Private Frequency Estimation via Projective Geometry

Vitaly Feldman “' Jelani Nelson *

Abstract

In this work, we propose a new algorithm Pro-
jectiveGeometryResponse (PGR) for locally
differentially private (LDP) frequency estima-
tion. For a universe size of k£ and with n
users, our e-LDP algorithm has communication
cost [log, k] bits in the private coin setting
and elog, e + O(1) in the public coin setting,
and has computation cost O(n + k exp(e) log k)
for the server to approximately reconstruct the
frequency histogram, while achieving optimal
privacy-utility tradeoff (not just asymptotically).
In many parameter settings used in practice this is
a significant improvement over the O(n + k?)
computation cost that is achieved by the re-
cent PI-RAPPOR algorithm (Feldman and Tal-
war; 2021). Our empirical evaluation shows a
speedup of over 50x over PI-RAPPOR while
using approximately 75x less memory for prac-
tically relevant parameter settings. In addition,
the running time of our algorithm is within an
order of magnitude of HadamardResponse
(Acharya, Sun, and Zhang; 2019) and Recur-
siveHadamardResponse (Chen, Kairouz, and
Ozgur; 2020) which have significantly worse re-
construction error. The error of our algorithm es-
sentially matches that of the communication- and
time-inefficient but utility-optimal SubsetSelec-
tion (SS) algorithm (Ye and Barg; 2017). Our new
algorithm is based on using Projective Planes over
a finite field to define a small collection of sets
that are close to being pairwise independent and a
dynamic programming algorithm for approximate
histogram reconstruction on the server side. We
also give an extension of PGR that allows trading
off computation time with utility smoothly.

“Equal contribution 'Apple, Cupertino, CA, USA *UC
Berkeley, CA, USA *Northeastern University, MA, USA. Corre-
spondence to: Vitaly Feldman <vitaly.edu@gmail.com>,
Jelani Nelson <minilek@berkeley.edu>, Huy Nguyen
<hu.nguyen@northeastern.edu>, Kunal Talwar <ku-
nal @kunaltalwar.org>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

2

3 1

Huy Nguyen “? Kunal Talwar *

1. Introduction

In the so-called federated setting, user data is distributed
over many devices that each communicate to some central
server, after some local processing, for downstream analyt-
ics and/or machine learning tasks. We desire such schemes
which (1) minimize communication cost, (2) maintain pri-
vacy of the user data while still providing utility to the
server, and (3) support efficient algorithms for the server to
extract knowledge from messages sent by the devices. Such
settings have found applications to training language mod-
els for such applications as autocomplete and spellcheck,
and other analytics applications in Apple iOS (Thakurta
et al., 2017) and analytics on settings in Google Chrome
(Erlingsson et al., 2014).

The gold standard for protecting privacy is for a scheme to
satisfy differential privacy. In the so-called local model that
is relevant to the federated setting, there are n users with
each user 7 holding some data d; € D. Each user then uses
its own private randomness 7; and data d; to run a local
randomizer algorithm that produces a random message M;
to send to the server. We say the scheme is e-differentially
private if for all users 4, any possible message m, and any
d+#d,

Pr(M; = m|d; = d) < e Pr(M; = m|d; = d').

Note a user could simply send an unambiguous encoding
of d;, which allows the server to learn d; exactly (perfect
utility), but privacy is not preserved; such a scheme does
not preserve e-DP for any finite e. On the opposite extreme,
the user could simply send a uniformly random message
that is independent of d;, which provides zero utility but
perfect privacy (¢ = 0). One can hope to develop schemes
that smoothly increase utility by relaxing privacy (i.e., by
increasing €).

This work addresses the problem of designing efficient
schemes for locally differentially private frequency esti-
mation. In this problem, one defines a histogram = € R¥
where x4 is the number of users ¢ with d; = d, and k = |D|.
From the n randomized messages it receives, the server
would like to approximately reconstruct the histogram, i.e.,
compute some Z such that ||« — Z|| is small with good prob-
ability over the randomness r = (r1,...,r,), for some
norm || - ||. Our goal is to design schemes that obtain the

Private Frequency Estimation via Projective Geometry

best-known privacy-utility trade-offs, while being efficient
in terms of communication, computation time, and memory.
In this work we measure utility loss as the mean squared er-
ror (MSE) E, +[||z — Z||3], with lower MSE yielding higher
utility. Note that such a scheme should specify both the
local randomizer employed by users, and the reconstruction
algorithm used by the server.

There are several known algorithms for this problem; see
Table 1. To summarize, optimal utility was achieved in prior
work by SubsetSelection (matching the lower bound of
(Ye & Barg, 2019), including the leading constant factor
of 4) with roughly similar utility achieved by the RAP-
POR algorithm (Erlingsson et al., 2014) that is based on the
classical binary randomized response (Warner, 1965). Un-
fortunately, both RAPPOR and Subset Selection have very
high communication cost of ~ kH (1/(e®+1)), where H is
the binary entropy function and server-side running time of
O(nk/ exp(e)). Large k is common in practice, e.g., k may
be the size of a lexicon when estimating word frequencies
to train language models. This has led to numerous and
still ongoing efforts to design low-communication protocols
for the problem (Hsu et al., 2012; Erlingsson et al., 2014;
Bassily & Smith, 2015; Kairouz et al., 2016; Wang et al.,
2019; 2017; Ye & Barg, 2017; Acharya et al., 2019; Bun
et al., 2019; Bassily et al., 2020; Chen et al., 2020; Feldman
& Talwar, 2021; Shah et al., 2021).

One simple approach to achieve low communication and
computational complexity is to use a simple k-ary Random-
izedResponse algorithm (e.g. (Wang et al., 2017)). Unfor-
tunately, its utility loss is suboptimal by up to an Q(k/e®)
factor; recall k is often large and € is at most a small con-
stant, and thus this represents a large increase in utility loss.
In the e < 1 regime asymptotically optimal utility bounds
are known to be achievable with low communication and
computational costs (Bassily & Smith, 2015; Bun et al.,
2019; Bassily et al., 2020). The first low-communication
algorithm that achieves asymptotically optimal bounds in
the € > 1 regime is given in (Wang et al., 2017). It com-
municates O(e) bits and relies on shared randomness. How-
ever, it matches the bounds achieved by RAPPOR only
when e€ is an integer and its computational cost is still very
high and comparable to that of RAPPOR. Two algorithms,
HadamardResponse (Acharya et al., 2019) and Recur-
siveHadamardResponse (Chen et al., 2020), show that it
is possible to achieve low communication, efficient compu-
tation (only ©(log k) slower than RandomizedResponse)
and asymptotically optimal utility. However, their utility
loss in practice is suboptimal by a constant factor (e.g. our
experiments show that these algorithms have an MSE that
is over 2x higher for ¢ = 5 than SubsetSelection; see
Figure 2).

Recent work of Feldman and Talwar (Feldman & Talwar,

2021) describes a general technique for reducing com-
munication of a local randomizer without sacrificing util-
ity and, in particular, derives a new low communication
algorithm for private frequency estimation via pairwise
independent derandomization of RAPPOR. Their algo-
rithm, referred to as PI-RAPPOR, achieves the same utility
loss as RAPPOR and has the server-side running time of
O(min(n + k2, nk/ exp(e))). The running time of this al-
gorithm is still prohibitively high when both n and k are
large.

