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Abstract

We study training of Graph Neural Networks (GNNs) for
large-scale graphs. We revisit the premise of using distributed
training for billion-scale graphs and show that for graphs
that fit in main memory or the SSD of a single machine, out-
of-core pipelined training with a single GPU can outperform
state-of-the-art (S0TA) multi-GPU solutions. We introduce
MariusGNN, the first system that utilizes the entire storage
hierarchy—including disk—for GNN training. MariusGNN
introduces a series of data organization and algorithmic con-
tributions that 1) minimize the end-to-end time required for
training and 2) ensure that models learned with disk-based
training exhibit accuracy similar to those fully trained in
memory. We evaluate MariusGNN against SoTA systems for
learning GNN models and find that single-GPU training in
MariusGNN achieves the same level of accuracy up to 8%
faster than multi-GPU training in these systems, thus, in-
troducing an order of magnitude monetary cost reduction.
MariusGNN is open-sourced at www.marius-project.org.

CCS Concepts: - Computing methodologies — Machine
learning; - Computer systems organization — Archi-
tectures.
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Table 1. Many of the large graphs that GNNs are applied to
can fit in main memory or the disk of a single commodity
machine (e.g., AWS P3 GPU instances range from 61-488GB
of CPU memory and contain up to 16TB of disk storage).
The first five graphs are publicly available.

Graph Nodes Edges Féat' MELY(GB)
Dim  Edges Feat. Tot.
Papers100M [17] 111M 1.62B 128 13 57 70
Mag240M-Cites [16] 122M  1.30B 768 10 375 385
Freebase86M [12] 86M 338M 100 4 69 73
WikiKG90Mv2 [16] 91IM 601IM 100 7 73 80
Hyperlink 2012 [30] 3.5B 128B 50 2k 14k 3.4k
Facebook15 [6] 1.4B 1T 100 8k 560 8.5k

1 Introduction

Graph Neural Networks (GNNs) have emerged as an impor-
tant method for machine learning (ML) [3]. A diverse array of
models [2, 13, 41, 46] have been introduced to apply ML over
protein structures [37], social networks [9], and knowledge
graphs [34]. These models achieve state-of-the-art (SoTA)
accuracy for node classification and link prediction [22, 36, 49]
by encoding data dependencies that arise in graphs.
However, resource-efficient GNN training over large-scale
graphs has been highlighted as a major challenge in the lit-
erature [3, 11, 39, 52]. Graphs used in production settings
contain millions of nodes and billions of edges. In addition,
their nodes and edges are associated with feature vectors
that form the inputs to GNNs. This data can require hun-
dreds of GBs of storage [18, 28] (Table 1), which exceeds the
capacity of GPU accelerators (e.g., 16GB on NVIDIA V100s).
Moreover, the node representations at internal GNN layers
depend on the nodes’ multi-hop neighborhood, thus, a GNN
dataflow graph can scale exponentially as more layers are
added in a GNN. These two characteristics—graph storage
sizes and GNN neighborhood dependencies—necessitate the
use of mini-batch training coupled with multi-hop neighbor
sampling for learning GNNs over large-scale inputs [8, 31].
To perform training over large graphs, SoTA systems, such
as Deep Graph Library (DGL) [43] and PyTorch Geometric
(PyG) [10], rely on CPU memory for graph storage and use
distributed mini-batch training either over multiple GPUs
or multiple machines. However, distributed solutions intro-
duce deployment and maintenance overheads [29] and in
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many cases obtain sub-linear speedups [52]. For example, we
find that DGL yields only a 2.2x speedup when using eight
instead of one GPU (see Section 7.2). As a result, current
distributed systems can incur increased monetary costs due
to underutilization of allocated hardware.

We revisit GNN training and ask: When is distributed GNN
training needed? We argue that for graphs that fit in mem-
ory or the SSD of a single machine (Table 1), out-of-core
pipelined training on a single machine can outperform SoTA
distributed systems. We introduce MariusGNN, a system that
utilizes the entire memory hierarchy—including disk—for
GNN training over large-scale graphs. While prior work in-
cluding GraphChi [23], Mosaic [28], and COST [29], have
proposed using a single machine with disk for processing
large graphs, they focus on graph analytics workloads such
as PageRank. More recent graph ML systems such as Mar-
ius [33] and PyTorch BigGraph [24] utilize disk, but do not
contain multi-hop neighborhood samplers that are neces-
sary for GNNs and thus only support specialized link predic-
tion models for knowledge graph embeddings. In contrast,
MariusGNN supports disk-based training of general k-hop
sampling-based GNN models (subsuming prior graph ML
systems) for both node classification and link prediction.

With experiments over four datasets using popular GNN
architectures, we show that MariusGNN’s disk-based, single-
GPU training can be 8x faster than eight-GPU deployments
of SoTA systems. This improvement yields monetary cost
reductions of an order of magnitude. We find that for graphs
where SoTA systems can take six days and $1720 dollars
to train a GNN, MariusGNN needs only eight hours and
$36 dollars for training, a 48X reduction in monetary cost
(WikiKG90Mv2, Table 4). Moreover, we show that single-
GPU training can be sufficient for large-scale graphs: We use
MariusGNN to train a GNN over the entire hyperlink graph
from the Common Crawl 2012 web corpus, a graph with 3.5B
nodes (web pages) and 128B edges (hyperlinks between pages)
(Table 1). MariusGNN can learn vector representations for all
3.5B nodes using only a single machine with one GPU, 60GB
of RAM, and a large SSD, leading to a cost of just $564/epoch.
Achieving these results required innovation and careful en-
gineering along two dimensions: 1) optimized sampling to
minimize the exponential costs of mini batch construction
and 2) novel policies for transferring and processing train-
ing data that can maximize disk throughput while ensuring
model accuracy is comparable to full in-memory training.

Despite recent efforts for efficient sampling when con-
structing a mini batch [4, 5, 35, 48, 54], we find that existing
sampling algorithms in SoTA systems bottleneck pipelined
training and lead to the underutilization of GPUs. For ex-
ample, using PyG’s CPU-based neighborhood sampler for a
three-layer GNN on a graph with 100M nodes takes 1200ms
while the GPU-based operations for training take only 170ms
(Section 7.4). These timings arise because current approaches
for sampling multi-hop neighborhoods resample one-hop
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neighbors for graph nodes multiple times while construct-
ing a single GNN dataflow graph (e.g., Figure 1). Due to the
graph structure, the same nodes can appear repeatedly both
within a layer and across different layers of the dataflow
graph. When a node appears multiple times in the same
layer, existing systems (e.g., DGL [43]) only sample the one-
hop neighbors of this node once, yet when a node appears
in separate layers, the one-hop neighbors of this node are re-
sampled each time (e.g., node A in Figure 1). Such resampling
leads to redundant computation and data transfers and can
limit pipeline throughput when training multi-layer GNNs.
In MariusGNN, we introduce a new data structure to min-
imize redundant computation and data transfers during sam-
pling (Section 4). We term the new data structure DENSE, as
it uses a Delta Encoding of Neighborhood SamplEs for nodes
in successive GNN layers. DENSE allows us to reuse sampled
one-hop neighbors to construct the input of different GNN
layers and enables in-CPU sampling that is up to 14X faster
than SoTA systems (Section 7.4). DENSE also enables GNN
forward pass computations up to 8x faster than competing
systems by utilizing optimized dense GPU kernels rather
than custom kernels for sparse matrix representations.
Disk-based execution in MariusGNN requires that the
graph be split into partitions and subsets of these partitions
be transferred to CPU memory for mini-batch training. We
study partition replacement policies and mini batch construc-
tion policies for both link prediction and node classification.
For link prediction, we show that prior SoTA partition
replacement policies, which greedily minimize IO, lead to
biased models and harm accuracy when training GNNs. For
example, when we implement the Buffer-aware Edge Traver-
sal Algorithm (BETA) from prior work [33] in MariusGNN,
we find that the accuracy of learned GNN models drops by
up to 16% on common benchmarks when compared to train-
ing with the entire graph in main memory. We study the
reason behind this drop (Section 5.1) and find that existing
policies lead to consecutive mini batches containing corre-
lated training examples, a property that conflicts with the
independently distributed assumption of ML training data.
To close the accuracy gap between in-memory and out-
of-core training while minimizing disk IO, we introduce a
new policy termed COMET (COrrelation Minimizing Edge
Traversal). First, COMET separates the granularity of data
storage and access from data transfer by utilizing two levels
of partitioning (physical and logical partitions). Second, it
decouples mini batch generation from partition replacement,
allowing for randomized deferred processing of training ex-
amples, thus, further shuffling the order in which training
examples are processed. To maximize throughput and ac-
curacy, we provide automated rules for setting COMET’s
hyperparameters. Using COMET, we are able to reduce the
gap between the link prediction accuracy of disk-based train-
ing and that of training with the full graph in memory by up
to 80% compared to prior work (Section 7.5).
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Figure 1. Example two-layer GNN aggregation for nodes {A,
B} using a sample of their two-hop incoming neighborhood.

For node classification, we find that simple data transfer
policies can be effective. In large-scale graphs [16, 17], it is
often the case that the set of nodes labeled for training is
only 1-10% of all graph vertices. Based on this information,
we show that a policy that caches all labeled nodes in main
memory and transfers random partitions from disk at the
beginning of every epoch yields high-accuracy models for
all the benchmark graphs we consider (Section 7.5).

