0.5522+/-0.0182 (2) | 0.0159+/-0.0000 (2) 1.0014+/-0.0000 (4) | 0.0125+/-0.0000 (2) 2.6
FRW 0.0335+/-0.0003 (2) | 0.7682+/-0.0016 (3) | 0.0069+/-0.0000 (5) 1.0042+/-0.0000 (5) | 0.0062+/-0.0000 (5) 4.0
GFNS 0.1451+/-0.0000 (5) | 0.1821+/-0.0000 (1) | 0.0262+/-0.0000 (1) 1.0000+/-0.0000 (1) | 0.0150+/-0.0000 (1) 1.8

(c) Results for Credit default dataset.

6-CC () Ddist () Harmonic (\) nCGR (") min-o (\) Average rank
NS 0.0005+/-0.0000 (1) | 0.3981+/-0.0000 (8) | 0.2169+/-0.1182 (1) || 2.0519+/-0.0000 (8) | 0.2077+/-0.1155 (1) 3.8
NSD 0.0005+/-0.0000 (1) | 0.1051+/-0.0034 (2) | 0.0122+/-0.0008 (8) 1.9512+/-0.0000 (7) | 0.0096+/-0.0005 (8) 52
DFS 0.0005+/-0.0000 (1) | 0.2981+/-0.0000 (6) | 0.0262+/-0.0000 (6) 1.0427+/-0.0000 (2) | 0.1069+/-0.0000 (4) 3.8
BFS 0.0005+/-0.0000 (1) | 0.1931+/-0.0000 (3) | 0.1147+/-0.0000 (2) 1.0721+/-0.0000 (6) | 0.1131+/-0.0000 (2) 2.8
RW 0.0005+/-0.0000 (1) | 0.2998+/-0.0002 (7) | 0.1142+/-0.0000 (3) 1.0530+/-0.0000 (4) | 0.1059+/-0.0000 (5) 4.0
MHRW | 0.0018+/-0.0000 (8) | 0.2668+/-0.0052 (4) | 0.0153+/-0.0001 (7) 1.0673+4/-0.0002 (5) | 0.0124+/-0.0001 (7) 6.2
FRW 0.0005+/-0.0000 (1) | 0.2806+/-0.0000 (5) | 0.1142+/-0.0000 (3) 1.0519+4/-0.0000 (3) | 0.1110+/-0.0000 (3) 3.0
GFNS 0.0005+/-0.0000 (1) | 0.0821+/-0.0000 (1) | 0.0786+/-0.0000 (5) 1.0402+4/-0.0000 (1) | 0.0682+/-0.0000 (6) 2.8

(d) Results for Tagged dataset.

without transitioning to its neighbor [19]. MHRW con-
verges to a uniform distribution unlike RW, whose sta-
tionary distribution is proportional to the node degree.

B. Experimental Results

1) General Performance: For fair comparison, all methods
are initialized with the same 10 randomly selected target
nodes. Table II shows the results on the four datasets. Based
on their overall rankings, GFNS outperforms all other methods
in 3 of the 4 datasets and is the second best method for
the German credit dataset. The MHRW approach is the next
best approach, achieving the best rating for the German credit
dataset and second best for the Facebook and Credit default
datasets. However, it performs poorly on the Tagged dataset.

In terms of structural preservability (§-CC, Ddist, and Har-
monic), GFNS performs relatively better than other baselines.
It consistently appears among the top-2 best methods in 9 out
of 12 settings (4 datasets and 3 evaluation metrics). For the
Tagged dataset, all the methods except for MHRW were able to
achieve a small value for §-CC as the graph is large and highly
sparse. As shown in Table I, the average clustering coefficient
for the Tagged data is much smaller than other datasets.

In terms of the group representativity metrics such as nCGR
and min-o, the results in Table II suggest that GFNS generally
performs better than other baseline methods, including the
fair random walk (FRW) method [18]. In fact, GFNS appears
among the top-2 best methods in 6 out of the 8§ settings (4
datasets and 2 evaluation metrics). It has the best performance
in terms of both nCGR and min-o criteria on the Credit default
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Fig. 1: Comparison of harmonic centrality ratio values of 10 target
nodes in the Facebook dataset.

dataset. For the rest of the datasets, GFNS always achieves the
best performance for at least one of the two evaluation metrics.
These results validated the advantages of using GFNS as a
fair graph sampling algorithm that produces unbiased samples
while preserving the topological properties of the network.

2) Performance on Target Nodes: We also evaluate the
performance of the sampling algorithms in terms of preserving
the harmonic centrality of the target nodes. Figure 1 shows the
centrality ratio value (u) for 10 selected target nodes with the
highest harmonic centrality from the Facebook dataset. We ran
each algorithm to create a sample that contains 100 (2.5%)
nodes in the original network. We then sorted the p values of
the target nodes and plot their sorted values in Figure 1. As
expected, GFNS outperforms all the baseline methods in terms
of preserving the harmonic centrality of the target nodes. The
plot shows that the harmonic centrality ratio is consistently
higher for GFNS for all 10 target nodes. BES is the next best
performing algorithm, followed by RW.

Finally, we examine the average harmonic centrality of
the 10 target nodes when sample size is varied from 100 to
400. Table III summarizes the average centrality ratio of the
target nodes for the German credit dataset. A higher value of
average centrality ratio indicates better performance in terms
of preserving structural properties of the target nodes. For
this experiment, we randomly select 10 nodes, five from each
gender, as target nodes and repeat the experiment 10 times.
The mean and standard deviation of the average centrality ratio
of the target nodes are shown in Table III. The result suggests
that GFNS outperforms other methods in preserving harmonic
centrality of the target nodes irrespective of the sample size.

V. CONCLUSIONS

This paper presents a novel fairness-aware network sam-
pling approach that combines the structural preservability and
group representativity objectives into a unified learning frame-
work. We introduced a new sugraph fairness criterion and
developed a greedy fair network sampling algorithm with well-
grounded theoretical bounds on the greedy approximation.

TABLE III: Comparison of average harmonic centrality ratio values
for target nodes in the German credit dataset as sample size is varied.

100 200 400
NS 0.0617+/-0.0001 | 0.1629+/-0.0001 | 0.3639+/-0.0001
NSD | 0.0841+/-0.0000 | 0.1900+/-0.0000 | 0.3984+/-0.0000
DFS 0.0765+/-0.0000 | 0.16514/-0.0000 | 0.3672+/-0.0000
BFS 0.0985+/-0.0000 | 0.2033+/-0.0000 | 0.4211+/-0.0000
RW 0.0850+/-0.0000 | 0.2013+/-0.0000 | 0.4129+/-0.0000
FRW | 0.0870+/-0.0000 | 0.1984+/-0.0000 | 0.4114+/-0.0000
GENS | 0.1147+/-0.0000 | 0.2259+/-0.0000 0.4396+/-0.0000

Finally, we experimentally demonstrate the effectiveness of
the proposed method on various real-world network data.
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