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Abstract— 3D representations of geographical surfaces in
the form of dense point clouds can be a valuable tool for
documenting and reconstructing a structural collapse, such as
the 2021 Champlain Towers Condominium collapse in Surfside,
Florida. Point cloud data reconstructed from aerial footage
taken by uncrewed aerial systems at frequent intervals from
a dynamic search and rescue scene poses significant challenges.
Properly aligning large point clouds in this context, or regis-
tering them, poses noteworthy issues as they capture multiple
regions whose geometries change over time. These regions
denote dynamic features such as excavation machinery, cones
marking boundaries and the structural collapse rubble itself.
In this paper, the performances of commonly used point cloud
registration methods for dynamic scenes present in the raw data
are studied. The use of Iterative Closest Point (ICP), Rigid -
Coherent Point Drift (CPD) and PointNetLK for registering
dense point clouds, reconstructed sequentially over a time-
frame of five days, is studied and evaluated. All methods
are compared by error in performance, execution time, and
robustness with a concluding analysis and a judgement of the
preeminent method for the specific data at hand is provided.

I. INTRODUCTION

Structural collapses worldwide regularly lead to substan-
tial loss of life and financial damages and hence have long
been a big focus of the search and rescue (SAR) research
community [1][2][3][4]. In this work, the structural collapse
in focus is the Champlain Towers South Condominium
collapse at Surfside, Florida on June 2021. It is the third
largest structure collapse in the United States, resulting in 98
deaths, 9 of which could have been avoided if the victims
had been quickly found and extricated from the rubble
[5]. The prospect of being able to save more lives is a
significant research driver towards automated 3D perception
of rubble piles. 3D perception of rubble from a structural
collapse becomes more and more paramount for SAR oper-
ations, to understand terrain mobility for robot deployments
or potentially locating and characterizing void spaces for
extricating possible survivors. With the increased adoption
and lowering cost of LIDAR and RGB-D sensing solutions
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and computationally cheap Structure from Motion (SfM)
methods, point clouds are gradually becoming the favoured
modality to represent collapse sites in 3D [6], [7].

Point clouds are unordered sets of points in 3D space, typ-
ically defining the surface of an object or a scene. The lack of
order in point clouds renders processing them more complex
than processing images as they require geometric processing
or non-convolutional feature-learning methods. Whether a
point cloud is captured or reconstructed is dependant on
the modality of sensing. LIDAR and RGB-D solutions are
able to capture point clouds whereas 2D imaging feeds into
SfM methods to reconstruct point clouds. In the case of
the Condominium disaster at Surfside, Floarida, uncrewed
aerial systems (UAS) were deployed to collect aerial images,
which were then fed post-deployment into SfM software to
reconstruct dense point clouds of the site at regular intervals
as the rubble was being cleared.

The resulting point clouds represent a highly dynamic
scene of the collapse site and potentially could be analyzed
for a variety of important SAR indicators, such as void spaces
or volume differences in the rubble when aligned correctly
in 3D space. However, data captured on-site as well as the
reconstructed data can be noisy and/or inaccurate due to a
number of reasons, which we discuss in Section III. This
results in incorrectly aligned or unregistered point clouds in
3D space. Point cloud registration plays a critical role in
numerous computer vision and perception applications like
3D reconstruction. For the purposes mentioned above, it is
imperative that the reconstructed point clouds are as well
aligned as possible. Manually aligning the point clouds can
be an arduous task and could take long while being prone to
human errors. Therefore, automated alignment of these point
clouds in 3D space is necessary and can be achieved through
point cloud registration methods.

There are numerous different types of registration meth-
ods: optimisation-based methods, feature learning-based
methods, heuristic approaches, etc. In this paper, three
widely-adopted point cloud registration techniques are com-
pared and assessed on real-world data, specifically the
data collected from the Champlain Towers South Condo-
minium collapse at Surfside (from here on out shortened
to only "Surfside" for convenience). GPU implementations
of optimization-based point-to-point ICP and Rigid CPD,
and end-to-end learning-based PointNetLK (discussed in
Section IV) on point clouds representing the dynamic scene
from Surfside are tested and evaluated. Insights into the
performances in terms of quantitative errors, execution times
and qualitative visualizations of the alignments are provided



Fig. 1: a) Top-down pictures captured during the deployment
b) Oblique pictures captured during the deployment c) Dense
point cloud generated post-deployment (≈ 108 points)

in Section VI. We discuss our findings, conclusions and the
future work in Sections VII, VIII and IX.

