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Abstract

Long-lived indirect excitons (IXs) exhibit a rich phase diagram, including a Bose-Einstein
condensate (BEC), a Wigner crystal, and other exotic phases. Recent experiments have hinted
at a “classical” liquid of IXs above the BEC transition. To uncover the nature of this phase, we
use a broad range of theoretical tools and find no evidence of a driving force towards classical
condensation. Instead, we attribute the condensed phase to a quantum electron-hole liquid
(EHL), first proposed by Keldysh for direct excitons. Taking into account the association of
free carriers into bound excitons, we study the phase equilibrium between a gas of excitons, a
gas of free carriers, and an EHL for a wide range of electron-hole separations, temperatures,
densities, and mass ratios. Our results agree reasonably well with recent measurements of

GaAs/AlGaAs coupled quantum wells.
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Introduction

Excitons are bound states of an electron and
a hole attracted to each other by the screened
electrostatic Coulomb force, resulting in neutral
quasiparticles that can exist in a variety
of semiconducting and insulating materials.
Their lifetime is determined by the rate of
decay to the ground state, either radiatively
by emitting photons or non-radiatively by
coupling to lattice phonons or other carriers via
Auger recombination leading to exciton-exciton
annihilation. Understanding these relaxation
pathways has been key in the development of

light-harvesting devices under low and high
photon fluences.

The interactions among excitons can also
result in a wide variety of thermodynamic
phases. At high densities, excitons undergo
a Mott transition to an electron-hole plasma
stabilized by strong screening effects.’
At lower temperatures where quantum
statistics dominate, the Mott transition is
further facilitated by the favorable exchange
interaction between like particles. Additionally,
excitons may be regarded as weakly interacting
neutral bosons? and can thus form Bose-
Einstein condensates®® (BECs) and superfluid
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phases.® However, the transience of excitons
often complicates experimental realization of
such quantum phases. After reaching thermal
equilibrium, excitons eventually recombine
(radiatively or non-radiatively), preventing
further study of their phase behaviour. To
prevent fast recombination of excitons, recent
work has focused on indirect excitons (IXs),
whose constituent carriers are confined to
two parallel wells that are extended in two
directions, due to either an electric field! or
type-II band alignment® (see Fig. la). By
restricting the carriers to different regions, IX
recombination lifetimes are extended by orders
of magnitude, providing a platform to better
understand the phase behavior of excitons.
The interactions and collective behavior of
indirect excitons differ significantly from their
direct counterparts due to the permanent
dipole moments they acquire through spatial
separation of electrons and holes.” Theoretical
studies of such dipolar fluids have revealed
quantum and classical phases governed by
intriguing correlation regimes.'®!* Indeed,
several experimental studies have provided
evidence for the formation of BECs of IXs
at very low temperatures, typically below
1K."'® More recently, Bar-Joseph and his
co-workers studied the collective behavior of
IXs in GaAs/AlGaAs coupled quantum wells
(CQWs) over a wider range of temperatures.
Above the BEC temperature Tgrc ~ 1.1K but
below a critical temperature T = 4.8K, the
excitons separated into two phases (see Fig. 1b)
distinguished by a several-fold difference in
exciton density, 7.e. a gas and a liquid,
and characterized by a low-energy feature
in the photoluminescence spectrum (the Z-
line).'® Based on previous theoretical work, %!
they argued that the liquid phase results
from the repulsive interaction between the
dipolar excitons, which generate short-range
correlations typical of a “classical” liquid. In
a subsequent study,'” they concluded that the
classical liquid is dark and the appearance of
the Z-line in the photoluminescence spectrum
is not due to recombination of excitons in
the liquid phase, but rather, recombination
of excitons in the gas phase near the interface

with the liquid.!” A dark exciton liquid was
also observed by Rapaport and coworkers,!®
consisting of electrons and holes in parallel
spin configurations that cannot couple to
light.  Despite significant progress in our
understanding of the phase behavior of [Xs, the
origin of the stability of the higher temperature
classical liquid still remains unclear.

