Principal Component Networks: Parameter Reduction Early in Training

Roger Waleffe! Theodoros Rekatsinas

Abstract

In this paper, we show that hidden layer activa-
tions in overparameterized neural networks for
image classification exist primarily in subspaces
smaller than the actual model width. We further
show that these subspaces can be identified early
in training. Based on these observations, we show
how to efficiently find small networks that ex-
hibit similar accuracy to their overparameterized
counterparts after only a few training epochs. We
term these network architectures Principal Com-
ponent Networks (PCNs). We evaluate PCNs on
CIFAR-10 and ImageNet for VGG and ResNet
style architectures and find that PCNss consistently
reduce parameter counts with little accuracy loss,
thus providing the potential to reduce the compu-
tational costs of deep neural network training.

1. Introduction

Recent results suggest the importance of overparameteriza-
tion in neural networks (Gunasekar et al., 2017; Li et al.,
2020). The theoretical results of Gunasekar et al. (2017)
demonstrate that training in an overparameterized regime
leads to an implicit regularization that may improve general-
ization. At the same time, empirical results (Li et al., 2020)
show that large models can lead to higher test accuracy. Yet,
these generalization improvements come with increased
time and resource utilization costs: models with more pa-
rameters generally require more FLOPS. The question then
arises, how can we retain the generalization benefits of over-
parameterized training but reduce its computational cost?

This question has lead to several works which show that
overparameterized networks contain sparse subnetworks
that can be trained in isolation to comparable generalization
performance (Frankle & Carbin, 2019; Ramanujan et al.,

"Department of Computer Science, University of Wisconsin-
Madison, Madison, Wisconsin, USA *Department of Computer
Science, ETH Zurich, Zurich, Switzerland. Correspondence to:
Roger Waleffe <waleffe@wisc.edu>.

Published at the 39" International Conference on Machine Learn-
ing Workshop on Hardware Aware Efficient Training, Baltimore,
Maryland, USA, 2022. Copyright 2022 by the author(s).

2

2019). These results highlight the potential to reduce train-
ing costs of high-accuracy models. Subnetwork identifica-
tion, however, can be an expensive exercise—e.g., requiring
iterative train-prune-reset procedures (Frankle & Carbin,
2019)—thus limiting end-to-end cost reductions. This moti-
vates our study to find an efficient procedure for discovering
small networks that exhibit the same accuracy as their over-
parameterized counterparts.

Principal Component Networks Our work builds upon
the next compelling observation: We consider overparam-
eterization due to increased network width, a key quan-
tity associated with high-accuracy models (Park et al.,
2019). We find that hidden layer activations in wide, image-
classification networks exist in low-dimensional subspaces
an order of magnitude smaller than the actual model width.
We also find that these subspaces, which contribute most to
the network accuracy, can be identified early in training.

Based on the above observations, we introduce a new family
of deep learning models, which we term Principal Compo-
nent Networks (PCNs). A PCN transforms the wide layers
in an original overparameterized network into smaller layers
that live in a lower dimensional space. To identify the basis
of this space for each layer, we use Principal Component
Analysis (PCA) to find the high-variance directions that
describe the layer’s input and output activations. The trans-
formations introduced by PCNs eliminate all weights from
the overparameterized model not relevant to these bases.

More specifically, PCNs introduce the following procedure
to reduce the computational cost of training while achieving
high end-model accuracy: (1) Randomly initialize a wide,
overparameterized neural network. (2) Train the network for
a few epochs (often 10-20% of the total number of epochs).
(3) Use PCA to find the low-dimensional spaces of network
activations and project the weights of the network onto these
subspaces to obtain an equivalent PCN. (4) Continue train-
ing the smaller PCN until convergence. We describe the
PCN transformation for a variety of neural networks, includ-
ing dense neural networks (DNNs), convolutional neural
networks (CNNSs), and residual neural networks (ResNets).

We empirically validate training PCNs on CIFAR-
10 (Krizhevsky et al., 2009) and ImageNet (Russakovsky
et al., 2015) and compare against training the correspond-
ing overparameterized model. For both ResNet (He et al.,

Principal Component Networks

2016) and VGG-style architectures (Simonyan & Zisserman,
2014), we show that PCNss train faster, use less energy, and
reach comparable end-model accuracy. Interestingly, we
show that PCNs derived from wide ResNet models have less
parameters but achieve higher accuracy than deep ResNet
architectures. Our wide ResNet-20 PCN outperforms a deep
ResNet-110 by 0.58% while training 49% faster per epoch.

2. Principal Component Networks

We present the empirical observation that motivates our
work and then introduce Principal Component Networks.

Motivating Observation We use PCA to study the hid-
den layer activations in neural networks. Given a set of
m-dimensional vectors, PCA computes a new basis for the
vector space according to the directions of highest variance
among the data. We define the effective dimensionality m.
of the m-dimensional space as the number of PCA direc-
tions with variance greater than a threshold 7. We review
PCA in more detail in Section A and describe PCA for m-
dimensional images in Section D (images with m channels
form the input to CNN layers).

We measure the effective dimensionality of hidden layer
activations during training. For this experiment we consider
a WideResNet-20 (Table 4) over CIFAR-10. After each
training epoch, we perform PCA on the hidden activations
between each layer (obtained from a sampled set of training
examples) and compute the effective dimensionality. We
report results for the hidden layer activations input to the last
ResNet block in Figure 1 (similar results hold for all layers).
We use a threshold 7 of 0.5 (5% of the peak variance after
training). We also report train and test accuracy.

t40

30

Accuracy
o
o

Subspace
< Identification

—— Train Accuracy
—— Test Accuracy
0.2 —— Effective Dimensionality

[20.

Effective Dimensionality
(out of 256)

6 2‘5 Sb 7‘5 160 12‘5 15‘30 17‘5
Epoch
Figure 1: Effective dimensionality (# of high-variance di-

rections) for the hidden layer activations input to the last
ResNet block in a WideResNet-20 trained on CIFAR-10.

Figure 1 contains two interesting observations. First, in
the early phase of training, up to epoch 15, the effective
dimensionality and test accuracy grow quickly. In contrast,
the latter phase of training (after epoch 15) is characterized
by a slow increase in both accuracy and effective dimension-
ality. The second key observation is that the hidden layer
activations exist in a subspace with dimension significantly
smaller than the full space: Even though the layer inputs

are 256-dimensional, they only exhibit variance above the
trheshold 7 in at most 42 directions—a space 6 x smaller.

We present additional experiments studying the effective
dimensionality of hidden layer activations in Section B. The
key takeaway is that hidden layer activations in overparame-
terized networks do not occupy their full available dimen-
sions. Rather, they exist in low-dimensional subspaces both
during training and once test accuracy peaks. Further, the
few high-variance directions which contribute most to gen-
eralization accuracy are identified early in training. We use
these observations as motivation to transform activations
into their high-variance PCA bases after only a few epochs.

Based on the above observations, we now introduce PCNs.
We describe their application to dense (fully connected)
layers and then discuss the end-to-end training procedure
for PCNs. We extend to CNNs and ResNets in the appendix.