2 Preliminaries on Training GNNs

We focus on training GNNs for node classification and link
prediction. Given a graph G = (V, E) with nodes V and edges
E, node classification assigns a class label to a node v € V'
given its local information (e.g., local features of the node)
and information from its neighborhood in G. Link prediction
considers a pair of nodes (vq,v2) € V X V and predicts if the
two nodes should be connected via an edge. Link prediction
also uses the local features of nodes v; and v, and information
from their neighborhoods to obtain a prediction.

Local information for each node in G is modeled with a
base vector representation that encodes local node features.
This representation can either be fixed (e.g., the conference
of a paper in a citation graph) or learned (e.g., a learned repre-
sentation of the type of an entity node in a knowledge graph).
For a node v € V, we denote this base vector representation
hY. Base representations are stored in a lookup table.

To combine local information with neighborhood infor-
mation, GNN layers aggregate the local representation of
each node with the representations of its neighbors. Given
a node v, the k—th layer of a multi-layer GNN represents
node v with a vector hX that is defined recursively as h% =
AGG(hz(,kfl), {hl(lkfl) : u € Ny}) where AGG is an aggrega-
tion function with learnable parameters (e.g., a weighted
sum) and N, denotes the nodes in the one-hop neighbor-
hood of v; The k-th layer aggregates information from the
k-hop neighborhood of node v. An example is shown in Fig-
ure 1. To perform node classification, h’; can be fed into a
fully-connected and softmax layer, while for link prediction,
hﬁl and h’;z are given as input to a score function (typically
referred to as a decoder [3]) to obtain the prediction.

GNN training is typically performed using mini-batch
gradient descent. For node classification, training examples
correspond to target nodes together with the true class label
for each node. For link prediction, training examples are
pairs of target nodes with binary labels (i.e., edge or not). In
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a k-layer GNN the target nodes correspond to the nodes in
the last (k-th) layer. To compute its output, a k-layer GNN
requires that a mini batch include the base representation
of all nodes in the k-hop neighborhood of the target nodes.
However, k-hop neighborhoods can grow exponentially and
the storage required for the base representations can exceed
GPU memory if the entire neighborhood of each target node
is used. For this reason, sampling of the k-hop neighborhood,
typically performed in CPU, is required.

Given a mini batch, a forward pass is performed on the
GPU to compute h¥ and the loss and gradients needed to
update the model parameters. The updates for learned base
representations are also transferred to the CPU and the corre-
sponding entries of the lookup table are updated. The time for
sampling the k-hop neighborhood can dominate the time for
the forward pass, thus leading to GPU underutilization [21]
and lower training throughput.

For large-scale graphs, the storage for the graph structure
and the base representations of the nodes may exceed CPU
memory (Table 1). In this case, mini batch construction needs
to be performed over a subgraph of the original graph that is
loaded in main memory. This operation requires the original
graph be split into partitions. These partitions can either be
loaded in different machines to perform distributed training
or stored on disk and brought into main memory to per-
form training over the corresponding subgraph. MariusGNN
uses disk-based training. We opt for pipelined disk-based
training [33] where a buffer is used to hold partitions in
main memory. In-buffer partitions are used to construct mini
batches. To achieve high accuracy, we need to iterate over
all available training examples. To this end, pipelined disk-
based training requires swapping partitions between the
buffer and disk according to a partition replacement policy.
For high throughput this policy should also minimize IO.
Prior work on the Marius system [33] introduced the SoTA
greedy BETA policy which achieved near minimal IO when
iterating over all graph edges. While BETA allowed Marius
to train decoder-only knowledge graph embedding models
for link prediction, Marius does not support multi-hop neigh-
borhood sampling, and thus cannot train k-layer GNNs for
k > 0, or node classification tasks. Moreover, when BETA
is implemented in MariusGNN and applied to k-layer GNN
training it leads to reduced model accuracy.

3 Training GNNs in MariusGNN

MariusGNN implements out-of-core pipelined training using
two modules: 1) a processing layer and 2) a storage layer.
Figure 2 shows a diagram of GNN training in MariusGNN.
MariusGNN represents a graph as an edge list. In addition,
base vector representations for nodes are stored sequentially
in a lookup table split into p physical partitions on disk. The
edge list is organized according to edge buckets: Given a
pair of partitions (i, j), we define edge bucket (i, j) to be the
collection of all edges in the graph with a source node in
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Figure 2. MariusGNN System Diagram. The lifecycle of a mini batch consists of Steps 1-6. The storage layer replacement
policy (e.g., COMET) periodically updates graph partitions in memory during training (Steps A-D).

partition i and a destination node in partition j. Edges in
each edge bucket are stored sequentially on disk.

Training in MariusGNN proceeds in epochs. We start each
epoch with all partitions on disk. We consider an epoch com-
pleted only when all training examples in the graph have
been processed once. At the beginning of each epoch, Marius-
GNN groups the physical partitions into a collection of [ < p
logical partitions. The grouping is randomized and each phys-
ical partition is assigned to one logical partition. Grouping
occurs without data movement: only an in-memory dictio-
nary between logical and physical partitions is maintained.
This two-level partitioning scheme is key to achieving high-
accuracy GNNs (Section 5.1). Given the logical partitions, let
S; be a set of logical partitions such that all corresponding
physical partitions fit in memory. MariusGNN constructs a
sequence S = {51, Sy, ...} (to be consecutively loaded into
memory during training) such that each training example
appears in at least one S;. We then use S to obtain a sequence
X = {X1, Xy, ...} X; is a subset of training examples in S;
such that when S; is in memory, all (and only) training exam-
ples from X; are used to generate mini batches. We describe
the techniques used by MariusGNN to select X; in Section 5.

Sequences S and X are generated in a task-aware man-
ner. In the case of node classification, training examples are
graph nodes and in the case of link prediction, they are pairs
of nodes. Thus, for link prediction, pairs of node partitions
that contain valid edges need to be accessed at the same time,
while for node classification node partitions can be consid-
ered individually. For link prediction, MariusGNN uses the
COMET policy to generate S and X. COMET ensures that all
valid edges of the graph, which correspond to training exam-
ples, will appear in at least one S; € S. COMET also allows
MariusGNN to minimize disk-to-CPU IO while maximizing
accuracy for disk-based training. We describe COMET in
Section 5.1. For node classification, MariusGNN uses a sim-
ple policy that caches all nodes used as training examples in
memory to achieve both high accuracy and throughput (Sec-
tion 5.2). Finally, the above design also allows MariusGNN to
support training with the full graph in memory: S; contains
the whole graph and X; contains all training examples.

To complete one epoch (for either task), the storage layer
in MariusGNN uses sequence S to determine which node

partitions and edge buckets to bring into the buffer and in
what order. MariusGNN uses a buffer with capacity of ¢ phys-
ical node partitions. When the set of ¢ physical partitions in
S; are placed in the buffer, all ¢? pairwise edge buckets are
also loaded into memory. After loading S;, the storage layer
passes X; to the processing layer.

The processing layer generates mini batches from X; in
a random order. MariusGNN performs multi-hop neighbor-
hood sampling using the DENSE data structure to construct
a mini batch (Section 4). To improve throughput, DENSE
allows MariusGNN to minimize redundant computation dur-
ing sampling by reusing neighborhood samples required as
input to different GNN layers. Neighborhood sampling is
performed only over graph nodes and edges in main memory.
DENSE and the corresponding base vector representations
are then transferred to the GPU to complete processing of the
mini batch. DENSE is co-designed such that the forward pass
for the GNN is computed using kernels that are optimized
for dense linear algebra operations. After the forward pass,
MariusGNN computes the loss and gradients. We update
GNN parameters on the GPU and if applicable, updates to
learnable base vector representations are transferred back to
CPU memory and used to update the node representations in
the partition buffer. As done in prior work [33], we perform
all data transfers in a pipelined manner as shown in Figure 2.

After training completes on the mini batches generated
from Xj, the storage layer updates the partitions in the buffer
from S; to S;+1 by swapping the necessary logical partitions
between disk and CPU memory (one or more physical parti-
tions) together with the corresponding edge buckets. This
process repeats until the epoch is completed.

4 The DENSE Data Structure

DENSE is designed to 1) minimize redundant computation in
multi-hop sampling and 2) to allow for efficient GNN forward
passes using dense kernels for linear algebra operations.

4.1 Multi-hop Neighborhood Samples With DENSE

To compute the representation of a set of target nodes after
k GNN layers, we need to sample their k-hop neighborhood.
For example, in Figure 1, we showed how to compute the rep-
resentation of target node A after two layers. To compute hz
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Figure 3. Example two-hop neighborhood sample for target
nodes {A, B} and the corresponding DENSE data structure.