In this work, we revisit the putative classical
liquid phase of excitons. We seek to understand
the nature of the liquid phase and the leading
correlations that stabilize it at temperatures
above Tggc and below 7. In particular, we
thoroughly assess whether a dense fluid of IXs,
characterized by short-range correlations due
to inter-exciton interactions, can coexist with
a much more dilute gas of IXs at equilibrium.
The abrupt condensation implied by such a
coexistence scenario is unlikely for spatially
direct excitons, whose strong tendency to
pair up generates at appreciable density a
population of weakly interacting biexcitons,
akin to a collection of diatomic hydrogen
molecules that condense only at very low
temperature. The transversely aligned dipoles
of IXs, however, inhibit the formation of
“excitonic molecules” for large electron-hole
separations where the exciton—exciton potential
is purely repulsive. However, at moderate
separations, this potential is attractive, raising
the possibility that IXs condense through van
der Waals-like interactions while remaining
distinct — neither paired as biexcitons nor
strongly influenced by quantum degeneracy.
The first part of our work examines this
possibility by computing effective interaction

potentials for pairs and triads of IXs,
with approaches adapted from standard
methods of quantum chemistry. Based on

these calculations, we conclude that, for
experimentally relevant values of the electron-
hole separation, excitons are repulsive species
which lack an adhesive force that could drive
classical condensation.

The second part of our work explores an
alternative interpretation of the liquid phase
of IXs observed in experiments. It is well-
known that a gas of spatially direct excitons
can condense to form a degenerate electron-hole
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Figure 1: (a) Schematic of coupled quantum wells
with the center to-center distance d shown. (b)
Sketch of a phase diagram showing the ordering
of Tggc and T¢, the liquid-gas critical temperature
for the transition observed by Bar-Joseph and co-
workers. (c) Sketch of a phase transition from a
gas of excitons to a degenerate electron-hole liquid.
The area of each two-dimensional (2D) plane is A.
(d) Sketch of a phase transition from a gas of bound
indirect excitons to a classical liquid.

liquid (EHL), a plasma stabilized by spatial
correlations in charge density, as first proposed
by Keldysh.'® Experiments in the following
decades revealed interesting properties of
this state, such as high mobility and simple
mechanical control through applied stress. 2072
This condensed state exists at temperatures
low enough to achieve degeneracy, but not low
enough to exhibit coherent phenomena or form
a BEC. Whether this EHL can account for
the liquid phase of IXs is our second main
focus. For many different semiconductors, the
critical temperature of Keldysh’s EHL can be
approximated by Te ~ 0.1F./kp, where Fe
is the binding energy of the exciton and kg
is Boltzmann’s constant. To estimate F.,
one can model IXs with a bilayer geometry
shown in Fig. lc: electrons and holes are
placed on two infinitely-thin parallel planes
separated by d. We expect that the neglected
out-of-plane fluctuations of the carriers are

weak due to spatial confinement. For the
experimental setup of Bar-Joseph,'%!7 this
model suggests a critical temperature of
Tc = 3.5K in comparison to the experimental
value of 7o = 4.8K. This rough agreement
suggests that this phase could be Keldysh’s
EHL realized in a bilayer geometry, as sketched
in Fig. 1c. To study the Keldysh EHL phase
and its dependence on the separation between
electrons and holes, we adopt a Green’s function
approach and approximate the in-plane charge
density fluctuations using the random phase
approximation (RPA). We find that the
Keldysh EHL is stable across a surprisingly
wide range of planar separations, supporting
the existence of a liquid of dissociated [Xs
that features strong screening and exchange
interactions, rather than a classical liquid
stabilized by cohesive forces between charge-
neutral excitons.

Results and Discussion

Classical liquid

Condensation of a classical fluid is typically

driven by attractive interactions among
its constituent particles.  Purely repulsive
interactions generate very high pressure

at high particle densities; matching this
pressure in a coexisting phase, as required
for thermodynamic equilibrium, is difficult to
achieve in a much more dilute state. A fluid
of repulsive particles can of course undergo
structural phase transitions, as famously
exemplified by the crystallization of hard
spheres. But coexisting phases of repulsive
isometric particles are typically very similar
in density, differing more prominently in
symmetry or composition in the case of
mixtures. Our scrutiny of the classical
condensation hypothesis for IXs is thus
principally a search for attractive interactions
that could plausibly stabilize a dense phase
of otherwise repulsive dipolar particles at
moderate pressure.

