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Abstract. Heterogeneous player behaviors are commonly observed in
games. It is important to quantify and visualize these heterogeneities
in order to understand collective behaviors. Our work focuses on devel-
oping a Bayesian approach for uncertainty visualization in a model of
networked anagram games. In these games, team members collectively
form as many words as possible by sharing letters with their neighbors
in a network. Heterogeneous player behaviors include great differences
in numbers of words formed and the amount of cooperation among net-
worked neighbors. Our Bayesian approach provides meaningful insights
for inferring worst, average, and best player performance within behav-
ioral clusters, overcoming previous model shortcomings. These inferences
are integrated into a simulation framework to understand the implica-
tions of model uncertainty and players’ heterogeneous behaviors.

Keywords: agent-based simulation, interpretable inference, models of
heterogeneous behaviors, networked data, uncertainty visualization

1 Introduction
1.1 Background and Motivation
There are many variants of anagram games. Most involve either the unscrambling
of letters to form a single unique word or finding as many words as possible from
a collection of letters. Anagram games involving single individuals have been
studied for over 50 years. As an early example from the 1960s, anagram games
were used as priming activities to study anxiety [16], i.e., anagram games are
played in a way to induce player anxiety. Also dating from the 1960s, these
games have been studied in their own right, e.g., to assess the effects of letter
rearrangement and word frequency on player performance [6].

Evaluation of group anagram games, where players cooperate to form words,
is a much more recent phenomenon. A ground-breaking work in [2] used in-
person group anagram games to prime people to form collective identity. The
work in [1] performed online group anagram games by imposing a network on
game players to control their interactions. Our focus is to model the games in [1],
which we now overview.
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The experimental networked group anagram game (NGrAG) setup is shown
in Figure 1a. Remote human subjects play the game through web browsers.
Each player is provided three initial letters and over a 5-minute game duration,
players try to form as many words as possible as a team. Players split evenly the
total earnings from the game, which is based on the number of words the team
forms. Players cooperate by sharing their available letters with their distance-1
neighbors. When a player vl shares a letter, she retains a copy of the letter; this
is to motivate (mutual) assistance among players. Also, once a letter is acquired,
it can be used any number of times in one word and can be used in any number
of words (i.e., there is no mechanism or action by which a player loses a letter).
Words must be at least three letters. A player is free to take any of the actions in
Figure 1b, any number of times and in any order. See [1] for additional details.
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(b) 4 possible player actions

Fig. 1: (a) Illustrative networked group anagram game (NGrAG) with four re-
mote players (v1 through v4) and four communication channels (in blue). Players
participate through their web browsers. A player’s initially assigned letters are
in boxes. (b) Four actions that may be taken by any player, at any time during
the 5-minute NGrAG. Actions can be repeated by a player any number of times.
The action vector a is a = (a1, a2, a3, a4), with ai given in the graphic.

The network has at least three roles in NGrAGs, and these are intertwined
with game player behavior (i.e., action) models. First, the network determines
the number of neighbors (i.e., degree) of an (ego) player. Section 2.1 states how
ego game player data are partitioned by degree in developing behavior models.
Second, the letters assigned to those neighbors, along with those of the ego
player, determine the words an ego player can form. Third, the behaviors of the
neighbor nodes are influenced by their degrees—as for the ego player, in the first
point—and hence these neighbors’ interactions with the ego (e.g., requesting
letters) are dependent on their local network structure.

1.2 Novelty and Contributions

Modeling of NGrAGs is an interesting and challenging task. A Bayesian mod-
eling approach is described in [13]. Here, we focus on characterizing variability
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in player performance through Bayesian uncertainty visualization. Our contri-
butions follow.

First, because of using posterior samples without asymptomatic distributions
of model parameters (as in [9]), the proposed Bayesian uncertainty visualization
can greatly alleviate the data scarcity issue in model estimation. Consequently,
the obtained posterior samples of model parameters avoid extreme values that
cause some transition probabilities πij to be 0 or 1. See Sections 2 and 4 and
Figure 2.

