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Abstract—In an age of the growing use of Machine-learning,
it has become an imperative task to be able to explain the
processes behind the functions of many ’black box” models. The
explainability feature of artificial intelligence is key to building
trust between humans and computers’ algorithmic predictions.
One of the main ways to generate this interpretability is through
attribution methods, which produce importance values of each
feature for a single instance in a dataset. There are many different
ways of attribution for various Machine-learning models, including
ones designed for specific models or model agnostic” attribution
methods—ones that do not require a specific model to achieve
importance values. These attribution methods are valued because
of their easily understood nature. While evaluation procedures
exist such as generality and precision for rule-based explanation
methods, these have not been used on attribution methods until
recently. A recent experiment by Ratul et al. [1] proved that
the two most popular local model-agnostic attribution methods,
LIME and SHAP, have poor precision and generality. In this
paper, we propose a new attribution method, the Generality and
Precision Shapley Attributions (GAPS). To evaluate these models,
we use the generality and precision equations used previously to
evaluate the other models. We present our findings that GAPS
produces higher generality and precision scores than the existing
LIME and SHAP models.

Index Terms—Explainable Artificial Intelligence, Interpretable
Machine-learning, Attribution Methods, Generality and Precision.

I. INTRODUCTION

Machine-learning has become a tool for businesses, gov-
ernments, and enterprises alike to guide their decisions and
actions in the modern world. Artificial Intelligence can be
found in many aspects of people’s lives, such as customer
recommendations, speech recognition, virtual assistants, and
more [2]. Though when it comes to understanding the intri-
cacies of a Machine-learning model’s logic and mechanisms,
they still remain somewhat of a black box, hidden to the
average individual and even experts in the field [3]. When the
decision-making process of artificial intelligence is not fully
known, there can be dire consequences in fields where many
lives are on the line, for instance, aircraft collision detection
systems [4]. In addition, Machine-learning models may use
undesirable techniques in order to achieve their goals, such as
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looking at copyright symbols in an image to classify objects
instead of classifying the object based on the image itself.

Just as the use of Machine-learning rises in the current era
of increasing data, so does the need to be able to explain the
predictions made by Machine-learning [S]-[8]. It is essential for
there to be a certain level of trust between humans and machines
to progress with the expansion of algorithmic predictors.

As a direct response to the black box nature of many models,
scientists have started to develop explanation methods [3]. In the
field of Explainable Artificial Intelligence (XAI), researchers
seek to create interpretable models with predictions that can
be interpreted by humans. In this way, transparency can be
added to the predictions of ML models without decreasing the
performance or accuracy of their results.

Governments are taking great interest in the future of the
use of Machine-learning as well. The United States’ Defense
Advanced Research Projects Agency (DARPA) famously
created an XAI program, funded by the U.S. Department
of Defense (DoD) [9]. This program created an alternative
“glass box” models to be used in various fields: transportation,
security, medicine, finance, legal, and military. The White
House Office of Science and Technology Policy (OSTP)
published reports that state that it is crucial for artificial
intelligence to be governable, especially so that Al can work in
accordance with social values and human trust [10]. Other
governments have also started publishing their plans and
roadmaps towards the transparency and interpretability of Al,
namely France’s Strategy for Artificial Intelligence, The United
Kingdom’s Academy of Sciences, and Al Portugal 2030 [11]-
[13]. Finally, the European Union also issued statements
detailing the importance of the understandability of Machine-
learning models to humans, which will also reduce bias and
error [14].

Companies are also making moves in interpretable Machine-
learning. As interpretable A.L’s nature of easy understandability
can be a great resource even to those who are non-experts in the
XAl field, some corporations are beginning to commercialize
explainable ML. One example is Google’s responsible Al
practices, wherein they advocate in their product lines of
treating interpretability as a main aspect of a user’s experience,
designing their models to be inherently interpretable in nature,
and ultimately communicating those explanations found by



the models to users [15]. Famous credit scoring service
company FICO published a paper in 2018 titled "Developing
Transparent Credit Risk Scorecards More Effectively: An
Explainable Artificial Intelligence Approach,” clearly also using
interpretable Machine-learning in their suite [16].

Interoperability can be applied in many different fields
which include: Health [17], [18], Criminal Networks [19]-
[21], Privacy [22], and Cybersecurity [23]-[26].