We remark that while goals (1)-(3) from the beginning of
this section are all important, goal (2) of achieving a good
privacy/utility tradeoff is unique in that poor performance
cannot be mitigated by devoting more computational re-
sources (more parallelism, better hardware, increased band-
width, etc.). After deciding upon a required level of privacy
€, there is a fundamental limit as to how much utility can
be extracted given that level of privacy; our goal in this
work is to understand whether that limit can be attained in a
communication- and computation-efficient way.

Our main contributions. We give a new private fre-
quency estimation algorithm ProjectiveGeometryRe-
sponse (PGR) that maintains optimal utility and low com-
munication while significantly improving computational
efficiency amongst algorithms with similarly good utility.
Using our ideas, we additionally give a new reconstruc-
tion algorithm that can be used with the PI-RAPPOR
mechanism to speed up its runtime from O(k?/ exp(e))
to O(k exp(2¢)logk) (albeit, this runtime is still slower
than PGR’s reconstruction algorithm by an exp(e) fac-
tor). We also show a general approach that can further
improve the server-side runtime at the cost of slightly higher
reconstruction error, giving a smooth tradeoff: for any
prime 2 < ¢ < exp(e) + 1, we can get running time
O(n + gklogk) with error only (1 4+ 1/(qg — 1)) times
larger than the best known bound'. Note that for ¢ = 2
we recover the bounds achieved by HR and RHR. Our
mechanisms require [log, k] per device in the private coin
model, or elog, e + O(1) bits in the public coin model
(see Appendix B). As in previous work, our approximate
reconstruction algorithm for the server is also parallelizable,
supporting linear speedup for any number of processors
P < min{n, kexp(e)}. We also perform an empirical
evaluation of our algorithms and prior work and show that
indeed the error of our algorithm matches the state of the art
will still being time-efficient.

As has been observed in previous work (Acharya et al.,

"For both PGR and HPGR we have stated runtime bounds
assuming that certain quantities involving k, exp(e) are prime
powers. If this is not the case, runtimes may increase by a factor
of exp(e) for PGR, or ¢ for HPGR; we note that PI-RAPPOR
also has this feature.

Private Frequency Estimation via Projective Geometry

scheme name communication utility loss server time
RandomizedResponse [og, k) % n+k
RAPPOR (Erlingsson et al., 2014) k (;’ff)z nk
SubsetSelection (Ye & Barg, 2017; Wang et al., 2019) | £ (e +O(1)) (;’ff)2 ni
PI-RAPPOR (Feldman & Talwar, 2021) [log, k] + O(e) (eifie;Q min(n + k%, n %), or
n + ke2¢log k (this work)
HadamardResponse (Acharya et al., 2019) [log, k] (jff';;z n+ klogk
RecursiveHadamardResponse (Chen et al., 2020) [log, k] (f"fel)z n+ klogk
ProjectiveGeometryResponse [log, k1 (e‘*"ﬁ n+ kelogk
HybridProjectiveGeometryResponse [log, k] 1+ ﬁ)% n + kqlogk

Table 1. Known local-DP schemes for private frequency estimation compared with ours. Utility bounds are given up to 1 + ox(1)
multiplicative accuracy for ease of display and running times are asymptotic. For brevity we only state bounds for € < log k. Some
of algorithms assume k is either a power of 2 or some other prime power and otherwise potentially worsen in some parameters due to
round-up issues; we ignore this issue in the table. The communication and server time for RAPPOR are random variables which are
never more than k and nk, respectively, but RAPPOR can be implemented so that in expectation the communication and runtimes are
asymptotically equal to SubsetSelection. For HybridProjectiveGeometryResponse, g can be chosen as any prime in [2, exp(e) + 1].
The utility loss here is the proven upper bound on the variance for PGR, HR and RHR, and the analytic expression for the variance for
the others. The communication bounds are in the setting of private coin protocols. As with RHR, PGR and HPGR can also both achieve

improved communication in the public coin model; see Appendix B.

2019), the problem of designing a local randomizer is
closely related to the question of existence of set systems
consisting of sets of density ~ exp(—e) which are highly
symmetric, and do not have positive pairwise dependencies.
The size of the set system then determines the communica-
tion cost, and its structural properties may allow for efficient
decoding. We show that projective planes over finite fields
give us set systems with the desired properties, leading to
low communication and utility loss achieving the known
lower bound of (Ye & Barg, 2019) (including even the lead-
ing constant). We also show a novel dynamic programming
algorithm that allows us to achieve server runtime that is
not much worse than the fastest known algorithms.

As in a lot of recent work on this problem, we have con-
centrated on the setting of moderately large values for the
local privacy parameter €. This is a setting of interest due
to recent work in privacy amplification by shuffling (Bit-
tau et al., 2017; Cheu et al., 2019; Erlingsson et al., 2019;
Balle et al., 2019; Feldman et al., 2021) that shows that
local DP responses, when shuffled across a number of users
so that the server does not know which user sent which
messages, satisfy a much stronger central privacy guarantee.
Asymptotically, e-DP local randomizers aggregated over

n users satisfy (O(y/ < 1; i), 0)-DP. The hidden constants
here are small: as an example with n = 10,000 and € = 6,
shuffling gives a central DP guarantee of (0.3,107%)-DP.
This motivation from shuffling is also the reason why our
work concentrates on the setting of private coin protocols,
as shared randomness seems to be incompatible with shuf-
fling of private reports. We note that while constant factors
improvement in error may seem small, these algorithm are

typically used for discovering frequent items from power
law distributions. A constant factor reduction in variance of
estimating any particular item frequency then translates to a
corresponding smaller noise floor (for a fixed false positive
rate, say), which then translates to a constant factor more
items being discovered.

1.1. Related Work

A closely related problem is finding “heavy hitters”, namely
all elements j € [k] with counts higher than some given
threshold; equivalently, one wants to recover an approximate
histogram Z such that ||z — Z|| is small (the non-heavy
hitters ¢ can simply be approximated by z; = 0). In this
problem the goal is to avoid linear runtime dependence on k
that would result from doing frequency estimation and then
checking all the estimates. This problem is typically solved
using a “frequency oracle” which is an algorithm that for a
given j € [k] returns an estimate of the number of j’s held
by users (typically without computing the entire histogram)
(Bassily & Smith, 2015; Bassily et al., 2020; Bun et al.,
2019). Frequency estimation is also closely related to the
discrete distribution estimation problem in which inputs
are sampled from some distribution over [k] and the goal
is to estimate the distribution (Ye & Barg, 2017; Acharya
et al., 2019). Indeed, bounds for frequency estimation can
be translated directly to bounds on distribution estimation
by adding the sampling error. We note that even for the
problem of implementing a private frequency oracle, our
PGR scheme supports answering queries faster than Pl-

RAPPOR by factor of ©(exp(e)).

Private Frequency Estimation via Projective Geometry

2. Preliminaries

Our mechanisms are based on projective spaces, and below
we review some basic definitions and constructions of such
spaces from standard vector spaces.

Definition 2.1. For a given vector space V, the projective
space P (V) is the set of equivalence classes of V' \ {0},
where 0 denotes the zero vector, under the following equiv-
alence relation: = ~ y iff x = cy for some scalar c. Each
equivalence class is called a (projective) “point” of the pro-
jective space. Letp : V' \ {0} — P (V) be the mapping
from each vector v € V to its equivalence class. If V has
dimension ¢ then P(V') has dimension ¢ — 1.

