
Lightweight Projective Derivative Codes

for Compressed Asynchronous Gradient Descent

Pedro Soto 1 Ilia Ilmer 1 Haibin Guan 2 Jun Li 3

Abstract

Coded distributed computation has become com-

mon practice for performing gradient descent on

large datasets to mitigate stragglers and other

faults. This paper proposes a novel algorithm that

encodes the partial derivatives themselves and

furthermore optimizes the codes by performing

lossy compression on the derivative codewords by

maximizing the information contained in the code-

words while minimizing the information between

the codewords. The utility of this application of

coding theory is a geometrical consequence of

the observed fact in optimization research that

noise is tolerable, sometimes even helpful, in gra-

dient descent based learning algorithms since it

helps avoid overfitting and local minima. This

stands in contrast with much current conventional

work on distributed coded computation which fo-

cuses on recovering all of the data from the work-

ers. A second further contribution is that the low-

weight nature of the coding scheme allows for

asynchronous gradient updates since the code can

be iteratively decoded; i.e., a worker’s task can im-

mediately be updated into the larger gradient. The

directional derivative is always a linear function

of the direction vectors; thus, our framework is

robust since it can apply linear coding techniques

to general machine learning frameworks such as

deep neural networks.

1. Motivation

The majority of machine learning problems take the form:

find a function hw0,...,wk
in some family of hypothesis func-

tions H that are parameterized over the w0, ..., wk which

1Department of Computer Science, The Graduate Center,
CUNY, New York, USA 2Icahn School of Medicine at Mount
Sinai, New York, USA 3Department of Computer Science, CUNY
Queens College & Graduate Center, New York, USA. Correspon-
dence to: Pedro Soto <psoto@gradcenter.cuny.edu>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

best explains the data,

D =

x0 . . . xu y0 . . . yv
D0 x0

1 . . . x0
u y01 . . . y0v

D1 x1
1 . . . x1

u y11 . . . y1v
...

...
. . .

...
...

. . .
...

DN x
(N)
1 . . . x

(N)
u y

(N)
1 . . . y

(N)
v

,

(1)

where the Di are the datapoints, the xi are the input features,

and the yi are the output features.

If the hw0,...,wk
are smoothly parameterized by the

w0, ..., wk, then this is usually accomplished by performing

gradient descent on the summation of loss functions of the

form li(w) = l(hw(x
(i)), y(i)) to compute

min
w∈W

L(D,w)
def
= min

w∈W

∑

Di

l
(

hw(x
(i)), y(i)

)

=

= min
w∈W

∑

Di

li (w) ; (2)

i.e., find the w that best fits D. For example, one of the

most common loss functions, l(f, y) = 1
2 ||f − y||2, gives

us the mean squared error and the ubiquitous method of

least squares.

If the dataset D has many datapoints Di then the overall

computation, or job, is distributed as tasks amongst work-

ers, which model a distributed network of computing de-

vices. This solution creates a new problem; stragglers and

other faults can severely impact the performance and overall

training time. An emerging technique is to use distributed

coded computation to mitigate stragglers and other failures

in the network. Many of the current algorithms only en-

code the data; this paper proposes further encoding the

directional derivatives as well in such a way that allows

for asynchronous gradient updates using low weight codes.

Furthermore the number of weights usually grow quite large

as well1, which necessitates a “2D” coding scheme which

codes both the data and the derivatives.

1As a matter of fact it grows proportionately with the number
of features or dimension of the dataset

Lightweight Projective Derivative Codes

1.1. Related Work

The two algorithms which we use to benchmark our algo-

rithm are Gradient Coding (Tandon et al., 2017) and K-

Asynchronous Gradient Descent (Dutta et al., 2018b; 2021);

however, many of the design of our coding scheme is also

influenced by the works in (Lee et al., 2018), (Yu et al.,

2017), and (Dutta et al., 2020).