Algorithm 1: Multi-hop Neighborhood Sampling

Input: target_nodes: unique node IDs for k-hop sampling;
fanouts: max # of neighbors to sample per hop
node_id_offsets = [0]; node_ids = target_nodes

nbr_offsets = []; nbrs = []; Ag = target_nodes

foriin|k...1] do
A;_nbrs, A;_offsets = oneHopSample(A;, fanouts[i])
nbr_offsets = cat(A;_offsets, nbr_offsets + len(A;_nbrs))
nbrs = cat(A;_nbrs, nbrs)
Aj—1 = computeNextDelta(A;_nbrs, node_ids)
node_id_offsets = cat([0], node_id_offsets + len(A;_1))
node_ids = cat(A;-1, node_ids)

return DENSE(node_id_offsets, node_ids, nbr_offsets, nbrs)
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we used hj. and hj, by sampling C and D from A’s one-hop
neighborhood. Computing h%, however, uses h} which re-
quires sampling the one-hop neighborhood of node A again.
Performing these two one-hop sampling operations inde-
pendently requires traversing the one-hop neighborhood of
node A multiple times, introducing redundant computation.

In MariusGNN, we sample one-hop neighbors for each
node in the k-hop neighborhood only once. We take advan-
tage of the fact that k-hop sampling is recursive: we can
construct a sample of the (i + 1)-hop neighborhood for a
set of target nodes by sampling the one-hop neighbors of
all nodes N in the i-hop neighborhood. However, we may
have previously sampled one-hop neighbors for some nodes
P C N.In MariusGNN, we use this property to construct the
(i + 1)-hop neighborhood by sampling one-hop neighbors
only for the nodes N \ P. We define these nodes to be Ag_;.
The rest of the (i + 1)-hop neighborhood is completed by
reusing the previous one-hop samples for nodes in P. To
track the nodes for which one-hop samples are required at
each iteration, MariusGNN uses the DENSE data structure.
DENSE is constructed by stacking the k + 1 A’s and the cor-
responding one-hop neighbors. We show an example for
the two-hop neighborhood of the target nodes {A, B} in Fig-
ure 3. DENSE consists of three A’s: A, = {A, B}, A; = {C, D},
Ao = {E}. Notice that unlike in Figure 1, here, the sampled
one-hop neighbors of A, {C, D} are used in both GNN layers.

DENSE is built using four arrays: 1) node_ids contains
all graph node IDs involved in the sample, 2) nbrs contains
the sampled one-hop neighbors for nodes in node_ids, 3)
nbr_offsets identifies where the neighbors for each node
ID start in nbrs, and 4) node_id_offsets identifies groups
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of node IDs in node_ids corresponding to each A. Given a set
of target node IDs and a k-layer GNN, MariusGNN samples
the k-hop neighborhood for each target node and creates the
four arrays in DENSE according to Algorithm 1. We define
the target nodes to be Ay and initialize each array in DENSE
as shown (Line 1-2). Sampling then proceeds for k rounds
(Line 3). Each iteration i € [k... 1] starts by sampling the
one-hop neighbors for the nodes in A; (Line 4). Given the set
of nodes A; and a maximum number of neighbors to sample
per node f (the layer fanout), one-hop sampling returns
up to f neighbors for each node j € A; as a list A;_nbrs
with the neighbors for each node j sequential starting at the
offset given by A;_offsets. When a node has more than f
neighbors, only f will be sampled, but if a node has less than
f neighbors, all neighbors will be returned.

MariusGNN performs one-hop sampling using CPU multi-
threading. We store two sorted versions of the in-memory
edge list containing all edges between the node partitions
currently in memory: 1) sorted in ascending order of source
node ID, and 2) sorted in ascending order of destination node
ID. We create an array that, for each node ID in memory,
stores the offsets corresponding to its outgoing and incoming
edges in each of the two edge lists. Given these structures,
we can sample incoming and outgoing edges for any set of
nodes in parallel using all available CPU threads.

Given the one-hop neighbors for A;, the next step in Al-
gorithm 1 is to stack these one-hop samples on the existing
arrays in DENSE (Line 5-6). At this point, MariusGNN com-
putes A;_; as the unique nodes in A; _nbrs that do not appear
in the DENSE node_ids array (Line 7). As with one-hop sam-
pling, MariusGNN computes A;_; using multi-threading on
the CPU. The nodes in A;_; are then added to DENSE (Line 8,
9). Multi-hop sampling completes after adding Ay to DENSE
(neighbors are not needed for Ag).

While one-hop sample reuse in DENSE allows MariusGNN
to minimize redundant computation in multi-hop sampling,
it also leads to k-hop neighborhoods with two noteworthy
differences compared to existing sampling algorithms. First,
sample reuse implies that the resulting neighborhood fanouts
(max number of neighbors per node per hop) are not guaran-
teed to match the requested fanouts (input to Algorithm 1).
Instead, the fanout for a node j at each hop is equal to the
fanout requested for the first hop which required neighbors
of j. As such, in the common case where GNN fanouts are
requested according to a decreasing sequence away from the
target nodes, DENSE provides at least as many neighbors as
requested for a node j at each layer. Second, sample reuse
in DENSE reduces randomness in multi-hop neighborhoods
compared to existing algorithms by preventing different sub-
sets of the one-hop neighbors for a given node from existing
in the same multi-hop neighborhood. We discuss the impli-
cation of this reduced randomness on the accuracy of GNN
training in Section 7.2 but find that training with DENSE can
reach comparable accuracy to existing systems.
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4.2 Forward Pass Computation With DENSE

After sampling is completed, MariusGNN transfers DENSE
to the GPU so it can be used to compute the GNN forward
pass. We also transfer an array H® containing the base rep-
resentations for each node ID in the DENSE node_ids array.
On the GPU we create and add a fifth array to DENSE called
repr_map that stores the index in H° containing the base
representation for each node ID in the DENSE nbrs array.
To complete a forward pass over a k-layer GNN, we iterate
over each layer i € [1...k] and perform the next two steps:
(Step 1) We compute the output H' of layer i. Given DENSE
and the representations in H'™!, the output of layer i is the
representation for all nodes in the DENSE node_ids array
which occur after node_id_offsets[1]. For example, in Fig-
ure 3, the output of the first GNN layer is h! for the nodes
{C, D, A, B}. The output representations are computed ac-
cording to the i* GNN layer’s aggregation function.
(Step 2) We update DENSE on the GPU as shown in Algo-
rithm 2: We remove nodes and their one-hop neighbors that
are no longer needed for subsequent layers. This step en-
sures that the output nodes from this iteration, which will be
used as input to compute the representations of the nodes in
Step 1 for the next iteration, correspond to all nodes in the
DENSE node_ids array. This property allows us to use the
same implementation across GNN layers. In Figure 3, node E
and the neighbors of {C, D} are not needed after layer one.
DENSE allows MariusGNN to use optimized dense GPU
kernels for the linear algebra operations in each GNN layer.
For example, in Algorithm 3, we show how to use DENSE
and H*"! to compute the output of the k** GNN layer H*
for the GNN aggregation: hglﬂ) = h;l) + 2 jeNbrs; h;l). We
first use the repr_map array in DENSE to select the node
representations for all neighbors in the nbrs array (Line 1).
Neighborhood aggregation can then be performed using a
dense segment sum that is well suited for parallelization on
GPU hardware (Line 2): Recall that the one-hop neighbors
for the nodes in DENSE are stored sequentially and separated
by the nbr_offsets array. After selecting the neighbor rep-
resentations in Line 1, the representations for the one-hop
neighbors of each node will also be sequential in GPU mem-
ory. Thus, neighborhood aggregation for each node consists
of adding a set of sequential vectors and all nodes can aggre-
gate in parallel. The last step to compute the layer output
is to combine the aggregated neighbor representations for
each node with their own representations (Lines 3-4).

5 Policies for Disk-Based GNN Training

We discuss the partition replacement policies used by Mar-
iusGNN for disk-based training. As described in Section 3,
MariusGNN uses different policies for link prediction and
node classification. We discuss each in turn.
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Algorithm 2: On GPU DENSE Update After Layer i
Input: node_id_offsets, node_ids, nbr_offsets, nbrs, repr_map
A;—1 = node_ids[: node_id_offsets[1]]

A; = node_ids[node_id_offsets[1] : node_id_offsets[2]]
A;_nbrs = nbrs[: nbr_offsets[1len(A;)]]

nbrs = nbrs[len(A;_nbrs):]

repr_map = repr_map [len(A;_nbrs):] - len(A;_1)
nbr_offsets = nbr_offsets[len(A;):] - len(A;_nbrs)

node_ids = node_ids[node_id_offsets[1]:]

node_id_offsets = node_id_offsets[1:] - len(A;—1)

return node_id_offsets, node_ids, nbr_offsets, nbrs, repr_map

N L L N SO CRN

Algorithm 3: k' GNN Layer Additive Aggregation

Input: DENSE; H' k-1, layer input vector representations
nbr_repr = H*! index_select(DENSE.repr_map)
nbr_aggr = segment_sum(nbr_repr, DENSE.nbr_offsets)
self_repr = H*~1[DENSE.node_id_offsets[1] :]