This paper focuses on the explanations of outcomes produced
by a Machine-learning model, such as a binary classification,
of a specific instance in a dataset. Currently, there are two
different kinds of explanation methods: attribution methods
which assign values of the importance of each feature to an
instance’s classification, and rule-based methods. To evaluate a
rule-based method of explanation, the two main metrics used
are precision and generality [27]. Precision scores are based
on the ideology that a rule explaining the classification of one
instance should not, in turn, explain instances of the opposite
classification. Generality scores are based on the ideology
that a rule explaining the classification of one instance should
explain other instances of the same classes as well. These two
metrics are essential to human relationships with Machine-
learning, as the explanations behind a Machine-learning model
can then be depended upon. Until recently, those precision and
generality metrics were exclusively used on rule-based methods
and were not tested on attribution methods of explanation. For
this experiment, the evaluation methods proposed by Ratul et al.
[1] for attribution explanations were used in the experimental
design.

In this paper, we propose a new reward function for
attribution. The proposed method is called the Generality
and Precision Shapley Attributions (GAPS). We will prove
that GAPS produces attribution scores that have a higher
generality and precision score in the evaluation for single
instances, resulting in a more trustworthy explanation for
Machine-learning models.  This paper first discusses the
details of the local model-agnostic attribution methods that
will be evaluated as a comparison in Section II. Secondly, it
discusses the evaluation techniques of attribution methods of
instances in Section III. Thirdly, it discusses the design of
the newly proposed attribution method that was used in the
experiment in Section IV. Then, it presents the experimental
design of the research, as well as the results, in Section V.
Lastly, it discusses some conclusions and explorations of future
works with this research in Section VII.

II. LOCAL MODEL-AGNOSTIC ATTRIBUTION METHODS

The appeal of a model-agnostic attribution method is that it
does not require a specific Machine-learning model to be used
in order to explain the predictions made. Thus, any Machine-
learning model, namely Random Forest Classifiers, Support
Vector Machines, Logistic Regression, etc. can be used and the
local model-agnostic attribution methods can still be utilized.
This also extends to local surrogate models, which, as opposed
to other Machine-learning classifiers, focus on the classification

of a single instance in a dataset.

In this paper, the two main local surrogate models of focus
are SHAP and LIME. Both of which are attribution methods,
meaning that they provide importance scores for each feature
used in the prediction of a single instance.

A. LIME

Local Interpretable Model-agnostic Explanations, otherwise
known as LIME is a way to explain the results of a large black
box model by using a local model around a single data point
of interest [28]. With one data instance, LIME modifies—or
perturbs—the feature values slightly and observes the slight
changes in the prediction of the classifier.

The main mechanism behind LIME is the local sensitivity
analysis of the features of an instance. When LIME slightly
varies the feature values, it has the ability to tell how much
change in predictions is due to the variation of that specific
feature. Below in Figure 1 is a graph of the LIME abstraction
around a single instance.
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Figure 1: Lime Abstraction [28].
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In this figure, the pink and blue colored sections represent
the areas in which the instances would be classified as either
the cross or circle class. As one can clearly see, the shape of
the boundary between the pink and blue classification areas
are quite nonlinear and strange, which would be a difficult task
for a linear model to classify normal instances. With LIME, it
solely examines one instance, in this case, the bold red cross.
Then, it generates neighbors close to the point and assigns
various weights corresponding to the distance from the instance.
The instances close to the instance of interest are larger than
the ones far away. Given these perturbations, LIME’s approach
can create a simple linear abstraction that works locally just
to the right of the bold red cross.

The formula for LIME’s explanation equation is given as
follows:

§(x) = argmin L(f, g,7x) + 2g)
geG
Where z is the instance of interest, f is the function of
the actual Machine-learning model used for prediction, g is
the surrogate model that estimates the predictions in close
proximity to x, and m, is the locality. g in this equation is



an element of potentially interpretable models, G. Q(g) is
the complexity of the function, as opposed to interpretability,
and L(f, g, 7,) is a measure of local fidelity. The goal of the
algorithm is to minimize the unfaithfulness of L(f, g, 7, ) while
maintaining that the complexity is low enough for humans to
understand.

Finally, to determine the importance value of an instance’s
features, it is passed through a linear model such as Linear
Regression. The coefficients of that linear model are then
treated as the importances.

B. SHAP

SHaply Additive exPlanations, otherwise known as SHAP
provides an amalgamated approach for explaining a model’s
prediction [29]. Like LIME, SHAP gives each feature an
importance score for a specific instance. It is a combination
of six different interpretation models: LIME [28], Shapley
sampling values [30], DeepLIFT [31], QII [32], Layer-wise

relevance propagation [33], and Shapley regression values [34].