PCNs for Dense Layers Consider a network where the
it" hidden layer computes hit! = o(hi Wi + b).
Here, o is the activation function, hi’n € R™ is the input
activation vector, and h’! € R" is the output activation
vector. W ., and b!, are the layer weights and bias vector
respectively. We use superscripts to denote layer index and
subscripts to denote dimension. Our goal is to transform W*
and b?, for each layer 7, by considering the high-variance
PCA basis of the input activation space.

To transform a layer based on the input activation space
(called the input-based transformation), we compute PCA
on a batch of input vectors h? (Equation 3). Through this
calculation, we obtain a mean vector ufn, a vector ein of
variances, and a matrix V% ., whose columns are the prin-
cipal components (Section A). After finding the PCA basis,
we can rewrite any input vector h’ using these coordinates.
If we do so, however, we must also rewrite the layer weight
matrix and bias vector. Transformations of h?, W%, and
b’ into the PCA basis are given in Equation 1. We denote
variables represented using PCA coordinates with tilde.

h,,, = (b, = 1) Vi (1)
Winxn - (VTf’LXm)TW:nX’rL BiL - b; + anwrinxn

By plugging in the definitions, we have that a(fliWi + Bi)
is equivalent to the original o (h?WW* + b?). Changing basis
does not change the output.

Instead of performing an identity transformation by using
the full PCA basis, we can approximate the original hidden
layer by using only the high-variance subspace. We define
this subspace to contain m, dimensions, which corresponds
to the effective dimensionality of the PCA space under some
threshold 7. Since the columns of V? are sorted according
to decreasing variance, the first m, columns contain the
PCA directions which describe the subspace. We denote

Principal Component Networks

the matrix V* truncated after m, columns by the matrix
Ut In Equation 2 we rewrite h*, W*, and b’ in the

mxXme*
high-variance subspace of the input activations.

~1

W:nexn = (anxme)TWrZ;qxn B; = b; + I’I‘inwfinxn

The hidden layer o(h'W' +b') is no longer identical to the
original o(h*W?* + b?) but it contains fewer weights; The
size of the weight matrix reduces from m x n to m, x n.
We empirically find that often m. < m. Despite approxi-
mating the original hidden layer, we have not changed the
dimension of the output h’*!. This means we do not need
to modify layer ¢ + 1.

This approximation introduces limited error to the layer
output. Errors arise due to dropping the dot product between

the last m —m, elements of fl:ﬂ and the last m —m, rows of
W;Xn. However, since ﬁin is represented using the PCA
basis, the dropped coordinates have mean zero and variance
less than the threshold 7. For small 7, the approximation

ignores dot products between vectors with Ly norm close to
zero and the final m — m, rows of W;Xn

Training PCNs Given the above layer transformation,
we present the training procedure for PCNs. We assume as
input an overparameterized network architecture N with lay-
ers L, a set of layers I C L to transform via the input-based
transformation, a number of epochs K to train before apply-
ing the transformation, a number of epochs 7' to train after
transformation, and a dictionary C' containing the thresh-
olds/number of dimensions to use when transforming each
layer in I. Picking the optimal value for K is a challenging
problem. Heuristically, we train N so long as the validation
accuracy is increasing at a high rate.

We now describe the steps of the training procedure:

Step1 Train N for K epochs. This step allows us to retain
the benefits of the many random initializations present in
overparameterized networks and thus achieve high accuracy.

Step 2 Use PCA to calculate e, V7, and u! for each
layer i € I; truncate V? into U’ using the variances e’
and Ci], the compression configuration for layer 7. Then,
transform each layer ¢ € [into its PCN version. This step
has negligible runtime compared to a single training epoch
(Section E).

Step 3 Train the generated PCN for T" epochs. We do
not update the U matrices. The trainable parameters are
only the layer weight matrices and bias vectors. Training
the PCN for the remaining epochs allows for more efficient
training compared to the overparameterized model.

Table 1: Summary of results.

Dataset Network # Params Acc. PCN PCN
Params Acc.
CIFAR-10 Conv4 2.43M 75.16 101k 77.25
CIFAR-10 ~ WideResNet-20 4.33M 93.60 1.32M 9352
ImageNet VGG-19 143M 7099 272M 70.27
ImageNet WideResNet-50 98.0M 7752 623M 77.64

3. Experiments

We empirically validate the performance of PCNs against
their overparameterized counterparts. We consider several
architectures including VGG-style CNNs (Simonyan & Zis-
serman, 2014) and ResNets (He et al., 2016) over CIFAR-
10 (Krizhevsky et al., 2009) and ImageNet (Russakovsky
et al., 2015). To measure performance we consider standard
test accuracy metrics. Finally, we evaluate the time and
energy improvements that PCNs introduce. All experiment
details and hyperparameters are discussed in Section F.

Key Takeaways We summarize end-to-end results in
Table 1. Although PCNs perform compression early in
training, they consistently reduce the number of weights
in overparameterized networks yet sacrifice little, if any,
accuracy. Our method extends from the comparatively sim-
ple dataset CIFAR-10 to the challenging ImageNet dataset.
For the former, we achieve comparable compression and
accuracy improvements to winning lottery tickets found
in (Frankle & Carbin, 2019), but require no iterative train-
prune procedure. For the latter, in one case we observe a
reduction in parameters by 5.28 x, while in the other case
we observe improvements to end-model accuracy.

PCNs and Wide Networks = We evaluate the hypothesis
that wide networks improve generalization and that PCNs
can help reduce the number of parameters early in training
without sacrificing end-model accuracy. On both CIFAR-
10 and ImageNet, we trained wide ResNet architectures—
networks identical to the original ResNets (He et al., 2016),
but with more filters at each layer. We compare these net-
works and their corresponding PCNs with conventional deep
ResNet models. Results are shown in Tables 2 and 3. For
CIFAR-10 we show three different PCNs with increasing
amount of compression and include three-run max/min for
WideResNet-20 and WideResNet-20-PCNO.

We find that wide networks improve accuracy more than
deep networks. We also find that PCNs can reduce the
number of parameters in wide models while retaining their
test accuracy. On CIFAR-10, both PCNO and PCN1 exceed
the accuracy of a deep ResNet-110 with less parameters.
On ImageNet, our PCN outperforms a ResNet-152 with
a comparable number of trainable weights. Additionally,
Tables 2 and 3 show that wide networks can be converted
into PCNs early in training. The transformation occurs at

Principal Component Networks

Table 2: Principal Component Networks trained on CIFAR-
10. PCN transformations are performed after epoch 15.

Network Name Total Pa- Trainable Test Acc. (Epoch 182)
rameters Parameters

ResNet-20 274,362 272,762 91.03

ResNet-110 1,739,322 1,731,002 92.94

WideResNet-20 4,338,378 4,331,978 93.60 (+0.07,-0.08)
WideResNet-20-PCNO 1,443,018 1,323,850 93.52 (+0.10, -0.07)
WideResNet-20-PCN1 1,223,114 1,094,154 93.23
WideResNet-20-PCN2 541,834 473,802 92.50

Table 3: Principal Component Networks trained on Ima-
geNet. PCN transformations are performed after epoch 16.

Network Name Total Pa- Trainable Center Crop Top-1
rameters Parameters (Top-5)
Val Acc. at Epoch 90
ResNet-50 25,610,152 25,557,032 75.60 (92.78)
ResNet-152! 60,344,232 60,192,808 77.00 (93.3)
WideResNet-50 98,110,312 98,004,072 77.52(93.92)
WideResNet-50-PCN 71,936,872 62,375,016 77.64 (93.85)

epoch 15 out of 182 on CIFAR-10 and epoch 16 out of 90 on
ImageNet. We provide additional experiments in Section G.