H* = nbr_aggr + self_repr

aoR W N R

return H*

5.1 Policies for Link Prediction

MariusGNN uses the COMET policy to maximize throughput
while maintaining high accuracy when training link predic-
tion models. Before we introduce COMET, we discuss why
policies that only optimize for throughput lead to biased
training and hence harm the accuracy of the learned models.
Greedy policies (e.g., BETA [33]) that focus on minimizing
IO for high throughput produce correlated training examples
that bias learning and lead to low model accuracy. Recall that
we define S = {S1, S, ...} to be the sequence of partition
sets which will be loaded into memory during one epoch and
X = {X1,X,,...} to be the sequence of training examples
used to generate mini batches for each S; € S (Section 3).
To minimize IO, greedy policies swap partitions between S;
and S;4; such that the new partitions brought into memory
maximize the number of new training examples that can be
generated from the in-memory graph. For example, the BETA
policy minimizes IO by bringing one new physical partition
p* in memory to obtain S;;; and uses the edges (training ex-
amples) that correspond to node pairs formed by combining
p* with all other partitions in memory to construct X;,. This
process makes all training examples in Xj;; be correlated:
they all have one endpoint in the new partition p*. We show
an example of this problem in Figure 4. As highlighted in
the introduction, performing training over correlated exam-
ples reduces randomness in the order edges are processed
each epoch and conflicts with the independently distributed
assumption of ML training data. In Section 7.5, we show
that using a greedy policy leads to accuracy degradation
compared to training with the full graph in memory.
COMET addresses the above shortcoming by introducing
randomness in the order that training examples are processed
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Figure 5. Partition and training example sequences gener-
ated by COMET to minimize training example correlation.

each epoch while simultaneously minimizing IO. To increase
randomness, we design COMET around two mechanisms: 1)
a two-level (logical and physical) partitioning scheme and 2)
randomized generation of training examples. Following the
architecture from Section 3, the first mechanism generates
the sequence of partition sets S for one epoch and the second
mechanism generates the sequence of training examples X.

To decouple data storage and access from data transfer,
COMET uses physical partitions on disk but transfers groups
of physical partitions—called logical partitions—between
disk and CPU memory. At the beginning of each epoch,
physical partitions are randomly grouped into logical par-
titions (without data movement) (Section 3). COMET then
generates S = {S1, S, ... } by greedily swapping one logical
partition between S; and S;;; such that all pairs of parti-
tions (and thus pairs of nodes) appear in at least one S; with
minimal IO. By utilizing logical partitions, COMET allows
MariusGNN to improve randomness by utilizing small phys-
ical partitions—which fix fewer nodes together in a partition
for the whole training process—yet also use large logical par-
titions to increase turnover rate of graph data between each
S;i. In Section 6, we analyze how to best set the number of
physical and logical partitions to simultaneously minimize
I0 and maximize accuracy.

Instead of using logical partitions to increase randomness
in the sequence of partitions sets S, an alternative design
would be to create a new greedy algorithm to minimize
IO while considering multiple physical partition swaps at
once. In MariusGNN we opt to use logical partitions for the
following reasons. First, by swapping one logical partition
at a time MariusGNN can utilize existing one-swap greedy
algorithms that have been shown to minimize total epoch
IO near the theoretical lower bound [33]. Thus a multi-swap
greedy algorithm can at best provide little IO benefit. Finally,
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allowing for multiple swaps at once exponentially increases
the number of swap choices to consider between each set of
partitions S; and S;4;, making it challenging to develop an
efficient multi-swap algorithm to generate S. Thus, we focus
on using a two-level partitioning scheme in MariusGNN.

Beyond introducing randomness in S, COMET also injects
randomness in the sequence of training examples X used
to create mini batches. Given that S is generated at the be-
ginning of each epoch, MariusGNN performs the following
optimization: For each pair of partitions (i, j) in the graph,
MariusGNN identifies all partition sets S(; j) C S that contain
both i and j. COMET then picks one S, at random from S, j
and assigns the training examples corresponding to pairs
of nodes between these two partitions—the edges in edge
bucket (i, j)—to X.. This random assignment allows for the
deferred processing of training examples rather than greed-
ily processing all new examples immediately upon arrival
in CPU memory. Beyond shuffling training examples, this
deferred execution scheme also balances the workload across
each X;—each X; contains in expectation the same number of
training examples. When prefetching is used to mask the IO
latency required to load S;;; during mini-batch training on S;,
balanced workloads enable consistent overlapping of IO and
compute. In contrast, greedy policies generate unbalanced
workloads where some X; contain very few training exam-
ples (e.g., Figure 4). For these cases, training on X; completes
before S;1; is loaded leading to IO bottlenecks.

5.2 Policies for Node Classification

For node classification we find that a simple replacement
policy is sufficient to maximize throughput without harm-
ing accuracy. To iterate over all training examples during
each epoch, we require that all labeled graph nodes in the
training set—called the training nodes—appear in memory
at least once (in at least one S;). We find that in large-scale
graphs [16, 17], it is often the case that the training nodes
make up only one to ten percent of all graph vertices. As
such, the base representations for the training nodes can fit
in CPU memory, even when the storage overhead for the full
graph is many times larger. When this observation holds, for
disk-based node classification, MariusGNN performs static
caching of the training nodes and their base representations
in CPU memory. While prior works have also used static
caching for GNN training [26, 47], these approaches focus
on caching hot vertices in GPU memory to minimize CPU
to GPU data transfer rather than caching training examples
in CPU memory to minimize disk to CPU transfers.

More specifically, we perform disk-based node classifica-
tion as follows: Rather than randomly partitioning the graph,
we assign all training nodes sequentially to the first k physi-
cal partitions. Non-training nodes are assigned to physical
partitions randomly as before. We generate one set of par-
titions to be loaded into memory each epoch S = {Sp}. So
contains the k partitions with training nodes together with
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¢ — k other randomly chosen physical partitions (buffer ca-
pacity c). By construction, all training nodes are assigned to
create mini batches in Xj. This policy leads to zero partition
swaps (I0) during an epoch (IO does occur between epochs),
but assumes that k is less than c (all training examples can
fit in CPU memory). If k > ¢, MariusGNN uses random par-
titioning and COMET but generates S as follows: replace a
random logical partition in memory with a random one from
disk that has not appeared in memory until all partitions
have appeared in the buffer. In the future, we plan to study
how this approach compares with other schemes [27] for
dynamically caching training examples in CPU memory.

6 Auto-tuning Rules For Disk Training

MariusGNN provides auto-tuning for 1) the number of phys-
ical partitions p, 2) the number of logical partitions I, and 3)
the buffer capacity c to minimize training time and maximize
model accuracy out of the box. We focus on p and [ since
maximizing ¢ best approximates training with the full graph
in memory and thus leads to better runtime and accuracy. We
first connect p and I to model accuracy, then focus on their
effect on runtime, and conclude by using this information to
present auto-tuning rules (for p, [, and c).

Effect of p and [ on Accuracy To study the effect p and I
have on model accuracy, we introduce a proxy metric which
we term the Edge Permutation Bias B. Recall that model qual-
ity can degrade if training consecutively iterates over cor-
related examples (Section 5.1). This problem is general to
ML workloads [7, 14, 15]. We design B to capture the extent
to which the sequence of training examples generated by
COMET exhibits this phenomenon. Figure 6a illustrates the
dependency between B and model accuracy. The depicted
results correspond to empirical measurements over a bench-
mark model (GraphSage [13]) and dataset (FB15k-237 [40]).
We find the same behavior to hold across settings.

We now define B. Let X = {X; ... X} be the sequence of
edge bucket sets X; assigned as training examples for each
partition set S; (Section 5.1). If X; contains edges that fo-
cus on a small subset of nodes, then we have the undesired
correlation described above. We empirically measure this
occurrence as follows: Let V be the set of nodes in the graph.
For each node v € V we keep a tally t] as we iterate over X
which measures how many edges we have seen containing
this node after each X;. Tallies are cumulative and we as-
sume a uniform degree distribution. We normalize such that
tv = 1. This implies t7 € [0, 1]. After each X; we calculate
d; = maxy1 mev (1 — t7%). Given this, B = max;d; € [0,1].

We are interested in how evenly the tallies are incremented
during a training epoch. Biased assignments will lead to
processing many edges for a subset of nodes at once while
ignoring the remaining graph vertices. This leads to high
variance in model gradients across the epoch. With this in
mind, B = z means that z+ a percent of the edges containing
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a certain node have been processed before a percent of the
edges of another node have been processed (for a € [0,1-z]).

Figure 6¢ shows that B decreases with increasing physical
partitions. The observed trends can be characterized by the
equation B = O(p~™) for some constant a; > 1. Figure 6b
shows the effect of the number of logical partitions on B.
Decreasing the number of logical partitions decreases the
Edge Permutation Bias roughly according to B = O(I*2)
for 0 < a; < 1. While we do not provide a closed-form
characterization of B as a function of p and ! we find that
the aforementioned trends hold across datasets. Moreover,
describing the limiting behavior of B with respect to p and
I suffices to obtain a concrete methodology for optimizing
these hyperparameters (described below).

Effect of p and | on Training Time We now focus on how
p and [ affect the per-epoch runtime T. To do so, we analyze
three metrics that influence training time: 1) the total IO
in terms of bytes transferred from disk to CPU memory
(I0), 2) the number of partition sets generated per epoch
(IS1), and 3) the smallest size of disk reads (R) in bytes. As
Quantities 1 and 2 increase, the total training time increases—
recall from Section 4.1 that preparing each S; for training
requires creating single-hop sampling data structures—while
a decrease in Quantity 3 leads to an increased runtime.

