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1. Introduction

Let °d be the Cayley graph of the symmetric group S(d) as generated by the conjugacy class of
transpositions. Thus °d is a

°d
2

¢
-regular graded graph with levels L0, . . . , Ld°1, where Lk is the

set of permutations which factor into a product of d °k disjoint cycles. Let us mark each edge
of °d corresponding to the transposition (i j ) with j 2 {2, . . . , d}, the larger of the two symbols
interchanged. This edge labeling was first considered by Stanley [6] and Biane [1] in connection
with noncrossing partitions and parking functions.

A walk on °d is said to be monotone if the labels of the edges it traverses form a weakly
increasing sequence. The combinatorics of such walks has been intensively studied in recent
years, beginning with the discovery [4] that these trajectories play the role of Feynman diagrams
for integration with respect to Haar measure on unitary groups. This is part of a broader subject
nowadays known as Weingarten calculus, see [2].

Although non-obvious, it is a fact that the number of monotone walks of given length r
between two given permutations Ω,æ 2 S(d) depends only on the cycle type Æ ` d of the
permutation Ω°1æ. It is therefore suYcient to consider the number mr (Æ) of r -step monotone
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walks on °d beginning at the identity permutation and ending at a fixed permutation of cycle
type Æ. To each partition Æ` d we associate the generating function

MÆ(x) =
1X

r=0
mr (Æ)xr (1)

enumerating monotone walks on °d of arbitrary length and type Æ. It is known [3] that

MÆ(x) =
X

∏`d

¬∏ÆQ
⇤2∏

h (⇤) (1° c (⇤) x)
, (2)

where ¬∏Æ are the irreducible characters of the symmetric group S(d), with h(⇤) and c(⇤) being,
respectively, the hook length and content of a given cell ⇤ in the Young diagram of ∏ (see [7]
for definitions). In particular, MÆ(x) is a rational function of x which may be considered as a
continuous function of x on the interval (0, 1

d°1 ) whose outputs are positive rational numbers.
Up to a simple rescaling, the values MÆ( 1

N ) coincide with the values of the Weingarten function
of the unitary group U(N ); see [3, 4].

In a recent paper [5], Procesi has pointed out that the function MÆ(x) was also studied from the
perspective of classical invariant theory by Formanek, and that in this context the values MÆ( 1

d )
have special significance. Procesi tabulated these numbers for all diagrams Æ` d ∑ 8, and on the
basis of these computations made the following conjecture.

Conjecture 1. If Æ>Ø in lexicographic order, then MÆ( 1
d ) > MØ( 1

d ).

In this brief note we give explicit numerical examples which show that Conjecture 1 is false.

2. Small x

We first clarify that Procesi’s Conjecture 1 refers to lexicographic order on partitions viewed as
nondecreasing sequences of positive integers, with 1 the first letter in the alphabet, 2 the second
letter, and so on. For example, the partitions of six listed in lexicographic order are

111111

11112

1113

1122

114

123

15

222

24

33

6,

and Conjecture 1 says that the numbers MÆ( 1
6 ) strictly decrease as Æ moves down this list, and

this is so. However, the pattern fails for suYciently large degree d .
The first sign that Conjecture 1 might be false in general is that it is incompatible with the

known x ! 0 asymptotics of MÆ(x). The minimal length of a walk on °d from the identity to
a permutation of type Æ is d °`(Æ), and thus by parity the number mr (Æ) can only be positive
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when r = d °`(Æ)+2k with k a nonnegative integer. We may therefore reparameterize the counts
mr (Æ) as mk (Æ) := md°`(Æ)+2k (Æ) for k 2N0. The generating function MÆ(x) then becomes

MÆ(x) = xd°`(Æ)
1X

k=0
mk (Æ)x2k . (3)

It is then clear that

lim
x!0

MØ(x)

MÆ(x)
= 0 (4)

whenever `(Æ) > `(Ø), which is incompatible with lexicographic order.
One might nevertheless hope that when we compare the small x behavior of MÆ(x) and MØ(x)

with Æ and Ø being partitions of the same length, we find compatibility with lexicographic order.
This too is false, as can be seen from the fact [3] that

m0(Æ) =
`(Æ)Y

i=1
CatÆi°1, (5)

where Catn = 1
n+1

°2n
n

¢
is the Catalan number. Then forÆ,Ø` d partitions of the same length `, we

have

lim
x!0

MØ(x)