We define an effective two-body interaction
potential Vix_ox(Rex—ex) as the energy of two
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Figure 2: (a) Interaction potentials between two
excitons with infinitely heavy holes for various
bilayer separations, d. We fix the orbitals’ sizes as
we pull apart the excitons, so we do not correctly
describe dissociation. (See SI for further details.)
“FCI” data come from our full CI method, and
“DMC” data were computed using the CASINO
program.?> (b) Interaction potentials between an
exciton and a biexciton in a collinear geometry with
infinitely heavy holes for various d, computed using
our FCI method. Rex_piex 18 the distance between
the biexciton’s center of mass and the third exciton.
(¢) Comparison of diffusion Monte Carlo results for
the binding energy Fiiex 0f a biexciton against this
work’s FCI method. The inset shows FEjiex, the
binding energy of a triexciton.

interacting excitons separated by a distance
Rey_ox minus the energy of two non-interacting
excitons (—2Fe).  This requires a Born-
Oppenheimer-like approximation, in essence
taking Rex_ox to be fixed while averaging
over quantum fluctuations in the excitons’
internal structure. Justifying this simplification
requires that the hole is much more (or much
less) massive than its partner electron. Our
calculation of excitonic interaction potentials
will therefore assume infinitely massive holes.
In materials of interest, the electron-hole mass
ratio 0 = me/my is not nearly so extreme.
The heavy-hole limit (¢ = 0) we consider
nonetheless provides a useful assessment, as
it represents the most favorable scenario for
attraction among excitons.

Interactions between a pair of 1Xs have been
computed by Needs and co-workers?! using
diffusion Monte Carlo (DMC) methods for
the same bilayer Hamiltonian we consider.
Their results reveal a two-body attraction that
weakens rapidly with increasing separation d.
To serve as a basis for classical condensation,
this attraction would need to be additive,
i.e., a similarly favorable energy would need
to be realized as a third exciton is added,
then a fourth, and so on. DMC is not well
suited for evaluating this additivity, since
the electron/hole wavefunction acquires nodal
surfaces when N > 2. We instead adopt
a configuration interaction (CI) approach,
improving systematically on a Hartree-Fock-
like mean field approximation, just as in highly
accurate quantum chemistry calculations. The
SI describes our full CI method in detail,
which assumes infinite hole mass and employs
a suitable localized basis set. To demonstrate
its accuracy, we show in Fig. 2a computed pair
potentials V., _ for several bilayer separations,
together with DMC results computed using the
CASINO program.?® While attraction between
[Xs remains evident at d = 0.5a.y, the biexciton
binding energy is a small fraction of Ry, at this
separation. Near d = 0.8a., the minimum of
the interaction potential becomes too shallow
to resolve, and for significantly larger d the pair
potential is purely repulsive.

For d = 0, a hydrogenic analogy suggests



that the exciton pair attraction represents a
kind of covalent bond, with substantial sharing
of electron density. As with diatomic hydrogen,
we then expect that interactions between
this biexciton and additional excitons are
noncovalent in character and thus considerably
weaker. The exciton-biexciton potential
Vix—biex, plotted in Fig. 2b, verifies this
expectation. A van der Waals-like attraction
favors distances much larger than the “covalent
bond” length, and the scale of attractive energy
is smaller by three orders of magnitude. The
same is true for d = 0.lae, despite dipolar
repulsion that might be imagined to inhibit
exciton pairing. For d > 0.2a., the effective
potential Vi _piex exhibits no minimum at all.
The results for the biexction and triexciton
binding energies as a function of the interlayer
separation are summarized in Fig. 2c.

The attraction previously demonstrated
between exciton pairs is thus not at all
additive.  Once paired, excitons experience
at most extremely weak forces of cohesion.
Experimentally relevant bilayer separations
d > 0.5a. entirely negate attractions
involving  biexcitons, casting doubt on
the classical condensation picture. There
remains the possibility that the repulsion
among excitons’/biexcitons’ dipoles generates
correlations which stabilize liquid-gas phase
coexistence. %26 We tested this notion by
performing classical Monte Carlo simulations
of particles in two dimensions that repel at
long range with energy ~ R~ and additionally
exclude volume at close range. (See SI for
details.) Computed isotherms manifest freezing
transitions at high density and pressure but
otherwise show mno sign of thermodynamic
bistability that could be associated with fluid
condensation.