It does this through the additive feature attribution method. To
compute the attribution method, SHAP utilizes game theory
with the Shapley value.

Shapley values work by using coalitional game theory to
assign payouts to each feature in an instance for the total
contributions. Each feature is a “player” in a coalition, and it

receives a reward for its contribution to the overall prediction.

In an input to a Machine-learning model f, F' is the set of
all features of a given instance x. ¢{ (z) for each feature i in
a coalition S is given by the following equation, which is a
modification on the equation of the Shapley value:

S| (|F|—|S]-1)!
b= 3 [SIE(l \FII\ )

SCF\{i}

[fe(zsugiy) — felzs)]

Where f. is the confidence of the Machine-learning classifier
of that instance, and x g is defined as an instance where each
value of a feature where the input is not an element of the
coalition is substituted for the mean of all instances’ values
for that feature. This score calculates how pertinent the feature
is to this instance as opposed to simply using the mean for the
calculation of the prediction of a classifier.

One of the problems with this calculation is that the
time complexity increases exponentially as the number of
features increase. To avoid this complication, approximations
of SHAP have been developed. One of those approximations
is KernelSHAP [29], which is calculated by fitting a linear
model with the following equation:

9(S) = do + Z b;
j€s

The mechanism behind the fitting technique lies in the
minimization of a loss function, defined as follows:

L(fagaﬂ_m) = Z (g(S) - fc(zs))QM(S)

SCF

Where the kernel of the Kernel SHAP function is given by

(EDISI(FI-15])

Such that |F'| is the maximum number of features and |S] is
the total number of features present in a coalition. This makes
the SHAP calculation much faster because only a random set
of samples H C {S|S C F'} is used in tandem with the loss
function. This Kernel approach can be used with both SHAP
and LIME for this experiment [35].

III. ATTRIBUTION EVALUATION METHODS

In this section we discuss the workings of the evaluation
methods used for the attribution techniques. For this, we use
generality and precision, which for rule-based explanations can
be found in Ribeiro et al. [27] For attribution-based techniques,
we use the methods proposed by Ratul et al. [1] to calculate
the precision and generality.

A. Precision

Precision scores are based on the ideology that a rule
explaining the classification of one instance should not, in
turn, explain instances of the opposite classification. Therefore,
if there is a rule whose conditions are satisfied by two different
instances, but their classification is different, its faulty nature
would not be viewed favorably by humans. Ribeiro et al. [27],
articulates that the precision of an explanation rule r with a
classification a is given by the inverse of the percentage of
instances that are classified as the opposite class by the same
rule r.

For the purposes of this experiment, two functions were
used to find the attribution precision. The first is sel(X, x),
which outputs a vector in RISl which gives a binary vector to
determine which features are present in a coalition. The formal
definition is given as S =iy, ..., the subset of features for
each j € {1,...,k}, sel(S,z)[j] = x[i;]. The second function
is based on the att attribution vector which returns the top-k
feature, given by the equation topy, : R™ — 2/%I,

Given classification outcomes a where I, is the set of
instances that have classification outcome and I_, is the set
of instances that do not have classification outcome a, the
following equation yields the inverse of the attribution precision,
where S7, = topy(atty):
2|z € L4, sel(S5,, x) = sel(S5;, &)}

[ T-al

The reverse precision is a measure of the number of instances

that share the same value in top;, with another instance that have

the same outcome a. Obviously, the average reverse precision
score would be given by the following equation:

erIQ RP*(z,att,)
| La
Where the reverse precision is calculated for all instances x

and is then divided by the total number of instances with
classification a.

RP"(z,att,)

avgRP*(I,) =



B. Generality

Generality scores are based on the ideology that a rule
explaining the classification of one instance should explain
other instances of the same classes as well. Generality in
this sense would take in two instances, x; and x», and their
attribution vectors att; and atts and find the number of topy
features that are shared between the two instances. The equation
for the common features between the two are given below:

commony(atty, , atty,) = |[topk(atti) N topy(atts)]

The equations to find the topy features are defined in the
Precision section. With an instance x that is an element of
I,,, the generality of the attribution of x, att, is calculated by
using the top-h neighbor instances from the same classification
with the function generality(x,k, h,agg). The equation for
this is defined as follows:

agg({commony,(atty, atty)|E € topNeighbourp(z, I,)})