By construction in COMET, the number of logical parti-
tions affects Quantities 1 and 2. Figure 6b shows that as |
increases the total IO decreases and the number of partition
sets per-epoch increases. The limiting behavior of IO and |S|
with respect to [ is: IO = O(I7*) for a3 > 1 and |S| = O(]).
For the purposes of this work, we assume that the training
time is dominated by the number of partition sets (|S|) per
epoch instead of the total IO for two reasons: First, the rela-
tive difference between the best and worst IO is usually only
between 5-25 percent and second, prefetching can overlap
IO with compute. Thus, we take the training time T = O(l).

The training time T is also affected by the number of
physical partitions p through Quantity 3. As p increases,
the size of each partition decreases linearly and the size of
each edge bucket decreases quadratically—the smaller of
these quantities is the smallest disk read size R. As a result,
disk access transitions from large sequential reads/writes
to small random reads/writes with increasing p. Given the
hardware constraints of block storage, the latter can become
a bottleneck, particularly when read sizes R are less than the
disk block size D. Thus, we model the affect of p on training
time according to T = O(1) for p < a4 and O(p) for p > a,
with a4 representing the number of partitions which cause
the smallest disk reads to equal the block size D.

Methodology for Setting Hyperparameters Given the ef-
fect of p and [ on accuracy and training time described above,
together with the desire to maximize the buffer capacity c,
we now present rules for setting the COMET hyperparam-
eters. We assume a graph G = (V, E), that the base vector
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Figure 6. Empirical measurements on the effect of COMET parameters using GraphSage on FB15k-237.

representation of each node is of dimension d, that CPU
memory is of capacity CPU bytes, and that the disk block
size is D. First, we calculate the total overhead of storing
all node representations as NO = |V| * d * 4 bytes (using
floating point numbers). Likewise, the edge overhead EO
can be calculated from |E| and the number of bytes per edge.
Then, the overhead of each node partition is PO = NO/p
and the expected size of each edge bucket is EBO = EO/p?.
With the above definitions, p affects the Edge Permutation
Bias B and training time T as follows: B = O(p~*) for some
constant ¢; > land T = O(1) for p < a4 and O(p) for
p > a4 with ay = min(NO/D,~/EO/D). Thus, to minimize
B without increasing T, we set p = a4. We then maximize ¢
such that ¢ * PO + 2 = ¢? * EBO + F < CPU. The edge term is
multiplied by two because MariusGNN utilizes two sorted
versions of the edge list (Section 4.1) and we leave some extra
CPU space for working memory (fudge factor F). Finally,
B and T are affected by the number of logical partitions
according to B = O(I*?) for 0 < @, < 1and T = O(l). As
such, we minimize both by minimizing I. COMET imposes
the constraint that the number of logical partitions in the
buffer ¢; > 2 and that p/c = [/c;. Therefore | = 2 % p/c.

7 Evaluation

We implemented MariusGNN in 16k lines of C++ and 5k
lines of Python. We evaluate MariusGNN on four large-scale
graphs (see Table 1 for dataset statistics), including two from
the OGB large-scale challenge [16], and compare against the
popular SOTA GNN systems DGL and PyG. We show that:

1. MariusGNN reaches the same level of accuracy 2-8x faster
and 8-64x cheaper than DGL and PyG on all datasets for
both node classification and link prediction.

2. DENSE allows MariusGNN to reduce mini-batch sampling
and compute times by up to 14X and 8% respectively.

3. MariusGNN enables cheap and efficient training of GNNs
using disk storage. COMET yields runtime and accuracy
improvements compared to SOTA methods. Additionally,
MariusGNN allows us to train GNNs for node classifica-
tion when datasets exceed commodity main memory.

4. MariusGNN auto-tuning rules for COMET yield config-
urations that achieve the highest throughput and model
quality, lowering the deployment burden for training.

7.1 Experimental Setup

We discuss the setup used throughout the experiments.

Baselines We compare end-to-end GNN training over large-
scale graphs in MariusGNN against DGL 0.7 and PyG 2.0.3
(late 2021 releases) (Section 7.2). In addition to end-to-end
performance, we evaluate the effect of DENSE on training
by measuring the time for multi-hop sampling and GNN for-
ward/backward pass computation in these systems and Mar-
iusGNN (Section 7.4). Furthermore, we compare the multi-
hop sampling time in MariusGNN to the SoTA sampling
implementation in NextDoor [19] (Section 7.4). We do not
use NextDoor for end-to-end GNN training as their open-
source release supports only limited GNN computation over
small graphs which fit in GPU memory.

While MariusGNN uses techniques such as a partition
buffer and CPU-GPU pipelining, which are employed in
prior disk-based graph systems (e.g., Marius [33] and Py-
Torch BigGraph [24]), we do not compare against these
systems directly as they do not support GNN computation.
The primary reason for this is that neither system contains
the neighborhood sampling algorithms and data structures
needed to support multi-layer GNNs. As described in this
work, MariusGNN addresses the limitation of these systems
by developing an efficient neighborhood sampler (DENSE).
Moreover, while both MariusGNN and Marius use a partition
buffer for disk-based training (Marius’ disk-based training
approach was shown to outperform that of PyTorch Big-
Graph), each system uses a different partition replacement
policy. In Section 7.5 we compare the COMET policy devel-
oped in MariusGNN for high throughput and high accuracy
disk-based GNN training with Marius’ partition replacement
policy (by implementing the later in MariusGNN).
Hardware Setup We evaluate all systems using AWS P3
instances (Table 2). We use an EBS volume with 1GBps of
bandwidth and 10000 IOPS as disk storage. We report results
for MariusGNN using two hardware configurations: one for
disk-based training (M-GNNp;x) and one for training with
the full graph in memory (M-GNNyy,). For the former, we
minimize training costs by using the P3.2xLarge machine—
an instance that does not have enough CPU memory to store
any of the large-scale graphs in Table 1. For the latter, we use
the cheapest P3 instance which has enough RAM for training
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Table 2. Cloud GPU instances used for experiments.

AWS Machine ($/hr) GPUs CPUs CPU Mem (GB)

P3.2xLarge 3.06 1 8 61
P3.8xLarge 12.24 4 32 244
P3.16xLarge 24.48 8 64 488

(either a P3.8xLarge or P3.16xLarge). Baseline systems do not
support training if graph data does not fit in CPU memory.
Thus, for each graph, we report results for DGL and PyG
using the same P3 instance that was used for M-GNNep,.
We allow baseline systems to use the maximum number of
GPUs they support and available in the instance. MariusGNN
uses only one GPU for all experiments.

Node Classification: Datasets, Models, and Metrics We
use the two largest OGB node classification graphs: Mag240M
and Papers100M (Papers) [16, 17]. For Mag240M we use only
the paper nodes and citation edges, denoted as Mag240M-
Cites (Mag). Based on the graph memory overheads, Pa-
pers100M and Mag240M-Cites require a P3.8xLarge and
P3.16xLarge respectively for in-memory training. We train
a three-layer GraphSage (GS) [13] GNN on both datasets, a
common choice for these graphs [21, 52]. We use 30, 20, and
10 neighbors per layer (ordered away from the target nodes)
and sample from both incoming and outgoing edges. We re-
port multi-class classification accuracy averaged over three
runs and train for ten epochs. We find that PyG multi-GPU
training runs out of CPU memory for Mag240M-Cites, hence,
for PyG on this dataset we switch to single-GPU training.
Link Prediction: Datasets, Models, and Metrics For link
prediction, we use the largest OGB link prediction graph—
WikiKG90Mv2 (Wiki) [16]. As a second graph for large-scale
link prediction, we use Freebase86M (FB) [51]. Both datasets
fit in CPU memory on an AWS P3.8xLarge machine. We train
a GraphSage GNN on both datasets, and the more compu-
tationally expensive GAT [41] on Freebase86M (the smaller
dataset). Both GNNs use a single layer. We use 20 neighbors
sampled from incoming and outgoing edges for GraphSage
and 10 incoming neighbors for GAT. We evaluate the accu-
racy of link prediction models using the commonly reported
MRR metric [24, 33, 51] using the DistMult [46] score func-
tion and train all systems for a fixed number of epochs: five
on Freebase86M and ten on WikiKG90Mv2. We report the
MRR for a single run due to cost considerations, but report
runtime averaged across all training epochs.

Both DGL and PyG provide limited support for training
link prediction at scale: PyG does not provide a negative
sampler. We implemented negative sampling in PyG based
on the negative sampling used in MariusGNN. DGL provides
anegative sampler but the implementation limits the amount
of negative samples that can be used to train in a reasonable
amount of time. As such, for DGL we use five times fewer
negative samples per training edge compared to MariusGNN
to prevent GPU out-of-memory issues. We find that neither
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baseline supports multi-GPU training for this task: the data
loader implementation for link prediction in PyG supports
only a single GPU and DGL’s multi-GPU training ran out of
CPU memory on the AWS P3.8xLarge.