Quantum liquid

Turning to Keldysh’s degenerate electron-hole
liquid, we begin by considering the zero-
temperature limit and focus on describing the
relative stability of the EHL compared to
the exciton gas. Finite temperature effects,
including dissociation of bound excitons into an
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Figure 3: (a) Total energy per electron of an
EHL with ¢ = 0.1 as a function of the average
interparticle spacing, rg, evaluated for various d.
(b) The total energies shown in Fig. 3a minus the
capacitor term (shown in dashed lines) as a function
of the average interparticle spacing. (c¢) Minimum
energy of an EHL with ¢ = 1, 0.1, and 0.01. For
the case 0 = 0, we also plot the energy of an exciton
(“Ex”) gas at the same charge density as the EHL,
and similarly for a biexciton (“Biex”) gas.

electron-hole gas, will be described below. The
total energy per electron for NV electrons and N
holes is given by the sum of kinetic, exchange,
capacitor, and correlation terms: FEio = Fin +



Eexeh + Ecap + Ecorr, where

Ryex
and the dimensionless interparticle spacing, s,
is determined by the relation?”

A

2
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*  wNa2’ @)
where A is the surface area depicted in Fig. 1.
(See SI for all details.) In all of the calculations
reported below, we take the thermodynamic
limit, where N — oo and A — oo, such that
the number density, ny, = N/A, remains a
constant. The exchange energy is given exactly
by28

Ryex. (3)

S
The capacitor contribution (i.e., the classical
electrostatic cost of separating uniformly
charged plates by a perpendicular distance d),
can be written as

4d
Ecap = _Ekin- (4)

ex
Finally, the correlation energy in atomic units
(h = 1) is estimated within the random phase
approximation (RPA):

Ecorr - / d2 /
1673

x/o THT(k W) W TI(k, w),
(5)

where )\ is the coupling constant, II7 (k,w) =
[IL.(k,w), I, (k,w)] and IL(k,w) is the 2D
Lindhard polarizability for particle ¢ = e, h
evaluated at wavevector k£ and frequency w.
Within the RPA, the screened Coulomb matrix
is given by:

Uee Uge Ueh erh
W= (6)
Ueh U,Sh Uhh U}?h

where U;;(A, k,w) is the effective interaction
between particles ¢ and j and UZ%()\, k) is the

corresponding bare Coulomb interaction in k-
space. These quantities and the full details of
RPA calculations are further described in the
SI.

In Fig. 3a, we plot the resulting total energy
per electron Ei, as a function of ry (Eq. 2)
for three different bilayer separations and for
a mass ratio o = m./m, = 0.1. We find
that the total energy shows a pronounced
minimum, 75eq, Near ae for small bilayer
separations, signifying the existence of a stable
degenerate electron-hole liquid. The major
contribution to the change in the total energy
as the bilayer separation increases is the
capacitor term; without this term, results for
different d are nearly identical, as shown in
Fig. 3b. We note that the total energy of
spatially separated electrons and holes has
been calculated previously in the superfluid?’
and superconducting?® regimes using a Green’s
function and variational approach, respectively.
In both cases, the d-dependence on the energy
agrees with our results.

The minimum energies of an EHL with o = 1,
0.1, and 0.01 are shown in Fig. 3c. We also
present the energies of a gas of excitons and
gas of biexcitons. To compare these states
on equal footing, we add to their energies the
capacitor term evaluated at 75.q. Ignoring
the possibility of a BEC phase, we find that
for most values of d, the EHL is the stable
phase at zero-temperature and high densities.
Specifically, for ¢ = 0.1 and d = 1.5ae,, We
find that the total energy for carriers in the
EHL is larger (i.e., more negative) than the
energy of the IX gas by approximately 1 Ryey.
This value agrees with the observations of Bar-
Joseph and co-workers,'® who measured a ~ 1
Ryey energy shift in their photoluminescence
spectra between the IX gas and the condensed
phase.

