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Abstract

In this work, we propose a new algorithm Pro-

jectiveGeometryResponse (PGR) for locally

differentially private (LDP) frequency estima-

tion. For a universe size of k and with n
users, our ε-LDP algorithm has communication

cost dlog2 ke bits in the private coin setting

and ε log2 e + O(1) in the public coin setting,

and has computation cost O(n+ k exp(ε) log k)
for the server to approximately reconstruct the

frequency histogram, while achieving optimal

privacy-utility tradeoff (not just asymptotically).

In many parameter settings used in practice this is

a significant improvement over the O(n + k2)
computation cost that is achieved by the re-

cent PI-RAPPOR algorithm (Feldman and Tal-

war; 2021). Our empirical evaluation shows a

speedup of over 50x over PI-RAPPOR while

using approximately 75x less memory for prac-

tically relevant parameter settings. In addition,

the running time of our algorithm is within an

order of magnitude of HadamardResponse

(Acharya, Sun, and Zhang; 2019) and Recur-

siveHadamardResponse (Chen, Kairouz, and

Ozgur; 2020) which have significantly worse re-

construction error. The error of our algorithm es-

sentially matches that of the communication- and

time-inefficient but utility-optimal SubsetSelec-

tion (SS) algorithm (Ye and Barg; 2017). Our new

algorithm is based on using Projective Planes over

a finite field to define a small collection of sets

that are close to being pairwise independent and a

dynamic programming algorithm for approximate

histogram reconstruction on the server side. We

also give an extension of PGR that allows trading

off computation time with utility smoothly.
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1. Introduction

In the so-called federated setting, user data is distributed

over many devices that each communicate to some central

server, after some local processing, for downstream analyt-

ics and/or machine learning tasks. We desire such schemes

which (1) minimize communication cost, (2) maintain pri-

vacy of the user data while still providing utility to the

server, and (3) support efficient algorithms for the server to

extract knowledge from messages sent by the devices. Such

settings have found applications to training language mod-

els for such applications as autocomplete and spellcheck,

and other analytics applications in Apple iOS (Thakurta

et al., 2017) and analytics on settings in Google Chrome

(Erlingsson et al., 2014).

The gold standard for protecting privacy is for a scheme to

satisfy differential privacy. In the so-called local model that

is relevant to the federated setting, there are n users with

each user i holding some data di ∈ D. Each user then uses

its own private randomness ri and data di to run a local

randomizer algorithm that produces a random message Mi

to send to the server. We say the scheme is ε-differentially

private if for all users i, any possible message m, and any

d 6= d′,

Pr(Mi = m|di = d) ≤ eε Pr(Mi = m|di = d′).

Note a user could simply send an unambiguous encoding

of di, which allows the server to learn di exactly (perfect

utility), but privacy is not preserved; such a scheme does

not preserve ε-DP for any finite ε. On the opposite extreme,

the user could simply send a uniformly random message

that is independent of di, which provides zero utility but

perfect privacy (ε = 0). One can hope to develop schemes

that smoothly increase utility by relaxing privacy (i.e., by

increasing ε).

This work addresses the problem of designing efficient

schemes for locally differentially private frequency esti-

mation. In this problem, one defines a histogram x ∈ R
k

where xd is the number of users i with di = d, and k = |D|.
From the n randomized messages it receives, the server

would like to approximately reconstruct the histogram, i.e.,

compute some x̃ such that ‖x− x̃‖ is small with good prob-

ability over the randomness r = (r1, . . . , rn), for some

norm ‖ · ‖. Our goal is to design schemes that obtain the
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best-known privacy-utility trade-offs, while being efficient

in terms of communication, computation time, and memory.

In this work we measure utility loss as the mean squared er-

ror (MSE) Er
1
k [‖x− x̃‖22], with lower MSE yielding higher

utility. Note that such a scheme should specify both the

local randomizer employed by users, and the reconstruction

algorithm used by the server.

There are several known algorithms for this problem; see

Table 1. To summarize, optimal utility was achieved in prior

work by SubsetSelection (matching the lower bound of

(Ye & Barg, 2019), including the leading constant factor

of 4) with roughly similar utility achieved by the RAP-

POR algorithm (Erlingsson et al., 2014) that is based on the

classical binary randomized response (Warner, 1965). Un-

fortunately, both RAPPOR and Subset Selection have very

high communication cost of ≈ kH(1/(eε+1)), where H is

the binary entropy function and server-side running time of

Õ(nk/ exp(ε)). Large k is common in practice, e.g., k may

be the size of a lexicon when estimating word frequencies

to train language models. This has led to numerous and

still ongoing efforts to design low-communication protocols

for the problem (Hsu et al., 2012; Erlingsson et al., 2014;

Bassily & Smith, 2015; Kairouz et al., 2016; Wang et al.,

2019; 2017; Ye & Barg, 2017; Acharya et al., 2019; Bun

et al., 2019; Bassily et al., 2020; Chen et al., 2020; Feldman

& Talwar, 2021; Shah et al., 2021).

One simple approach to achieve low communication and

computational complexity is to use a simple k-ary Random-

izedResponse algorithm (e.g. (Wang et al., 2017)). Unfor-

tunately, its utility loss is suboptimal by up to an Ω(k/eε)
factor; recall k is often large and ε is at most a small con-

stant, and thus this represents a large increase in utility loss.

In the ε < 1 regime asymptotically optimal utility bounds

are known to be achievable with low communication and

computational costs (Bassily & Smith, 2015; Bun et al.,

2019; Bassily et al., 2020). The first low-communication

algorithm that achieves asymptotically optimal bounds in

the ε > 1 regime is given in (Wang et al., 2017). It com-

municates O(ε) bits and relies on shared randomness. How-

ever, it matches the bounds achieved by RAPPOR only

when eε is an integer and its computational cost is still very

high and comparable to that of RAPPOR. Two algorithms,

HadamardResponse (Acharya et al., 2019) and Recur-

siveHadamardResponse (Chen et al., 2020), show that it

is possible to achieve low communication, efficient compu-

tation (only Θ(log k) slower than RandomizedResponse)

and asymptotically optimal utility. However, their utility

loss in practice is suboptimal by a constant factor (e.g. our

experiments show that these algorithms have an MSE that

is over 2× higher for ε = 5 than SubsetSelection; see

Figure 2).

Recent work of Feldman and Talwar (Feldman & Talwar,

2021) describes a general technique for reducing com-

munication of a local randomizer without sacrificing util-

ity and, in particular, derives a new low communication

algorithm for private frequency estimation via pairwise

independent derandomization of RAPPOR. Their algo-

rithm, referred to as PI-RAPPOR, achieves the same utility

loss as RAPPOR and has the server-side running time of

Õ(min(n+ k2, nk/ exp(ε))). The running time of this al-

gorithm is still prohibitively high when both n and k are

large.

We remark that while goals (1)-(3) from the beginning of

this section are all important, goal (2) of achieving a good

privacy/utility tradeoff is unique in that poor performance

cannot be mitigated by devoting more computational re-

sources (more parallelism, better hardware, increased band-

width, etc.). After deciding upon a required level of privacy

ε, there is a fundamental limit as to how much utility can

be extracted given that level of privacy; our goal in this

work is to understand whether that limit can be attained in a

communication- and computation-efficient way.