Where agg € {sum, min, max} and
topNeighboury(z,I,). The topNeighbor;, function defines
the top-h neighbor instances as mentioned previously from
instances of the same class of x. common;, in this function
does not consider the actual feature values from each instance,
because by using the top-h neighbors, one can assume that the
feature values would be similar. The agg function also gives
more insight into the generality because a human can see
how the similarities of the attributions are distributed for each
instance. Like the average precision function avgRP*(I,),
the average generality function can be defined similarly as
follows:

Zmela generality(x, k, h,agg)
L

avgGen(I,, k, h,agg) =
IV. GAPS DESIGN

In this paper, we propose a new attribution method, called
GAPS, which stands for Generality And Precision Shapley
Attributions. As one can guess from the title, the goal of
creating GAPS was to increase the precision and generality
values of existing attribution methods. A recent study has shown
that the precision and generality values of SHAP and LIME
are quite poor, and show results that would be unfavorable.

Given an instance z from a dataset and a coalition s which
constituted a binary vector of values depending on which
features are present or not in a coalition, the equation for the
reward function of an instance’s coalition is given as follows:

Ele(s,z) [C(l)]+
Ap(e(z)—1)

fs,2) = Age(z)
+Zz€N(1',s,a) |N(z,s,a)| +Zz€N(w,s,ﬂa) |N(z,s,—a)|

Where A\ and Ap are some constants to scale the gener-
ality and precision quantities, respectively, to increase either
evaluation score. N is defined as the set of neighbors close
to instance x where the features that are in the coalition are
not perturbed, and the features that are not in the coalition
are perturbed. They are perturbed in accordance with using a
normal distribution with the mean as the feature value of x and
the standard deviation as the standard deviation of the feature

value across all instances in the dataset. N(z,s,1) is the set
of neighbors which are predicted using the same classifier to
be in class one, and N(x,s,0) to be in class zero. ¢(z) is
defined as the confidence of the Machine-learning model of
the neighbor z which is an element of IV in their respective
summations.

Finally, Ej ., (s,2)[c(l)] is the expected value of the confi-
dence of the Machine-learning classifier of many [ which are
sampled from m(x, s) to create data points where once again
the features that are in a coalition will remain unchanged, but
the features that are not will be replaced with a random feature
value from an instance across all points in the dataset.

The main idea behind this equation is to create a trade-off
between generality and precision scores, where lambda, and
lambda,, can be manipulated to adjust the prevalence of the
generality and precision scores in the evaluation. This creates a
more trustable model to humans than other attribution equations
because it can produce a higher generality and precision score
than other models such as LIME or SHAP.

Such as LIME and SHAP, the coalitions and the rewards from
the reward function will be passed through a linear Machine-
learning model, such as Linear Regression. The sample weight
of the Linear Regression is the same kernel used in Kernel

SHAP, — _IFI=L  The coefficients from the
(s) (ENIsIAFI=1SD)
Linear Regression model for each feature are then treated

as the explanation values.

V. EXPERIMENT

In this section, we discuss the design of the experiment that
we used to carry out the calculations of precision and generality
on the local model-agnostic attribution methods for a dataset,
as well as the results from the experiment. The design of this
experiment was modeled after that of Ratul et al. [1], and the
results for the SHAP and LIME procedures are from their
research as well.

A. Experimental Design

The dataset used in this experiment was the UNSW-NB15
Dataset [36]. Created by the Cyber Range Lab of UNSW
Canberra, Australia, this dataset contains raw network packet
data that simulates modern network traffic, including a mix
of both real normal network activities and synthetic attack
behaviors. There are nine kinds of attacks used in the dataset,
with 2,540,044 records and each instance contains a total of 49
features. The collection period of this data was for 16 hours
on 2015, January 22, and 15 hours on 2015, February 17.