Next we turn to the effect of thermal
fluctuations on the relative stability of IX gas
and EHL phases. In doing so, it is important
to acknowledge that the gas phase is not devoid
of free charge carriers, nor is the liquid devoid
of bound excitons. Instead, their proportions
in each phase are determined by a chemical
equilibrium e~ + h™ = X that requires the
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Figure 4: Fraction of free carriers, o, as a function
of the total density not (in units of excitations per
cm~2) for an electron-hole system with o = 0.1 at
various temperatures. Results for d = 0.5 aey are
shown in (a), and for d = 1.5 aex in (b).

chemical potential uyx of an exciton to equal
that of an unbound electron-hole pair, fep.
We treat interactions involving excitons as
purely electrostatic and mean-field, giving
Hx = kBT ln(l - exp[_nng(/gX]) o Eex + Hecap
where the first term is an ideal contribution
for bosons in two dimensions, nx is the
excitons’ density, \x is their thermal de Broglie
wavelength, £&x = 4 is their spin degeneracy,
and FEx is their binding energy. The capacitor
potential, ficap = 4mde’nio;, depends only on
d and the total density ni s = nx + nen of
excitations. The free carrier chemical potential,

Heh = /fBTln[(eXP["eh/\g/fe] - 1)

x (exp[nenAt/&n]) = 1] + flcap + Homey + Homes
(7)

includes an ideal contribution for the fermionic
species (& = &, = 2), the capacitor potential,
exchange effects from both electrons and
holes, and a correlation term obtained from
a generalization of RPA to finite temperature 3!
(see SI for details). We thus obtain a law of
mass action for the fraction a = ney /Ny of
carriers that are not bound as excitons: (8)):

K — 1 — exp[—nor(1 — a) A5 /€x]

(exp[ntotoz)\g/ﬁe] — 1) (exp[ntota)\ﬁ/{h] — 1) ’
(8)

where

K = exXp [ﬁ(Eex + Mg)}ich + Mggrr)} : (9)

For very low density (nix < A;2), effects of
quantum statistics become unimportant, and
Eq. 8 reduces to the Saha ionization equation, a
classical law of mass action. At densities typical
of the degenerate EHL, quantum statistical
effects are essential.

For a spatially uniform density mnio of
excitations, solving Eq. 8 gives the fraction « of
free carriers at thermal equilibrium. In Fig. 4
we plot v as a function of ngy for a) d = 0.5a.
and b) d = 1.5ae for several temperatures,
using parameters appropriate for GaAs. In the
very dilute gas, o ~ 1 — (constant)ne #Pex ~ 1,
since exciton dissociation is strongly favored by
the entropy of mixing. With increasing density,
« decreases steadily due to the favorable
energy of exciton binding, until exchange
and correlation become dominant at high
density. K rapidly approaches zero as a result,
yielding a very small population of neutral
excitons. Under some conditions the increase
in free carrier fraction at high density occurs
discontinuously, a result of Eq. 8 acquiring
multiple roots.  (We select the root that
minimizes the total free energy, as detailed in
the SI.) This abrupt change in conductivity at
density nyote(d, T') signals a first-order exciton
Mott transition. It can occur only below a
critical temperature Tyi(d), as evident in
Fig. 4(b) for d = 1.5ae, where Tyoy ~ 4 K.
As the exciton binding energy F.. and EHL
correlation energy FE., decline in magnitude
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Figure 5:
temperature plane for EHL condensation with o =
0.1 at various bilayer separations d. Experimentally
estimated critical temperatures are shown for d =
laex (“Timofeev” data®?) and for d = 1.5ay (“Bar-
Joseph” data®'7). The total density o has units
of excitations per cm~2. (b) Computed critical
temperature as a function of bilayer separation d for
various mass ratios o. Also shown is the empirical
rule To ~ 0.1FEex/kp. (c) Computed critical (total)
density as a function of bilayer separation d for
various mass ratios o.

(a) Phase diagrams in the density-

The assumption of spatial uniformity,
however, may break down before the Mott
transition is encountered, and we find that

this is in fact the case. The function pep(nior)
we obtain by combining Eq. 7 with the law
of mass action develops an instability at low
temperature. Specifically, (Opten/Onior)r < 0
over a range of intermediate densities, violating
thermodynamic stability criteria and implying
a phase-separated equilibrium state. We
determine this state of coexistence — typically
featuring a low density gas enriched in IXs
and a liquid of predominantly free carriers
from pien(nior) using a standard Maxwell equal-
area construction (see SI for details). Fig. 5a
shows the resulting gas-EHL phase diagrams for
three bhilayer separations, each of which exhibits
a first-order condensation transition below a
critical temperature T¢(d). In each case, T¢
exceeds Thett, and the coexisting densities
straddle e (d, T'). States with uniform
density nyett(d,T') are therefore unstable with
respect to phase separation, and the first-order
Mott transition described above is superseded
by condensation.