We will also use subspaces of the projective space P (V).

Definition 2.2. A projective subspace W of P (V) is a sub-
set of P (V') such that there is a subspace U of V' where
p (U \ {0}) = W.If U has dimension ¢ then W has dimen-
siont — 1.

It should be noted that intersections of projective subspaces
are projective subspaces. Let ¢ be a prime power and Ffl the
t-dimensional vector space over the field IF,. We will work
with P (F!) and its subspaces.

Definition 2.3. A vector x € Ith is called canonical if its
first non-zero coordinate is 1.

Each equivalence class can be specified by its unique canon-
ical member.

3. ProjectiveGeometryResponse
description and analysis

Our PGR scheme is an instantiation of the framework due
to (Acharya et al., 2019). In their framework, the local
randomizer is implemented as follows. There is a universe U
of outputs which we call “message space”, and each input v
has a corresponding “preferred list” of messages S(v) C U
of outputs. All the subsets S(v) for different values of
v have the same size cg.;. We use the name “preferred
list” because when holding v, the local randomizer is more
likely to send an element if it is preferred for v. More
specifically, any element not in S(v) is sent with probability
p, whereas those in S(v) are sent with probability e“p. Since
the probability of sending some item is 1,

eepcset +p(|U‘ - Cset) =]-7

so that p = m Or equivalently, given the input

v, the local randomizer returns a uniformly random element
. .y eecsﬂ ¢ .

of S(v) with probability ety and a uniformly

random element of U \ S(v) with probability Wllﬂﬁ
The crux of the construction is in specifying the universe
U and the subsets S(v). Small |U| is beneficial, as the

communication is log |U| bits.

Now we describe the preferred list construction for our new

mechanism. PGR works for k = ‘f;%ll for some integer ¢
(other values of k need to be rounded up to the nearest such
value). We identify the & input values with k canonical vec-
tors in JFfJ and the corresponding projective points in P (FZ)
We also identify the output values with projective points
in P (F%). The subsets S(v) are the (¢t — 2)-dimensional

projective subspaces of P (Fg) There are % (t — 2)-
dimensional projective subspaces, which is the same as the
number of projective points. For a canonical vector v, the
set S(v) is the (¢t — 2)-dimensional projective subspace such

that for all u € p~1(S(v)), we have (u,v) = 0. Each

. t—1_
(t — 2)-dimensional projective subspace contains qqfll
projective points. In other words, each set S(v) contains
gt 11
qg—1

t_
messages out of the universe of qqfll messages.

An important property of the construction is the symmetry
among the intersections of any two subsets S(v).

Claim 3.1. Consider a t-dimensional vector space V. The
intersection of any two (¢ — 2)-dimensional projective sub-
spaces of P (V) is a (¢ — 3)-dimensional projective sub-
space.

Proof. Let I be the intersection of two projective subspaces
S1 and S;. Recall that I, Sy, S are projective subspaces
corresponding to subspaces of V. Assume for contradiction
that the dimension d — 1 of the intersection I is lower than
t — 3. Starting from a basis vy, ...,vq of p~1(I) U {0},
we can extend it with wuq, ..., u;_1_q4 to form a basis of the
subspace p~1(S1) U {0}. We can also extend vq, ..., vq
with wy, ..., w;_1_q to form a basis of p~1(Sy) U {0}.
Because d +2(t — 1 —d) =t+ (t —2 —d) > t, the collec-
tion of Vectors U1, ..., Vg, Uy ...y Ut—1—dy W1, - -, Wi_1—_d
must be linearly dependent. There must exist nonzero coef-
ficients so that >, c;v; + Zj Biuj + Y, vewr = 0. This

means » , ViWr = —), 0GV; — Zj Bju; is a non-zero
vector in p~1(S1) N p~1(S2) but it is not in p~1(I), which
is a contradiction. O]

L is the size of the intersection

o
Now we have ¢;,,; = £ P

o
of two subsets S(v) and cgep = <

'q71 L is the size of each
subset S(v). Notice that ¢2,, > k - cing i.€. (Cset/Cint)? >
k/cint. As mentioned above, each user with input v sends
a projective point e with probability ep if e is in S(v) and

probability p otherwise.

The server keeps the counts on the received projective points
in a vector y € Z*. Thus, the total server storage is O (k).
We estimate x,, by computing

Ty =« Z Yu +ﬂzyu

u€S(v)

Private Frequency Estimation via Projective Geometry

where « and 3 are chosen so that it is an unbiased estimator.
Note Zu Y = n. We would like EZ, = =z, for all v.
Notice that by linearity of expectation, it suffices to focus
on the contribution to z,, from a single user.

If that user’s input is v, the expectation of the sum @ :=
Zues(v) Yu 18 €°pcser. On the other hand, if the input is
not v, the expectation of the sum Zu esw) Yu is e“pcins +
D (Cset — Cint). We want a - E[Q] + 8 = [[input is v]],
where [[T']] is defined to be 1 if T is true and O if false. Thus,
ae‘peses + 3 =1 and ap ((66 - 1) Cint + Cset) +5=0.
Substituting p and solving for «, 5, we get

(e —1)cset +k

(e6 - 1) (cset - Cint)’
B (e —1)cser + K
(66 - 1) (cset - Cint)

(66 - l)cvint + Cset
(e6 - 1) (Cset - Cint)

o =

. (e6 — 1)cint + Cset
(66 — 1) Cget —+]{Z

We next state the variance, which suggests that ¢ should be
chosen close to exp(e) + 1 for the best utility. The proof
can be found in Appendix C.

~ 112
E [z - #3] <
nece?, /ey Fn(k—1)((e* —1)+eser/cin)?
(ec—1)%(cset/Cint—1) '

i cact/cine = ¢+ 1 then B[2 — 23] < 2 + cner,

Lemma 3.2.

In particular,

Next we discuss the algorithms to compute z,,. The naive
algorithm takes O(kcser) = O(k?/q) time and this is the
algorithm of choice for ¢ < 3. For t > 3, we can use
dynamic programming to obtain a faster algorithm. Note in
the below that ¢ should be chosen close to exp(e) + 1.

Theorem 3.3. In the ProjectiveGeometryResponse
scheme, there exists an O((¢' —1)/(q—1)tq) time algorithm
for server reconstruction, using O((¢*—1)/(q—1)) memory.
These bounds are at best O(ktq) time and O(k) memory,
and increase by at most a factor of q each if rounding up to
the next power of q is needed so that (¢* —1)/(q — 1) > k.

Proof. We use dynamic programming. For a € Fg,b €
IE‘f;j ,z € Fgq, where a is further restricted to have its first
nonzero entry be a 1 (it may also be the all-zeroes vector),
and b is restricted to be a canonical vector when j = 0,
define

fla,b,2) = Z Yu,

prefj(u)=a
(suff¢_;(u),by=z2

where pref; (u) denotes the length-i prefix vector of u, and
suff; (u) denotes the length-i suffix vector of u. Then, we
would like to compute

Fv=a| D> yu|+BY yu=a-f(L,v,0)+6n,

u€eS(v) u

for all projective points v, where L denotes the length-0
empty vector. We next observe that f satisfies a recurrence
relation, so that we can compute the full array of values
(f(L,0,0))4 is canonical efficiently using dynamic program-
ming and then efficiently obtain & € R*.