Hyperparameters We use the same values for hyperpa-
rameters which define the GNN model and training process
across systems. We choose these values to be those used by
OGB or prior works [13, 16, 17] to achieve high accuracy on
each dataset. However, to prevent GPU out-of-memory, for
PyG on Mag240M-Cites, we use a smaller batch size (half)
than DGL and MariusGNN. While we make sure to request
the same number of neighbors per layer for each system,
differences in mini batches are expected due to the use of
different sampling algorithms. For throughput parameters
specific to each system and independent of the computation
(e.g., the number of data loader threads), we tune each sys-
tem and use the best configuration. MariusGNN disk-based
training hyperparameters are set using the auto-tuning rules
(see Section 6). The specific hyperparameters used for each
experiment can be found in our artifact (see the Appendix).

7.2 End-to-End System Comparisons

We discuss end-to-end training results for MariusGNN, DGL,
and PyG on node classification and link prediction tasks.

Results are reported in Tables 3-5 and Figure 7. For each
experiment we train all systems for the same fixed number of
epochs and measure 1) the per-epoch runtime, 2) model ac-
curacy or MRR, and 3) the monetary cost per epoch based on
AWS pricing. We report two configurations for MariusGNN—
one with graph data stored in main memory (M-GNNze,)
and one using disk-based training (M-GNNp;). Next, we
highlight key takeaways among all end-to-end results before
focusing on each setting (Table) in more detail.

Key Takeaway MariusGNN provides the fastest and cheap-
est training option to comparable accuracy for all dataset and
model combinations on both learning tasks. Moreover, cost
reductions for all experiments are at least 8X. Differences in
training time and cost can be almost two orders of magni-
tude: Baseline systems can take six days and $1720 dollars
for training (see training on Wiki in Table 4) yet MariusGNN
needs only eight hours or $36 dollars for the same dataset.

Node Classification We focus on end-to-end results for
node classification in more detail (Table 3). With graph data
stored in main memory, MariusGNN with one GPU trains 4x
and 3x faster than DGL (the fastest baseline) using four and
eight GPUs on Papers100M and Mag240M-Cites respectively.
All three systems reach similar accuracy on both datasets.
We show the time-to-accuracy on Papers100M in Figure 7.
Not only does MariusGNN train 4X faster than baseline sys-
tems per epoch, but it also lowers the time-to-accuracy by
the same factor. There are two reasons for the reduced run-
time of MariusGNN in this setting. First, the DENSE data
structure allows for faster CPU-based mini-batch sampling
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Figure 7. Time-to-accuracy for MariusGNN, DGL, and PyG.
MariusGNN reaches the same level of accuracy 4-6x faster.

and GPU-based GNN computation in MariusGNN compared
to baseline systems (evaluated in Section 7.4). Second, while
both DGL and PyG require multi-GPU machines on AWS due
to CPU memory requirements, they both underutilize the
additional compute resources: DGL and PyG four-GPU train-
ing on Papers100M are only 1.4X and 1.1X faster than their
single-GPU performance respectively, and DGL eight-GPU
training on Mag240M-Cites is only 2.2x faster than with
one-GPU (single-GPU baselines not reported in Table 3).
While all systems reach comparable accuracy for training
with the full graph in memory (within 1%), MariusGNN accu-
racy is 0.55% and 0.3% lower than the closest baseline (PyG)
on Papers100M and Mag240M-Cites respectively. This is be-
cause DENSE reuses previously sampled one-hop neighbors
across layers when constructing multi-layer GNN dataflow
graphs. Sample reuse leads to fewer opportunities for one-
hop neighborhood randomness resulting in fewer unique
nodes in the sampled multi-hop neighborhood for each mini
batch (quantified in Table 6). Although this leads to an accu-
racy reduction for multi-layer GNNs in MariusGNN, sample
reuse is isolated to a single mini batch. Over the course of
training, the one-hop neighbors of each node are still random-
ized across batches, allowing MariusGNN to achieve compa-
rable accuracy to baselines while training with DENSE.
MariusGNN can train the same GraphSage models for
node classification using disk-based training on a single AWS
P3.2xLarge machine, leading to 16X and 64X cheaper learn-
ing on the two graphs. Moreover, disk-based node classifica-
tion in MariusGNN can actually be faster than in-memory
training (e.g., Mag240M-Cites). This occurs because neigh-
borhood sampling operations are performed over in-memory
subgraphs, leading to fewer returned neighbors and smaller
mini batches. While this can improve throughput, it can also
introduce slight accuracy reductions (e.g., 63.17 to 62.53).

Link Prediction We now focus on link prediction. End-to-
end results for all systems on Freebase86M and WikiKG90Mv2
are reported in Table 4. Time-to-accuracy on Freebase86M
is shown in Figure 7. MariusGNN in-memory training is
6x and 7x faster than the best baseline on the two datasets
respectively. While PyG and MariusGNN reach comparable
model quality, DGL is lower due to its use of fewer negative
samples. On WikiKG90Mv2, DGL does not complete the ten
training epochs within two days. To compare system perfor-
mance for different models, we report results for GraphSage
and GAT GNNs on Freebase86M in Table 5. Interestingly,
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Table 3. MariusGNN, DGL, and PyG for node classification
on large-scale graphs using a GraphSage GNN. Using a single
GPU, MariusGNN can reach the same level of accuracy as
multi-GPU baselines 3-8x faster and up to 64X cheaper.

Epoch (min.) Accuracy Cost ($/epoch)

Dataset Papers Mag Papers Mag Papers Mag

M-GNNpfern 077 257 6638  63.17 016  1.05
M-GNNp;sk  0.83 094 6603 6253 0.04 0.05
DGL 307 783 6698 6373 063  3.19
PyG 8.01 19 6693 6347 163 775

Table 4. MariusGNN, DGL, and PyG for link prediction on
large-scale graphs. All systems use a GraphSage GNN and
one GPU. MariusGNN reaches comparable accuracy to base-
lines 6X faster and 13-18% cheaper. (OOT: out of time)

Epoch (min.) MRR Cost ($/epoch)

Dataset FB  Wiki FB Wiki  FB Wiki

M-GNNpfern 17.5 46.6 7285 4655 357  9.38
M-GNNpisk 342 699 7216 4156 174  3.56
DGL 152 844 7091 OOT 310 172
PyG 108 312 7267 4683 220  63.6

Table 5. Comparison of GraphSage (GS) and GAT GNN train-
ing in MariusGNN, DGL, and PyG for link prediction on
Freebase86M. Baselines bottlenecked by CPU-based mini
batch construction result in similar training time and cost on
GraphSage and the more computationally expensive GAT.

Epoch (min.) MRR Cost ($/epoch)

Model GS  GAT GS GAT GS GAT

M-GNNpfern 17.5 52,6 7285 7331 357 107
M-GNNp;sk 342 569 7216 .7251 174  2.90
DGL 152 151 7091 6516 310  30.8
PyG 108 107 7267 7252 220 218

DGL and PyG exhibit similar runtimes for GraphSage and
the more computationally expensive GAT. This result sup-
ports the fact that baseline systems are bottlenecked by CPU
sampling operations rather than GPU computation.
COMET allows MariusGNN to train the same models for
link prediction on a 3x cheaper P3.2xLarge machine by utiliz-
ing disk storage. For this task, disk-based training in Marius-
GNN is slower than in-memory training for two reasons: 1)
COMET requires performing disk IO during every epoch, and
2) the P3.2xLarge machine has 4x fewer CPU resources avail-
able for reading/writing embeddings to main memory. Yet,
epoch runtimes remain 1.9%X-4.5X faster than baseline sys-
tems, yielding cost reductions of 7.5-18X. As described in the
introduction, achieving high-accuracy disk-based GNN mod-
els for link prediction is a key challenge. On Freebase86M,
COMET allows MariusGNN to reach comparable model qual-
ity to the in-memory setting. Yet, recovering in-memory ac-
curacy remains an open problem for some datasets (Wiki).
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Table 6. Comparison of the time required for mini-batch neighborhood sampling, GPU-based computation, and the number of
nodes/edges sampled per mini batch in MariusGNN, DGL, and PyG for GraphSage GNNs of varying depth on Papers100M.
Using DENSE, in MariusGNN sampling is 14X and GPU computation is 8 faster for a four-layer GNN. These speedups occur
in part because DENSE allows MariusGNN to sample fewer nodes/edges to construct mini batches. (OOM: out of memory)

CPU Sampling Time (ms)

GPU Computation Time (ms)

Number of Nodes/Edges Sampled Per Mini Batch

#Layers 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

M-GNN 14 18 103 401 1.8k 4 6.1 21 153 OOM 12k/13k 136k/181k 1M/2M  6M/17M  23M/91M
DGL 57 28 376 5.4k 49k 47 29 215 1231 OOM 13k/20k 182k/278k 2M/4M  9M/37M  33M/222M
PyG 22 59 1227 19k 96k 32 13 168 OOM OOM 13k/20k 178k/258k 2M/4M  9M/32M  31M/174M

We evaluate COMET in more detail in Section 7.5 and show
that it trains faster while improving accuracy compared to
SoTA policies for seven model/dataset combinations.