Of the 49 features, 3 were categorical, and these were
transformed to be used by the Machine-learning models with
one-hot encoding. The data was split with 70% in the training
data and 30% in the testing data. Machine-learning classifiers
were then used on the data and the precision, recall, and
fl-score was evaluated for each model: Logistic Regression,
Random Forest, K-Nearest Neighbors, and Support Vector
Classification. The attribution methods, and therefore the
precision and generality evaluations were solely performed



Table I: Average Generality for LIME & SHAP with a Varied Number of k Features & h Neighbors from the "UNSW-NB 15”

Dataset.
Mean LIME intersection size | Mean SHAP intersection size
Max | Mean | Min Max | Mean | Min
No of Neighbors (h) | No of Features (k)
1 1.00 0.37 0.00 1.00 0.84 0.00
1 5 5.00 1.83 0.00 5.00 4.11 0.00
10 10.00 5.46 2.00 10.00 8.64 3.00
1 0.20 0.01 0.00 1.00 0.84 0.00
5 5 3.20 1.81 0.80 5.00 391 0.80
10 7.40 5.44 4.00 10.00 8.52 3.00
1 0.20 0.01 0.00 1.00 0.84 0.00
10 5 3.10 1.81 0.50 5.00 3.83 0.90
10 7.20 5.44 2.50 10.00 8.42 4.20
100
90 Lime
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Figure 2: Average Precision Percentage for LIME, SHAP, & GAPS with a Varied Number of k Features from the "ICS: Power
System” Dataset.

Table II: Average Generality for LIME & SHAP with a Varied Number of k Features & h Neighbors from the "ICS: Power
System” Dataset.

Mean LIME intersection size | Mean SHAP intersection size
Max | Mean | Min Max | Mean | Min
No of Neighbors (h) | No of Features (k)
1 1.00 0.01 0.00 1.00 0.39 0.00
1 5 2.00 0.22 0.00 5.00 2.09 0.00
10 4.00 0.33 0.00 10.00 441 0.00
1 0.20 0.01 0.00 1.00 0.34 0.00
5 5 1.00 0.22 0.00 4.20 1.69 0.00
10 2.20 0.85 0.00 9.20 3.65 0.40
1 0.10 0.01 0.00 0.90 0.32 0.00
10 5 0.80 0.21 0.00 3.70 1.57 0.00
10 1.90 0.87 0.20 8.40 3.36 0.40

on the Random Forest Classifier since the computation time
would be the most efficient.

B. Experimental Results

The results for this experiment are in two formats: firstly
is a bar graph of the average reverse precision (avgRP*(1,))
when varying the number of k features considered from each
dataset for LIME, SHAP, and GAPS; secondly is a chart of the
average generality (avgGen(I,, k, h,agg)) when varying the
number of k features considered and the number of h close
features from each dataset for LIME, SHAP, and GAPS.

Table III: Average Generality for GAPS with a Varied
Number of k Features & h Neighbors from the ”ICS: Power
System” Dataset.

Mean GAPS intersection size
Max | Mean | Min
No of Neighbors (h) | No of Features (k)
1 1.00 0.15 0.00
1 5 4.00 0.76 0.00
10 7.00 1.82 0.00
1 0.80 0.16 0.00
5 5 2.00 0.78 0.00
10 4.00 1.87 0.20
1 0.60 0.16 0.00
10 5 1.90 0.79 0.00
10 3.70 1.86 0.30
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Figure 3: Average Precision Percentage for LIME, SHAP, & GAPS with a Varied Number of k& Features from the "UNSW-NB
15” Dataset.

Table IV: Average Generality for GAPS with a Varied
Number of k£ Features & h Neighbors from the "UNSW-NB
15” Dataset.

Mean GAPS intersection size
Max | Mean | Min
No of Neighbors (h) | No of Features (k)
1 1.00 0.68 0.00
1 5 5.00 391 0.00
10 10.00 8.27 1.00
1 1.00 0.65 0.00
5 5 5.00 3.70 0.00
10 10.00 7.95 1.00
1 1.00 0.62 0.00
10 5 5.00 3.61 0.30
10 10.00 7.82 1.30
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VII. CONCLUSIONS

When viewing preliminary results, it is clear that GAPS
outperformed the existing attribution methods of LIME and
SHAP when it comes to the "UNSW-NB 157 dataset, as
evidenced by the lower average reverse precision scores in
each varied number of k features. The average generality for
GAPS additionally outperformed LIME and SHAP in the same
dataset, with higher intersections on balance. However, in
terms of the "ICS: Power System” dataset results, the graphs
and charts show that GAPS outperformed LIME but did not
outperform SHAP. The results show that GAPS has a higher
average reverse precision score than SHAP and a lower average
than LIME, and a lower average generality on balance than
SHAP but higher than LIME.

It is clear that the GAPS method of Generality and Precision

with Shapley Attribution shows promise in terms of creating
better attribution techniques. Future research is necessary into
this novel method to better improve the scores and outperform
both LIME and SHAP across the board, rather than in one
dataset or one technique rather than the other.
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