Our main contributions. We give a new private fre-

quency estimation algorithm ProjectiveGeometryRe-

sponse (PGR) that maintains optimal utility and low com-

munication while significantly improving computational

efficiency amongst algorithms with similarly good utility.

Using our ideas, we additionally give a new reconstruc-

tion algorithm that can be used with the PI-RAPPOR

mechanism to speed up its runtime from O(k2/ exp(ε))
to O(k exp(2ε) log k) (albeit, this runtime is still slower

than PGR’s reconstruction algorithm by an exp(ε) fac-

tor). We also show a general approach that can further

improve the server-side runtime at the cost of slightly higher

reconstruction error, giving a smooth tradeoff: for any

prime 2 ≤ q ≤ exp(ε) + 1, we can get running time

O(n + qk log k) with error only (1 + 1/(q − 1)) times

larger than the best known bound1. Note that for q = 2
we recover the bounds achieved by HR and RHR. Our

mechanisms require dlog2 ke per device in the private coin

model, or ε log2 e + O(1) bits in the public coin model

(see Appendix B). As in previous work, our approximate

reconstruction algorithm for the server is also parallelizable,

supporting linear speedup for any number of processors

P ≤ min{n, k exp(ε)}. We also perform an empirical

evaluation of our algorithms and prior work and show that

indeed the error of our algorithm matches the state of the art

will still being time-efficient.

As has been observed in previous work (Acharya et al.,

1For both PGR and HPGR we have stated runtime bounds
assuming that certain quantities involving k, exp(ε) are prime
powers. If this is not the case, runtimes may increase by a factor
of exp(ε) for PGR, or q for HPGR; we note that PI-RAPPOR
also has this feature.
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scheme name communication utility loss server time

RandomizedResponse dlog2 ke
n(2eε+k)

(eε−1)2
n+ k

RAPPOR (Erlingsson et al., 2014) k 4neε

(eε−1)2
nk

SubsetSelection (Ye & Barg, 2017; Wang et al., 2019) k

eε
(ε+O(1)) 4neε

(eε−1)2
n k

eε

PI-RAPPOR (Feldman & Talwar, 2021) dlog2 ke+O(ε) 4neε

(eε−1)2
min(n+ k2, n k

eε
), or

n+ ke2ε log k (this work)

HadamardResponse (Acharya et al., 2019) dlog2 ke
36neε

(eε−1)2
n+ k log k

RecursiveHadamardResponse (Chen et al., 2020) dlog2 ke
8neε

(eε−1)2
n+ k log k

ProjectiveGeometryResponse dlog2 ke
4neε

(eε−1)2
n+ keε log k

HybridProjectiveGeometryResponse dlog2 ke (1 + 1
q−1

) 4neε

(eε−1)2
n+ kq log k

Table 1. Known local-DP schemes for private frequency estimation compared with ours. Utility bounds are given up to 1 + ok(1)
multiplicative accuracy for ease of display and running times are asymptotic. For brevity we only state bounds for ε ≤ log k. Some

of algorithms assume k is either a power of 2 or some other prime power and otherwise potentially worsen in some parameters due to

round-up issues; we ignore this issue in the table. The communication and server time for RAPPOR are random variables which are

never more than k and nk, respectively, but RAPPOR can be implemented so that in expectation the communication and runtimes are

asymptotically equal to SubsetSelection. For HybridProjectiveGeometryResponse, q can be chosen as any prime in [2, exp(ε) + 1].
The utility loss here is the proven upper bound on the variance for PGR, HR and RHR, and the analytic expression for the variance for

the others. The communication bounds are in the setting of private coin protocols. As with RHR, PGR and HPGR can also both achieve

improved communication in the public coin model; see Appendix B.

2019), the problem of designing a local randomizer is

closely related to the question of existence of set systems

consisting of sets of density ≈ exp(−ε) which are highly

symmetric, and do not have positive pairwise dependencies.

The size of the set system then determines the communica-

tion cost, and its structural properties may allow for efficient

decoding. We show that projective planes over finite fields

give us set systems with the desired properties, leading to

low communication and utility loss achieving the known

lower bound of (Ye & Barg, 2019) (including even the lead-

ing constant). We also show a novel dynamic programming

algorithm that allows us to achieve server runtime that is

not much worse than the fastest known algorithms.

As in a lot of recent work on this problem, we have con-

centrated on the setting of moderately large values for the

local privacy parameter ε. This is a setting of interest due

to recent work in privacy amplification by shuffling (Bit-

tau et al., 2017; Cheu et al., 2019; Erlingsson et al., 2019;

Balle et al., 2019; Feldman et al., 2021) that shows that

local DP responses, when shuffled across a number of users

so that the server does not know which user sent which

messages, satisfy a much stronger central privacy guarantee.

Asymptotically, ε-DP local randomizers aggregated over

n users satisfy (O(

√

eε ln 1
δ

n ), δ)-DP. The hidden constants

here are small: as an example with n = 10, 000 and ε = 6,

shuffling gives a central DP guarantee of (0.3, 10−6)-DP.

This motivation from shuffling is also the reason why our

work concentrates on the setting of private coin protocols,

as shared randomness seems to be incompatible with shuf-

fling of private reports. We note that while constant factors

improvement in error may seem small, these algorithm are

typically used for discovering frequent items from power

law distributions. A constant factor reduction in variance of

estimating any particular item frequency then translates to a

corresponding smaller noise floor (for a fixed false positive

rate, say), which then translates to a constant factor more

items being discovered.

1.1. Related Work

A closely related problem is finding “heavy hitters”, namely

all elements j ∈ [k] with counts higher than some given

threshold; equivalently, one wants to recover an approximate

histogram x̃ such that ‖x − x̃‖∞ is small (the non-heavy

hitters i can simply be approximated by x̃i = 0). In this

problem the goal is to avoid linear runtime dependence on k
that would result from doing frequency estimation and then

checking all the estimates. This problem is typically solved

using a “frequency oracle” which is an algorithm that for a

given j ∈ [k] returns an estimate of the number of j’s held

by users (typically without computing the entire histogram)

(Bassily & Smith, 2015; Bassily et al., 2020; Bun et al.,

2019). Frequency estimation is also closely related to the

discrete distribution estimation problem in which inputs

are sampled from some distribution over [k] and the goal

is to estimate the distribution (Ye & Barg, 2017; Acharya

et al., 2019). Indeed, bounds for frequency estimation can

be translated directly to bounds on distribution estimation

by adding the sampling error. We note that even for the

problem of implementing a private frequency oracle, our

PGR scheme supports answering queries faster than PI-

RAPPOR by factor of Θ(exp(ε)).
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2. Preliminaries

Our mechanisms are based on projective spaces, and below

we review some basic definitions and constructions of such

spaces from standard vector spaces.

Definition 2.1. For a given vector space V , the projective

space P (V ) is the set of equivalence classes of V \ {0},

where 0 denotes the zero vector, under the following equiv-

alence relation: x ∼ y iff x = cy for some scalar c. Each

equivalence class is called a (projective) “point” of the pro-

jective space. Let p : V \ {0} → P (V ) be the mapping

from each vector v ∈ V to its equivalence class. If V has

dimension t then P (V ) has dimension t− 1.