II. RELATED WORK

Aerial imagery (either via satellite imagery or data col-
lection on-site) combined with computer vision algorithms
can be used to asses damages to buildings after disasters [8].
Images captured from UAS are increasingly being utilized in
search and rescue operations like reconstructing 3D models
of buildings at disaster sites post earthquakes [9], floods
[6], and fires [7], find traversable paths for robots [10], and
perform surveillance of constantly evolving situations[11].

Time-series surface observations can aid quantification of
the volumetric changes occurring at a disaster site. Point-
based monitoring techniques, based on global navigation
satellite systems, together with aerial photogrammetric sur-
veys, are established techniques to derive surface displace-
ments [12]. Registration of multi-temporal 3D surfaces is
also used for quantifying deformations in the natural envi-
ronment [13].

There are various methods for point cloud registration.
Iterative Closest Point (ICP) algorithm, introduced by Besl
and McKay [14] and Zhang [15], is one of the the most
popular methods for rigid point set registration due to its
simplicity. Over time, many variants of ICP have been
proposed that modify different phases of the algorithm from
the selection and matching of points to the minimization
strategy [16], [17]. ICP requires that the initial position of
the two point sets be adequately close [18].

To overcome the limitations of ICP, probabilistic methods
were developed [19], [20]. These methods establish corre-
spondences between all combinations of points according to
some probability, which generalizes the binary correspon-
dence assignment in ICP. Among these methods are Robust
Point Matching (RPM) algorithm introduced by Gold et al.
[21], and its later variants [19], [22], [18]. In [23], it was

shown that in RPM, alternating soft-assignment of correspon-
dences and transformation is equivalent to the Expectation
Maximization (EM) algorithm for Gaussian Mixture Models
(GMM), where one point set is treated as GMM centroids
with equal isotropic covariances and the other point set is
treated as data points. [18] was the first work to propose a
closed form solution to the maximization step (M-step) of the
EM algorithm for a general multidimensional case, giving us
Coherent Point Drift.

Inspired by feature-based inlier estimation techniques, [24]
introduced PointNet, a learning-based approach to extract
task-specific features from point clouds. PointNet helps
process unordered point clouds in a learning paradigm.
PointNetLK [25] takes inspiration from [26] and utilizes
the classical Lucas & Kanade (LK) algorithm for point
cloud registration in conjunction with learned features from
PointNet.

III. DATA

On June 24th, 2021 at approximately 1:22 am local time,
the Champlain Towers Condominium suffered a partial col-
lapse, killing 98 people. The first sortie using UAS to collect
aerial footage was conducted on June 25th at 16:30 local
time. Aerial top-down RGB and thermal images, as well as
oblique images angled by 80° to the ground were collected in
a grid-like, sequential pattern using a commercially available
of-the-shelf quadrotor UAS (DJI Mavic 2 Pro). The UAS
used for the data in this work is equipped with a camera with
an approximately 77° field of view and a 1 inch CMOS image
sensor. Image resolution of the acquired top-down pictures
was 5472×3648 pixels. To keep an easy overview of the
data, the focus in this work will be on the collected data of
5 separate days at a similar time of day. Those are the sorties
at June 27th 13:30, June 28th 13:30, June 29th 13:00, June
30th 11:00 and July 1st 09:00. The flight altitude during the
days analysed in this work, was at an average of 83.94m.

The images were fed into a commonly used photogramme-
try software, Agisoft Metashape (formerly Photoscan) [27],
where the images were processed into a dense 3D point
cloud using a 12th Gen Intel i9, NVIDIA GeForce RTX
3090 and 128 GB memory at a average of 54 minutes per
generated point cloud. All data discussed in this work was
processed post-deployment as on-site processing was con-
strained by limited computational capability. The software
estimated arithmetic average euclidean distance error over
all dimensions is 2.208 m. Examples of the images captured
on one of the 5 days, as well as the resulting dense point
cloud can be seen in Fig. 1.

A. Challenges in Data Preparation

From the real-world Surfside data collection, it was ob-
served that the SfM reconstruction could be noisy, full of
inaccuracies such as inconsistent shifting of static landmarks
or have missing features within the dense point clouds. It
was concluded that the following reasons contributed to an
imperfect image data collection that led to problems during
post-deployment data processing:



Fig. 2: Cropped and Normalized Sample Point Cloud from 28th June seen from the X, Y and Z axes respectively from left
to right (≈ 2x106 points)

• Approximations for camera poses during bundle adjust-
ment in the creation of the SfM process. Until the June
30th data, camera poses are exclusively calculated by
the SfM software, since neither real time kinematics
(RTK), nor ground control points (GCP) were available.