We now describe the recurrence relation. For w € IF, and a
vector v, let v o w denote v with w appended as one extra
entry. If j denotes the length of the vector a, then the base
case is j = ¢. In this case, f(a, L, z) = y, iff both a # 0
and z = 0; else, f(a, L, z) = 0. The recursive step is then
when 0 < j < t. Essentially, we have to sum over all
ways to extend a by one more coordinate. Let suff_;(b)
denote the vector b but with the first entry removed (so it is
a vector of length one shorter). There are two cases: a is
the all-zeroes vector, versus it is not. In the former case, the
recurrence is

£(0,b,2) = f(0o0,suff_;(b), 2)

+ f(0o1,suff_;(b),z—b mod gq).
Note we are not allowed to append w € {2,3,...,q — 1}
to a since that would not satisfy the requirement that the
first argument to f either be all-zeroes or be canonical. The
other case for the recurrence relation is when a # 0, in
which case the recurrence relation becomes

q—1

fla,b,2) = Zf(aow,suff,l(b),z—d-bl mod q).

w=0

We now analyze the running time and memory requirements
to obtain all f(a,b, z) values via dynamic programming.
The runtime is proportional to

kq + Z q.

a,b,z,j#0

This is because for j > 0, for each a, b, z triple we do at
most ¢ work. When j = 0, there is only one possible value
for a (namely 1) and k = % values for v, plus we are
only concerned with z = 0 1n this case. For larger j, the

number of possibilities for a is ‘f;:ll + 1 (the additive 1
is since a can be the all-zeroes vector), whereas the num-
ber of possibilities for b is ¢'~7. Thus the total runtime is

proportional to

J_1)
kq + Z <qq + 1) " - ¢* = O(ktq?).

Private Frequency Estimation via Projective Geometry

For the memory requirement, note f(-) values for some
fixed j only depend on the values for j + 1, and thus using
bottom-up dynamic programming we can save a factor of
t in the memory, for a total memory requirement of only
O(kq) (for any fixed j there are only O(k) a, b pairs, and
there are ¢ values for z).

Finally, we add an optimization which improves both the
runtime and memory by a factor of q. Specifically, suppose
b is not canonical and is not the all-zeroes vector. Let the
value of its first nonzero entry be ¢. Then f(a, b, 2) is equal
to f(a,b/¢,z/¢), where the division is over F,. Thus, we
only need to compute f(-) for b either canonical or equal
to the 0 vector. This reduces the number of b from ¢'~7 to
(¢*=7—=1)/(q—1)+1, which improves the runtime to O (ktq)
and the memory to O(k). Note finite field division over IF,,
can be implemented in O(1) time after preprocessing. First,
factor ¢ — 1 and generate all its divisors in o(q) time, from
which we can find a generator g of F; in o(g) expected time
by rejection sampling (it is a generator iff g Z 1 mod ¢
for every nontrivial divisor p of ¢, and we can compute
gP mod ¢ in O(log ¢) time via repeated squaring). Then, in
O(q) time create a lookup table A[0...q — 1] with A[7] :=
g mod q. Then create an inverse lookup table by for each
0 < < g, setting the inverse of A[i]to Ajlg —1—4]. O

4. HybridProjectiveGeometryResponse:
trading off error and time

In this section, we describe a hybrid scheme using an inter-
mediate value for the field size ¢ to trade off between the
variance and the running time. Roughly speaking, larger
values for ¢ lead to slower running time but also smaller
variance. The approach is similar to the way (Acharya et al.,
2019) extended their scheme from the high privacy regime
to the general setting. We choose h, ¢, t such that they sat-
isfy the following conditions:

. b:‘i_—‘fandbhzk>cseth-

t—1 t—2
— g -1 S -
o Let cser = T, Cint = T—=, and 2 = Cset/Cint.

Note that 2, > b-cippand g+ 1> 2 > q.

set —

¢ Choose hz as close as possible to e + 1.

The k input values are partitioned into blocks of size at most
b each. The algorithm’s response consists of two parts: the
index of the block and the index inside the block. First,
the algorithm uses the randomized response to report the
block. Next, if the response has the correct block then the
algorithm uses the scheme described in the previous section
with field size ¢ to describe the coordinate inside the block.
If the first response has the wrong block then the algorithm
uses a uniformly random response in the second part.

Formally the algorithm is another instantiation of the frame-
work of (Acharya et al., 2019) so we only need to specify
the universe U of messages and the subsets S(-) for each
input value. Each input value is identified with a pair (7, v)
where ¢ € Zj, and v is a canonical vector in Ffl. We divide
the input values evenly among the blocks so that each block
i € Zp, has either |k/h] or [k/h] input values.

The universe U of responses is the set of all pairs (j, u)
where j € Z;, and w is a canonical vector in IFZ. The subset
S(i,v) for input (4, v) consists of all messages (i,u) € U
such that (u,v) = 0. Recall from the framework that each
message (j,u) € S(i,v) is chosen with probability e*p and
each message (j,u) ¢ S(4, v) is chosen with probability p
for an appropriate p so that the probabilities sum to 1. Thus
€p - Coet + P (bh — o) = 150 that p = W

Cset

Let Z; , be our estimate for the frequency of input (¢,v).
The estimates are computed as follows.

i‘i,v =« Z Yiu +B <Z yi,u> +"Y Zyj,u
u 7u

(v,u)=0

We need to choose «, 3 and +y so that Z; , is an unbiased
estimator of z; ,,. By linearity of expectation, we only need
to consider the case with exactly one user. If the input is ¢, v
then we have

E (%] = aepeses + Bp (e — 1) cser +b) + v =1

If the input is not ¢,v but in the same block
then E[Z;,] should equal zero, and it does equal
ap ((€° — 1) Cint + Cset) + Bp (65 — 1) Cser +b) + 7.

Finally if the input is in a different block then
E [j'i,v] = QPCget + 6pb +v = 0

We solve for a, 3,y and get

B 1 _ bh+(ef — 1) Coer

~op(ef —1) (cser — Cint) (€€ — 1) (Cser — Cint)
ﬁ _ QCint _ Cint/cset

B Cset B p (66 -]-) (Cset - Cint)

_ bh + (66 - 1) Cset Cint

B (ee - 1) (Cset - Cint) Cset

Cset — b : %Z:

v = <0

—apcset — Ppb = —
Deset = 0P (66 - 1) (Cset - Cint)

We note that o + § = (1 — 2’—”:) o= 7bh/022i(g_1).

This fully specifies the scheme; the utility and runtime anal-
yses can be found in Appendix D.

Private Frequency Estimation via Projective Geometry

5. Experimental Results

In this section, we compare previously-known algorithms
(RAPPOR, PI-RAPPOR, HadamardResponse (HR),
RecursiveHadamardResponse (RHR), SubsetSelec-
tion (SS)) and our new algorithms ProjectiveGeome-
tryResponse (PGR) and HybridProjectiveGeometryRe-
sponse (HPGR). As the variance upper bound of these
algorithms do not depend on the underlying data, we per-
form our experiments on simple synthetic data that realize
the worst case for variance. Our experiments show that
ProjectiveGeometryOracle matches the best of these al-
gorithms namely SS, RAPPOR, and PI-RAPPOR, and
achieves noticeably better MSE than other communication-
and computation-efficient approaches. At the same time
it is significantly more efficient than those three in terms
of server computation time, while also achieving optimal
communication.