With increasing bilayer separation, the
critical excitation density nc and temperature
Tc both systematically decrease, as shown
in Fig. 5b and c¢. The empirical formula
Tc =~ 0.1F,/kp anticipates this lowering of T¢
due to the weakening exciton binding energy.
We find that the phase diagrams for d > 0 can
be well approximated simply by adding the d-
dependent capacitor term fic,, to the chemical
potentials calculated for d = 0 in addition
to using the correct value of E.. Separating
electrons and holes into distinct quantum wells
thus appears to influence EHL condensation
predominantly through a classical electrostatic
bias, disfavoring dense-excitation states due to
the necessity of separating substantial charge.

Fig. ba also includes experimental data for
GaAs, for which ¢ = 0.1 and ¢ = 12.9.
Beyond predicting the general decrease in T
and nc with increasing d, our estimates of
the critical temperature are within a factor
of 2-3 of the experimental data. While
our predictions of n¢ are off by an order
of magnitude, we note that experimental
measurements of the critical density often rely
on mean-field or steady-state approximations
and depend on many different parameters,



such as the gate voltage. A material with
different dielectric properties would set a
different energy scale for electron-hole binding
and screening, and the temperatures in Fig. 5
would be scaled accordingly. A change in
the mass ratio o has more subtle effects, but
basic trends in nc and T¢ can be anticipated
with the same reasoning used to explain EHL
stability at zero-temperature. Because a very
massive hole serves to localize electrons, we
expect stabilization of the dense liquid phase
with decreasing ¢ < 1 at fixed reduced
mass (and similarly for increasing o > 1).
Correspondingly, nc and 7T¢ should both
increase as o deviates from unity, as we observe
and show in Fig. 5b and c.

Conclusions

In summary, our approximate treatment of
a simplified model for interacting electrons
and holes in coupled quantum wells yields a
low-temperature phase diagram that agrees
reasonably well with experimental results.
Given the assumptions we have made (a single
band, effective masses, and a structureless
isotropic background) and the experimental
challenges of measuring a precise -critical
density and temperature, we consider the level
of agreement to be a strong suggestion that the
liquid phase observed in the laboratory has the
same basic character as that in our model.
Even for d > lae, the model’s condensed
phase is unambiguously a variant of Keldysh’s
electron-hole liquid — a degenerate plasma of
strongly screened charge carriers and very few
bound excitons. By contrast, our calculation of
effective interaction potentials among bound
electron-hole pairs strongly discourages the
notion of a classical liquid comprised of
intact excitons as the equilibrium state at
the temperatures and densities of interest.
Cohesive forces that stabilize biexcitons weaken
considerably as the bilayers separate, but
they nonetheless dwarf any attraction to a
third exciton. At d = laex the interactions
we compute are purely repulsive and cannot
support phase coexistence between a sparse

gas and dense liquid of excitons. The strong
evidence for a stable Keldysh liquid of IXs
and the predictions made for how the critical
behavior changes with d await experimental
validation.

Methods

We analyze an idealized Hamiltonian H for a
collection of N electron-hole pairs in coupled
quantum wells based on a single-band effective
mass approximation. The total Hamiltonian in
atomic units (h = mo = e = 4meg = 1, where
h is the reduced Planck constant, mg is the
electron’s rest mass, e is the elementary charge,
and € is the vacuum permittivity) reads:

H=T+V (10)

where the kinetic energy is given by:

. 1 - 1 -
T=— Vi —— Y Vi, 11
2me 2:1: e, 2mh 2_1: h,s ( )

and m. (my) is the electron (hole) effective
mass. Interactions among charge carriers are
described by a screened Coulomb potential:

1N 1 | 1
V=- ~ — - - ~
€= ; [Te; —Tej| € ; ; |Th,; — Tn |
i=1 j=1 VIt =ty |2 + d?
(12)
where € is the static dielectric constant

of the material.  Excitonic units are used
throughout this paper, with energies expressed
relative to the exciton Rydberg Ryex
mreae?/(2(4meoe)?h?) and lengths relative to
the exciton Bohr radius ae, = 4megeh?/(myeac?),
where m_} = m;! + my ! is the electron-hole
reduced mass.

Associated Content

This work was previously submitted to a pre-
print server.?3



Supporting Information

The Supporting Information is available free of
charge online.