We will also use subspaces of the projective space P (V ).

Definition 2.2. A projective subspace W of P (V ) is a sub-

set of P (V ) such that there is a subspace U of V where

p (U \ {0}) = W . If U has dimension t then W has dimen-

sion t− 1.

It should be noted that intersections of projective subspaces

are projective subspaces. Let q be a prime power and F
t
q the

t-dimensional vector space over the field Fq . We will work

with P
(

F
t
q

)

and its subspaces.

Definition 2.3. A vector x ∈ F
t
q is called canonical if its

first non-zero coordinate is 1.

Each equivalence class can be specified by its unique canon-

ical member.

3. ProjectiveGeometryResponse
description and analysis

Our PGR scheme is an instantiation of the framework due

to (Acharya et al., 2019). In their framework, the local

randomizer is implemented as follows. There is a universe U
of outputs which we call “message space”, and each input v
has a corresponding “preferred list” of messages S(v) ⊂ U
of outputs. All the subsets S(v) for different values of

v have the same size cset. We use the name “preferred

list” because when holding v, the local randomizer is more

likely to send an element if it is preferred for v. More

specifically, any element not in S(v) is sent with probability

p, whereas those in S(v) are sent with probability eεp. Since

the probability of sending some item is 1,

eεpcset + p(|U | − cset) = 1,

so that p = 1
|U |+cset(eε−1) . Or equivalently, given the input

v, the local randomizer returns a uniformly random element

of S(v) with probability eεcset
|U |+cset(eε−1) and a uniformly

random element of U \S(v) with probability
|U |−cset

|U |+cset(eε−1) .

The crux of the construction is in specifying the universe

U and the subsets S(v). Small |U | is beneficial, as the

communication is log |U | bits.

Now we describe the preferred list construction for our new

mechanism. PGR works for k = qt−1
q−1 for some integer t

(other values of k need to be rounded up to the nearest such

value). We identify the k input values with k canonical vec-

tors in F
t
q and the corresponding projective points in P

(

F
t
q

)

.

We also identify the output values with projective points

in P
(

F
t
q

)

. The subsets S(v) are the (t − 2)-dimensional

projective subspaces of P
(

F
t
q

)

. There are qt−1
q−1 (t − 2)-

dimensional projective subspaces, which is the same as the

number of projective points. For a canonical vector v, the

set S(v) is the (t−2)-dimensional projective subspace such

that for all u ∈ p−1(S(v)), we have 〈u, v〉 = 0. Each

(t − 2)-dimensional projective subspace contains qt−1−1
q−1

projective points. In other words, each set S(v) contains
qt−1−1
q−1 messages out of the universe of qt−1

q−1 messages.

An important property of the construction is the symmetry

among the intersections of any two subsets S(v).

Claim 3.1. Consider a t-dimensional vector space V . The

intersection of any two (t− 2)-dimensional projective sub-

spaces of P (V ) is a (t − 3)-dimensional projective sub-

space.

Proof. Let I be the intersection of two projective subspaces

S1 and S2. Recall that I , S1, S2 are projective subspaces

corresponding to subspaces of V . Assume for contradiction

that the dimension d− 1 of the intersection I is lower than

t − 3. Starting from a basis v1, . . . , vd of p−1(I) ∪ {0},

we can extend it with u1, . . . , ut−1−d to form a basis of the

subspace p−1(S1) ∪ {0}. We can also extend v1, . . . , vd
with w1, . . . , wt−1−d to form a basis of p−1(S2) ∪ {0}.

Because d+2(t− 1− d) = t+ (t− 2− d) > t, the collec-

tion of vectors v1, . . . , vd, u1, . . . , ut−1−d, w1, . . . , wt−1−d

must be linearly dependent. There must exist nonzero coef-

ficients so that
∑

i αivi +
∑

j βjuj +
∑

k γkwk = 0. This

means
∑

k γkwk = −
∑

i αivi −
∑

j βjuj is a non-zero

vector in p−1(S1) ∩ p−1(S2) but it is not in p−1(I), which

is a contradiction.

Now we have cint =
qt−2−1
q−1 is the size of the intersection

of two subsets S(v) and cset =
qt−1−1
q−1 is the size of each

subset S(v). Notice that c2set ≥ k · cint i.e. (cset/cint)
2 ≥

k/cint. As mentioned above, each user with input v sends

a projective point e with probability eεp if e is in S(v) and

probability p otherwise.

The server keeps the counts on the received projective points

in a vector y ∈ Z
k. Thus, the total server storage is O (k).

We estimate xv by computing

x̃v = α





∑

u∈S(v)

yu



+ β
∑

u

yu
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where α and β are chosen so that it is an unbiased estimator.

Note
∑

u yu = n. We would like E x̃v = xv for all v.

Notice that by linearity of expectation, it suffices to focus

on the contribution to x̃v from a single user.

If that user’s input is v, the expectation of the sum Q :=
∑

u∈S(v) yu is eεpcset. On the other hand, if the input is

not v, the expectation of the sum
∑

u∈S(v)
yu is eεpcint +

p (cset − cint). We want α · E [Q] + β = [[input is v]],
where [[T ]] is defined to be 1 if T is true and 0 if false. Thus,

αeεpcset + β = 1 and αp ((eε − 1) cint + cset) + β = 0.

Substituting p and solving for α, β, we get

α =
(eε − 1) cset + k

(eε − 1) (cset − cint)
;

β = −
(eε − 1) cset + k

(eε − 1) (cset − cint)
·
(eε − 1)cint + cset
(eε − 1) cset + k

= −
(eε − 1)cint + cset
(eε − 1) (cset − cint)

.

We next state the variance, which suggests that q should be

chosen close to exp(ε) + 1 for the best utility. The proof

can be found in Appendix C.

Lemma 3.2. E

[

‖x− x̃‖
2
2

]

≤

neεc2set/c
2
int+n(k−1)((eε−1)+cset/cint)

2

(eε−1)2(cset/cint−1)
. In particular,

if cset/cint = eε + 1 then E

[

1
k ‖x− x̃‖

2
2

]

≤ n
k + 4neε

(eε−1)2

Next we discuss the algorithms to compute x̃v. The naive

algorithm takes O(kcset) = O(k2/q) time and this is the

algorithm of choice for t ≤ 3. For t > 3, we can use

dynamic programming to obtain a faster algorithm. Note in

the below that q should be chosen close to exp(ε) + 1.

Theorem 3.3. In the ProjectiveGeometryResponse

scheme, there exists an O((qt−1)/(q−1)tq) time algorithm

for server reconstruction, using O((qt−1)/(q−1)) memory.

These bounds are at best O(ktq) time and O(k) memory,

and increase by at most a factor of q each if rounding up to

the next power of q is needed so that (qt − 1)/(q − 1) ≥ k.