MÆ(x)
=

Ỳ

i=1

CatØi°1

CatÆi°1
. (6)

For small values of d , it does indeed appear to be the case that this product is smaller than 1
when Æ>Ø, but this is a law of small numbers. Consider the case where

Æ=

0
@1,3, . . . , 3| {z }

n

1
A and Ø=

0
@2, . . . , 2| {z }

n

,n +1

1
A (7)

Then Æ and Ø are partitions of the same degree d = 3n +1, they have the same length `(Æ) =
`(Ø) = n+1, andÆ precedes Ø in the lexicographic order. However, the ratio of the corresponding
Catalan products tends to infinity as n !1,

Catn

2n ª 1
p
ºn3/2

·2n . (8)

3. Counterexamples

To give a counterexample to Conjecture 1 itself, we return to the character formula (2), which in
fact yields counterexamples if one goes a bit farther than the data tabulated in [5]. Let Æ+ denote
the successor ofÆ in the lexicographic order. The first value of d for which Conjecture 1 fails is the
famously unlucky number d = 13, for which there exists precisely one violating pair Æ,Æ+. This
pair is

M(16,7)

µ
1

13

∂
= 1313

(13!)2

30132115571
1149266300

< 1313

(13!)2

426729597219
16089728200

= M(15,24)

µ
1

13

∂

We have tested Conjecture 1 for d ∑ 20 and it fails for all 13 ∑ d ∑ 20. Moreover the size of the
set

Gd :=
Ω
Æ` d : MÆ

µ
1
d

∂
< MÆ+

µ
1
d

∂æ

of consecutive failures at rank d increases with d . For instance

G14 =
©°

17,7
¢

,
°
15,2,7

¢
,
°
15,9

¢™
,

G15 =
©°

18,7
¢

,
°
16,2,7

¢
,
°
16,9

¢
,
°
14,11

¢
,
°
13,2,10

¢
,
°
13,3,9

¢™
,

G16 =
©°

111,5
¢

,
°
19,7

¢
,
°
17,2,7

¢
,
°
17,9

¢
,
°
16,10

¢
,
°
15,22,7

¢
,
°
15,11

¢
,
°
14,2,10

¢
,

°
14,3,9

¢
,
°
13,13

¢
, (1,4,11)

™
.
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Even though Conjecture 1 seems to fail for all d ∏ 13 the structure of the failure set Gd
appears to be very interesting: it seems that when d is large, the points in Gd form many
short lexicographic intervals and one large lexicographic interval. For instance |G20| = 45, so
the proportion of the length of a typical interval on which MÆ( 1

|Æ| ) is monotone is equal to 1
45 .

Nevertheless, for the interval ((1,22,4,11), (2,5,13)], whose cardinality is equal to 151, one has
((1,22,4,11), (2,5,13)]\G20 = {(2,5,13)}. The number of partitions of size 20 is 627, therefore there
exists an interval on which MÆ( 1

|Æ| ) is monotone and which is more than ten times longer than its
expected length. This suggests that a weaker version of Conjecture 1 might be true. Let Pd denote
the set of partitions of size d .

Question 2. Is it true that there exists constant C > 0 such that for every positive integer d there
exists partitions Æd > Ød 2 Pd such that for every lexicographic sequence Æd ∏ Æ > Ø ∏ Ød we
have

MÆ

µ
1
d

∂
> MØ

µ
1
d

∂
and

ØØ£Æd ,Ød
§ØØ

|Pd |
∏C ?

We do not know the answer to this question and we leave it wide open. It would also be
very interesting to find an explicit description of the set Gd , which appears to consists of very
specific partitions which might be classifiable. Even though Conjecture 1 turned out to be false we
believe that the research initiated by Procesi [5] on the behaviour of the function MÆ( 1

|Æ| ) merits
further investigation. Indeed, Procesi’s work has added a new and largely unexplored dimension
to Weingarten calculus.
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Publications, vol. 89, Polish Academy of Sciences, 2010, p. 231-235.

[5] C. Procesi, “A note on the Formanek Weingarten function”, Note Mat. 41 (2021), no. 1, p. 69-110.
[6] R. P. Stanley, “Parking functions and noncrossing partitions”, Electron. J. Comb. 4 (1997), no. 2, article no. R20

(14 pages).
[7] ——— , Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge

University Press, 1999.

https://arxiv.org/abs/2109.14890

	1. Introduction
	2. Small x
	3. Counterexamples
	Acknowledgments
	References