Derivation of single-particle basis sets; details
of the FCI calculations; pressure-density
isotherms for classical dipolar particles in two
dimensions; derivation of contributions to the
zero-temperature ground-state energy and to
the Helmholtz free energy; fitting procedure for
exchange-correlation free energies; procedure
for solving the law of mass action; procedure
for Maxwell equal-area constructions.

Acknowledgments

We would like to thank I. Bar-Joseph, R.
Rapaport, and A. Rustagi for stimulating
discussions.  E.R. is grateful to NSF-BSF
International Collaboration in the Division
of Materials Research program, NSF grant
number DMR-2026741.

References

1. Stern, M.; Garmider, V.; Umansky, V.;
Bar-Joseph, I. Mott Transition of Excitons
in Coupled Quantum Wells. Phys. Rev.
Lett. 2008, 100 (25), 256402.

2. Keldysh, L. V.; Kozlov, A. N. Collective
Properties of Excitons in Semiconductors.
Sov. Phys. JETP 1968, 27 (3), 521-528.

3. Lin, J. L.; Wolfe, J. P. Bose-Einstein
Condensation of Paraexcitons in Stressed
CuyO. Phys. Rev. Lett. 1993, 71 (8), 1222-
1225.

4. Safaei, S.; Mazziotti, D. A. Quantum
Signature of Exciton Condensation. Phys.
Rev. B 2018, 98 (4), 045122.

5. Sager, L. M.; Schouten, A. O.; Mazziotti,
D. A. Beginnings of Exciton Condensation
in Coronene Analog of Graphene Double
Layer. J. Chem. Phys. 2022, 156 (15),
154702.

10

6.

10.

11.

12.

13.

14.

Liu, X.; Li, J. I. A; Watanabe, K
Taniguchi, T.; Hone, J.; Halperin, B. L
Kim, P.; Dean, C. R. Crossover between
Strongly Coupled and Weakly Coupled
Exciton Superfluids. Science 2022, 375
(6577), 205-209.

High, A. A.; Leonard, J. R.; Hammack, A.
T.; Fogler, M. M.; Butov, L. V.; Kavokin,
A. V.; Campman, K. L.; Gossard, A. C.
Spontaneous Coherence in a Cold Exciton
Gas. Nature 2012, /83, 584-588.

Okada, M.; Kutana, A.; Kureishi, Y.
Kobayashi, Y.; Saito, Y.; Saito, T
Watanabe, K.; Taniguchi, T.; Gupta, S.;
Miyata, Y.; Yakobson, B. I.; Shinohara,
H.; Kitaura, R. Direct and Indirect
Interlayer Excitons in a van der Waals
Heterostructure of hBN/WS,/MoS;/hBN.

ACS Nano 2018, 12 (3), 2498-2505.

Lahaye, T.; Menotti, C.; Santos, L.;
Lewenstein, M.; Pfau, T. The Physics
of Dipolar Bosonic Quantum Gases. Rep.
Prog. Phys. 2009, 72 (12), 126401.

Laikhtman, B.; Rapaport R. Exciton
Correlations in Coupled Quantum Wells
and Their Luminescence Blue Shift. Phys.
Rev. B 2009, 80 (19), 195313.

Laikhtman, B.; Rapaport, R. Correlations
in a Two-Dimensional Bose Gas with long-
Range Interaction. Europhys. Lett. 2009,
87 (2), 27010.

Rabl, P.; Zoller, P. Molecular Dipolar
Crystals as  High-Fidelity Quantum
Memory for Hybrid Quantum Computing.
Phys. Rev. A 2007, 76 (4), 042308.

Moroni, S.; Boninsegni, M. Coexistence,
Interfacial Energy, and the Fate of
Microemulsions of 2D Dipolar Bosons.
Phys. Rev. Lett. 2014, 113 (24), 240407.

Santos, L.; Shlyapnikov, G. V.; Zoller,
P.; Lewenstein, M.  Bose-Einstein

Condensation in Trapped Dipolar Gases.
Phys. Rev. Lett. 2000, 85 (9), 1791-1794.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

High, A. A.; Leonard, J. R.; Remeika, M.;
Butov, L. V.; Hanson, M.; Gossard, A. C.
Condensation of Excitons in a Trap. Nano
Lett. 2012, 12 (5), 2605-2609.