All experiments were run on a Dell Precision T3600 with
six Intel 3.2 GHz Xeon E5-1650 cores running Ubuntu
20.04 LTS, though our implementation did not take ad-
vantage of parallelism. We implemented all algorithms
and ran experiments in C++, using the GNU C++ com-
piler version 9.3.0; code and details on how to run the ex-
periments used to generate data and plots are in our pub-
lic repository at https://github.com/minilek/
private_frequency_oracles/.

We first performed one experiment to show the big gap in
running times. We took € = 5, a practically relevant set-
ting, and n = 10,000, £ = 3,307,948; this setting of n is
smaller than one would see in practice, but the runtimes of
the algorithms considered are all linear in n plus additional
terms that depend on k, €, and our aim was to measure the
impact of these additive terms, which can be significant
even for large n. Furthermore, in practice the server can
immediately process messages from each of the n users dy-
namically as the messages arrive asynchronously, whereas
it is the additive terms that must be paid at once at the time
of histogram reconstruction. For our settings, the closest
prime to exp(e) + 1 & 149.4 is ¢ = 151. Recall that PGR
rounds up to universe sizes of the form (¢* — 1)/(q — 1);
then (¢* — 1)/(q — 1) is less than 5% larger than k, so
that the negative effect of such rounding on the runtime
of PGR is minimal. Meanwhile PI-RAPPOR picks the
largest prime ¢’ smaller than exp(e) + 1, which in this case
is ¢’ = 149, and assumes universe sizes of the form ¢'* — 1;
in this case ¢"> — 1 = k exactly, so rounding issues do not
negatively impact the running time of PI-RAPPOR (we
chose this particular value of % intentionally, to show PI-
RAPPOR’s performance in the best light for some fairly
large universe size). The runtimes of various algorithms
with this setting of ¢, k, n are shown in Table 2. Note RHR
and HR sacrifice a constant factor in utility compared to

spike,k=22000,n=50000,eps=5.0

50000 RR
HR
40000 RHR
PG
5 30000
20000
10000
ol °
0 20 40 60 80 100
percentile
(@)
spike,k=22000,n=10000,eps=5.0
800 :
SS. -
700 . HR /
. RHR
600 Z PG
@
£ 500
400
300 —
0 20 40 60 80 100
percentile
()

Figure 1. RandomizedResponse has significantly worse er-
ror than other algorithms, even for moderately large uni-
verses, followed by HadamardResponse and Recursive-
HadamardResponse, which have roughly double the error
of state-of-the-art algorithms. HybridProjectiveGeometryRe-
sponse trades off having slightly worse error than state-of-the-art
for faster runtime.

PI-RAPPOR and PGR, the former of which is four orders
of magnitude slower while the latter is only one order of
magnitude slower and approximately 51x faster than PI-
RAPPOR. Meanwhile, HPGR’s runtime is of the same
order of magnitude (though roughly 5x slower) than RHR,
but as we will see shortly, HPGR can provide significantly
improved utility over RHR and HR.

Next we discuss error. Many of our experiments show-
ing reconstruction error with fixed e take ¢ = 5, a practi-
cally relevant setting, and universe size k = 22,000, for
which the closest prime to exp(e) + 1 ~ 149.4 is ¢ = 151.
Recall that PGR rounds up to universe sizes of the form
(¢*—1)/(g—1); then (¢*—1)/(g—1) = 22,593 is not much
larger than k, so that the runtime of PGR is not severely
impacted. Also, cset/cint as defined in Section 3 is very
close to exp(e) + 1, so that the MSE bound in Lemma 3.2
nearly matches that of SS. Furthermore for HPGR for this
setting of €, k, if we choose ¢ = 5,h = 30, = 5, then

Private Frequency Estimation via Projective Geometry

scheme name runtime (in seconds)
PI-RAPPOR | 1,893.82 (approximately 31.5 minutes)
PGR 36.92
HPGR 5.94
RHR 1.20
HR 0.64
RR 0.02

Table 2. Server runtimes for e = 5, k
rounded up the universe size to h(q"

h-(¢" —1)/(¢ — 1) = 23,430, which is not much bigger
than & so that the runtime of HPGR is not majorly impacted.
Furthermore hz as defined in Section 4 is approximately
150.19, which is very close to exp(e) + 1 as recommended
by Lemma D.1 to obtain minimal error. We also do one
experiment with ¢ = 1.386 =~ In(4) so that PGR takes
g =5 =~ e° + 1. We first draw attention to Figures 2a
and 2b. These plots run RAPPOR, PI-RAPPOR, PGR,
and SSwith k,n, € as in the figure and show that their er-
ror distributions are essentially equivalent. We show the
plots for only one some particular parameter settings, but
the picture has looked essentially the same to us regardless
of which parameters we have tried. In Figure 2a, we have
n users each holding the same item in the universe (item
0); we call this a spike distribution as noted in the plot. We
have each user apply its local randomizer to send a message
to the server, and we ask the server to then reconstruct the
histogram (which should be (n, 0, ..., 0)) and calculate the
MSE. We repeat this experiment 300 times, and in this plot
we have 300 dots plotted per algorithm, where a dot at point
(z,y) signifies that the MSE was at most y for % of the
trial runs; this, it is a plot of the CDF of the empirical error
distribution. In Figure 2b, we plot MSE as a function of
increasing e, where for each value of ¢ we repeat the above
experiment 10 times then plot the average MSE across those
10 trial runs. Because the error performance of RAPPOR,
PI-RAPPOR, SS, and PGR are so similar, in all other plots
we do not include RAPPOR and PI-RAPPOR since their
runtimes are so slow that doing extensive experiments is
very time-consuming computationally (note: our implemen-
tation of RAPPOR requires O(nk) server time, though
O(n(k/ef + 1)) expected time is possible by having each
user transmit only a sparse encoding of the locations of the 1
bits in its message). We finally draw attention to Figures 2c
to 2g. Here we run several algorithms where the distribu-
tion over the universe amongst the users is Zipfian (a power
law), with power law exponent either 0.1 (an almost flat
distribution), or 3.0 (rapid decay). The HPGR algorithm
was run with ¢ = 5. As can be seen, the qualitative behav-
ior and relative ordering of all the algorithms is essentially
unchanged by the Zipf parameter: PGR,SSalways have the
best error, followed by HPGR, followed by RHR and HR.

= 3,307,948. For HPGR, we chose the parameters h = 50, q = 3,¢ = 11, so that the mechanism
—1)/(q — 1), which is about 34% larger than k.

Figures 2c and 2d show the CDF of the empirical MSE
over 300 independent trials, as discussed above. Figures 2e
and 2f shows how the MSE varies as ¢ is increased; in these
last plots we do not include HPGR as one essentially one
should select a different ¢ for each ¢ carefully to obtain a
good tradeoff between runtime and error (as specified by
Lemma D.1) due to round-up issues in powering q. Fig-
ure 2g is similar to Figures 2¢ and 2d, but the y-axis denotes
| — #||so instead of the MSE. Finally, Figure 2h takes
smaller € ~= 1.386 ~ In(4), so that PGR takes ¢ = 5; we
note that even with such small ¢, the qualitative picture does
not change.