• The lack of or inconsistency in ground control points
(GCP). Rescue workers would tend not not prioritize
placing GCP markers which would give lower estima-
tion error of the camera positions for SfM reconstruc-
tion. For the Surfside deployment, painted GCP markers
were properly established only after 30th June, 5 days
after the first sortie. Even after markers were placed,
they were easily occluded by dust, equipment or shifting
rubble and hence did not stay consistent during the
whole time of deployment.

• Sub-optimal altitude. Since the top-down and oblique
images were collected using a scripted flight path,
manually avoiding obstacles was not possible. To clear
the cranes used to remove rubble at Surfside, as well as
clear the height of the surrounding buildings, the flight
altitude was chosen higher then would be optimal for
the used UAS.

• Imprecise camera calibration. It was found that some
pre-flight calibrations during the deployment produced
entirely wrong calibration data, resulting in unusable
dense point clouds reconstructions. This was due to the
inability to quickly check the robustness of the camera
calibration on-site.

• Shifting illumination during different day-times. While
the attempt was made to keep flight times in between
days as consistent as possible, events out of out control
such as strong winds, rain, or presidential no fly zones
keeps the UAS grounded for some sorties, introducing
gaps in the data.

• Presence of occlusions like smoke from small fires
during the first days of deployment.

• Motion blur during sorties during the evening due to
low exposure times.

B. Unique Challenges in Registration for Surfside Data

As discussed earlier, during a real life SAR deployment,
numerous factors contribute to imperfect data collection.
This introduces unwanted rotation and translation to the
reconstructed point clouds time slices (3D point clouds
reconstructed from 2D images captured at certain different

points in time). These factors could also introduce subtle
variations in the scale of the point clouds, although no
notable difference in scale was observed and therefore a rigid
transformation solution was assumed for registration.

Additionally, the geographic areas represented in the point
clouds vary with sortie paths and are not necessarily the
same. While the central rubble is always imaged and present
in the point clouds, the extent of capture for static and dy-
namic features around the site, like adjacent buildings, roads,
cars etc., varies. This variation, if not handled, turns the
alignment into to a partial-to-partial or partial-to-complete
point cloud registration which requires more complex meth-
ods that involve mask prediction [28] or correspondence
mapping [29]. In order to keep the amount of points to
analyse at a reasonable number while still being able to
obtain the proper alignment, processing for all time slices
is limited to the same area, the main condominium block
of Surfside (rubble pile with the partial standing building
structure - See Fig. 2) .

In addition to requiring heavy computational power due
to the high number of points in the dense slices, registering
the slices is more complex than registering point clouds of
static objects as our data represents a dynamic scene where:

• Geometry of certain features, namely the rubble pile,
changes with time as the rescue workers clear debris.

• Objects can move around the scene without changing
shape, namely cars, excavation vehicles etc.

• The same objects can disappear from the scene entirely.
These features can affect how registration algorithms per-
form. For example, changing shapes can affect point corre-
spondences in ICP.

C. Data for Registration Experiments
For our experiments, we have considered five point clouds

reconstructed from the mid-day sortie on each day from
27th June, 2021 to 1st July, 2021 (see Section III). Each
of these point clouds was cropped to limit the region of
interest to the rubble pile, the remaining part of the standing
Condominium structure and the dumping area for the cleared
rubble See Fig 2. Additionally, these point clouds were
normalized to have all points be within a unit cube. We
have limited our experiments to these days as most of the
initial rubble clearance was done during these days. We have
tested the registration methods for each source and template
combination possible from the five slices.