Proof. We use dynamic programming. For a ∈ F
j
q, b ∈

F
t−j
q , z ∈ Fq, where a is further restricted to have its first

nonzero entry be a 1 (it may also be the all-zeroes vector),

and b is restricted to be a canonical vector when j = 0,

define

f(a, b, z) =
∑

prefj(u)=a
〈sufft−j(u),b〉=z

yu,

where prefi(u) denotes the length-i prefix vector of u, and

suffi(u) denotes the length-i suffix vector of u. Then, we

would like to compute

x̃v = α





∑

u∈S(v)

yu



+ β
∑

u

yu = α · f(⊥, v, 0) + βn,

for all projective points v, where ⊥ denotes the length-0
empty vector. We next observe that f satisfies a recurrence

relation, so that we can compute the full array of values

(f(⊥, v, 0))v is canonical efficiently using dynamic program-

ming and then efficiently obtain x̃ ∈ R
k.

We now describe the recurrence relation. For w ∈ Fq and a

vector v, let v ◦ w denote v with w appended as one extra

entry. If j denotes the length of the vector a, then the base

case is j = t. In this case, f(a,⊥, z) = ya iff both a 6= 0
and z = 0; else, f(a,⊥, z) = 0. The recursive step is then

when 0 ≤ j < t. Essentially, we have to sum over all

ways to extend a by one more coordinate. Let suff−1(b)
denote the vector b but with the first entry removed (so it is

a vector of length one shorter). There are two cases: a is

the all-zeroes vector, versus it is not. In the former case, the

recurrence is

f(0, b, z) = f(~0 ◦ 0,suff−1(b), z)

+ f(~0 ◦ 1, suff−1(b), z − b1 mod q).

Note we are not allowed to append w ∈ {2, 3, . . . , q − 1}
to a since that would not satisfy the requirement that the

first argument to f either be all-zeroes or be canonical. The

other case for the recurrence relation is when a 6= 0, in

which case the recurrence relation becomes

f(a, b, z) =

q−1
∑

w=0

f(a ◦ w, suff−1(b), z − d · b1 mod q).

We now analyze the running time and memory requirements

to obtain all f(a, b, z) values via dynamic programming.

The runtime is proportional to

kq +
∑

a,b,z,j 6=0

q.

This is because for j > 0, for each a, b, z triple we do at

most q work. When j = 0, there is only one possible value

for a (namely ⊥) and k = qt−1
q−1 values for v, plus we are

only concerned with z = 0 in this case. For larger j, the

number of possibilities for a is qj−1
q−1 + 1 (the additive 1

is since a can be the all-zeroes vector), whereas the num-

ber of possibilities for b is qt−j . Thus the total runtime is

proportional to

kq +





t
∑

j=1

(

qj − 1

q − 1
+ 1

)

· qt−j



 · q2 = O(ktq2).
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For the memory requirement, note f(·) values for some

fixed j only depend on the values for j + 1, and thus using

bottom-up dynamic programming we can save a factor of

t in the memory, for a total memory requirement of only

O(kq) (for any fixed j there are only O(k) a, b pairs, and

there are q values for z).

Finally, we add an optimization which improves both the

runtime and memory by a factor of q. Specifically, suppose

b is not canonical and is not the all-zeroes vector. Let the

value of its first nonzero entry be ζ . Then f(a, b, z) is equal

to f(a, b/ζ, z/ζ), where the division is over Fq. Thus, we

only need to compute f(·) for b either canonical or equal

to the 0 vector. This reduces the number of b from qt−j to

(qt−j−1)/(q−1)+1, which improves the runtime to O(ktq)
and the memory to O(k). Note finite field division over Fq

can be implemented in O(1) time after preprocessing. First,

factor q − 1 and generate all its divisors in o(q) time, from

which we can find a generator g of F∗
q in o(q) expected time

by rejection sampling (it is a generator iff gp 6≡ 1 mod q
for every nontrivial divisor p of q, and we can compute

gp mod q in O(log q) time via repeated squaring). Then, in

O(q) time create a lookup table A[0 . . . q − 1] with A[i] :=
gi mod q. Then create an inverse lookup table by for each

0 ≤ i < q, setting the inverse of A[i] to A[q − 1− i].

4. HybridProjectiveGeometryResponse:

trading off error and time

In this section, we describe a hybrid scheme using an inter-

mediate value for the field size q to trade off between the

variance and the running time. Roughly speaking, larger

values for q lead to slower running time but also smaller

variance. The approach is similar to the way (Acharya et al.,

2019) extended their scheme from the high privacy regime

to the general setting. We choose h, q, t such that they sat-

isfy the following conditions:

• b = qt−1
q−1 and bh ≥ k > cseth.

• Let cset =
qt−1−1
q−1 , cint =

qt−2−1
q−1 , and z = cset/cint.

Note that c2set ≥ b · cint and q + 1 ≥ z ≥ q.

• Choose hz as close as possible to eε + 1.

The k input values are partitioned into blocks of size at most

b each. The algorithm’s response consists of two parts: the

index of the block and the index inside the block. First,

the algorithm uses the randomized response to report the

block. Next, if the response has the correct block then the

algorithm uses the scheme described in the previous section

with field size q to describe the coordinate inside the block.

If the first response has the wrong block then the algorithm

uses a uniformly random response in the second part.

Formally the algorithm is another instantiation of the frame-

work of (Acharya et al., 2019) so we only need to specify

the universe U of messages and the subsets S(·) for each

input value. Each input value is identified with a pair (i, v)
where i ∈ Zh and v is a canonical vector in F

t
q. We divide

the input values evenly among the blocks so that each block

i ∈ Zh has either bk/hc or dk/he input values.

The universe U of responses is the set of all pairs (j, u)
where j ∈ Zh and u is a canonical vector in F

t
q . The subset

S(i, v) for input (i, v) consists of all messages (i, u) ∈ U
such that 〈u, v〉 = 0. Recall from the framework that each

message (j, u) ∈ S(i, v) is chosen with probability eεp and

each message (j, u) 6∈ S(i, v) is chosen with probability p
for an appropriate p so that the probabilities sum to 1. Thus

eεp · cset + p (bh− cset) = 1 so that p = 1
bh+(eε−1)cset

.

Let x̃i,v be our estimate for the frequency of input (i, v).
The estimates are computed as follows.

x̃i,v = α





∑

〈v,u〉=0

yi,u



+ β

(

∑

u

yi,u

)

+ γ





∑

j,u

yj,u





We need to choose α, β and γ so that x̃i,v is an unbiased

estimator of xi,v . By linearity of expectation, we only need

to consider the case with exactly one user. If the input is i, v
then we have

E [x̃i,v] = αeεpcset + βp ((eε − 1) cset + b) + γ = 1

If the input is not i, v but in the same block

then E[x̃i,v] should equal zero, and it does equal

αp ((eε − 1) cint + cset) + βp ((eε − 1) cset + b) + γ.

Finally if the input is in a different block then

E [x̃i,v] = αpcset + βpb+ γ = 0

We solve for α, β, γ and get

α =
1

p (eε − 1) (cset − cint)
=

bh+ (eε − 1) cset
(eε − 1) (cset − cint)

β = −
αcint
cset

= −
cint/cset

p (eε − 1) (cset − cint)

= −
bh+ (eε − 1) cset

(eε − 1) (cset − cint)
·
cint
cset

γ = −αpcset − βpb = −
cset − b · cint

cset

(eε − 1) (cset − cint)
≤ 0

We note that α+ β =
(

1− cint

cset

)

α = bh/cset+(eε−1)
(eε−1) .