7.3 Extreme Scale GNN Training With One GPU

A core motivation of our work is to investigate if distributed
GNN training [50, 52] is necessary or if the resources in a
single machine can be used efficiently to scale GNN training.
To evaluate this, we stress-test MariusGNN with respect to
graph size: We consider the task of learning vector repre-
sentations for link prediction over the entire hyperlink graph
from the Common Crawl 2012 web corpus, a graph with 3.5
billion nodes (web pages) and 128 billion edges (hyperlinks
between pages) (Table 1). We use MariusGNN disk-based
training on an AWS P3.2xLarge instance with one GPU, 60GB
of RAM, and 4TB of SSD storage. To learn the representations,
we use a GraphSage GNN with 10 neighbors, the DistMult
score function with 500 negative samples, and an embedding
dimension of 50. We find that MariusGNN is able to train
this GNN model over the hyperlink graph—a graph with
210x more edges than the largest graph in the OGB large-
scale challenge [16] (WikiKG90Mv2)—while maintaining a
throughput of 194k edges/sec, leading to a monetary cost of
only $564 per epoch. Thus, MariusGNN costs only 3.3X more
per epoch while training on the hyperlink graph compared
to baseline systems training on WikiKG90Mv2. This experi-
ment presents an initial large-scale benchmark that can be
used by the community to measure the cost of distributed
training over large clusters and to understand the power of
optimized single machine deployments.

7.4 Effect of DENSE on Training

We have shown that end-to-end training in MariusGNN is
faster than existing systems. The key reason for this result
is the efficient mini-batch sampling and forward pass com-
putation using the DENSE data structure. In this section, we
report the effect of DENSE on training. Recall that training
consists of two phases: 1) CPU-based mini batch construc-
tion via neighborhood sampling and 2) GPU-based GNN
forward/backward pass computation. While DENSE is co-
designed for both efficient sampling and GNN computation,
we seek to understand the effect of DENSE on each individual
training phase. As a result, we measure the average time per

Table 7. Comparison of the time required for GPU-based
mini-batch neighborhood sampling in MariusGNN and
NextDoor for GraphSage GNNs of varying depth on Live-
Journal. Sample reuse in DENSE leads to better scaling with
respect to the number of GNN layers, allowing MariusGNN
to outperform optimized sampling implementations.

GPU Sampling Time (ms)

#Layers 1 2 3 4 5
M-GNN 1 25 96 25 32
NextDoor 0.1 0.5 65 135 OOM

mini batch for 1) CPU neighborhood sampling and 2) GPU
training and compare those times against the corresponding
methods used in DGL and PyG. For these experiments, we
use a GraphSage GNN on the Papers100M dataset and vary
the number of GNN layers from one to five. For each layer,
we request a max of 10 incoming and 10 outgoing neighbors
per node from each system. We use the same hyperparam-
eters for MariusGNN, DGL, and PyG and train all systems
with the graph in main memory using one GPU.

We report the average CPU-based neighborhood sampling
time for each system in Table 6. DENSE allows MariusGNN
to sample multi-hop neighborhoods faster than baseline sys-
tems for all configurations. For three, four, and five layers,
MariusGNN is 3.7X%, 14X, and 26X faster than the best base-
line. GNN training on the GPU in MariusGNN is also faster
than DGL and PyG (Table 6). DENSE leads to 8% faster com-
putation compared to the best baseline for three- and four-
layer GNNs. We find that for five-layer GNNs, mini batches
become too large and cause all three systems to run out
of memory on the AWS NVIDIA V100 GPUs with 16GB of
memory (but could be used on new GPUs with 80GB).

We investigate to what extent the sampling and computa-
tion improvements in MariusGNN can be attributed to the
reuse of neighborhood samples in DENSE compared to im-
plementation co-design choices, i.e., parallel sampling on the
CPU and dense kernels on the GPU. In Table 6, we report
the average number of unique nodes and edges sampled per
mini batch for each system. DENSE allows for mini batch
construction using fewer samples than baselines. For exam-
ple, constructing a three-hop neighborhood in MariusGNN
requires sampling half as many nodes and edges compared to
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DGL and PyG (for the same number of target nodes). While
sample reuse in DENSE is evident, mini batch sizes in Marius-
GNN, DGL, and PyG are all the same order of magnitude, yet
MariusGNN sampling and computation improvements are
more significant (e.g., 14X and 8x). This result validates the
co-design of DENSE: parallel CPU sampling algorithms and
the use of dense GPU kernels, together with one-hop sample
reuse, lead to the improved throughput in MariusGNN.

Comparison Against Accelerated Sampling Kernels To
further evaluate the benefit of DENSE on GNN training,
we compare the multi-hop sampling in MariusGNN to the
SoTA accelerated sampling implementation of NextDoor [19].
NextDoor uses GPUs to reduce sampling times and employs
optimized GPU kernels for parallelization, load balancing,
and caching. These kernels allow NextDoor to outperform
multi-hop sampling implementations in existing systems,
but their open-source release requires that graphs fit in GPU
memory. While in MariusGNN we focus primarily on CPU-
based multi-hop sampling for mixed CPU-GPU training to
scale to large graphs (as discussed throughout the paper),
MariusGNN also includes support for GPU-based multi-hop
sampling for end-to-end training on smaller graphs with-
out CPU involvement. Unlike our CPU-based sampling im-
plementation which uses optimized parallel algorithms to
construct DENSE, our GPU-based sampling implementation
builds DENSE using only default PyTorch functions. We com-
pare GPU-based sampling using DENSE in MariusGNN to
the optimized sampling kernels in NextDoor by measuring
the average multi-hop sampling time per mini batch for a
GraphSage GNN of varying depth on the LiveJournal dataset
(which fits in GPU memory with 4.8M nodes/69M edges) [25].
For each layer, we sample 20 outgoing neighbors per system.

GPU-based sampling times for MariusGNN and NextDoor
are shown in Table 7. The optimized sampling kernels in
NextDoor have lower overhead and better parallelization for
one-hop sampling compared to the default PyTorch functions
used by MariusGNN. These kernels lead to faster sampling
for one- and two-layer GNNs. For deeper GNNs however,
MariusGNN is comparable to or faster than NextDoor. This
is because as the number GNN layers increases DENSE has
more opportunities to minimize redundant one-hop sam-
pling compared to NextDoor by reusing previous samples
across layers. Table 7 shows that redundant sampling can
bottleneck even the most optimized sampling implementa-
tions. At the same time, DENSE avoids this bottleneck and
can scale to five-layer GNNs with little sampling overhead.

For graphs that exceed GPU memory, the open-source
release of NextDoor is unable to perform multi-hop sampling.
In this setting, MariusGNN uses mixed CPU-GPU training
with CPU-based neighborhood sampling (evaluated above).

7.5 Evaluating COMET for Disk-Based Training

In Section 7.2, we showed that COMET allows for disk-based
GNN training on the link prediction task 7.5-18x cheaper
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Table 8. COMET versus the SOTA BETA policy [33] for disk-
based link prediction using GraphSage (GS) and GAT GNNs
as well as the DistMult (DM) knowledge graph embedding
model. COMET leads to simultaneously faster training and
higher MRR. (237: FB15k-237; Epoch time in seconds for 237)

Mem Disk-Based MRR Epoch (min.)

Model  Graph
MRR  COMET BETA COMET BETA

DM 237 .2533 .2659 .2431 1.78 1.95
DM FB 7249 7220 7189 13.73 17.51
DM Wiki 3941 4071 3951 22.54 27.75
GS 237 .2825 .2736 .2369 3.07 3.28
GS FB 7342 7123 6976 47.45 50.08
GS Wiki .4658 4078 .4080 76.66 82.34
GAT 237 .2869 2341 .2076 3.51 3.90
GAT FB 7418 .7053 .6860 42.01 46.02

than DGL and PyG. We now evaluate COMET in more detail
and compare to the SOTA greedy policy from Marius [33]
called BETA. We perform disk-based training using both
methods and measure 1) the per-epoch runtime and 2) the
disk-based model accuracy (using MRR). We also report MRR
for in-memory training as a baseline for disk-based MRR.
Since Marius does not support GNNs, we implement BETA
in MariusGNN. We use the GraphSage and GAT GNNs on
the graphs FB15k-237 [40], Freebase86M, and WikiKG90Mv2.
We include FB15k-237 (14541 nodes, 272115 edges) to mea-
sure the bias present in disk-based training policies while
utilizing all neighbors for GNN aggregation and all negatives
for computing MRR (as opposed to using neighbor/negative
sampling for large graphs). We also use the DistMult knowl-
edge graph embedding model to compare COMET and BETA
on the specialized decoder-only models supported by Marius.
We utilize a buffer capacity that can store 1/4 of all parti-
tions in memory. We enable prefetching to overlap IO with
computation. COMET hyperparameters are set as described
in Section 6. For BETA, which has no auto-tuning rules, we
manually tune the number of partitions for best performance.

We report the runtime and MRR for all models and datasets
in Table 8. While the BETA policy achieves near in-memory
MRR for the specialized DistMult model, MRR drops by up
to 16% for GraphSage and GAT GNNs. By promoting mini-
batch randomness, COMET reduces the gap to in-memory
training for GNN models by up to 80%. Moreover, COMET
actually results in improved disk-based MRR for DistMult as
well. Overall, COMET results in higher MRR compared to
BETA for seven of the eight model/dataset combinations. Yet
completely recovering the in-memory MRR for disk-based
link prediction remains a challenge (e.g., GAT on FB15k-237
or GS on Wiki) and area of interest for future work.