Stern, M.; Umansky, V.; Bar-Joseph, I.
Exciton Liquid in Coupled Quantum Wells.
Science 2014, 343 (6166), 55-57.

Misra, S.; Stern, M.; Joshua, A.; Umansky,
V.; Bar-Joseph, 1. Experimental Study
of the Exciton Gas-Liquid Transition in
Coupled Quantum Wells. Phys. Rev. Lett.
2018, 120 (4), 047402.

Cohen, K.; Shilo, Y.; West, K.; Pfeiffer, L.;
Rapaport, R. Dark High Density Dipolar
Liquid of Excitons. Nano Lett. 2016, 16
(6), 3726-3731.

Keldysh, L. V. In Proceedings of the Ninth
International Conference on the Physics of
Semiconductors, Moscow, USSR, July 23-
29, 1968; Ryvkin, S. M., Ed.; Leningrad:
Nauka, 1968; pp. 1303.

Asnin, V. M.; Rogachev, A. A.
Condensation of Exciton Gas in
Germanium. JETP Lett. 1969, 9 (7),
248-251.

Thomas, G. A.; Rice, T. W.; Hensel, J. C.
Liquid-Gas Phase Diagram of an Electron-
Hole Fluid. Phys. Rev. Lett. 1974, 33 (4),
219-222.

Dite, A. F.; Kulakovsky, V. D.; Timofeev,
V. B. Gas-Liquid Phase Diagram in a
Nonequilibrium FElectron-Hole System in
Silicon. Sov. Phys. JETP 1977, 45 (3),
604-612.

Gourley, P. L.; Wolfe, J. P. Spatial
Condensation of Strain-Confined Excitons
and Excitonic Molecules in an Electron-
Hole Liquid in Silicon. Phys. Rev. Lett.
1977, 40 (8), 526-530.

Lee, R. M.; Drummond, N. D.; Needs, R. J.
Exciton-Exciton Interaction and Biexciton
Formation in Bilayer Systems. Phys. Reuv.
B 2009, 79 (12), 125308.

11

25.

26.

27.

28.

29.

30.

31.

32.

33.

Needs, R. J.; Towler, M. D.; Drummond, N.
D.; Lopez Rios, P.; Trail, J. R. Variational
and Diffusion Monte Carlo Calculations
with the CASINO Code. J. Chem. Phys.
2020, 152 (15), 154106.

Suris, R. A. Gas-Crystal Phase Transition
in a 2D Dipolar Exciton System. .J. Fzp.
Theor. Phys. 2016, 122 (3), 602-607.

Fetter, A. L.; Walecka, J. D. Quantum
Theory of Many-Particle Systems; Dover
Publications, Inc.: New York, 2003; pp 21-
30, 151-167, 267-289.

Kuramoto, Y.; Kamimura, H. Theory of
Two-Dimensional Electron-Hole Liquids. J.
Phys. Soc. Jpn. 1974, 37 (3), 716-723.

Lozovik, Y. E.; Berman, O. L. Phase
Transitions in a System of Spatially
Separated Electrons and Holes. J. FExp.
Theor. Phys. 1997, 84 (5), 1027-1035.

Zhu, X.; Littlewood, P. B.; Hybertsen, M.
S.; Rice, T. M. Exciton Condensate in
Semiconductor Quantum Well Structures.
Phys. Rev. Lett. 1995, 74 (9), 1633-1636.

Rustagi, A.; Kemper, A. F. Theoretical
Phase Diagram for the Room-Temperature
Electron-Hole Liquid in Photoexcited
Quasi-Two-Dimensional Monolayer MoS,.
Nano Lett. 2018, 18 (1), 455-459.

Timofeev, V. B.; Larionov, A. V.; Grassi-
Alessi, M.; Capizzi, M.; Hvam, J. M. Phase
Diagram of a Two-Dimensional Liquid
in  GaAs/Al,Ga;_,As Biased Double
Quantum Wells. Phys. Rev. B 2000, 61
(12), 8420-8424.

Wrona, P.; Rabani, E.; Geissler, P. A Pair

of 2D Quantum Liquids: Investigating
the  Phase  Behavior of Indirect
Excitons. 2022, 2207.05120. arXiv.org.

https://arxiv.org/abs/2207.05120
(accessed August 28, 2022).