Acknowledgments

We thank Noga Alon for pointing out the relevance of pro-
jective geometry for constructing the type of set system our
mechanism relies on.

Private Frequency Estimation via Projective Geometry

MSE

max error

100

80

60

40

20

70

60

40

30

1400
1200
1000
800
600
400
200

max error
N w w £ £ w
w o w o w o

N
o

spike,k=1024,n=1000,eps=5.0

RAPPOR
PI-RAPPOR
sS
PG
0 20 40 60 80 100
percentile
(@)

zipf0.1,k=22000,n=1000,eps=5.0

SS I ———
HR
RHR
PG
0 20 40 60 80 100
percentile
©
zipf0.1,k=22000,n=1000
—— §S
— HR
—— RHR
— PG
\\
2.0 2.5 3.0 3.5 4.0
epsilon
©)
zipf0.1,k=22000,n=1000,eps=5.0
SS
HR _
RHR i
PG -
0 20 40 60 80 100
percentile
(&)

1000

800

MSE

400

32500
30000
27500

vSE

25000
22500
20000
17500

spike,k=1024,n=1000

—— RAPPOR
—— PI-RAPPOR
— 88
—— |IRG
20 25 30 35 40 45 50 55
epsilon
(b)
zipf3.0,k=22000,n=1000,eps=5.0
S5 ~
HR ///
RHR
PG
0 20 40 60 80 100
percentile
(@

zipf3.0,k=22000,n=1000

2.0 2.5 3.0 35 4.0
epsilon

®

spike,k=22000,n=10000,eps=1.386

ss

HR
RHR
PG
ey
0 20 40 60 80 100
percentile
(h)

Figure 2. Error distributions from experiments.

Private Frequency Estimation via Projective Geometry

References

Acharya, J., Sun, Z., and Zhang, H. Hadamard response:
Estimating distributions privately, efficiently, and with
little communication. In Proceedings of the 22nd Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 1120-1129, 2019.

Balle, B., Bell, J., Gascon, A., and Nissim, K. The privacy
blanket of the shuffle model. In Boldyreva, A. and Mic-
ciancio, D. (eds.), Advances in Cryptology — CRYPTO
2019, pp. 638-667, Cham, 2019. Springer International
Publishing. ISBN 978-3-030-26951-7.

Bassily, R. and Smith, A. Local, private, efficient protocols
for succinct histograms. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing,
pp. 127-135, 2015.

Bassily, R., Nissim, K., Stemmer, U., and Thakurta, A.
Practical locally private heavy hitters. Journal of Machine
Learning Research, 21(16):1-42, 2020.

Bittau, A., Erlingsson, U., Maniatis, P., Mironov, 1., Raghu-
nathan, A., Lie, D., Rudominer, M., Kode, U., Tinnes,
J., and Seefeld, B. Prochlo: Strong privacy for analytics
in the crowd. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, pp. 441-459,
2017.

Bun, M., Nelson, J., and Stemmer, U. Heavy hitters and
the structure of local privacy. ACM Transactions on Al-
gorithms (TALG), 15(4):1-40, 2019.

Chen, W., Kairouz, P, and ()Zgiir, A. Breaking the
communication-privacy-accuracy trilemma. In Proceed-
ings of the 33*Y Annual Conference on Advances in Neu-
ral Information Processing Systems (NeurIPS), 2020.

Cheu, A., Smith, A., Ullman, J., Zeber, D., and Zhilyaeyv,
M. Distributed differential privacy via shuffling. In Ishai,
Y. and Rijmen, V. (eds.), Advances in Cryptology — EU-
ROCRYPT 2019, pp. 375-403, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-17653-2.

Erlingsson, U., Pihurand, V., and Korolova, A. Rappor:
Randomized aggregatable privacy-preserving ordinal re-
sponse. In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
2014.

Erlingsson, U., Feldman, V., Mironov, 1., Raghunathan,
A., Talwar, K., and Thakurta, A. Amplification by
shuffling: From local to central differential privacy via
anonymity. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 19,
pp- 2468-2479, USA, 2019. Society for Industrial and
Applied Mathematics.

Feldman, V. and Talwar, K. Lossless compression of effi-
cient private local randomizers. In Proceedings of the
38th Annual Conference on International Conference on
Machine Learning (ICML), pp. 3208-3219, 2021.

Feldman, V., McMillan, A., and Talwar, K. Hiding among
the clones: A simple and nearly optimal analysis of pri-
vacy amplification by shuffling. In Proceedings of the
62nd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), 2021. arXiv:2012.12803 [cs.LG].

Hsu, J., Khanna, S., and Roth, A. Distributed private heavy
hitters. In International Colloquium on Automata, Lan-
guages, and Programming, pp. 461-472. Springer, 2012.

Kairouz, P., Bonawitz, K., and Ramage, D. Discrete dis-
tribution estimation under local privacy. arXiv preprint
arXiv:1602.07387, 2016.

Shah, A., Chen, W.-N., Balle, J., Kairouz, P., and Theis,
L. Optimal compression of locally differentially private
mechanisms. arXiv preprint arXiv:2111.00092, 2021.

Thakurta, A. G., Vyrros, A. H., Vaishampayan, U. S.,
Kapoor, G., Freudiger, J., Sridhar, V. R., and David-
son, D. Learning new words, 2017. URL https:
//www.google.com/patents/US9594741. US
Patent 9,594,741.

Wang, S., Huang, L., Nie, Y., Zhang, X., Wang, P., Xu, H.,
and Yang, W. Local differential private data aggregation
for discrete distribution estimation. IEEE Trans. Parallel
Distributed Syst., 30(9):2046-2059, 2019.

Wang, T., Blocki, J., Li, N., and Jha, S. Locally dif-
ferentially private protocols for frequency estimation.
In 26th USENIX Security Symposium (USENIX Secu-
rity 17), pp. 729745, Vancouver, BC, August 2017.
USENIX Association. ISBN 978-1-931971-40-9.
URL https://www.usenix.org/conference/
usenixsecurityl7/technical-sessions/
presentation/wang-tianhao.

Warner, S. L. Randomized response: A survey technique for
eliminating evasive answer bias. Journal of the American
Statistical Association, 60(309):63-69, 1965.

Ye, M. and Barg, A. Optimal schemes for discrete dis-
tribution estimation under local differential privacy. In
Proceedings of the 14th Annual IEEE International Sym-
posium on Information Theory (ISIT), pp. 759-763, 2017.

Ye, M. and Barg, A. Optimal locally private estimation
under £, loss for 1 < p < 2. The Electronic Journal of
Statistics, 13(2):4102-4120, 2019.

Private Frequency Estimation via Projective Geometry

A. Fast dynamic programming for PI-RAPPOR

In this section, we describe an adaptation of our dynamic programming approach to PI-RAPPOR. First, we briefly review
the construction of PI-RAPPOR. We use IF;, with the field size g close to e + 1. Let ¢ be the minimum integer such that
k<q'.

We identify the k input values with vectors in IF’; Let z € Z4' denote the input frequency vector i.e. x, is the number of
users with input v € ;. For each input v, we define a set S(v) C F} x F, where (a,b) € S(v) if and only if (a,v) +-b = 0.
Each user with input v sends a random element e of I}, x F, with probability e“p if e € S(v) and probability p if e ¢ S(v).