TABLE I: ROTATION & TRANSLATION ERRORS AND EXECUTION TIMES FOR 20 PAIR-WISE POINT CLOUD REGISTRATIONS OVER 3 CATEGORIES

Algorithm

10000 points 15000 points 20000 points
Rot. Norm. Trans. Rot. Norm. Trans. Rot. Norm. Trans.
Error Trans. Error Time Error Trans. Error Time Error Trans. Error Time

(°) Error (m) (s) (°) Error (m) (s) (°) Error (m) (s)

ICP : O(Nˆ2) 1.0175 0.00658 0.842 0.048 1.0389 0.00651 0.833 0.064 1.036 0.0066 0.844 0.079
CPD : O(Nˆ2) 0.7402 0.00695 0.889 5.39 0.8736 0.00695 0.889 9.255 0.5661 0.0079 1.011 13.919
PNLK : O(N) 0.7647 0.00844 1.08 0.067 0.7633 0.0086 1.1 0.092 0.7438 0.0083 1.062 0.103

D. Ground Truth

The performances of the registration methods in this study
are quantified by comparing obtained transformations from
the registration techniques to manually defined transforma-
tions. We have used the open source solution CloudCompare
[30] for manually aligning point clouds and obtaining the
ground truth baseline for registration.

IV. METHODS

This section explains the normalization method we have
applied to our data, as well as the registration techniques we
are comparing.

A. Importance of Unit Cube Normalization

ICP implementations usually require an initial transfor-
mation initialization. This initial estimation is supposed to
roughly align the source point cloud (to be registered) to the
template point cloud. Estimating this initialization requires
additional computation through global registration methods.
Since our data has reconstruction errors around 2.2 m, which
leads to a maximum of bidirectional translation error of 4.4
m in the point clouds, finding or estimating an initialization
for the unnormalized point clouds would require additional
computation or guess-work. Normalizing the source and tem-
plate point clouds eliminates the need to find an initialization
for ICP as it scales down the translation difference between
two point clouds, making an identity matrix suitable to be
provided as an initialization. For unit cube normalization, the
highest length of the point cloud along the X, Y or Z axis
is used as the scaling factor. The (X,Y,Z) coordinate of each
3D point is divided by this value, which in our case was 128.

B. Point-to-point ICP

Point-to-point ICP is an optimization-based registration
method that iteratively estimates point correspondences and
performs a least squares optimization using the point-to-point
distance metric, till the error is below a defined threshold or
does not reduce further. As mentioned in [31], the mathemat-
ical theory behind the algorithm guarantees a convergence
and the algorithm generalizes to different kinds of geometries
without requiring any training data. However, the algorithm
struggles to overcome variations like noise, outliers, density
variations and partial overlap. Many sophisticated strategies
with high computational costs are required to help make
point-to-point ICP robust to these variations [31] . Although
there are ICP implementations with k-d trees which have a

reduced time complexity of O(N logN), we use the original
iterative implementation with time complexity O(N2), where
N is the number of points in the source or template point
cloud (assuming the number of points in the source and
template point clouds are comparable or same). We have
used a Pytorch3D GPU implementation of point-to-point
ICP, with an 4x4 identity matrix at the initialization. We
do not estimate a separate initialization.

C. Coherent Point Drift

Coherent Point Drift is a Gaussian Mixture Model-based
optimization method for point cloud registration. The algo-
rithm formulates the distance estimation into a likelihood
maximization problem. GMM centroids calculated from the
source point cloud are forced to move coherently towards
the template. CPD can be applied to non-rigid registration as
well but we apply it to rigid registration. In the rigid variant,
the centroids’ coherence constraint is re-parameterized with
rigid parameters of GMM centroid locations. We have used
a GPU implementation of this variant. CPD is more robust
to outliers than ICP [31]. However, the algorithm is lengthy
and requires multiple computations. The time complexity of
the algorithm is O(N2), where N is the number of points in
the source or template point cloud (assuming the number of
points in the both point clouds are comparable or same).

D. PointNetLK

PointNetLK is a feature learning-based end-to-end reg-
istration method which fuses the PointNet feature encoder
with an Inverse Compositional (IC) formulation of the Lucas
Kanade image registration algorithm. The time complexity
of the algorithm is O(N) where N is the number of points
in the source. As PointNetLK samples the same number
of points from both the source and template point clouds,
the number of points in template is the same as in the
source. This lower time complexity makes PointNetLK scale
better to processing more points in large point clouds. Our
implementation of PointNetLK runs on the GPU and uses
pre-trained weights from training on the ModelNet40 dataset.
We use these weights instead of training on domain-specific
data as our paper focusses on read-to-run methods and
training on SAR data would consume further time. Using
network weights from a different domain may not give the
best performance possible, however, the added option to
optimize the performance of this method by training from
scratch is an advantage.