This fully specifies the scheme; the utility and runtime anal-

yses can be found in Appendix D.
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5. Experimental Results

In this section, we compare previously-known algorithms

(RAPPOR, PI-RAPPOR, HadamardResponse (HR),

RecursiveHadamardResponse (RHR), SubsetSelec-

tion (SS)) and our new algorithms ProjectiveGeome-

tryResponse (PGR) and HybridProjectiveGeometryRe-

sponse (HPGR). As the variance upper bound of these

algorithms do not depend on the underlying data, we per-

form our experiments on simple synthetic data that realize

the worst case for variance. Our experiments show that

ProjectiveGeometryOracle matches the best of these al-

gorithms namely SS, RAPPOR, and PI-RAPPOR, and

achieves noticeably better MSE than other communication-

and computation-efficient approaches. At the same time

it is significantly more efficient than those three in terms

of server computation time, while also achieving optimal

communication.

All experiments were run on a Dell Precision T3600 with

six Intel 3.2 GHz Xeon E5-1650 cores running Ubuntu

20.04 LTS, though our implementation did not take ad-

vantage of parallelism. We implemented all algorithms

and ran experiments in C++, using the GNU C++ com-

piler version 9.3.0; code and details on how to run the ex-

periments used to generate data and plots are in our pub-

lic repository at https://github.com/minilek/

private_frequency_oracles/.

We first performed one experiment to show the big gap in

running times. We took ε = 5, a practically relevant set-

ting, and n = 10,000, k = 3,307,948; this setting of n is

smaller than one would see in practice, but the runtimes of

the algorithms considered are all linear in n plus additional

terms that depend on k, ε, and our aim was to measure the

impact of these additive terms, which can be significant

even for large n. Furthermore, in practice the server can

immediately process messages from each of the n users dy-

namically as the messages arrive asynchronously, whereas

it is the additive terms that must be paid at once at the time

of histogram reconstruction. For our settings, the closest

prime to exp(ε) + 1 ≈ 149.4 is q = 151. Recall that PGR

rounds up to universe sizes of the form (qt − 1)/(q − 1);
then (q4 − 1)/(q − 1) is less than 5% larger than k, so

that the negative effect of such rounding on the runtime

of PGR is minimal. Meanwhile PI-RAPPOR picks the

largest prime q′ smaller than exp(ε) + 1, which in this case

is q′ = 149, and assumes universe sizes of the form q′t − 1;

in this case q′3 − 1 = k exactly, so rounding issues do not

negatively impact the running time of PI-RAPPOR (we

chose this particular value of k intentionally, to show PI-

RAPPOR’s performance in the best light for some fairly

large universe size). The runtimes of various algorithms

with this setting of ε, k, n are shown in Table 2. Note RHR

and HR sacrifice a constant factor in utility compared to

(a)

(b)

Figure 1. RandomizedResponse has significantly worse er-

ror than other algorithms, even for moderately large uni-

verses, followed by HadamardResponse and Recursive-

HadamardResponse, which have roughly double the error

of state-of-the-art algorithms. HybridProjectiveGeometryRe-

sponse trades off having slightly worse error than state-of-the-art

for faster runtime.

PI-RAPPOR and PGR, the former of which is four orders

of magnitude slower while the latter is only one order of

magnitude slower and approximately 51x faster than PI-

RAPPOR. Meanwhile, HPGR’s runtime is of the same

order of magnitude (though roughly 5x slower) than RHR,

but as we will see shortly, HPGR can provide significantly

improved utility over RHR and HR.

Next we discuss error. Many of our experiments show-

ing reconstruction error with fixed ε take ε = 5, a practi-

cally relevant setting, and universe size k = 22,000, for

which the closest prime to exp(ε) + 1 ≈ 149.4 is q = 151.

Recall that PGR rounds up to universe sizes of the form

(qt−1)/(q−1); then (q3−1)/(q−1) = 22,593 is not much

larger than k, so that the runtime of PGR is not severely

impacted. Also, cset/cint as defined in Section 3 is very

close to exp(ε) + 1, so that the MSE bound in Lemma 3.2

nearly matches that of SS. Furthermore for HPGR for this

setting of ε, k, if we choose q = 5, h = 30, t = 5, then
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scheme name runtime (in seconds)

PI-RAPPOR 1,893.82 (approximately 31.5 minutes)

PGR 36.92

HPGR 5.94

RHR 1.20

HR 0.64

RR 0.02

Table 2. Server runtimes for ε = 5, k = 3,307,948. For HPGR, we chose the parameters h = 50, q = 3, t = 11, so that the mechanism

rounded up the universe size to h(qt − 1)/(q − 1), which is about 34% larger than k.

h · (qt − 1)/(q − 1) = 23,430, which is not much bigger

than k so that the runtime of HPGR is not majorly impacted.

Furthermore hz as defined in Section 4 is approximately

150.19, which is very close to exp(ε) + 1 as recommended

by Lemma D.1 to obtain minimal error. We also do one

experiment with ε = 1.386 ≈ ln(4) so that PGR takes

q = 5 ≈ eε + 1. We first draw attention to Figures 2a

and 2b. These plots run RAPPOR, PI-RAPPOR, PGR,

and SSwith k, n, ε as in the figure and show that their er-

ror distributions are essentially equivalent. We show the

plots for only one some particular parameter settings, but

the picture has looked essentially the same to us regardless

of which parameters we have tried. In Figure 2a, we have

n users each holding the same item in the universe (item

0); we call this a spike distribution as noted in the plot. We

have each user apply its local randomizer to send a message

to the server, and we ask the server to then reconstruct the

histogram (which should be (n, 0, . . . , 0)) and calculate the

MSE. We repeat this experiment 300 times, and in this plot

we have 300 dots plotted per algorithm, where a dot at point

(x, y) signifies that the MSE was at most y for x% of the

trial runs; this, it is a plot of the CDF of the empirical error

distribution. In Figure 2b, we plot MSE as a function of

increasing ε, where for each value of ε we repeat the above

experiment 10 times then plot the average MSE across those

10 trial runs. Because the error performance of RAPPOR,

PI-RAPPOR, SS, and PGR are so similar, in all other plots

we do not include RAPPOR and PI-RAPPOR since their

runtimes are so slow that doing extensive experiments is

very time-consuming computationally (note: our implemen-

tation of RAPPOR requires O(nk) server time, though

O(n(k/eε + 1)) expected time is possible by having each

user transmit only a sparse encoding of the locations of the 1
bits in its message). We finally draw attention to Figures 2c

to 2g. Here we run several algorithms where the distribu-

tion over the universe amongst the users is Zipfian (a power

law), with power law exponent either 0.1 (an almost flat

distribution), or 3.0 (rapid decay). The HPGR algorithm

was run with q = 5. As can be seen, the qualitative behav-

ior and relative ordering of all the algorithms is essentially

unchanged by the Zipf parameter: PGR,SSalways have the

best error, followed by HPGR, followed by RHR and HR.