Performance: Training Time and Energy = We highlight
that by reducing parameter counts early in training, PCNs
have the potential to significantly lower the time and energy
required to learn high-accuracy models. Before discussing
results we note the following: Our current implementation
uses standard GPU kernels for existing neural network lay-
ers. For best performance a new GPU kernel is required
which fuses the PCN basis transformation at each layer
(multiplication with U) together with the layer itself.

Without an optimized GPU kernel, we already see perfor-
mance improvements for training. For example, end-to-end
training of WideResNet-20-PCN1 on CIFAR-10 uses 15%
less total energy compared to the full WideResNet-20 and
25% less energy than the ResNet-110 while training 12%
and 45% faster respectively. We expect fused multiplication
with U will significantly improve the energy consumption
and training time benefits of PCNs. The PCN transforma-
tion overhead is negligible and does not prevent the training
time reductions which arise from using the smaller network
for the bulk of the training epochs (Section E).

Discussion The observation that overparameterized net-
works contain subnetworks that can be trained in isolation
to comparable accuracy has lead to a lot of work to identify
such networks early in training. Initial approaches found
sparse subnetworks (Frankle & Carbin, 2019; Frankle et al.,
2020). While these approaches generally lead to the highest

! Accuracy reported from https://github.com/kaiminghe/deep-
residual-networks.

compression ratios, methods for finding sparse subnetworks
are expensive and the resulting sparse architectures are not
well suited for modern GPU hardware. Thus the practical
potential of such methods is currently limited. More recent
work identifies subnetworks using structured pruning tech-
niques early in training (e.g., EB Train (You et al., 2019)).
While these techniques efficiently produce dense architec-
tures (thus leading to end-to-end training improvements),
they generally focus on pruning using localized measure-
ments (e.g., individual channels) leading to larger accuracy
drops. In contrast, PCNs use holistic layer-wise measure-
ments for pruning decisions. We find that for ResNet-50
on ImageNet, PCNs outperform EB Train: PCNs (trans-
formed after 20% of training) with 30% trainable parameter
reduction yield an accuracy drop of only -0.45 versus the
drop of -1.73 for EB. For 50% reduction, we get -1.61 for
PCNs and -2.24 for EB. These observations match those
reported by Wang et al. (2021) where a holistic low-rank
factorization of the network weights is performed early in
training. Moreover, together PCNs and Wang et al. (2021)
show that both hidden layer activations (PCNs) and weights
(Wang et al., 2021) exhibit low-rank structures. Combining
all existing methods and observations for compression early
in training may be of interest for future work and lead to
improved methods for reducing end-to-end training costs.

4. Related Work

A large body of work has focused on reducing the number
of parameters and associated computational cost of overpa-
rameterized neural networks. To benefit model inference,
pruning (LeCun et al., 1990; Hassibi & Stork, 1993; Han
et al., 2015; Li et al., 2017; Hu et al., 2016; Srinivas &
Babu, 2015a; Yang et al., 2017; He et al., 2017; Luo et al.,
2017), distillation (Ba & Caruana, 2014; Hinton et al., 2015),
quantization (Gong et al., 2014), and weight decomposition
(Jaderberg et al., 2014; Lebedev et al., 2014; Kim et al.,
2015; Denton et al., 2014; Zhang et al., 2015; Yaguchi et al.,
2019) are performed after training. Specifically engineered
networks (Iandola et al., 2016; Howard et al., 2017), bi-
nary weights (Zhuang et al., 2019), and low-rank (Denil
et al., 2013) architectures help lessen model size from the
start, while other works aim to sparsify networks during
the learning process (Srinivas et al., 2017; Louizos et al.,
2017; Srinivas & Babu, 2016; Molchanov et al., 2017; Nek-
Iyudov et al., 2017; Srinivas & Babu, 2015b; Alvarez &
Salzmann, 2017; Xu et al., 2018). Additional works try to
identify subnetworks contained in large models (Frankle &
Carbin, 2019; Ramanujan et al., 2019). Garg et al. (2020)
find that CNN hidden layer activations exist in low dimen-
sional spaces after training while Chen et al. (2021) observe
the same for NLP models. We find this observation holds
during training and use this fact to reduce training costs.

Principal Component Networks

5. Conclusions

In this paper, we show that early in the training process, over-
parameterized networks can be transformed into smaller ver-
sions which train to similar accuracy as the full model. We
focus on hidden layer activations rather than model weights,
and observe that they exist primarily in subspaces an order
of magnitude smaller than the actual network width. This
motivates us to introduce Principal Component Networks,
architectures which represent layer weights using the high-
variance subspaces of their input and output activations. We
experimentally validate the ability of PCNs to reduce param-
eter counts early in training and to reach similar end-model
accuracy as overparameterized models.

References

Alvarez, J. M. and Salzmann, M. Compression-aware train-
ing of deep networks. In Advances in Neural Information
Processing Systems, pp. 856-867, 2017.

Ba, J. and Caruana, R. Do deep nets really need to be deep?
In Advances in neural information processing systems,
pp- 2654-2662, 2014.

Chen, P., Yu, H.-F., Dhillon, I., and Hsieh, C.-J. Drone:
Data-aware low-rank compression for large nlp models.
Advances in neural information processing systems, 34:
29321-29334, 2021.

Denil, M., Shakibi, B., Dinh, L., Ranzato, M. A., and de Fre-
itas, N. Predicting parameters in deep learning. In Ad-
vances in Neural Information Processing Systems 26, pp.
2148-2156, 2013.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fer-
gus, R. Exploiting linear structure within convolutional
networks for efficient evaluation. In Advances in neural
information processing systems, pp. 1269—1277, 2014.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations, 2019.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Linear
mode connectivity and the lottery ticket hypothesis. In
International Conference on Machine Learning, pp. 3259—

3269. PMLR, 2020.

Garg, 1., Panda, P, and Roy, K. A low effort approach
to structured cnn design using pca. In IEEE Access,
volume 8, pp. 1347-1360, 2020.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249-256, 2010.

Gong, Y., Liu, L., Yang, M., and Bourdev, L. Compressing
deep convolutional networks using vector quantization.
arXiv preprint arXiv:1412.6115, 2014.

Gunasekar, S., Woodworth, B. E., Bhojanapalli, S.,
Neyshabur, B., and Srebro, N. Implicit regularization
in matrix factorization. In Advances in Neural Informa-
tion Processing Systems, pp. 6151-6159, 2017.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural networks. In
Advances in Neural Information Processing Systems 28,
pp.- 1135-1143, 2015.

Hassibi, B. and Stork, D. G. Second order derivatives for
network pruning: Optimal brain surgeon. In Advances in
Neural Information Processing Systems 5, pp. 164-171,
1993.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026—1034,

2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770-778, 2016.

He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., and Li, M.
Bag of tricks for image classification with convolutional
neural networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 558—
567, 2019.