Thus, p = m. The server keeps the counts on the received elements in a vector y indexed by elements of IFfI x IFq.

The total storage is O (qt“). We estimate the frequency vector = by computing

i'v =« Z Yu,w + 6 Z Yu,w
w,w

w,w:(u,v)+w=0

where « and (3 are chosen so that this is an unbiased estimator. This condition implies two equations:

€t

€q

a——— 4+ 3=1
eeqt+(q_1)qt 6

eq¢ +(g-1g'!

eq" + (¢ —1)¢’ =0
We obtain
_ g+ (g—1)q
(ec=1)(¢—1)

Next, we describe a fast algorithm to compute & with running time O (tq"*?). Specifically, for a € FJ,b € Fi ™7,z € F,,
define

fj(CL,b,Z) = Z Yu,wy

pref;(w)=a
(suff¢_j(u),b)+w=z

where pref,(u) denotes the length-i prefix vector of u, and suff;(u) denotes the length-i suffix vector of u. Then, we would
like to compute

fi'y:a Z Yu,w +5Zyu,w:a2f0(lavao)+ﬂnv

w,w:{u,v)+w=0 u,w w

forall v € Ffz, where | denotes the length-0 empty vector. We next observe that f satisfies a recurrence relation, so that we

can compute the full array of values fo(_L, v, w) efficiently using dynamic programming and then efficiently obtain Z € R¥.
We have

Private Frequency Estimation via Projective Geometry

fila,b,z) = Z Yu,w

pref;(w=a
(suffy_;(u),b)+w=z

—

Q

> Yo

prefjt1(u)=aoi
(suffy—j_1(u),suff;_;_1(b))+w=2z—i-by (mod q)

N
I
=)

Q
|
—_

fi+1(aoisuffy_j_1(b), (2 —i-b1) mod q)

@
Il
=)

Note that we have the base cases f;(a, L, w) = yq,,. We need to compute the values of f;(a,b,z) for j € {0,1...,¢t —
1},a € F},b e Fi ™7, z € F, and each value takes O(g) time so the total running time is O(tg"*?).

B. The public coin setting

We show that versions of PGR and HPGR can be implemented in the public coin setting in a way that the communication is
[log, q] = elog, e + O(1) bits, which is asymptotically optimal to achieve asymptotically optimal utility loss (?)Corollary
71BarnesHO20. We begin with PGR.

Recall that as described, PGR associates each of the k input values with a canonical vector in IFfI. In the public coin variant
we now describe, we further assume that the canonical vectors have a non-zero last coordinate. This can be ensured by
picking ¢, ¢ such that k < 1+ (1 —1/¢)((¢" —1)/(¢ — 1) — 1) = ¢'~*. We will use C, ; to denote the set of canonical
vectors in IF‘Z and C7 , to denote those with a non-zero last coordinate.

With this setup, recall that each output in the set .S, can be associated with a vector u € Cy ¢ such that (u,v) = 0. Thus a
user with input v sends a vector u € Cy ; with probability e“p if (u,v) = 0 and with probability p otherwise. For a vector

u, let pref;_1(u) denote its length (¢ — 1) prefix. Note that for a vector u € C, 4, either pref;_1(u) is itself a canonical
def

vector in Cy 1, oru =u* = (0,...,0,1). Also note that for any v € C ,, u* # S,.
This then suggests the following algorithm. We use public randomness to select a vector w €]Ffl‘l such that w = (0, ...,0)

t—1
with probability p, and w is a random vector in Cy ¢—1 otherwise. Thus there are 1 + £ q_l_l possible values of w. Given a

w e Cyy—1andav € Cy ,, there is a unique a € F, such that (v,w - a) =0 mod gq. When w # (0, ...,0), a user with

input v € Cj ; sends message a with probability
If w = (0,...,0), the user always send 1.

ﬁ if (v,w-a) =0 mod g, and with probability ;= otherwise.
The server given w derived from the shared public randomness, and the message a € F,, decodes it as

Dec(w,a) =w - a.

We claim that the distribution of Dec(w, a) is identical to the output in the private coin PGR. First observe that by
construction, Dec(w, a) € C, 4. Next notice that for any u,u’ € S(v), we have

Pr(Dec(w,a) = u) = Pr(w = prefi_1(u)) - Pr(a = u | w = prefi_1(u))

€

e
r(w = prefi_1(u)) prr—
= Pr(w = prefi_1(v)) - % (by uniformity of w over canonical vectors)
66 q J—

=Pr(w=prefi_1(v')) - Pr(a = u; | w = prefi_1(u))
= Pr(Dec(w,a) = u').

Private Frequency Estimation via Projective Geometry

Similarly, for any u,u’ € Cy ¢\ S, such that u, v’ # u*, we can write

Pr(Dec(w,a) = u) = Pr(w = prefi—1(u)) - Pr(a = us | w = prefi_1(u))

1
= PI‘(UJ = pT@ft_l(u)) . m
1
= Pr(w = prefi_1(v)) - prr— (by uniformity of w over canonical vectors)
66 q -

=Pr(w=prefi_1(v')) -Pr(a = u; | w = prefi_1(u))
= Pr(Dec(w,a) = u').

Further, an identical calculation shows that for v € S,,u’ € Cy; \ S, with v/ # u*, Pr[Dec(w,a) = u] = e -
Pr(Dec(w, a) = u'). Moreover, the distribution of w ensures that Pr(Dec(w, a) = u*) = p. It follows that for all u € C 4,
Pr(Dec(w,a) =u)isepifu e S, andpifu € Cyy \ S,.

In other words, we have shown how to simulate the output distribution of PGR in the public coin setting while sending only
a single element from IF,,.

An implementation of HPGR in the public coin model is similar. A message in HPGR is a pair (j,) where j € {1,...,h}
is the index of a block, and u € Fg is the name of a canonical vector, and as above in the public coin setting we will forbid
u from being the all-zeroes vector (so that now we need hq'~! > k). As described in Section 4, h, q are chosen so that
hq = e + 1. In the public coin model, the user selects j using private randomness and sends it explicitly then uses the PGR
public coin protocol described above to determine the first ¢ — 1 entries of « with no communication required, then sends
the final entry of u to obey the HPGR distribution. The total communication is [hq] = €log, e + O(1) bits.

C. Utility analaysis for PGR
We now restate Lemma 3.2 then provide its proof, analyzing the utility loss of PGR.
Lemma C.1. E |:||3? o 57||§i| < 7Leeciet/0%nt+7l(kf—1)((65_1)+Cset/cint)2. n particular, lf Cset/cint = € + 1 then

(66—1)2(Cset/c'int_1)
~12 n ne®
E {% |z — 53”2} <5t (66—1)2

Proof. By independence, we only need to analyze the variance when there is exactly one user with input v. The lemma then
follows from adding up the variances from all users.

E (@0~ 1] = ¢peser (a8 1) + plk = cour) (8= 1)
=P p o1+ I gy
=(a+pB-1)(1-p)

- —Cset + k € Cset
"~ (e — 1) (cset — Cint) (eF = 1) (Coet — Cint)
_ (—Cset/Cint + k/Cint) € Cset/ Cint
(e = 1)2 (Coet/Cint — 1)2

(—Cset/Cint + €2y [y €Coet [Cint

(ef — 1) (Cset/Cint — 1)2
€ Cher/Chnt
(€ — 1) (cset/Cint — 1)

2
Let z = ¢get/Cint- Note that ZZ_ 7 18 an increasing function for z € [2, +00) so this part of the variance gets larger as ¢ gets
larger.