Second, the proposed Bayesian uncertainty visualization is a first work to
appropriately visualize the uncertainties in data and models for NGrAGs. Dif-
ferent from previous work [9], the proposed method emphasizes the visualization
of uncertainty in a comprehensive manner using a two-dimensional bubble plot
described in Section 3. Such a plot can reflect uncertainties of a player’s active-
ness (i.e., non-idle actions). Moreover, the location, width, and height of bubbles
represent the mean and standard deviations of the probabilities inferred from
the posterior samples of model parameters. Plots of results from our experiments
and analyses are in Section 4.

Third, uncertainty visualization enhances agent-based modeling and simu-
lation (ABMS) of these games. We can naturally identify, interpret, and model
worst, average, and best categories of player performance, even within one cluster
of player behavior. We embed these interpretable inferences within a simulation
platform. We demonstrate these effects by simulating NGrAGs that go beyond
the conditions for which experiments were conducted (Section 5). The network
of each simulated game is fixed, consistent with the experiments being modeled.

Our last contribution is broader in scope. The proposed Bayesian uncertainty
visualization greatly enhances the explainability of uncertainty quantification for
NGrAGs. For a complex system such as a NGrAG, in contrast to “one-shot”
games where a game player only makes one binary yes/no decision in a game,
quantifying uncertainty for model and data needs to be properly visualized in
order to gain meaningful insights. It is precisely this need that motivated this
work, which is an outgrowth of the work in [9]. The proposed method can be
a good exemplar to achieve such an objective, and can be applied for visualiz-
ing uncertainty in other networked applications. Specific works are provided in
Related Work Section 1.3 below.

1.3 Related Work

Modeling of network games and data. There are multiple works [9] [13]
related to the proposed method. In [13], a Bayesian model of human behavior in
anagram games is presented. However, that work does not address methods to
identify worst, average, and best behaviors within a Bayesian context. A process
of identifying best, average, and worst behaviors within behavioral clusters is
presented in [9]. However, that anagram model for determining a player’s next
action in a game is based on asymptotic normal distributions for the primary
behavioral matrix B (presented below), rather than on posterior distributions,
as we do here. Most importantly, neither of those works address uncertainty
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visualization, as in this work. Other games incorporate multiple player actions
over time, e.g., [11, 17]. These games, like ours, use fixed networks. Other types
of network models, for other phenomena, use evolving networks, e.g., [5].

Bayesian visualization and uncertainty visualization. Visualization is a
vital tool for data analysis to describe uncertainties in data [3, 4]. The effective
visualization of uncertainty is commonly recognized as a challenging task [10, 14].
Potter et al. [15] presented a summary of the state-of-the-art techniques in un-
certainty visualization, including comparison techniques, attribute modification,
and image discontinuity. Gabry et al. [7] illustrated the role of visualization
in exploratory data analysis in the context of a Bayesian workflow. House et
al. [8] developed Bayesian visual analytics (BaVA) to justify Bayesian sequen-
tial update of parameters. Our work aims to visualize uncertainty in a Bayesian
framework to effectively and accurately identify the uncertainty in the data and
heterogeneous behaviors of players.

2 State Transition Model and Extension

2.1 State Transition Model

Agent-based models (ABMs) for the NGrAG represent the game as a discrete-
time stochastic process. That is, at each time step, a player can transition to
one of the four states (actions a1, a2, a3, and a4); see Figure 1b. In our previous
work [13], a Bayesian clustering-based UQ framework is developed as follows.
Based on statistical analysis of the game data, we first partitioned the players
into two groups: those with less than three neighbors (group g = 1) and those
with three or more neighbors (group g = 2). Then we defined two variables xe
(for engagement) and xw (for forming words), where xe is the sum of the number
of requests and the number of replies that a player sends and xw is the number
of words a player forms in a game. Based on these two standardized variables,
we applied the Dirichlet process (DP)-based Bayesian clustering approach [12]
with a specific penalty parameter λ (λ = 2.5) such that when a point is farther
than λ away from every existing cluster center, a new cluster will be formed with
this point in it. In this way, we further partitioned the players in the same group
into four clusters where those within the same cluster have similar activity levels
in the game. For data in each cluster, player behaviors in a game are modeled
using the multinomial logistic regression with four predictors shown in Table 1:

πij = exp(zTβ
(i)
j )/

l∑
m=1

exp(zTβ(i)
m ), j = 1, . . . , l, (1)

where

– l = 4 since we consider four actions a1, a2, a3, and a4.
– πij is the probability of the player, who took action ai at time t, taking

action aj at time t+ 1.
– z = (1, ZB(t), ZL(t), ZW (t), ZC(t))T is the predictor vector; Table 1.
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– β
(i)
j = (β

(i)
j1 , . . . , β

(i)
j5 )T is the regression coefficient parameter vector.