He, Y., Zhang, X., and Sun, J. Channel pruning for acceler-
ating very deep neural networks. In Proceedings of the
IEEE International Conference on Computer Vision, pp.
1389-1397, 2017.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Hu, H., Peng, R., Tai, Y.-W., and Tang, C.-K. Net-
work trimming: A data-driven neuron pruning approach
towards efficient deep architectures. arXiv preprint
arXiv:1607.03250, 2016.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and; 0.5 mb model
size. arXiv preprint arXiv:1602.07360, 2016.

Principal Component Networks

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Jaderberg, M., Vedaldi, A., and Zisserman, A. Speeding up
convolutional neural networks with low rank expansions.
arXiv preprint arXiv:1405.3866, 2014.

Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., and Shin,
D. Compression of deep convolutional neural networks
for fast and low power mobile applications. arXiv preprint
arXiv:1511.06530, 2015.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. University of Toronto, 2009.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, 1., and
Lempitsky, V. Speeding-up convolutional neural net-

works using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Advances in Neural Information Processing
Systems 2, pp. 598-605, 1990.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

Li, H., Kadav, A., Durdanovic, 1., Samet, H., and Graf, H. P.
Pruning filters for efficient convnets. In International
Conference on Learning Representations, 2017.

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein,
D., and Gonzalez, J. E. Train large, then compress: Re-
thinking model size for efficient training and inference of
transformers. arXiv preprint arXiv:2002.11794, 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Louizos, C., Welling, M., and Kingma, D. P. Learning
sparse neural networks through [_0 regularization. arXiv
preprint arXiv:1712.01312, 2017.

Luo, J.-H., Wu, J., and Lin, W. Thinet: A filter level pruning
method for deep neural network compression. In Proceed-

ings of the IEEE international conference on computer
vision, pp. 5058-5066, 2017.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational
dropout sparsifies deep neural networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 2498-2507. JMLR. org, 2017.

Neklyudov, K., Molchanov, D., Ashukha, A., and Vetrov,
D. P. Structured bayesian pruning via log-normal mul-
tiplicative noise. In Advances in Neural Information
Processing Systems, pp. 6775-6784, 2017.

Park, D. S., Sohl-Dickstein, J., Le, Q. V., and Smith, S. L.
The effect of network width on stochastic gradient descent
and generalization: an empirical study. arXiv preprint
arXiv:1905.03776, 2019.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A.,
and Rastegari, M. What’s hidden in a randomly weighted
neural network? arXiv preprint arXiv:1911.13299, 2019.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-

lenge. International journal of computer vision, 115(3):
211-252, 2015.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv: 1409.1556, 2014.

Srinivas, S. and Babu, R. V. Data-free parameter pruning for
deep neural networks. arXiv preprint arXiv:1507.06149,
2015a.

Srinivas, S. and Babu, R. V. Learning neural network
architectures using backpropagation. arXiv preprint
arXiv:1511.05497, 2015b.

Srinivas, S. and Babu, R. V. Generalized dropout. arXiv
preprint arXiv:1611.06791, 2016.

Srinivas, S., Subramanya, A., and Venkatesh Babu, R. Train-
ing sparse neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 138-145, 2017.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1.,
and Salakhutdinov, R. Dropout: a simple way to prevent

neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Wang, H., Agarwal, S., and Papailiopoulos, D. Pufferfish:
Communication-efficient models at no extra cost. Pro-
ceedings of Machine Learning and Systems, 3:365-386,
2021.

Xu, Y., Li, Y., Zhang, S., Wen, W., Wang, B., Qi, Y.,
Chen, Y., Lin, W,, and Xiong, H. Trained rank prun-
ing for efficient deep neural networks. arXiv preprint
arXiv:1812.02402, 2018.

Yaguchi, A., Suzuki, T., Nitta, S., Sakata, Y., and Tanizawa,
A. Scalable deep neural networks via low-rank matrix
factorization. arXiv preprint arXiv:1910.13141, 2019.

Principal Component Networks

Yang, T.-J., Chen, Y.-H., and Sze, V. Designing energy-
efficient convolutional neural networks using energy-
aware pruning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. S687—
5695, 2017.

You, H., Li, C., Xu, P,, Fu, Y., Wang, Y., Chen, X., Baraniuk,
R. G., Wang, Z., and Lin, Y. Drawing early-bird tickets:
Towards more efficient training of deep networks. arXiv
preprint arXiv:1909.11957, 2019.

Zhang, X., Zou, J., Ming, X., He, K., and Sun, J. Effi-
cient and accurate approximations of nonlinear convolu-
tional networks. In Proceedings of the IEEE Conference
on Computer Vision and pattern Recognition, pp. 1984—
1992, 2015.

Zhuang, B., Shen, C., Tan, M., Liu, L., and Reid, I. Struc-
tured binary neural networks for accurate image classi-
fication and semantic segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 413-422, 2019.

Principal Component Networks

600 p N B —
—— Hidden Activations e 0.951 subspace === 1400
> : e ificati e
---- Reference line y = x L Identification
£ 500 y - 0.90 12002
c Peak Test Accuracy =
(=} c
‘G 400 0.85 10008 &
= e > 2 o
@ - g ot
E 300 - 50.80 800 £
a . S a2
2200 o RLEE [z 600 23
g) & £
g - 0.70 // -~ Train Accuracy [400 £
o 100 P 7 ——- Test Accuracy
o 0.65 ’,’ %ﬁitting —— Effective Dimensionality 200
0 100 200 300 400 500 600 3 2 P 3 10 Py 2
Actual Dimensionality Epoch
(a) Effective dimensionality vs. width (b) Effective dimensionality vs. training

Figure 3: Effective dimensionality (# of high-variance activations) for neural networks.

Appendix
A. Principal Component Analysis

Given a set of m-dimensional vectors, PCA computes a new basis for
the vector space with the following property: The first basis vector
(termed Principal Component) is the direction of highest variance
among the data. The second basis vector has highest variance among
directions perpendicular to the first, and so on. An example is shown
in Figure 2. Two-dimensional vectors in the original [z, x2] basis can
also be represented in the [Z1, Z2] PCA basis. We define the effective
dimensionality m. of the m-dimensional space as the number of PCA
directions with variance greater than a threshold 7. In Figure 2, the = Figure 2: PCA illustration with principal compo-
spread along Z5 does not help differentiate between the two sets of ~ nents shown in brown.

points, as the original two-dimensional vectors exist primarily in a

one-dimensional space given by the coordinate ;.

We compute the principal components and associated variances using the spectral decomposition of the covariance matrix.We
find this method to be significantly faster than using SVD in TensorFlow. Given N data points in R with empirical mean
U, € R™ we have:

: 1 T
emavmxm :elgh (JV]. (XNXm_IJ’m) (XNXm_IJ/m)> . (3)
Function eigh returns two quantities: the vector of eigenvalues (variances) e,,, and a matrix V,,, «,,, whose columns contain
the eigenvectors (principal components). We assume that both outputs are sorted in descending eigenvalue order. To
transform a vector x,,, into the PCA basis, one computes: X,,, = (X — Ly,) Vinxm- Subtracting off the mean vector u,,
centers the PCA coordinate system, ensuring each principal component has mean zero when average over the N data points.

B. Additional Motivating Experiments

As described in Section 2, we use PCA to study the effective dimensionality (effective width) of hidden layer activations in
neural networks. We present two additional experiments that highlight our findings.