1.1.1. GRADIENT CODING

In the gradient coding Gradient Coding (Tandon et al., 2017)

scheme the main idea is to encode the derivatives with re-

spects to the data partitions ∂
∂Di

from Eq. (1); since the

loss function in Eq. (2) splits up into a sum of smaller loss

functions, li, in terms of the partitions, Di, linear codes

can be efficiently applied to the gradients ∂
∂Di

. This work

has gone on to spawn many works (Atallah & Rahnavard,

2018; Charles & Papailiopoulos, 2018; Ye & Abbe, 2018;

Halbawi et al., 2018; Ozfatura et al., 2019b; Karakus et al.,

2019; Ozfatura et al., 2019a;c; Horii et al., 2019; Raviv

et al., 2020; Reisizadeh et al., 2019a; Maity et al., 2019;

Bitar et al., 2019; Amiri & Gündüz, 2019; Reisizadeh et al.,

2019b; Sasi et al., 2020; Wang et al., 2021; Ozfatura et al.,

2020; Bitar et al., 2020; Zhang & Simeone, 2021); gradient

coding is currently a vibrant topic of research. The main im-

provements of our coding scheme over the state of the art in

Gradient Coding is that our code: can perform asynchronous

coded updates, allows the backpropagation itself to be coded

(which greatly reduces the communication complexity for

high dimensional data), our code has 0 encoding and decod-

ing overhead in terms of multiplications, and has an overall

reduction in the redundancy of data/memory overhead.

1.1.2. ASYNCHRONOUS GRADIENT DESCENT

The main idea in Asynchronous Gradient Descent (Ferdi-

nand et al., 2017; Dutta et al., 2018b; Ferdinand & Draper,

2018; Ferdinand et al., 2020; Dutta et al., 2021) is to simply

perform a gradient update when whenever a specified num-

ber, k, workers have returned. The name “asynchronous”

comes from the eponymous concept in distributed comput-

ing where communication rounds are not synchronized.

1.1.3. GENERAL CODED DISTRIBUTED FUNCTION

COMPUTATION SCHEMES

The main idea in (Lee et al., 2018), (Yu et al., 2017), and

(Dutta et al., 2020) is that one can distribute large matrix

multiplications amongst workers and encode the smaller

block matrix operations. The works initiated much research

in distributed coded matrix multiplication (Dutta et al., 2020;

Lee et al., 2017; Baharav et al., 2018; Dutta et al., 2018a;

Wang et al., 2018; Soto et al., 2019; Dutta et al., 2019; Das

& Ramamoorthy, 2019; Hong et al., 2021). Further work

has been extended to include batch matrix multiplication as

well (Yu et al., 2019; Jia & Jafar, 2020). The main drawback

of these (multi-)linear methods is the non-linear activation

functions; in particular, these methods can only encode the

linear computations between the layers of a network. An-

other interesting approach is to attempt to encode the neural

network itself (Kosaian et al., 2018; 2019a;b); however, this

approach suffers from long training times dues to combina-

torial explosion of different fault patterns is there are enough

stragglers.

1.2. Contribution

The main contributions of this paper are to introduce a

novel coding scheme for gradient descent that: allows for

asynchronous gradient updates, maximizes the amount of

information contained by random subsets of vectors, min-

imizes the weight of the code, compresses the gradient in

a manner that scales well with the number of nodes, and

achieves a lower a communication complexity and memory

(storage) overhead with respect to the state of the art. An-

other improvement of our algorithm over the state of the art

is to consider the correct information metric; all of the other

coding schemes assume that the Hamming distance is the

correct metric, which does not consider the natural (differen-

tial) geometry of the gradient. We will show that the correct

distance is the one given by the real projective space2
RP

n.

Furthermore, we will show that our coding scheme, i.e., our

choice of coefficients, maximizes the amount of information

returned by the workers and furthermore has zero decoding

overhead (in terms of multiplications) since the master can

just directly add and subtract the results returned by the

workers without needing to decode the information.

1.3. Background

We quickly give some important definitions and background

from coding theory, information theory, and geometry. In

coded distributed computing an erasure code is a pair of

functions C = (E ,D) where the workers tasks are given by

the encoding procedure

{

θ̃0, ..., θ̃n−1

}

:= E {θ0, ..., θk}

and a decoding procedure for some family of fault-tolerant

subsets, FC , such that

{

θ̃i1 , ..., θ̃im

}

∈ FC =⇒ D
{

θ̃i1 , ..., θ̃im

}

= {θ0, ..., θk} .

If FC consists of all the m-subsets (for some integer r) of
{

θ̃0, ..., θ̃n−1

}

, then C can correct any r := n−m erasures

or stragglers; furthermore, if r = n− k then the code is a

maximum distance separable (MDS) code. If the encoder E

2
RP

n is defined as the set of all vectors in R
n+1 quotiented by

the equivalence relation v ∼ w ⇐⇒ (∃λ) v = λw.