While COMET allows for higher MRR compared to BETA,
it also simultaneously allows for faster training. In particular,
epoch time is reduced for DistMult—a less compute inten-
sive model—which is IO bottlenecked. For example, COMET
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Figure 8. MRR and runtime for GraphSage GNN disk-based
training with COMET using different hyperparameters. The
auto-tuning rules used by MariusGNN are near-optimal.
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is 1.28% faster than BETA for DistMult on Freebase86M. In
this setting, prefetching to overlapping 10 with computa-
tion is needed for high throughput. While both COMET and
BETA minimize IO, by decoupling mini batch generation
from partition replacement and allowing for the deferred
processing of training examples, COMET evenly distributes
mini batches and IO across each epoch. This is in contrast
to the greedy BETA policy which results in most mini batch
processing occurring during the early part of each epoch,
leaving little computation to hide IO for the latter part.

7.6 Evaluating COMET Auto-tuning Rules

We evaluate the effectiveness of the parameter auto-tuning
rules used in MariusGNN for disk-based training. To this end,
we measure the runtime and MRR of COMET obtained when
training uses the rules described in Section 6 and compare
against the runtime and MRR obtained for each configura-
tion in a hyperparameter scan. We use a GraphSage GNN
and train on two datasets (FB15k-237 and Freebase86M). Re-
sults are shown in Figure 8. The auto-tuning rules used by
MariusGNN lead to a hyperparameter setting that achieves
near-optimal runtime and MRR simultaneously, eliminating
the need for expensive hyperparameter search.

8 Related Work

Systems for ML over Graph Data Many systems support
GPU training of GNNs [8, 11, 20, 21, 26, 45, 53]. Two such
popular systems are DGL [43] and PyTorch Geometric [10].
Complementary to these systems, many works focus on scal-
ing different dimensions of GNN training: To reduce the
overhead of mixed CPU-GPU training, some works high-
light the importance of GPU-oriented data communication
or caching [8, 21, 26, 31, 32]. Additional works focus on op-
timized GPU kernels [44]. In general, these works focus on
orthogonal challenges of GNN training than those discussed
here and these ideas can be incorporated into MariusGNN.
Finally, there are works that focus on scaling the training of
non-GNN based graph ML models [1, 24, 33, 51]. For example,
Marius [33] utilizes pipelined training to achieve state-of-the-
art throughput for specialized knowledge graph embeddings.
Large-Scale Training To scale GNN training to graphs that
exceed the CPU memory capacity of a single machine, many
works opt for a distributed multi-machine approach [11,
20, 42, 52, 53]. Recent work introduces DistDGLv2 as a dis-
tributed version of DGL [52] and utilizes METIS partitioning,
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co-location of data with mini batch computation, and asyn-
chronous mini batch preparation to scale training. Other
works distribute training in a serverless manner [39]. In Mar-
iusGNN, we use a disk-based approach to scaling beyond
CPU memory. On Papers100M, MariusGNN is 6.7x cheaper
than DistDGLv2 based on the reported cost to 66% accuracy
for each system. Other works have previously supported
disk-based training for link prediction using non-GNN mod-
els [24, 33, 38]. MariusGNN provides disk-based GNN sup-
port for both node classification and link prediction.

Neighborhood Sampling Many works focus on reducing
the overhead of neighborhood sampling. Initial approaches
sample a fixed number of neighbors per node [13], while
follow-up works sample a fixed number of neighbors per
layer [4, 54]. Other works decouple the sampling frequency
from the mini batch frequency [35]. MariusGNN focuses on
sampling a fixed number of neighbors per node with minimal
redundancy. Still other works focus on making mini-batch
training more efficient by increasing the density of edges
between nodes in a mini batch [5, 48]. These contributions
can be incorporated in MariusGNN and are orthogonal to
our study. Finally, recent works utilize GPUs to speed up
sampling [8, 19]. MariusGNN supports GPU-based sampling
but uses CPU-based sampling to scale to large graphs.

9 Conclusion

This paper introduced MariusGNN, a system for pipelined
mini-batch training of GNNs in a single machine. We showed
that MariusGNN with one GPU can achieve the same level
of model accuracy up to 8% faster than existing systems
using eight GPUs. To achieve these results, we introduced
the DENSE data structure to minimize the redundancy of
multi-hop sampling and the two-level COMET replacement
policy for disk-based training. Overall, our results highlight
the need to optimize single GPU implementations of ML
systems before resorting to multi-GPU approaches.
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A Artifact Appendix
A.1 Abstract

We have released the artifact for reproducing the paper’s ex-
perimental results in our GitHub repository artifact branch
(eurosys_2023_artifact). The artifact includes the Mar-
iusGNN source code, Deep Graph Library and PyTorch Geo-
metric baseline implementations, configuration files, and
Python scripts to execute the experiments reported in the
paper for all three systems. The source code and experiment
configurations can be used to study implementation details
that were not mentioned in the paper for brevity. Details on
how to use the artifact can be found in the following sections
and in the GitHub README file.

A.2 Description & Requirements

A.2.1 How to access The artifact is available at the fol-
lowing GitHub url: MariusGNN GitHub Artifact.

A.2.2 Hardware dependencies Artifact hardware depen-
dencies and the specific hardware used for each experiment
reported in the paper are provided in the GitHub reposi-
tory README file. Paper experiments were run on AWS P3
GPU machines to support training over large-scale graphs,
but MariusGNN and the artifact can be run on CPU only
hardware as well.

A.2.3 Software dependencies Artifact software depen-
dencies and the specific versions used for the paper experi-
ments are listed in the GitHub repository README file under
the ‘Build Information and Environment’ heading.

A.2.4 Benchmarks The artifact uses publicly available
GNN benchmark datasets (graphs): FB15k-237, OGBN-Arxiv,
OGBN-Papers100M, OGB-Mag240M, Freebase86M, and OGB-
WikiKG90Mv2. Scripts to download and preprocess all datasets
are included in the artifact and fully automated.

A.3 Set-up

Installation and configuration steps required to prepare the
artifact environment are described in the ‘Getting Started’
section of the GitHub repository README file. In the section
titled ‘End-to-End Docker Installation” we have provided a
Dockerfile and instructions which include all dependencies
and commands necessary to install and build the artifact.

A.4 Evaluation workflow

In this section, we provide a brief outline of the artifact func-
tionality and intended use of this artifact to reproduce the
paper’s main claims. Reproducing all experiments reported
in the paper requires significant compute resources: The ex-
periments in the paper were run on AWS P3 GPU machines
and we estimate that reproducing all the claims may cost
approximately $5000. Thus, we have organized our artifact

according to 1) a ‘minimal working example’ to demonstrate
artifact functionality and 2) a list of experiments for reproduc-

ing the numbers reported in the paper and the estimated cost
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of each experiment. We first highlight the minimal working
example that can establish artifact functionality, then list
the paper’s major claims and how each are supported by the
artifact experiments.

A.4.1 Artifact Functionality To demonstrate how the
artifact can be used to produce experimental results compar-
ing MariusGNN, DGL, and PyG, we include a set of minimal
working examples described in the GitHub README file
under the section ‘Artifact Minimal Working Example (Func-
tionality)’. These examples consist of Python scripts to train
GNNss using each system for the tasks of link prediction (on
the FB15k-237 graph) and node classification (on the OGBN-
Arxiv graph). The Python scripts follow the same format as
those used to create the paper’s experiments, but operate on
small graphs (rather than the large-scale graphs used in the
paper) and can be run without the need for GPUs.

A.4.2 Major Claims The major experimental claims made
in the paper are:

e (C1): For the task of node classification, MariusGNN
can train GNNs over large-scale graphs 3-8x faster
and up to 64X cheaper than competing systems while
reaching comparable accuracy. This is proven by the
experiment (E1) described in Section 7.2 with results
reported in Table 3.

e (C2): For the task of link prediction, MariusGNN can
train GNNs over large-scale graphs 6X faster and 13-
18X cheaper than competing systems while reaching
comparable accuracy. This is proven by the experiment
(E2) described in Section 7.2 with results reported in
Table 4.

e (C3): A key reason for the improved end-to-end perfor-
mance of MariusGNN is faster neighborhood sampling
and GNN forward pass computation. Using the DENSE
data structure, in MariusGNN sampling is 14X faster
and GPU computation is 8X faster for a four-layer GNN
when compared to baseline systems. This is proven
by the experiment (E3) described in Section 7.4 with
results reported in Table 6.

o (C4): The COMET partition replacement policy for
disk-based link prediction leads to simultaneously faster
training and higher MRR compared to existing SoTA
policies. This is proven by the experiment (E4) de-
scribed in Section 7.5 with results reported in Table 8.

A.4.3 Experiments The artifact contains a table in the
GitHub repository README file under ‘Reproducing Exper-
imental Results’ which describes what experiment to run to
reproduce the above main claims. Each experiment in the ta-
ble also contains the required hardware, cost/time estimates,
a short explanation, the expected results, and an explicit link
to one of the above four claims as well as the corresponding
table in the paper. All experiments are run in the same way
as the minimal working example and as described in the


https://github.com/marius-team/marius/tree/eurosys_2023_artifact
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‘Artifact Documentation: Running Experiments’ section of the run_experiment.py script with any additional desired
the README. That is, the experiment name is provided to arguments.
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