Figures 2c and 2d show the CDF of the empirical MSE

over 300 independent trials, as discussed above. Figures 2e

and 2f shows how the MSE varies as ε is increased; in these

last plots we do not include HPGR as one essentially one

should select a different q for each ε carefully to obtain a

good tradeoff between runtime and error (as specified by

Lemma D.1) due to round-up issues in powering q. Fig-

ure 2g is similar to Figures 2c and 2d, but the y-axis denotes

‖x − x̃‖∞ instead of the MSE. Finally, Figure 2h takes

smaller ε ≈= 1.386 ≈ ln(4), so that PGR takes q = 5; we

note that even with such small ε, the qualitative picture does

not change.
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Figure 2. Error distributions from experiments.
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Erlingsson, Ú., Pihurand, V., and Korolova, A. Rappor:

Randomized aggregatable privacy-preserving ordinal re-

sponse. In Proceedings of the 2014 ACM SIGSAC Confer-

ence on Computer and Communications Security (CCS),

2014.

Erlingsson, U., Feldman, V., Mironov, I., Raghunathan,

A., Talwar, K., and Thakurta, A. Amplification by

shuffling: From local to central differential privacy via

anonymity. In Proceedings of the Thirtieth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA ’19,

pp. 2468–2479, USA, 2019. Society for Industrial and

Applied Mathematics.

Feldman, V. and Talwar, K. Lossless compression of effi-

cient private local randomizers. In Proceedings of the

38th Annual Conference on International Conference on

Machine Learning (ICML), pp. 3208–3219, 2021.

Feldman, V., McMillan, A., and Talwar, K. Hiding among

the clones: A simple and nearly optimal analysis of pri-

vacy amplification by shuffling. In Proceedings of the

62nd Annual IEEE Symposium on Foundations of Com-

puter Science (FOCS), 2021. arXiv:2012.12803 [cs.LG].

Hsu, J., Khanna, S., and Roth, A. Distributed private heavy

hitters. In International Colloquium on Automata, Lan-

guages, and Programming, pp. 461–472. Springer, 2012.

Kairouz, P., Bonawitz, K., and Ramage, D. Discrete dis-

tribution estimation under local privacy. arXiv preprint

arXiv:1602.07387, 2016.

Shah, A., Chen, W.-N., Balle, J., Kairouz, P., and Theis,

L. Optimal compression of locally differentially private

mechanisms. arXiv preprint arXiv:2111.00092, 2021.

Thakurta, A. G., Vyrros, A. H., Vaishampayan, U. S.,

Kapoor, G., Freudiger, J., Sridhar, V. R., and David-

son, D. Learning new words, 2017. URL https:

//www.google.com/patents/US9594741. US

Patent 9,594,741.

Wang, S., Huang, L., Nie, Y., Zhang, X., Wang, P., Xu, H.,

and Yang, W. Local differential private data aggregation

for discrete distribution estimation. IEEE Trans. Parallel

Distributed Syst., 30(9):2046–2059, 2019.

Wang, T., Blocki, J., Li, N., and Jha, S. Locally dif-

ferentially private protocols for frequency estimation.

In 26th USENIX Security Symposium (USENIX Secu-

rity 17), pp. 729–745, Vancouver, BC, August 2017.

USENIX Association. ISBN 978-1-931971-40-9.

URL https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/

presentation/wang-tianhao.

Warner, S. L. Randomized response: A survey technique for

eliminating evasive answer bias. Journal of the American

Statistical Association, 60(309):63–69, 1965.

Ye, M. and Barg, A. Optimal schemes for discrete dis-

tribution estimation under local differential privacy. In

Proceedings of the 14th Annual IEEE International Sym-

posium on Information Theory (ISIT), pp. 759–763, 2017.

Ye, M. and Barg, A. Optimal locally private estimation

under `p loss for 1 ≤ p ≤ 2. The Electronic Journal of

Statistics, 13(2):4102–4120, 2019.



Private Frequency Estimation via Projective Geometry

A. Fast dynamic programming for PI-RAPPOR

In this section, we describe an adaptation of our dynamic programming approach to PI-RAPPOR. First, we briefly review

the construction of PI-RAPPOR. We use Fq with the field size q close to eε + 1. Let t be the minimum integer such that

k ≤ qt.

We identify the k input values with vectors in F
t
q. Let x ∈ Z

qt denote the input frequency vector i.e. xv is the number of

users with input v ∈ F
t
q . For each input v, we define a set S(v) ⊂ F

t
q ×Fq where (a, b) ∈ S(v) if and only if 〈a, v〉+ b = 0.

Each user with input v sends a random element e of Ft
q × Fq with probability eεp if e ∈ S(v) and probability p if e 6∈ S(v).

Thus, p = 1
eεqt+(q−1)qt . The server keeps the counts on the received elements in a vector y indexed by elements of Ft

q × Fq .

The total storage is O
(

qt+1
)

. We estimate the frequency vector x by computing

x̃v = α





∑

u,w:〈u,v〉+w=0

yu,w



+ β
∑

u,w

yu,w

where α and β are chosen so that this is an unbiased estimator. This condition implies two equations:

α
eεqt

eεqt + (q − 1)qt
+ β = 1

α
eεqt−1 + (q − 1)qt−1

eεqt + (q − 1)qt
+ β = 0

We obtain

α =
eεq + (q − 1)q

(eε − 1)(q − 1)

β = −
eε + (q − 1)

(eε − 1)(q − 1)

Next, we describe a fast algorithm to compute x̃ with running time O
(

tqt+2
)

. Specifically, for a ∈ F
j
q, b ∈ F

t−j
q , z ∈ Fq,

define

fj(a, b, z) =
∑

prefj(u)=a
〈sufft−j(u),b〉+w=z

yu,w,

where prefi(u) denotes the length-i prefix vector of u, and suffi(u) denotes the length-i suffix vector of u. Then, we would

like to compute

x̃v = α





∑

u,w:〈u,v〉+w=0

yu,w



+ β
∑

u,w

yu,w = α
∑

w

f0(⊥, v, 0) + βn,

for all v ∈ F
t
q , where ⊥ denotes the length-0 empty vector. We next observe that f satisfies a recurrence relation, so that we

can compute the full array of values f0(⊥, v, w) efficiently using dynamic programming and then efficiently obtain x̃ ∈ R
k.

We have
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fj(a, b, z) =
∑

prefj(u)=a
〈sufft−j(u),b〉+w=z

yu,w

=

q−1
∑

i=0

∑

prefj+1(u)=a◦i
〈sufft−j−1(u),sufft−j−1(b)〉+w=z−i·b1 (mod q)

yu,w

=

q−1
∑

i=0

fj+1(a ◦ i, sufft−j−1(b), (z − i · b1) mod q)

Note that we have the base cases ft(a,⊥, w) = ya,w. We need to compute the values of fj(a, b, z) for j ∈ {0, 1 . . . , t−
1}, a ∈ F

j
q, b ∈ F

t−j
q , z ∈ Fq and each value takes O(q) time so the total running time is O(tqt+2).

B. The public coin setting

We show that versions of PGR and HPGR can be implemented in the public coin setting in a way that the communication is

dlog2 qe = ε log2 e+O(1) bits, which is asymptotically optimal to achieve asymptotically optimal utility loss (?)Corollary

7]BarnesHO20. We begin with PGR.