Lightweight Projective Derivative Codes

is given by a generator matrix GC , i.e., if

E
[

θ0 ... θk
]T

= GC
[

θ0 ... θk
]T

then C is called a linear code. The weight of a linear code

is the maximum number of 0’s in the rows of the matrix

GC ; the importance of the weight metric stems from the fact

that it measures the amount of work that the workers do

since the rows of GC are the worker tasks θ̃i. Thus, in order

to avoid confusion we will use t to denote the weight of

the code as well as the number of tasks that each worker

does; equivalently t is the number of data partitions on the

workers. To further simplify notation we abuse notation and

use C in place of GC and EC when the context is clear.

A potential point of confusion is that the θ need not be the

weights w of the hw. This is because the derivative of loss

function L also implicitly takes the data Di as an input; this

is an important insight used in all gradient coding algorithms.

One of the key insights of this paper is to allow the coded

gradient to be linear combinations of both ∂
∂Di

and the
∂

∂wi
. An important notational convention is that we let the

Di be partitions (or batches) of the data set instead of just

datapoints as is common in the gradient coding literature; in

particular, D0, ..., Dt−1 denotes a partitioning of the data-

set into t pieces.

The reason for the name “maximum distance separa-

ble code” is that an MDS maximizes the distances be-

tween the codewords E {θ0, ..., θk} using the Hamming dis-

tance; in particular, maximum distance separable means

that the code words θ̃ ∈ C have achieve the maximum

maxC′:code on Θ minθ̃,θ̃′∈C′ d(θ̃, θ̃′) where d is the Hamming

distance. There are two problems with this approach: the

first is that MDS codes in this context require arbitrar-

ily large amount of work, i.e., they have a large weight,

and the second is that the classical discrete MDS codes

are using the wrong metric. This paper proposes to use

the metric given by the projective geometry3 on the space

of derivatives. Here we mean maximum distance sep-

arable with respect to the distance function d(θ, θ′) =
min{arccos〈θ̃, θ̃′〉, arccos〈−θ̃, θ̃〉}.

2. General Overview of the Design Principles

Consider the case where there are two derivatives and we

wish to create two parity tasks using only summation and

subtraction in the encoding procedure. Such a code is given

3See (Kühnel et al., 2006) for the case RP
2 and Appx. 3 of

(Vogtmann et al., 2013) or Thm. 10.2 in ch. 3 of (Suetin et al.,
1989) for the more general case CP

n.

by the following generator matrix

C =

Θ0
[]

Θ̃0 I
Θ̃1 P

=

θ0 θ1












θ̃0 1 0
θ̃1 0 1
θ̃2

1√
2

1√
2

θ̃3
1√
2

− 1√
2

which adds fault tolerance to the job I =

[

1 0
0 1

]

with

the parity tasks P =

[

1√
2

1√
2

1√
2

− 1√
2

]

. This code has the

serendipitous property of having negligible decoding com-

plexity and negligible communication complexity! For ex-

ample, if the master receives ∇ in the direction θ̃3 =
1√
2
(θ0+θ1), then the master can decrease both θ0 and θ1 by

the value returned by W2, i.e., θ̃2, if the master receives ∇
in the direction θ̃2 = 1√

2
(θ0 − θ1), then the master can de-

crease θ0 and increase θ1 by the value returned by W3, i.e.,

θ̃3. The master need only perform 2 additions/subtractions,

and more generally (see Eq. 4) if there are t “sub-tasks” the

master only needs to perform t additions/subtractions. The

multiplication by 1√
2

can be subsumed by the learning rate;

thus, our code has zero multiplication overhead. Further-

more, this information can be communicated using only one

float, since the master knows which direction/worker the

derivative was computed from.

2.1. What is the Optimal Choice of Directions?

Looking at Fig. 1, we see that the code G is MDS in the

sense that it maximizes the independence between the vec-

tors. Equivalently 4 G minimizes the confusion between

codewords or minimizes the mutual information between

codewords; thereby maximizing the entropy or the infor-

mation content. As we will soon see this has the effect of

allowing lossy low-distortion compression for larger codes.

A second contribution of this paper is to show how to pre-

serve an approximate MDS property for larger codes which

allows for this form of compression.