TABLE II: BREAKDOWN VALUES FOR ROTATION AND TRANSLATION PERTURBATIONS

Algorithm

20000 points
Rot. Rot. Rot. Norm. Trans. Trans. Norm. Trans. Trans. Norm. Trans. Trans.

along X along Y along Z along X along X along Y along Y along Z along Z
axis (°) axis (°) axis (°) axis axis (m) axis axis (m) axis axis (m)

ICP 3.5 2.5 3.5 0.012 1.536 0.014 1.792 0.016 2.048
CPD 5 3 3 0.007 0.896 0.009 1.152 0.012 1.536
PNLK 88 67 75 0.04 5.12 0.02 2.56 0.018 2.304

All these methods were run on an NVIDIA Titan RTX
2080 Ti GPU with 24GB memory.

V. EXPERIMENTS

Our first set of experiments is to compare three registration
methods on 20 pair-wise registrations for 10000, 15000,
20000 sampled points in the source and template point
clouds.

The second set of experiments was performed to test the
robustness of the registration methods to initial perturba-
tions. By adding an initial perturbation to the source point
cloud, in the form of increasing rotation and translation
(individually along each axis) in small intervals, we check
at what perturbation, the algorithms break down to produce
unsuccessful registrations. A successful registration is one
where the rotation error is smaller then 5° and the normalized
translation error is smaller then 0.01 [25].

VI. RESULTS

The results from the first set of experiments are presented
in Table I. A scaling factor of 128 is used to obtain the
unnormalized tranlsation errors in meters as it’s the averaged
scaling factor for all point clouds considered. The averages
of rotation error in degrees, normalized translation error,
translation error in meters and the execution time for all three
methods are provided across three categories. We observe
that ICP gives us the lowest translation error with 15000
points and that Rigid CPD gives us the lowest rotation
error with 20000 points over the 20 registrations. ICP and
PointNetLK execute very fast compared to CPD.

Another observation is that the rotation and translation
errors do not decrease significantly with an increase in the
number of points in the point cloud. This can be seen clearly
in Fig. 3. This signifies that subsampling our point clouds
to retain 10000-20000 points is enough to represent all the
features well enough for registration.

The results from the second set of experiments are pre-
sented in Table II, where we can observe the breakdown
perturbations, both in rotation and translation, at which the
registration algorithms stop producing successful registra-
tions. We see that PointNetLK is the most robust algorithm
as it can register point clouds even when they are heavily
misaligned (rotated by up to 85°and translated by up to 5
m). ICP and CPD are much less robust and can withstand
misalignment in the point clouds only up to a few degrees
in rotation and a meter in translation on an average. We see
different breakdown values over the axes as the number of

Fig. 3: Rotation and Translation Errors in regards to No. of
points in the source/template point cloud

points in our data along any given axis varies. Therefore, the
breakdown value along any particular axis is dependent on
the geometry of the point clouds.

We provide qualitative results through images of the best
case performance of each of the algorithms (See Fig. 4). ICP
and PointNetLK seem to perform better than CPD as the
registered point cloud (seen in blue) is closer to the template
(seen in red) which is especially visible in the registration
visualization around the standing portion of the building and
the outer edges of the point clouds. We also visualize the
cross-sectional view of a region of static feature (swimming
pool) of the first point cloud from 27th June as the template
to which all the other point clouds are registered (See Fig.
5).This view is provided for registrations from ICP, CPD
and PointNetLK. We see that slices from 28th June to 1st
July are better aligned to the template (27th June) in the
y direction for ICP and PointNetLK. To give an additional
numerical metric to interpret the visualizations, we compute
the Chamfer Distance for each of the registered source point
clouds after applying transformations obtained from the three
algorithms. We compute an average of the chamfer distances
over the 4 time slices (28th June to 1st July) seen in Table
III. We observe that ICP gave the lowest average chamfer
distance, followed by PointNetLK.