Recall that as described, PGR associates each of the k input values with a canonical vector in F
t
q . In the public coin variant

we now describe, we further assume that the canonical vectors have a non-zero last coordinate. This can be ensured by

picking q, t such that k ≤ 1 + (1 − 1/q)((qt − 1)/(q − 1) − 1) = qt−1. We will use Cq,t to denote the set of canonical

vectors in F
t
q and C∗

q,t to denote those with a non-zero last coordinate.

With this setup, recall that each output in the set Sv can be associated with a vector u ∈ Cq,t such that 〈u, v〉 = 0. Thus a

user with input v sends a vector u ∈ Cq,t with probability eεp if 〈u, v〉 = 0 and with probability p otherwise. For a vector

u, let preft−1(u) denote its length (t− 1) prefix. Note that for a vector u ∈ Cq,t, either preft−1(u) is itself a canonical

vector in Cq,t−1, or u = u∗ def
= (0, . . . , 0, 1). Also note that for any v ∈ C∗

q,t, u
∗ 6= Sv .

This then suggests the following algorithm. We use public randomness to select a vector w ∈ F
t−1
q such that w = (0, . . . , 0)

with probability p, and w is a random vector in Cq,t−1 otherwise. Thus there are 1 + qt−1−1
q−1 possible values of w. Given a

w ∈ Cq,t−1 and a v ∈ C∗
q,t, there is a unique a ∈ Fq such that 〈v, w · a〉 = 0 mod q. When w 6= (0, . . . , 0), a user with

input v ∈ C∗
q,t sends message a with probability eε

eε+q−1 if 〈v, w · a〉 = 0 mod q, and with probability 1
eε+q−1 otherwise.

If w = (0, . . . , 0), the user always send 1.

The server given w derived from the shared public randomness, and the message a ∈ Fq , decodes it as

Dec(w, a) = w · a.

We claim that the distribution of Dec(w, a) is identical to the output in the private coin PGR. First observe that by

construction, Dec(w, a) ∈ Cq,t. Next notice that for any u, u′ ∈ S(v), we have

Pr(Dec(w, a) = u) = Pr(w = preft−1(u)) · Pr(a = ut | w = preft−1(u))

= Pr(w = preft−1(u)) ·
eε

eε + q − 1

= Pr(w = preft−1(u
′)) ·

eε

eε + q − 1
(by uniformity of w over canonical vectors)

= Pr(w = preft−1(u
′)) · Pr(a = u′

t | w = preft−1(u
′))

= Pr(Dec(w, a) = u′).
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Similarly, for any u, u′ ∈ Cq,t \ Sv such that u, u′ 6= u∗, we can write

Pr(Dec(w, a) = u) = Pr(w = preft−1(u)) · Pr(a = ut | w = preft−1(u))

= Pr(w = preft−1(u)) ·
1

eε + q − 1

= Pr(w = preft−1(u
′)) ·

1

eε + q − 1
(by uniformity of w over canonical vectors)

= Pr(w = preft−1(u
′)) · Pr(a = u′

t | w = preft−1(u
′))

= Pr(Dec(w, a) = u′).

Further, an identical calculation shows that for u ∈ Sv, u
′ ∈ Cq,t \ Sv with u′ 6= u∗, Pr[Dec(w, a) = u] = eε ·

Pr(Dec(w, a) = u′). Moreover, the distribution of w ensures that Pr(Dec(w, a) = u∗) = p. It follows that for all u ∈ Cq,t,

Pr(Dec(w, a) = u) is eεp if u ∈ Sv and p if u ∈ Cq,t \ Sv .

In other words, we have shown how to simulate the output distribution of PGR in the public coin setting while sending only

a single element from Fq .

An implementation of HPGR in the public coin model is similar. A message in HPGR is a pair (j, u) where j ∈ {1, . . . , h}
is the index of a block, and u ∈ F

t
q is the name of a canonical vector, and as above in the public coin setting we will forbid

u from being the all-zeroes vector (so that now we need hqt−1 ≥ k). As described in Section 4, h, q are chosen so that

hq ≈ eε +1. In the public coin model, the user selects j using private randomness and sends it explicitly then uses the PGR

public coin protocol described above to determine the first t− 1 entries of u with no communication required, then sends

the final entry of u to obey the HPGR distribution. The total communication is dhqe = ε log2 e+O(1) bits.

C. Utility analaysis for PGR

We now restate Lemma 3.2 then provide its proof, analyzing the utility loss of PGR.

Lemma C.1. E

[

‖x− x̃‖
2
2

]

≤
neεc2set/c

2
int+n(k−1)((eε−1)+cset/cint)

2

(eε−1)2(cset/cint−1)
. In particular, if cset/cint = eε + 1 then

E

[

1
k ‖x− x̃‖

2
2

]

≤ n
k + 4neε

(eε−1)2

Proof. By independence, we only need to analyze the variance when there is exactly one user with input v. The lemma then

follows from adding up the variances from all users.

E

[

(x̃v − 1)
2
]

= eεpcset (α+ β − 1)
2
+ p(k − cset) (β − 1)

2

=
1− β

α
(α+ β − 1)

2
+

α+ β − 1

α
(1− β)

2

= (α+ β − 1) (1− β)

=
−cset + k

(eε − 1) (cset − cint)
·

eεcset
(eε − 1) (cset − cint)

=
(−cset/cint + k/cint) e

εcset/cint

(eε − 1)
2
(cset/cint − 1)2

≤

(

−cset/cint + c2set/c
2
int

)

eεcset/cint

(eε − 1)
2
(cset/cint − 1)2

=
eεc2set/c

2
int

(eε − 1)
2
(cset/cint − 1)

Let z = cset/cint. Note that z2

z−1 is an increasing function for z ∈ [2,+∞) so this part of the variance gets larger as q gets

larger.

Next we analyze the contribution to the variance from the (k − 1) coordinates u 6= v.
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E
[

x̃2
u

]

= ((eε − 1) cint + cset) p (α+ β)
2
+ (1− eεpcint − p (cset − cint))β

2

= −
β

α
(α+ β)

2
+

(

1 +
β

α

)

β2

=
−β (α+ β)

2
+ (α+ β)β2

α
= −β (α+ β)

=
(eε − 1)cint + cset
(eε − 1) (cset − cint)

·
(eε − 2) cset + k − (eε − 1)cint

(eε − 1) (cset − cint)

=
(eε − 1) + cset/cint

(eε − 1) (cset/cint − 1)
·
(eε − 2) cset/cint + k/cint − (eε − 1)

(eε − 1) (cset/cint − 1)

≤
((eε − 1) + z)

(

(eε − 2) z + z2 − (eε − 1)
)

(eε − 1)
2
(z − 1)2

=
((eε − 1) + z)

2

(eε − 1)
2
(z − 1)

Note that the function
((eε−1)+z)2

(eε−1)2(z−1)
is decreasing for z ∈ (0, eε + 1] and it is increasing for z ∈ [eε + 1,+∞) so this part of

the variance is minimized when z = eε + 1. For z = eε + 1, we can substitute and get 4eε

(eε−1)2
.