Variable Description

ZB(t) Size of buffer of letter requests that player v has yet to reply to at time t.
ZL(t) Number of letters that v has available to use at t to form words.
ZW (t) Number of valid words that v has formed up to t.
ZC(t) Number of consecutive time steps that v has taken the same action.

Table 1: The four temporal variables of players in the NGrAG and model.

For a given action ai at time t, the parameters can be expressed as a ma-

trix B(i) = (β
(i)
1 , . . . ,β

(i)
l )Tl×(l+1) for i = 1, . . . , 4. Thus, from the game network

structure (which determines a node’s degree and hence its group g) and the per-
formance cluster c determined for a node/player (c = 1, 2, 3, or 4), a particular
model based on Equation (1), with parameter matrix B(i), is assigned to a game
player to predict the probability of next actions.

2.2 Motivation for Model Extension

With the Bayesian approach, we can obtain the posterior distribution for the
parameter matrix B(i). One then can quantify the uncertainty of parameters by
conducting posterior inference. Markov chain Monte Carlo (MCMC) methods are
commonly used to obtain samples from the posterior distribution. Posterior in-
ference can then be conducted empirically. In order to quantify the heterogeneous
behavior of players within a cluster, our strategy is to identify the parameter
matrices that generate the most active behavior, the least active behavior, and
the average behavior in terms of probability of being non-idle. Integrating these
different levels of performance into the simulation of NGrAG will better capture
the heterogeneity among players because we can assign to players these differ-
ent behaviors. These considerations lead to the new uncertainty visualization
method in Section 3.

3 Bayesian Uncertainty Visualization Method

This section details the proposed Bayesian uncertainty visualization method.
The goals are to visualize the uncertainty within and between clusters and to
identify the heterogeneous (i.e., worst, average, and best) behaviors of players
within each cluster.

For each observation in the training data, one can obtain the corresponding
predictor vector z. To directly identify the activity level, we transform the pa-
rameter matrix B(i) to a probability vector. In each cluster, players with the
same initial action ai share the same parameter matrix B(i). Thus for these
players, without loss of generality, we omit i in B(i) and πij to get a parameter
matrix B and a probability vector π = (π1, . . . , π4) containing the probabilities
of the next action using Equation (1). Therefore, for a B matrix, a training data
set of n observations that have same initial action can generate n probability
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vectors. The mean of these probability vectors and the corresponding standard
error can be obtained. Given a sequence of B matrices, we can compute a se-
quence of mean probability vectors and their standard errors. To visualize the
uncertainty among these mean probability vectors, we create a bubble plot where
the center of each bubble represents the mean probability vector for a parameter
matrix, with the width to be 2×SE(π̄r

4) and the height to be 2×SE(π̄r
1). Using

such a plot, it is easy to quantify the activity levels within a cluster and identify
the worst, average, and best behaviors. The probability of forming words (π4)
in the probability vector represents the players’ ability to form words and the
probability of not being idle (1 − π1) indicates the players’ level of activity in
the game—a small to-idle probability π1 suggests a high activity level.

We summarize the proposed method of uncertainty quantification within a
cluster as follows. First, we use Metropolis-Hasting (M-H) algorithm to get R
random samples ofBr (r = 1, . . . , R) from the posterior distribution after a burn-
in period (taken to be 1000). Second, for each Br, we apply the size n training

data to Equation (1) to produce n probability vectors π̂r,l = (π̂r,l
1 , π̂r,l

2 , π̂r,l
3 , π̂r,l

4 ),
l = 1, . . . , n. Then the mean probability vector and its standard error are calcu-
lated:

π̄r =
1

n

n∑
l=1

π̂r,l = (π̄r
1, π̄

r
2, π̄

r
3, π̄

r
4)T ,

SE(π̄r) =
1

n

√√√√ n∑
l=1

(π̂r,l − π̄r)2 = (SE(π̄r
1), SE(π̄r

2), SE(π̄r
3), SE(π̄r

4))T .