Next we analyze the contribution to the variance from the (k — 1) coordinates u # v.

Private Frequency Estimation via Projective Geometry

E [‘%Z] = ((66 -]-) Cint + Cset)p(a + ﬁ)Q + (1 - eepcint _p(cset - Cint)) 52

B(a+5)2+<1+§)52

(0%

_ —Bla+8)’+(a+p)p
(6%
= —fB(a+p)
~(ef = 1)cint + Cset . (e —2) cser + k — (e° — 1)Cint
~ (ef = 1) (Cset — Cint) (e¢ — 1) (Coet — Cint)
_(ef =Dt cset/cint (€° = 2) Cset/Cint + k/Cint — (€€ — 1)
~ (ef — 1) (cset/Cint — 1) (e€ = 1) (cset/Cint — 1)

< ((ec=1)+2)((ef=2)z+ 22 — (e° — 1))
8 (e~ 1% (s — 1)2

(5= 1)+ 2)°

(17 (=—1)

((ef=1)+2)?

Note that the function (e ey

is decreasing for z € (0, e€ + 1] and it is increasing for z € [e€ + 1, +00) so this part of
4e€

the variance is minimized when z = e€ 4 1. For z = e® + 1, we can substitute and get e O
D. Utility and runtime analyses for HPGR
Lemma D.1.
h €-1 2 €(zh —e®+1
E[Hx—i”ﬂﬁn 1+ (2 +(26) e (2 e;—)
(ec=1)°(z—1) (ec=1) (ec—1)

(zh+ (ef—1)) 2z

+n 3
(e — 1) (z— 1)

(0= ri/m1 + (1 - pEEE=2)

In particular, if zh = e€ + 1 then E [% ||z — f||§] <zFt+tE n&%)?

Proof. By independence, we only need to analyze the variance when there is exactly one user with input (¢, v) and response
(j,u). The lemma follows from adding up the variances from all users.

E[(#i0 — 1] <E [@i0—1-7)]
= Prlj] (—1)2+ Pr[j = i A fu,v) £ 0] (5 — 12 +Pr[j =i A fu,v) = 0] (a+ f — 1)°
=(1— (e = 1) peser — pb) +p (b — ser) (B — 1)* + € peger (v + B — 1)°
=1+ (b~ cser) (8% = 26) + epeser (a + B) (a+ 5~ 2)

Private Frequency Estimation via Projective Geometry

We expand the second and third terms individually:

p(b - Cset) (/82 - 26)

2
Cint/cset Qcint/cset
= b— Cse +
p(t> ((p (66 - 1) (cset - Cint)> p (66 - 1) (Cset - Cint))
(bh + (e° = 1) cset) (b — Cset) sznt/cget 2 (b — cset) Cint/Cset

(ef —1)° (¢ser — Cint)” (€€ = 1) (Cset — Cint)
_ (bh/cser + (€€ — 1)) (b/cser — 1) 2(b/ecser — 1)
(e — 1) (Cset/Cint —1)° (€€ — 1) (Coet/Cint — 1)
< (zh + (e — 1)) 2

T (e =1 (z—1) (ec—1)
and

eepcset (a + B) (Oé + 5 - 2)

B € Cyet bh/cset + (e — 1) bh/cser — (e — 1)
T bh+ (e — 1) Coer (ec — 1) ‘ (ec — 1)
e (bh/coer — e +1)

G

< e (zh—e“+1)

T (e—1)’

When zh = e€ + 1, we have

2e€ 2 2e€ 4ec z

(66—1)2(2—1)4_(65*1)+(66—1)2 <1+(ef—1)22*1

E [(:c - 1)2} <1+

Next consider v/ # wv.

B [(#100 = 0] <E [0 —7)]
=Prlj#i-0+Pr[j=iA(uv)#0/(8)" +Prlj=iA(uv)=0](a+p)
=p(b+ (€= 2) Coer — (€5 — 1) cint) (B)° + p((e° — 1) Cint + Cset) (a + B)°

1 czznt
p (66 - 1)2 (Cset - Cint)2 Cget *
(1 - Cint/cset)2
p2 (ee - 1)2 (cset - Cint)2
€ € (bh/cset + (66 — 1)) sznt

= (b/cser + (e —2) — (€° — 1) Cint/Cset o) 372

(bh/cser + (e — 1))

(ec — 1)?

(sh+ (e = 1))

= (b+ (e — 2) cser — (65— 1) Cint)

p ((ee - 1) Cint + cset)

|

((ee - 1) Cint/cset + 1)

(zh + (ec = 1))

S(z+(ef=2) = ("= 1) /2) +((e"=1)/2+1)

(s = 1)° (z = 1)° (e = 1)°
h €—1
(ec—1)"(z—1)
When zh = e€ + 1, the last expression is bounded by (z + €€ — 1) (671)22% +(z+e—1) (66365)2Z = (Z(tejl_)l)

2e° < 1+h =z . 2e€
(ec=1)2 = z (2—1) (ec—1)2

Private Frequency Estimation via Projective Geometry

Finally, consider i’ # ¢ and arbitrary v’.

E [(i’i/ﬂ,/ — 0)2} < E [(531",1/ - 7)2}
=Pr[j#£i]-02+Pr[j =4 A (u,v') £ 0] (8)° +Pr[j =i A (u, ') = 0] (a + 8)°
=p(b—cset) (B) + peser (o +)2

1

02 (1 — cint/cset)2
=D (b — Cset) int =+ PCset
p? (e — 1) (Cset — Cint)z Cget p? (ec — 1)2 (Cset — Cint)2
1) 2 .
— (b/cset _ 1) (bh/C;et + (6)) . % bh/cset + (62)
(ee - 1) (1 - Cint/cset) Cset (6E — 1)
< (2h+(: —1)) N zh + (e —21)
—17G-1 (-1
_Ght(ef-1))2
(=1 (z = 1)
2e° 2e€ 2

When zh = e 4 1, the last expression is bounded by = 1)2 o 1 + D = T

There are b; < [k/h] < b valid coordinates in the same block with the input (¢, v). There are k — b; coordinates in the other
blocks. Thus the total variance across all coordinates except for coordinate (i, v) is bounded by

(zh4(ec=1)z(o (zre—1)
e (k bt (b - EEED)

(zh+(ec=1)z(, o te 1)
< S (a4 (] - =)

For zh = e + 1, we have B*<=1 < 1 4 hand k — b; + (b — 1) =1 <k — [k/h] + ([k/h] — 1)(1 + h) =
k— [k/h] + [k/R] — 1+ h([k/h] — 1) < 2k. O

Regarding the decoding algorithms, notice that the estimates are computed separately by blocks except for an offset « scaled
by the total number of received messages across all blocks. Thus, using the naive algorithm, the time to estimate one count

is O (cser) = O (q [log, (k/h)] 71). Using the fast algorithm to estimate all counts takes O (bqt) time per block and in total,
O (bgth) = O ({1ogq (k/h)] hg'*osatk/ hﬂ) time.