D. Utility and runtime analyses for HPGR

Lemma D.1.

E

[

‖x− x̃‖
2
2

]

≤ n

(

1 +
(zh+ (eε − 1))

(eε − 1)
2
(z − 1)

+
2

(eε − 1)
+

eε (zh− eε + 1)

(eε − 1)
2

)

+ n
(zh+ (eε − 1)) z

(eε − 1)
2
(z − 1)

(

k − dk/he+ (dk/he − 1)
(z + eε − 1)

z

)

In particular, if zh = eε + 1 then E

[

1
k ‖x− x̃‖

2
2

]

≤ n
k + z

z−1 · n 4eε

(eε−1)2

Proof. By independence, we only need to analyze the variance when there is exactly one user with input (i, v) and response

(j, u). The lemma follows from adding up the variances from all users.

E

[

(x̃i,v − 1)
2
]

≤E

[

(x̃i,v − 1− γ)
2
]

=Pr [j 6= i] · (−1)
2
+ Pr [j = i ∧ 〈u, v〉 6= 0] (β − 1)

2
+ Pr [j = i ∧ 〈u, v〉 = 0] (α+ β − 1)

2

=(1− (eε − 1) pcset − pb) + p (b− cset) (β − 1)
2
+ eεpcset (α+ β − 1)

2

=1 + p (b− cset)
(

β2 − 2β
)

+ eεpcset (α+ β) (α+ β − 2)
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We expand the second and third terms individually:

p (b− cset)
(

β2 − 2β
)

= p (b− cset)

(

(

cint/cset
p (eε − 1) (cset − cint)

)2

+
2cint/cset

p (eε − 1) (cset − cint)

)

=
(bh+ (eε − 1) cset) (b− cset) c

2
int/c

2
set

(eε − 1)
2
(cset − cint)

2 +
2 (b− cset) cint/cset
(eε − 1) (cset − cint)

=
(bh/cset + (eε − 1)) (b/cset − 1)

(eε − 1)
2
(cset/cint − 1)

2 +
2 (b/cset − 1)

(eε − 1) (cset/cint − 1)

≤
(zh+ (eε − 1))

(eε − 1)
2
(z − 1)

+
2

(eε − 1)

and

eεpcset (α+ β) (α+ β − 2)

=
eεcset

bh+ (eε − 1) cset
·
bh/cset + (eε − 1)

(eε − 1)
·
bh/cset − (eε − 1)

(eε − 1)

=
eε (bh/cset − eε + 1)

(eε − 1)
2

≤
eε (zh− eε + 1)

(eε − 1)
2

When zh = eε + 1, we have

E

[

(x̃i,v − 1)
2
]

≤ 1 +
2eε

(eε − 1)
2
(z − 1)

+
2

(eε − 1)
+

2eε

(eε − 1)
2 < 1 +

4eε

(eε − 1)
2

z

z − 1

Next consider v′ 6= v.

E

[

(x̃i,v′ − 0)
2
]

≤ E

[

(x̃i,v′ − γ)
2
]

= Pr [j 6= i] · 0 + Pr [j = i ∧ 〈u, v′〉 6= 0] (β)
2
+ Pr [j = i ∧ 〈u, v′〉 = 0] (α+ β)

2

= p (b+ (eε − 2) cset − (eε − 1) cint) (β)
2
+ p ((eε − 1) cint + cset) (α+ β)

2

= (b+ (eε − 2) cset − (eε − 1) cint)
1

p (eε − 1)
2
(cset − cint)

2

c2int
c2set

+

p ((eε − 1) cint + cset)
(1− cint/cset)

2

p2 (eε − 1)
2
(cset − cint)

2

= (b/cset + (eε − 2)− (eε − 1) cint/cset)
(bh/cset + (eε − 1))

(eε − 1)
2
(1− cint/cset)

2

c2int
c2set

+

((eε − 1) cint/cset + 1)
(bh/cset + (eε − 1))

(eε − 1)
2

≤ (z + (eε − 2)− (eε − 1) /z)
(zh+ (eε − 1))

(eε − 1)
2
(z − 1)

2 + ((eε − 1) /z + 1)
(zh+ (eε − 1))

(eε − 1)
2

= (z + eε − 1)
(zh+ (eε − 1))

(eε − 1)
2
(z − 1)

When zh = eε + 1, the last expression is bounded by (z + eε − 1) 2eε

(eε−1)2(z−1)z
+ (z + eε − 1) 2eε

(eε−1)2z
= (z+eε−1)

(z−1) ·
2eε

(eε−1)2
≤ 1+h

z
z

(z−1) ·
2eε

(eε−1)2
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Finally, consider i′ 6= i and arbitrary v′.

E

[

(x̃i′,v′ − 0)
2
]

≤ E

[

(x̃i′,v′ − γ)
2
]

= Pr [j 6= i′] · 02 + Pr [j = i′ ∧ 〈u, v′〉 6= 0] (β)
2
+ Pr [j = i′ ∧ 〈u, v′〉 = 0] (α+ β)

2

= p (b− cset) (β)
2
+ pcset (α+ β)

2

= p (b− cset)
1

p2 (eε − 1)
2
(cset − cint)

2

c2int
c2set

+ pcset
(1− cint/cset)

2

p2 (eε − 1)
2
(cset − cint)

2

= (b/cset − 1)
(bh/cset + (eε − 1))

(eε − 1)
2
(1− cint/cset)

2

c2int
c2set

+
bh/cset + (eε − 1)

(eε − 1)
2

≤
(zh+ (eε − 1))

(eε − 1)
2
(z − 1)

+
zh+ (eε − 1)

(eε − 1)
2

=
(zh+ (eε − 1)) z

(eε − 1)
2
(z − 1)

When zh = eε + 1, the last expression is bounded by 2eε

(eε−1)2
1

z−1 + 2eε

(eε−1)2
= 2eε

(eε−1)2
z

z−1

There are bi ≤ dk/he ≤ b valid coordinates in the same block with the input (i, v). There are k− bi coordinates in the other

blocks. Thus the total variance across all coordinates except for coordinate (i, v) is bounded by

(zh+ (eε − 1)) z

(eε − 1)
2
(z − 1)

(

k − bi + (bi − 1)
(z + eε − 1)

z

)

≤
(zh+ (eε − 1)) z

(eε − 1)
2
(z − 1)

(

k − dk/he+ (dk/he − 1)
(z + eε − 1)

z

)

For zh = eε + 1, we have
(z+eε−1)

z ≤ 1 + h and k − bi + (bi − 1) (z+eε−1)
z ≤ k − dk/he + (dk/he − 1)(1 + h) =

k − dk/he+ dk/he − 1 + h(dk/he − 1) < 2k.

Regarding the decoding algorithms, notice that the estimates are computed separately by blocks except for an offset γ scaled

by the total number of received messages across all blocks. Thus, using the naive algorithm, the time to estimate one count

is O (cset) = O
(

qdlogq(k/h)e−1
)

. Using the fast algorithm to estimate all counts takes O (bqt) time per block and in total,

O (bqth) = O
(

⌈

logq (k/h)
⌉

hq1+dlogq(k/h)e
)

time.