Third, one can draw a bubble plot of 1− π̄1 against π̄4, with one bubble for each
Br, r = 1, . . . , R. Each bubble is an ellipse centered at the mean probability
(π̄r

4, 1− π̄r
1) with width 2× SE(π̄r

4) and height 2× SE(π̄r
1). Fourth, note that a

low mean to-idle probability (π̄1) suggests a high engagement level, and a player
with a high mean to-idle probability is less active. Accordingly, we select the Br

matrix with the maximum π̄r
1 as the matrix of the worst behavior, and the one

with the minimum π̄r
1 as the matrix of the best behavior. The Br matrix of the

average behavior is one that produces the mean of π̄r
1, r = 1, . . . , R.

A key advantage of this proposed method is that we can visually analyze the
uncertainty among data. In the bubble plot, it is easy to find the best and the
worst behavior and view the heterogeneous behaviors within each cluster. More-
over, the size of the bubble can help us visually detect the variability among the
observations. One can also quantitatively compare the activity ranges of clusters
with players that have the same number of neighbors to further discover the
differences between clusters within the same group (g = 1 or 2). Note that this
visualized uncertainty quantification was not contained in the previous work [9].

Another advantage is that our Bayesian method alleviates the extreme value
problem caused by data scarcity in the previous model [9]. When the size of the
training data in each category is unbalanced (e.g., 556 observations have final
state idle while only 4 observations have final state reply (a2) and request (a3) in
group g = 1 cluster c = 2 with initial state a3), the asymptotic normal distribu-
tion of B would have a very large variance. Thus, the estimated parameter in B
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Fig. 2: The three histograms are for group 1, cluster 2, where the initial state
is request (a3). M-H algorithm is applied to draw 1000 B matrix samples after
1000 burn-in. The first histogram is for the probability of transitioning to idle
(π1), the second one is for the probability of transitioning to reply (π2), and the
third one is for the probability of request (π3). The probability of forming words
(π4) is 0 because there is no forming words action a4 in the training data. These
data demonstrate that the extreme value problem is largely alleviated.

can be unexpectedly large and cause an extreme value in the probability vector
π and an infinite loop in state transitions in the ABM. However, the memory-
lessness property of MCMC can avoid this problem since every sample is only
generated based on the previous one. For this reason, the Bayesian approach
avoids the extreme scenarios of players’ actions.

4 Visualization of Heterogeneous Behaviors

This section investigates uncertainties within clusters, heterogeneous behaviors,
and differences in activity levels between clusters, using the game data and the
models of Sections 2 and 3. Under the Bayesian setting, for each initial state in
a cluster, 1000 samples of B matrices are drawn using the M-H algorithm after
1000 burn-in. Figure 2 reports the histograms of probabilities for the aforemen-
tioned group 1, cluster 2 with initial state being request (a3). It is seen that the
Bayesian uncertainty quantification methods can alleviate extreme value prob-
lems (by producing probabilities away from 0 and 1) caused by data scarcity.

The bubble plots for group 1, cluster 1 and cluster 4, with the initial state
being idle (a1) are presented in Figures 3a and 3b, respectively. Clearly, there
is uncertainty within the clusters. Moreover, the size of the bubble reflects the
variability in the observations and the color reflects the replications. The darker
the bubble, the more samples have this transition probability. It is seen in each
plot that samples are more gathered at the maximize-a-posterior (MAP) estima-
tion (the blue bubble) and the standard error of to-word (transition) probability
is larger than that of to-idle probability in most cases.