(a) Best registration case (28th June to 27th June) from ICP on the normalized point clouds

(b) Best registration case (29th June to 30th June) from Rigid CPD on the normalized point clouds

(c) Best registration case (29th June to 30th June) from PointNetLK on the normalized point clouds

Fig. 4: Point clouds of the best registration results for each of the methods - visualized with 50000 points and 3 views.
Source - green, Template - Red and Registered point cloud - blue

TABLE III: MEAN CHAMFER DISTANCE OF THE SOURCE POINT
CLOUDS TO THE TEMPLATE POINT CLOUD

Algorithm
Mean Chamfer Distance
of templates from source

ICP 1.409388
CPD 1.954433

PointNet LK 1.479197

VII. DISCUSSION

Reduced translation error helps to accurately track changes
on the surface of the rubble by eliminating artifacts caused
by offsets. Therefore, for the purposes of post-deployment
analysis like volumetric reconstruction or void detection,
minimizing translation error takes precedence over minimiz-
ing rotation error. Hence, point-to-point ICP applied post
unit cube normalization, with its low translation error and
execution time is the preferred method for registering dense
point clouds representing a dynamic SAR scene. This could
be attributed to its ability to find good point correspondences
despite changing geometry. However, its success is depen-
dent on the error in the collected data being below a defined
threshold. In our case, this error was 2.2 m. ICP works well
when the errors in the reconstructed data are close to this
value or lesser. Additionally, the chamfer distance for a static
feature post registration with ICP was the lowest.

VIII. CONCLUSION

Data collection from UAS sorties during structural col-
lapses can be deficient and cause various errors in the

Fig. 5: Cross sections of a static feature within the point
clouds (swimming pool). Top: Cross section area highlighted
in red. Bottom: Cross section registration results for (a) ICP,
(b) CPD and (c) PointNetLK along the y-axis.



reconstruction of 3D data. The point clouds reconstructed
from the Surfside data have significant reconstruction errors
due to numerous factors we have touched upon in this work,
causing problems especially when trying to register those
point clouds. Three registration methods were compared, and
based on experiments conducted, point-to-point ICP, applied
after unit cube normalization, performed best among the
given methods for registering the dynamic data for this SAR
operation. This holds for our data given the inherent offsets
are below a certain threshold.

IX. FUTURE WORK

Even though the methods we have compared in this paper
produce successful registrations according to commonly ac-
cepted thresholds, more work needs to be done to improve
these methods for dynamic scenes such as the one we
capture. This is because translation errors ∼0.8 m can affect
volumetric analysis or void detection greatly as the 3D cross-
sectional shapes indicating volume shifts or void spaces often
have dimensions ∼1 m [32]. Keeping this in mind, if the
performance of ICP has to be improved to reduce rotation
error, CPD can be used in combination with ICP, perhaps
applied to the subsampled source and template point clouds
to estimate a better initialization for ICP. We intend to test
this combination for our data in the future.

Given that PointNetLK has room for performance im-
provement if trained from scratch on domain-specific disaster
data, doing so could prove critical in reducing translation
errors further. We plan on testing PointNetLK’s registration
performance post training on more relevant data, especially
dense point clouds representing urban landscapes. This will
be very helpful when the reconstructed point clouds have
more rotational and translational misalignment.

REFERENCES

[1] Smith, Erling A., and Howard I. Epstein. "Hartford Coliseum roof
collapse: structural collapse sequence and lessons learned." Civil
Engineering—ASCE 50, no. 4 (1980): 59-62

[2] Barbera, Joseph A., and Anthony Macintyre. "Urban search and
rescue." Emergency Medicine Clinics 14, no. 2 (1996): 399-412.

[3] Linder, Thorsten, Viatcheslav Tretyakov, Sebastian Blumenthal, Peter
Molitor, Dirk Holz, Robin Murphy, Satoshi Tadokoro, and Hartmut
Surmann. "Rescue robots at the collapse of the municipal archive of
cologne city: A field report." In 2010 ieee safety security and rescue
robotics, pp. 1-6. IEEE, 2010.

[4] Murphy, Robin R., and Jennifer L. Burke. "Up from the rubble:
Lessons learned about HRI from search and rescue." In Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, vol. 49,
no. 3, pp. 437-441. Sage CA: Los Angeles, CA: SAGE Publications,
2005.

[5] K. Barnett, “Surfside condo collapse is third largest building failure
in country’s history,” CBS Miami, 2021.

[6] Surmann, Hartmut, et al. "Deployment of Aerial Robots During
the Flood Disaster in Erftstadt/Blessem in July 2021." 2022 8th
International Conference on Automation, Robotics and Applications
(ICARA). IEEE, 2022.

[7] Surmann, Hartmut, et al. "Deployment of Aerial Robots after a
major fire of an industrial hall with hazardous substances, a report."
2021 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR). IEEE, 2021.

[8] Gupta, Ritwik, et al. "xbd: A dataset for assessing building damage
from satellite imagery." arXiv preprint arXiv:1911.09296 (2019).