Experiment 1 We first analyze the activations of a DNN after learning is complete. We train a DNN with an input layer, a
hidden layer with a variable number of nodes, and an output layer with 10 neurons on MNIST (LeCun et al., 1998). Both
dense layers use sigmoid activation and we train until convergence of the validation accuracy. We computed PCA on the
network activations affer the hidden layer and before the output layer. The dimension of these activations is equal to the
number of nodes in the hidden layer and is thus varied by changing the number of hidden neurons. In Figure 3a we plot the
number of effective dimensions in the activation space versus the number of full dimensions using a PCA variance threshold
of 0.1. We see that that the hidden layer activations exist in a subspace with smaller dimension than the full space: with
450 nodes in the hidden layer the network achieves peak test accuracy of 98%, but rather than occupy 450 dimensions, the
hidden layer outputs occupy a space with just over 40 dimensions—a space more than 10x smaller.

Principal Component Networks

Experiment 2 We also study the evolution of hidden layer subspaces during training. In this experiment we do not vary
the network architecture, and thus, can train a more realistic network. We consider a CNN over CIFAR-10. We use the
Conv4 network (Frankle & Carbin, 2019) which consists of four convolution layers followed by three dense layers. After
each training epoch, we perform PCA on the hidden activations which form the input to the first fully connected layer. This
activation space contains 8,192 dimensions. We calculate PCA for this layer because it contains more than 86% of the
total weights, and thus, affects the end-model accuracy. We do not stop training at peak validation accuracy to observe the
effective dimensionality of the activation space during overfitting.

The results are shown in Figure 3b. We again use a PCA variance threshold of 0.1. There are three regions of interest in this
plot: In the first section, up to epoch two, notice that the effective dimensionality grows slowly, but the test accuracy grows to
70%—93% of its peak at 75%. The data variance in this ~ 50-dimensional subspace is critical for generalization. Contrast
this with region three, after the test accuracy peaks at epoch five. Now the network is heavily overfitting, increasing the train
accuracy to no avail. Also observe that the network is rapidly creating directions with variance above the 0.1 threshold. All
such directions are overfitting to meaningless noise. In between, during epochs 2-5, the effective dimensionality increases
from ~ 50 to =~ 200. We conjecture that these directions are mainly noise, as the test accuracy grows slowly while the train
accuracy rapidly surpasses it. The test accuracy can still increase due to fine-tuning weights related to the high-variance
directions discovered in the first region.

Takeaway Experiments 1 and 2 show that hidden layer activations do not occupy their full available dimensions. Rather,
they exist in low-dimensional subspaces both during training and once test accuracy peaks. Further, Experiment 2 shows
that the few high-variance directions which contribute most to generalization accuracy are identified early in training. We
use these observations as motivation to transform activations into their high-variance PCA bases after only a few epochs.

C. Transformation Based on Output Activations

In Section 2 we described how to transform a dense neural network layer based on the PCA basis of the input activations.
We can also reduce the parameters in layer ¢ using the PCA basis of the subsequent layer ¢ + 1 (which we refer to as the
output-based transformation). We use the output-based transformation only as an optimization if the next layer’s input is an
order of magnitude compressed after the input-based transform. Note that the output transformation at layer ¢ requires that
layer 7 + 1 perform the input transformation.

Assume that layer 7 is transformed per the input-based transformation (Equation 2). Layer ¢ then computes an approximate

~it1 ~ 41 ~ ~ ~ ~ ~ . . .
h outputvector: h, = a(hinﬂ W:ne wn + b;) We can further compress W' and b’ using information about the output
activation space.

. . . . ~it1 . . .
Since neural networks compose layers, the next layer ¢ 4+ 1 will consider h ~ as its input. If we consider the input-based
fitl

. ; it1 ; ; Lt .
transformation for layer ¢ + 1, we have that h;e = (h, - u}jl)Uf;lne. We next rewrite h' ' as a function of the

. . S . . =il
approximate weight matrix W' of the previous layer. We have for the j* component of h

B =30 (0 -) U
_ Zn: <(7 (i 'K [k, 1] + B’ [z]) - wl[z]) UL, 4.)

The elements of 1~11:+1 are linear combinations of the centered elements in fli_‘—l weighted by the columns of U**!. For all
elements j, the influence of the [*" output of layer 7, denoted ! 7], on ' [1] is determined by U**[l, 5]. If most entries
in the the ! row of U**! have large values, output ﬁHl [{] influences many entries in fli—H. On the other hand, if every
entry in the [** row of U*! is small, the I*" output of layer ¢ does not influence any entry in fliﬂ. We use the L; norm of

. . . . ~ 441 . . ~i+1
row [in U*? to determine how important output h " [{] is for calculating h .

We use the above influence measurement to define the output-based transformation of layer ¢. Using the L; norm criterion
. Ll .ol . . . i
described above, we find the subset S C [1...n] of the indices in h with the highest row-wise L; norm in U**!. The

Principal Component Networks

size of S is configurable and can be fixed by the user or determined using an L;-norm threshold. Given S, Equation 4

becomes:
RS (0 (Z B[k [k, 1) + B u]) - W“W) UL, gl)
k=1

les

The columns of ', entries of b', entries of i+, and rows of U+ with indices in S can be removed from the network.
The rows in Wi+! with indices in S¢ must also be removed so dimensions match when multiplying by (U*+!)7 in
Equation 2.

The output-based transformation and input-based transformation can be applied to layer ¢ in either order.

C.1. Transformation Order
We discuss technical details regarding the order of the input- and output-based transformations.

1. We calculate the PCA basis (U) for each layer before performing any transformations. That is, we use the original
network’s hidden activations rather than first transforming layer ¢ and then using its approximate outputs to compute PCA at
layer 7 + 1. This choice allows us to calculate PCA at each layer using a forward pass through the original network.

2. Given U, the order of the input and output-based transformation at layer ¢ does not matter. Pruning columns of w
and entries of b? then transforming to W' and b’ is the same as first transforming to W' and b’ and then pruning these

transformed variables.

3. The order of the output-based transformation at layer ¢ and the input-based transformation at layer ¢ + 1 does matter.
Suppose we already performed the input-based transformation at layer ¢, and we now plan to perform the output-based
transformation at layer 7. As described above, to do so we 1) find the subset S C [1...n| with highest row-wise L; norm in

U+ and 2) prune columns of W', entries of b’, entries of g1, and rows of U+ with indices in SC. The question is
; , Sl it . . .
then: do we use the truncated p?*' and U*t! to calculate W' andb inthe input-based transformation at layer ¢ + 1?
~ i+1 ~i+1 . . .
Or do we first calculate W' and b~ and then truncate w1 and U1? In the first case, we must also remove rows in
Wt with indices in S¢ so that dimensions match when performing the transformation.
Performing the input-based transformation at layer i + 1 before truncating p**! and U**! according to the output-based

. . ~ i+l ~i+1
transformation at layer ¢ means that W' and b’ are written in the unmodified high-variance PCA subspace. On the
other hand, outputs of layer 7+ which are no longer part of the network contribute to these directions. Currently, we truncate
first, and then perform the input-based transformation at layer ¢ + 1. In the future, we plan to study the performance of each
ordering.

Summary Given a compression configuration C/[i] for layer i, we perform the transformations as follows:
Wbl p T Ut Wi« outputTransformation(W* b, u'™ U Wit Ci])

V~VZ, b «— InputTransformation(W?' b, u’,U?).