Figure 4 contains bubble plots of mean probability for initial state idle (a1) in
the top row, and for initial state reply (a2) in the bottom row. When the initial
state is idle, Figures 4a and 4b show that four clusters are well separated and
the activity level is ascending, supporting the rationality of clustering players
by behavior. It is also seen that group 2 is more active than group 1 with a
larger probability of forming words and being non-idle, on a per cluster basis.
This corresponds to our assumption that players with more neighbors will be
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(a) (b)

Fig. 3: (a) Bubble plot of group 1, cluster 1, where initial state is idle (a1).
(b) Bubble plot of group 1, cluster 4, where initial state is idle (a1). Each bubble
is a ellipse centered at the mean probability (π̄r

4, 1− π̄r
1) with width 2× SE(π̄r

4)
and height 2× SE(π̄r

1), where SE(π̄r
4) and SE(π̄r

1) are standard errors of mean
to-word probability and mean to-idle probability, respectively. The blue bubbles
are the MAP results. The worst, average, and best performance bubbles are
noted.

more active in the NGrAG. When the initial state is reply (second row of plots),
there are no data points of forming words in the training data of group 1. Thus,
the mean probabilities of forming words and the corresponding standard errors
will be zero. Consequently, we compare the activity level only based on the
probability of being non-idle as shown in Figure 4c.

5 Agent-Based Simulations of Networked Anagram
Games and Results

In this section, we build ABMs and run them in a software framework to simulate
the NGrAG. For particular input conditions and models, we provide results for
individual players (also referred to as nodes or agents) and for aggregated totals
over all players.

5.1 Simulation Process

ABMs are designed and constructed from the models of Sections 2 and 3. Inputs
to simulations are as follows. The network of Figure 5 represents the possible
interactions among the seven game players. It contains players in groups g = 1
and 2. Each player is provided four letters, and the letters are purposely specified
to enable players to form words, e.g., one player v2 is given letters {i, l,m, n} and
neighboring players are given complementary letters, e.g., v3 is assigned letters
{o, p, r, s}. Owing to space considerations, we examine two clusters: cluster c = 3
for g = 1 and cluster c = 2 for g = 2. With these clusters, we then execute
the worst, average, and best behavior models that are produced and evaluated
in Sections 3 and 4. Note that our results illustrate differences among worst,
average, and best models, but the results shown are not the largest differences



Bayesian Visualization 9

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3
Probability of forming words

P
ro

ba
bi

lit
y 

of
 n

ot
 id

le

cluster

1

2

3

4

Bubble Plot of Group 1 Initial Action Idle

(a)

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111



4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3
Probability of forming words

P
ro

ba
bi

lit
y 

of
 n

ot
 id

le

cluster

1

2

3

4

Bubble Plot of Group 2 Initial Action Idle

(b)

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444

0.0

0.2

0.4

−0.02 0.00 0.02
Probability of forming words

P
ro

ba
bi

lit
y 

of
 n

ot
 id

le

cluster

1

2

3

4

Bubble Plot of Group 1 Initial Action Reply

(c)

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444

0.0

0.2

0.4

−0.02 0.00 0.02
Probability of forming words

P
ro

ba
bi

lit
y 

of
 n

ot
 id

le
cluster

1

2

3

4

Bubble Plot of Group 2 Initial Action Reply

(d)

Fig. 4: (a) Bubble plot for group 1 where initial action is idle (a1). The bubbles for
cluster 1 and cluster 4 are shown in Fig. 3a and Fig. 3b, respectively. (b) Bubble
plot for group 2 where initial action is idle (a1). (c) Bubble plot for group 1
where initial action is reply (a2). Note that the probabilities of forming words
are 0 for all clusters. We assign different values for bubbles in different clusters
to avoid overlapping. (d) Bubble plot for group 2 where initial action is reply
(a2). Note that the probabilities of forming words are 0 for cluster 1 and cluster
4. We assign a different value for bubbles in cluster 4 to avoid overlapping.

that exist across all [g, c] pairs. This is to emphasize that the differences that
we observe from the simulations are pervasive across all model parameters; an
expanded version will address the full range of results.

One simulation is comprised of 100 iterations or runs. Each iteration is a
complete simulation of one NGrAG, from time t = 0 to t = 300 seconds where
players request letters from neighbors, reply to neighbor letter requests, and
form words, as in the experiments. Our time step is one second, justified by
the fact that players do not take successive actions among request letter, reply
to letter request, and form word within one second in the online experiments.
Indeed, actions at time steps are mostly idle or thinking. The difference among
iterations within a simulation is the stochasticity of the models in producing
probabilities of actions πij of players at each t. Consequently, when we refer
to “average” results below, we mean time point-wise averages across the 100
iterations, unless specified otherwise. Finally, we use the “worst,” “average,”
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and “best” models in the results below. In a simulation, all players use the same
model, so that, for example, if we state that one player is represented by the
best model, then all players in that simulation were assigned the best model.