[9] Kruijff-Korbayová, Ivana, et al. "Deployment of ground and aerial
robots in earthquake-struck amatrice in italy (brief report)." 2016
IEEE international symposium on safety, security, and rescue robotics
(SSRR). IEEE, 2016.

[10] Zhang, Shiyong, et al. "Fast Active Aerial Exploration for Traversable
Path Finding of Ground Robots in Unknown Environments." IEEE
Transactions on Instrumentation and Measurement 71 (2022): 1-13.

[11] Roldán-Gómez, Juan Jesús, Eduardo González-Gironda, and Antonio
Barrientos. "A survey on robotic technologies for forest firefighting:
Applying drone swarms to improve firefighters’ efficiency and safety."
Applied Sciences 11.1 (2021): 363.

[12] Peppa, Maria V., et al. "Automated co-registration and calibration in
SfM photogrammetry for landslide change detection." Earth Surface
Processes and Landforms 44.1 (2019): 287-303.

[13] Wujanz, Daniel, Daniel Krueger, and Frank Neitzel. "Identification of
stable areas in unreferenced laser scans for deformation measurement."
The Photogrammetric Record 31.155 (2016): 261-280.

[14] Besl, Paul J., and Neil D. McKay. "Method for registration of 3-D
shapes." Sensor fusion IV: control paradigms and data structures. Vol.
1611. Spie, 1992.

[15] Zhang, Zhengyou. "Iterative point matching for registration of free-
form curves and surfaces." International journal of computer vision
13.2 (1994): 119-152.

[16] Fitzgibbon, Andrew W. "Robust registration of 2D and 3D point sets."
Image and vision computing 21.13-14 (2003): 1145-1153.

[17] Rusinkiewicz, Szymon, and Marc Levoy. "Efficient variants of the ICP
algorithm." Proceedings third international conference on 3-D digital
imaging and modeling. IEEE, 2001.

[18] Myronenko, Andriy, and Xubo Song. "Point set registration: Coher-
ent point drift." IEEE transactions on pattern analysis and machine
intelligence 32.12 (2010): 2262-2275.

[19] Rangarajan1997, Anand, et al. "A robust point-matching algorithm for
autoradiograph alignment." Medical image analysis 1.4 (1997): 379-
398.

[20] Luo, Bin, and Edwin R. Hancock. "Structural graph matching using the
EM algorithm and singular value decomposition." IEEE Transactions
on Pattern Analysis and Machine Intelligence 23.10 (2001): 1120-
1136.

[21] Gold, Steven, et al. "New algorithms for 2D and 3D point matching:
pose estimation and correspondence." Pattern recognition 31.8 (1998):
1019-1031.

[22] Chui, Haili, and Anand Rangarajan. "A new point matching algorithm
for non-rigid registration." Computer Vision and Image Understanding
89.2-3 (2003): 114-141.

[23] Chui, Haili, and Anand Rangarajan. "A feature registration framework
using mixture models." Proceedings IEEE Workshop on Mathematical
Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.
PR00737). IEEE, 2000.

[24] Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d
classification and segmentation." Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017.

[25] Aoki, Yasuhiro, et al. "Pointnetlk: Robust & efficient point cloud
registration using pointnet." Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2019.

[26] Wang, Chaoyang, et al. "Deep-lk for efficient adaptive object tracking."
2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018.

[27] Barbasiewicz, Adrianna, Tadeusz Widerski, and Karol Daliga. "The
analysis of the accuracy of spatial models using photogrammetric
software: Agisoft Photoscan and Pix4D." In E3S Web of Conferences,
vol. 26, p. 00012. EDP Sciences, 2018.

[28] Sarode, Vinit, et al. "MaskNet: A fully-convolutional network to
estimate inlier points." 2020 International Conference on 3D Vision
(3DV). IEEE, 2020.

[29] Pan, Liang, Zhongang Cai, and Ziwei Liu. "Robust partial-to-partial
point cloud registration in a full range." arXiv preprint arXiv:
2111.15606 (2021).

[30] Girardeau-Montaut, Daniel. "CloudCompare." France: EDF R&D
Telecom ParisTech 11 (2016).

[31] Huang, Xiaoshui, et al. "A comprehensive survey on point cloud
registration." arXiv preprint arXiv:2103.02690 (2021).

[32] Rao, Ananya, et al. "Analysis of Interior Rubble Void Spaces at Cham-
plain Towers South Collapse." 2022 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR). IEEE, 2022.