D. PCNs for Convolutional Layers and ResNets

We extend the PCN transformations to CNNs and ResNets. We provide a high-level description and then present the details.

Convolutional Layers To transform convolutional layers, the intuition is the same as for dense layers: Rather than
representing hidden layer activations using their default filters, we would like to find a new basis of “principal filters” which
exhibit sorted high to low variance.

Convolutional layers operate over matrices and tensors. We denote a convolutional layer H fjxl w xn = o(H} wsem *
Wi ko xmxn T+ i), where h and w describe the size of the input data, m is the number of input filters, k; x ks is the
kernel size, and n is the number of output filters. PCA does not immediately extend to multi-dimensional inputs such as
images. As a surrogate, for a batch of N H}, »,, x.,n» matrices, we consider all 2 x w depth vectors of dimension m in each
image to be examples of points in an m dimensional space. View each axis in this space to be a filter and the point cloud a

distribution of how likely each filter is to exhibit a certain pixel value, regardless of [h, w] location. We can then run standard

Principal Component Networks

PCA on the flattened set of images Hy:xm With N’ = N x h x w. The resulting V,,,», tells us how to combine every
depth vector from an original image into a depth vector in the “principal image”.

Once we calculate PCA for the input and output activation spaces, i.e., we calculate V' and V**+1, we can perform the input-
and output-based transformation to convolutional layer ¢. Doing so requires extending Equation 2 and Equation 5 to handle
tensors instead of vectors and matrices.

ResNets While ResNets consist of convolution layers, they require special care due to the inclusion of residual connections.
Since the input transformation (for both dense and convolution layers) modifies only layer ¢ and not subsequent layers, it can
be applied immediately to ResNet architectures. The output transformation, however, needs to be modified for some layers.
The output of the final layer in a residual block is added to the output of all other residual blocks in a residual stage. Thus,
we introduce the added constraint that all layers whose outputs are added together need to perform the output transformation
in the same way.

Details More specifically, consider a convolutional layer:

i+1 _ 7 % i
Hh’xw’xn - U(Hhxwxm * Wk1 XkoXmxn + bn)

where h and w describe the size of the input data, m is the number of input filters, k; x ks is the kernel size, and n is the
number of output filters.

PCA for Images Given a batch of N input images to layer ¢, compute PCA as follows:

1. Hyi o = Flatten(Hy o hxwsm)

2. /*"ﬁna ein? Vrszm = PCA(H}V’Xm)
Input-Based Transformation Transform an input image to the PCA version as so:

L HY, o yxm = Flatten(H

h><’w><m)

2. ﬁzhxw)xme = (H(ihxw)xm — ,uin)Uanme (subtraction applies to all rows)

~ g

~ 1
3. Hh><w><mc = ReShape(H(th)Xme)

You can transform a batch of images all at once by flattening HY .., « < m- Note that if the original layer performed zero
padding, then the padding should be included in the transformation. Either H} should be zero padded and then

hXwXxXm

transformed, in which case no additional padding is required when performing convolution, or channel j of H ﬁlxwxme

should be padded with (—p?, U ..,)[j] during convolution.

Transform the weights W* by:
LW

xmXx (k1 xksa) = Reshape(W,@l X ko ><m><n)

~ B)) . T .
2. Wk x (ke xka) = BatchMatrixMultiply((U},xm,) 7W:L><7n><(k]><k2))

oy < i
3. WklkuXmeXn = ReShape(anmcx(klxkg))
Transform the bias b’ by:

1. We

_ 7
nxmx (ki1 xka) — ReShape(Wklxkg ><m><n)

2. Ty (y shn) = BatchMatrixMultiply(pimWéxmx(klxkz))

3. B:L =bi + ReduceSuMagzis=1(Tnx (k xks))

Principal Component Networks

The resulting convolutional layer, transformed based on the input hidden activations, computes an approximate output
image:
~ i1 ~ i ~ i ~ i
h Xw'xXn — 0('I:Ih><u)><7nrj * Wklxkg XMe XN + bn)
Instead of containing m filters, the input images contain only m, filters of high variance. Only the weights which act on

these filters remain in 7"

Output-Based Transformation Just as in Section C for dense layers, we use the L; norm of row [in U to determine
the importance of the /! output filter of layer i. Given the subset S C [1 ...n] of indices with highest row-wise L1 norm in
U*t1, we can prune filters from layer i with indices in S. As before, we must also update p'*!, U**1, and Wit!. We
include the dimensions below for clarity on what is pruned in the higher dimensional tensors (assuming we already did the
input transformation at layer ¢):

Tt i i+1 pri+l i+1
W ey o me x 181 Plsp B151 s Uls ne s Wit xis x| 510

When performing the output-based transformation to a convolutional layer ¢ which is followed by a dense layer in the
original network, additional steps need to be taken. In this case, the output of layer i, H fj‘iw, «n 18 flattened to hz?{'lxw/ “n)"
Thus, Ut has (h' x w’ x n) rows instead of n rows. To determine the importance of the I*" output filter, we add together
the L; norm of each of the corresponding (b’ x w’) rows in U**!. Pruning a single filter then requires removing all

corresponding (k' x w') entries in p**1, rows in U1, and rows in W**! (which is just a matrix again).

Transformations for ResNets The input-based convolutional transformation can be directly applied to all layers in a
given ResNet. Here, we discuss the additional constraint we impose to perform the output-based transformation.

Consider the partial ResNet diagram shown in Figure 4. We show a stage with three
blocks followed by the first block of the next stage. Convolutional layers are depicted ——— | convdd (£, (53) /s)
using the tuple (filters, kernel size/strides). Typically, S = 2 to downsample the convad (¢, (1.1) /5) | | #*1
image at the beginning of each stage. We omit batch normalization (Ioffe & Szegedy, #*0 J convad (£, (33) /1)
-1 ++

2

|
N2
.
v

2015) and activation layers for brevity. All layers [0, 9] can perform the input-based
transformation without affecting any other layers. Note that Layers O and 1 share
the same input activations and thus U = U'. The same is true for Layers 7 and 8. o[o (Fl(53) /1)
3
We discuss the output-based transformation for layers in the first stage, i.e. layers cowdd (£, (13) /1)
[0, 6]. First note that Layers 1, 3, and 5 can perform the output-based transformation | H*
as if they were in a standard convolutional neural network. Since the output filters
of Layers 0, 2, 4, and 6 are added together, we enforce the constraint that if these o——| convad (£, (33) /1
layers are to prune filters, they must prune the same filters. ! #*S
-
To decide which filters to prune, we no longer have only one U*+!. Instead, U3, U?, il A CLVE>

e] Ho

and U7 = U? all provide information regarding the importance of specific filters. '
For the I*" filter of Layers 0, 2, 4, and 6, we use the average L; norm of the I*" rows iﬁ condd (£, (53) /5
in U3, U, and U7 as the influence measurement. Given this criteria, we can perform convad {;; .9/s) ‘ l s
the output-based transformation for the even layers in the first stage. Just as p'*!, #7 J convad (£ (33) /1)
Uttt and Wt are updated in the standard output-based transformation, here we p————1 3
must update p, U, and W for layers 3, 5, 7, and 8. I}

E. Transformation Overhead Figure 4: ResNet illustration.

We discuss the overhead required to convert a network into its corresponding PCN

version. In general, the transformation time is negligible compared to the overall

training procedure. The primary bottleneck is computing hidden layer activations, which require partial forward passes
through the original network. That said, however, only a small fraction of the training data is needed for sufficient PCA
statistics. Thus, PCN conversion typically requires much less compute than one training epoch. On CIFAR-10, we transform
WideResNet-20 architectures in ~ 3s while a single training epoch takes ~ 17s. On ImageNet, PCN conversion can be
performed an order of magnitude faster than training one epoch. A single GPU transforms a WideResNet-50 in half an hour
yet it takes the same time for eight GPUs to execute one epoch.