0

1 2

4

3

5 6

Fig. 5: Seven node (agent) game network on which simulations are run. Red
(resp., brown) nodes are low (resp., high) degree nodes of degree d = 2 (resp.,
d = 3). Therefore, red (resp., brown) nodes are in group g = 1 (resp., g = 2).

5.2 Visualization of Simulation Results

Figure 6 provides results for a degree d = 3 player (agent 3) and a d = 2 player
(agent 5) from the game setup in Figure 5. The [g, c] values are given in the
caption of Figure 6. Data in the first row of plots were generated with the worst
behavior models for the respective [g, c] pairs. In Figure 6a, the time histories
of actions are given for one of the 100 iterations: number of replies received
(rerplRec), of replies sent (replSent), of requests received (reqRec), of requests
sent (reqSent), and of words formed (words). The stair-stepped nature of the
curves is due to the fact that these curves are from one iteration and so the
plotted actions are discrete. In Figure 6b, the curves correspond to the same
action histories, but are smoother because they represent the time point-wise
average of all 100 iterations. These first two plots are for agent 3. Figure 6c
depicts corresponding average data for player 5. Note that a player with fewer
neighbors (player 5) forms more words than a player with a greater number
of neighbors (player 3). This is because player 5’s behavior is from cluster 3 of
group 1, while player 3’s behavior is from cluster 2 of group 2; e.g., see Figures 4a
and 4b and the x-axis values for the two clusters. This again demonstrates the
efficacy of identifying heterogeneous behaviors of players.

Figures 6d through 6f provide the corresponding plots to those in the first
row, but now the results are for the best model. In Figure 6e for player 3, the
number of words is greater than that for the worst model, although the numbers
of sharing actions are about the same. This same comparison holds for player 5
in Figure 6f versus Figure 6c.

Figure 7 contains aggregate data over all seven game players. Time histories
of the total number of words formed for the worst, average, and best models are
given in Figure 7a; the numbers of words increase in this order of the models.
Figure 7b provides similar data for the sharing actions of requests and replies,
but now only for the worst (dashed curves) and best (solid curves) models. Now,
the worst and best model results overlap, with no clear-cut better behavior. This
is partially a consequence of the fact that numbers of requests and replies are
bounded by the number of a player’s neighbors and the number of letters per
player. Figure 7c shows the time point-wise average probability over all players
of taking each action. These probabilities reflect the action counts in the previous
two plots.
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(c) worst: agent 5, ave

0 100 200 300
Time (Seconds)

0
5

10
15
20
25

Ac
tio

n 
Co

un
ts replRec

replSent
reqRec
reqSent
words

(d) best: agent 3, one iter (e) best: agent 3, ave
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Fig. 6: Results of anagram simulations with seven players. Data in plots (a)
through (c) are for the worst behavior model. The curves are game time histories
of counts of actions over the 300 second game. (a) action histories for agent 3
in one iteration, (b) average action histories for agent 3, and (c) average action
histories for agent 5. Data in plots (d) through (f) are the respective plots for
the best behavior model.
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(b) sum of requests & replies
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Fig. 7: Aggregate simulation results across all seven nodes (agents) in a
NGrAG.(a) Sum of words formed by all players in time for worst (w-words),
average (a-words), and best (b-words) behavior models. (b) Sum of requests and
replies across all players. Dashed curves correspond to worst behavior model
(prefix “w-” in legend) and solid curves correspond to best behavior model (pre-
fix “b-” in legend). (c) Average action probabilities across all seven players in a
game, in time, for replying to letter requests (reply), requesting letters (request),
and forming words (word).

6 Summary

This work presents a Bayesian uncertainty visualization method of complicated
multi-player game data. Our step-by-step procedures have been applied to a net-
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worked group anagram game, where players cooperate to share letters and form
words. These visualizations can effectively assist in assessing model uncertain-
ties, and in improving the interpretable inference of player behaviors. Software
modules of these models are used to simulate the game for conditions beyond
the experiments.
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