Principal Component Networks

Table 4: Network architectures for CIFAR-10.

Name Conv4 (Fran- ResNet-20 (He ResNet-110 (He WideResNet-20
kle & Carbin, et al., 2016) et al., 2016)
2019)
Conv Layers 64,64, M 16 16 64
128, 128, M 3x[16, 16] 18x[16, 16] 3x[64, 64]
3x[32, 32] 18x[32, 32] 3x[128, 128]
3x[64, 64] 18x[64, 64] 3x[256, 256]
FC Layers 256, 256, 10 A, 10 A, 10 A, 10

F. Experiment Setup

All experiments were executed over TensorFlow. We implement no special optimizations and use only the high level
TensorFlow Keras API. All models are trained from scratch. Network architectures and training details are included below.
The CIFAR-10 dataset consists of 50k train and 10k test 32x32 images split into 10 classes while ImageNet contains
1.28M train and 50k validation images across 1k classes. We use standard hyperparameters for each model and dataset
combination. For PCN hyperparameters (e.g., transformation epoch, compression configs) we did not perform parameters
scans but instead used heuristics. We discuss in Section 2 the heuristic for picking the transformation epoch. For picking the
layers to transform, we use the input-based transformation on the widest layers of each network; we use the output-based
transformation only as an optimization if the next layer’s input is an order of magnitude compressed after the input-based
transformation. For the transformation size of each layer, we outline the used configurations below. For wide ResNets, we
chose parameters so that the input width of compressed layers matched the original width of the corresponding layer in a
non-wide ResNet.

Network Architectures and Training Details = We present details on the architectures and training procedures used in the
main body of the paper.

CIFAR-10 Network Architectures Parent networks for CIFAR-10, before transforming to PCN versions, are given in
Table 4. Convolutional layers use 3 x 3 kernels unless otherwise stated. Numbers represent filters/neurons, M represents
2 x 2 max pooling, and A represents filter-wise average pooling. Brackets denote residual blocks, with the multiplier out
front denoting the number of blocks in the residual stage. All layers use ReLU activation, except the last dense layers
where we use Softmax, and all convolutional layers use zero-based “same” padding. For ResNet architectures, we use the
original versions presented in (He et al., 2016). That is, we adopt batch normalization after convolution. Convolution layers
in ResNets do not use a bias. While not explicitly necessary in the first stage, for symmetry we always use a projection
shortcut (1 x 1 convolution) at the first residual block in each stage. Downsampling is performed by stride two convolutions
in the first block of stages two and three.

ImageNet Network Architectures Parent networks for ImageNet are shown in Table 5. Notation is the same as for
CIFAR-10 above. For ResNet architectures, initial convolution layers use 7 x 7 kernels with stride two and initial max
pooling layers uses 3 x 3 pooling with stride two. We use bottleneck blocks (He et al., 2016) where the first and third
convolution use 1 X 1 kernels and only the middle layer uses 3 x 3 kernels. As for ResNets on CIFAR-10, we use projection
shortcuts at the beginning of every stage. We follow the widely adopted implementation which performs downsampling
using stride two convolutions at the 3 X 3 convolutional layers in bottleneck blocks rather than the first 1 x 1 layer.

Training Conv4 on CIFAR-10 For all experiments, we train the parent Conv4 model and the Conv4-PCNss in the same
manner. Specifically we use a batch size of 60, Adam (Kingma & Ba, 2014) optimizer with default TensorFlow learning
rate 0.001, cross-entropy loss, and when applicable 5000 random training samples for computing PCA statistics. Since
the network and dataset are small, we can compute PCA for all required layers using a single forward pass with batch
size 5000. We train on a random 45k/5k train/val split (different each run) and train for a maximum of 20 epochs. When
applicable, early stopping is defined as the epoch of maximum validation set accuracy. We evaluate on the test set and run
each experiment five times. When shown, error bars correspond to five run max/min values, otherwise values correspond to
five run mean. We do not use any dataset preprocessing. Experiments were run on a machine with one NVIDIA Tesla V100
GPU.

Principal Component Networks

Table 5: Network architectures for ImageNet.

Name VGG-19 (Si- ResNet-50 (He ResNet-152 (He WideResNet-50
monyan & etal., 2016) etal., 2016)
Zisserman,
2014)

Conv 2x64, M 64, M 64, M 128, M

Layers 2x128, M 3x[64, 64, 256] 3x[64, 64, 256] 3x[128, 128, 512]
4x256, M 4x[128, 128, 512] 8x[128, 128, 512] 4x[256, 256, 1024]
4x512, M 6x[256, 256, 1024] 36x[256, 256, 1024] 6x[512, 512, 2048]
4x512, M 3x[512, 512, 2048] 3x[512,512,2048] 3x[1024, 1024, 4096]

FC Layers 2x4096, 1000 A, 1000 A, 1000 A, 1000

The Conv4-PCN reported in the main text summary of results (with 101,810 trainable parameters) was created us-
ing the following compression configuration: convl: (None, 40), conv2: (20, 50), conv3: (40, 100),
convé4: (80, 60), fcl: (50, 90), fc2:(40, 180), output: (30, None). Tuples for each layer rep-
resent the effective dimensionality for the input-based transformation and the number of dimensions to keep for the
output-based transformation respectively. For this PCN, we perform compression after epoch two.

Training ResNet on CIFAR-10 We use data augmentation as reported in (He et al., 2016). Namely, “4 pixels are padded
on each side, and a 32 x 32 crop is randomly sampled from the padded image or its horizontal flip. For testing, we only
evaluate the single view of the original 32 x 32 image”. Additionally, we standardize each channel by subtracting off
the mean and dividing by the standard deviation computed over the training data. As for the Conv4 network, we use a
45k/5k train/val split and 5000 samples for compression. Again, a single forward pass suffices for computing PCA statistics.
We do not use data augmentation for compression samples. We follow the hyperparameters reported in (He et al., 2016):
We train for 182 total epochs using a batch size of 128 and an initial learning rate of 0.1 which we drop by a factor of
10 after epochs 91 and 136. For ResNet-110 we use a 0.01 learning rate warm up for the first epoch. We use SGD with
momentum 0.9, cross-entropy loss, and L, regularization coefficient of 5 * 10~° for CNN and dense weights. Note that
because TensorFlow incorporates Lo regularization into the total loss, after taking the derivative the coefficient for weight
decay becomes 1 * 10~%. This matches they weight decay used in different implementations. We do not use weight decay
for batch normalization parameters. For CNN layers, we adopt he-normal/kaiming-normal initialization (He et al.,
2015). We run each experiment three times and report the average test accuracy after epoch 182. Experiments were again
run on a machine with one NVIDIA Tesla V100 GPU.

To create the WideResNet-20-PCNO, we use the input-based transformation for all convolutional layers in stages two
and three of WideResNet-20 (except the first convolution and projection shortcut in stage two). We use a fixed effective
dimensionality of either 32 or 64, corresponding to the input dimension of the respective layer in a ResNet-20. For
WideResNet-20-PCN1, we use the input-based transformation for all CNN layers in all residual blocks. As for PCNO,
we use an effective dimensionality of 16, 32, or 64, the equivalent input dimension of each layer in a ResNet-20. For
WideResNet-20-PCN2, we further compress PCN1 by using the input-based transformation for the dense layer (effective
dimensionality 64) and the output-based transformation for all CNN layers in stage three (retaining 64 out of 256 filters).

Training VGG on ImageNet We adopt the basic training procedure from the original paper (Simonyan & Zisserman,
2014). For train set data augmentation, we randomly sample a 224 x 224 crop from images isotropically rescaled to have
smallest side length equal to 256. We include random horizontal flips, but omit random RGB color shift. We subtract the
mean RGB values, computed on the train set, from each channel in an image. For testing, we use the center 224 x 224 crop
from validation images rescaled to have smallest side 256. We train for 70 total epochs using a batch size of 256 and an initial
learning rate of 0.01. We decrease the learning rate by a factor of 10 after epochs 50 and 60. We use 5 * 10~* weight decay
decoupled from training loss (Loshchilov & Hutter, 2017), but multiply by the learning rate to match other implementations.
Optimization is done using SGD with momentum 0.9 and cross-entropy loss. We use dropout (Srivastava et al., 2014) with
rate 50% for the first two dense layers. We use default TensorFlow weight initializations (glorot-uniform (Glorot &
Bengio, 2010) for CNN layers) and train on AWS p3.16xlarge instances with eight NVIDIA Tesla V100 GPUs. We train
networks only once for cost considerations.

Principal Component Networks

We create the PCN presented in the main text summary of results by using the input-based transformation for the first two
dense layers in the VGG-19 network. We use an effective dimensionality of 350 and 400 respectively. For PCA statistics,
we use the hidden layer activations computed from the center crops of 50,176 (a multiple of the batch size) training images.
We randomly sample a different set of images for each layer to increase the amount of training data used to create the PCN.
We include dropout with rate 50% on the two compressed layers. For the network presented in the main text, we perform the
transformation after epoch 15 out of 70.

Training ResNet on ImageNet For train set data augmentation, we use the widely adopted procedure described as the
baseline in (He et al., 2019). Namely, we first randomly crop a region with aspect ratio sampled in [3/4, 4/3] and area
randomly sampled in [8%, 100%]. This procedure is sometimes referred to as RandomResizedCrop. We then resize the
crop to 224 x 224 and perform a random horizontal flip. The brightness, saturation, and hue are randomly adjusted with
coefficients drawn from [0.6, 1.4]. We also use PCA color augmentation with coefficients sampled from N (0, 0.1). Finally,
we perform channel standardization by subtracting the mean RGB values and dividing by the standard deviations computed
across the training data. For validation, we use the center crop of an image isotropically rescaled to have shorter side length
256.

We use the training procedure introduced in the original paper (He et al., 2016). We train for 90 total epochs, use a batch
size of 256, and an initial learning rate of 0.1. We drop the learning rate by a factor of 10 after epochs 30 and 60. We use
SGD with momentum 0.9, cross-entropy loss, and Ly regularization with coefficient 5 * 10~°. When multiplied by two in
the derivative of the loss function, this Ly penalty equals the 1 x 10~% weight decay used in other implementations. We do
not use weight decay for batch normalization parameters. For convolution layers, we use he—normal initialization (He
et al., 2015). Following common practice, we initialize y in the final batch normalization of a residual block with zeros
instead of ones and use label smoothing with coefficient 0.1. We train on AWS p3.16xlarge instances with eight NVIDIA
Tesla V100 GPUs. We train networks only once for cost considerations.

For the WideResNet-50-PCN, we transform all convolutional layers in stage four of a WideResNet-50 using the input-based
transformation. We use an effective dimensionality of 512 for transformed layers. To compute PCA statistics, we use the
center crops of training images isotropically rescaled to shorter side length 256. We use 50,176 (a multiple of the batch size)
random images for each layer. Since the hidden layer activations occupy significant GPU memory, once a batch of images
reaches the hidden layer of interest, we downsample using spatial average pooling and use depth vectors from the smaller
images for PCA.

G. Additional Experiments

Robustness of PCN Transformations We evaluate the sensitivity
of PCNs with respect to 1) the transformation epoch and 2) the vari- 081 | cineavg ——— baseline minimax
ance threshold for the input-based transformation. For this experiment, 0.801 —#— (0.0001,0.05) —#— (0.001, 0.1)

we use the Conv4 network (Frankle & Carbin, 2019), a VGG-style (0.0001,0.1) —— (0.001,0.2)
CNN adapted to CIFAR-10. It contains four convolution layers fol-
lowed by three dense layers. In Figure 5 we plot PCN test accuracy
at early stopping? versus transformation epoch using four different
threshold configurations. Variance cutoffs are represented using tuples
corresponding to (threshold for convolution layers, threshold for dense
layers). The baseline accuracy, i.e. training the parent Conv4 network,
is shown as a horizontal line.

Test Accuracy at Early Stopping

PCN Transformation Epoch

We find that training PCNs is robust to both the transformation epoch

and the variance thresholds; All configurations in Figure 5 exceed the Figure 5: Robustness of PCNs.
baseline. In the best case, the Conv4-PCN improves upon the Conv4

accuracy by 3%. Furthermore, we see that the transformation can be performed early—in this case after one epoch. For
reference, training requires 5-12 epochs.

Origins of Accuracy Improvement To understand why Conv4-PCNss train to a higher test accuracy than the Conv4
network (above), we ran a set of ablation experiments. When converting the Conv4 network into the Conv4-PCN, instead of
transforming all layers using the input-based transformation, we transformed all layers except one.

2Early stopping is defined here as the epoch of peak validation accuracy.

Principal Component Networks

The layer not transformed is shown on the x-axis of Fig-
ure 6. The test accuracy of the resulting PCNs is shown
on the y-axis. For each PCN, we show four bars labeled
by a tuple representing the variance threshold for convolu-
tion layers that were compressed, the variance threshold
for dense layers that were compressed, and the epoch at
which we performed the transformations. Omitting the
transformation for the first fully connected layer (fcl)
causes the accuracy to drop much closer to the baseline
(75.16). Omitting the transformation for other layers does
not change the PCN accuracy. From this ablation exper-
iment, we conclude that the accuracy improvement of the
Conv4-PCN comes from transforming the first dense layer.
We conclude that by compressing the first dense layer—a
layer which contains 86% of the original weights—the
Conv4-PCN helps to regularize and prevent overfitting.

Test Accuracy at Early Stopping

0.801 @2 (0.0001, 0.05,3) m=ms (0.001,0.1,3)

0.79 == (0.0001, 0.1, 3) N (0.001, 0.2, 3)

0.78 1

0.77 1

0.76 1

0.751

0.74-

none conv2 conv3 conv4 fcl fc2 output
Layer Excluded From PCN Transformation

Figure 6: Origins of accuracy improvement.