In what sense does C being MDS imply fault tolerance? The

following example illustrates one kind of error which the

code is immune to:

Consider the case where two workers return the deriva-

tives in the directions θ̃ =
(

1√
2

1√
2

)T

, θ̃′ =
(

cos
(

5π
4 − ǫ

)

sin
(

5π
4 − ǫ

))T
. By inspecting the second

diagram in Fig. 1, it is easy to see that limǫ→0 θ̃
′ → −θ̃, so

that limǫ→0 arccos
〈

θ̃, θ̃′
〉

→ π.We will also show that the

4Under the assumption that the data Di are i.i.d. See (Cover &
Thomas, 2006) for why maximal entropy maximizes information
sent through a message.

Lightweight Projective Derivative Codes

where8 s is the ratio of tasks to sub-tasks, θ
(t)
i is the se-

quence of sub-tasks θit through θ(i+1)t−1, and θ̃
(t)
i is simi-

larly defined as a sequence of t consecutive workers. Equiv-

alently if we define the “‘rectangles” R
(t)
u,v as

R(t)
u,v = {(i, j) ∈ N

2 | ut ≤ i < (u+1)t, vt ≤ j < (v+1)t},

then we can define C(2k,k,t) coordinate -wise as

C
(2k,k,t)

θi,θ̃j
=







































X
(t)
i%t,j%t

if i < k and (i, j) ∈ R
(t)

⌊ i
t⌋,⌊ i

t⌋

L
(t)
i%t,j%t

if k ≤ i and (i, j) ∈ R
(t)

⌊ i
t⌋+ k

t
,⌊ i

t⌋

R
(t)
i%t,j%t

if (i, j) ∈ R
(t)
2k
t
−1,0

or k ≤ i

and t ≤ j and (i, j) ∈ R
(t)

⌊ i
t⌋+ k

t
,⌊ i

t⌋
0 otherwise.

It is straightforward to prove the following beautiful prop-

erty

Lemma 3.1. The matrices X(t) satisfy the following recur-

sion relation X(2t) = X(2) ⊗X(t).

Proof. This is a direct consequence of Thm. 10 in (Serre,

2012).

An alternative is the weaker statement9 “X(2) is a Hadamard

matrix and the tensor product of two Hadamard matrices is

a Hadamard matrix” whose proof can be found in (Huffman

& Pless, 2003).

3.2.1. DATA-&-GRADIENT-PARTITION FOR POWERS OF

TWO

Similar to the example given in Sec. 2.2 we give the

workers θ̃i the data partition given by Alg. 1. The

Algorithm 1 Data Partition Assignment

Input: data D, code parameters (n, k, t)
Partition the data D into D0, .., Dk−1

Set C := C(n,k,t)

for i ≤ n do

Data[θ̃i] := ∅
for j ≤ k do

if Ci,j 6= 0 then

Set Data[θ̃i] := Data[θ̃i] ∪Dj

end if

end for

end for

idea behind Alg. 1 is simple; we give the first worker

8Equivalently, we can write these definitions as s = k

t
and

θ
(t)
i

= θitθit+1...θ(i+1)t−1
9Although a weaker statement it suffices to to prove the claim

of optimally,i.e., Thm. 4.5.

Data[θ̃0] = D0, ..., Dt−1, and the second worker

Data[θ̃1] = Dt, ..., D2t−1, and so on up to worker k, at

which point we give the workers k, ..., n a cyclic shift of

the previous assignment, e.g, worker k gets Data[θ̃k] =
D t

2

, ..., Dt+ t
2

.

The procedure for partitioning and encoding the gradients,

Alg. 2, is slightly more involved; however, the main idea is

illustrated in Fig. 2. The main intuition behind Alg. 2 is to

Algorithm 2 Gradient Partition Assignment

Input: network x, z0, ..., zm, y, code parameters

(n, k, t)
Set C := C(n,k,t)

Partition y into t groups y(i)

where y(0) = (y0, ..., yt−1); . . . ; y
(t) = (yv−t, ..., yv)

for i ≤ n do

Encode grad[θ̃i] according to row i in C as in Fig. 2

end for

if network == x, y then

End Procedure

else

for i ≤ m do

Recursively call “Gradient Partition Assignment”

on the network x, z0, ..., zm parameters (n, k, t) as

in Fig. 2 to encode grad[θ̃i] according to row i in

C by repeatedly splitting the (non-zero-)row by t
end for

end if

encode the gradient in the manner in which backpropagation

occurs; this allows for the iterative decoding/gradient update

at the master node, which in turn allows for asynchronous

gradient updating.

3.3. Construction for General Parameters

Given some general (n, k, t) we construct the matrix

C(n′,k′,t), where n′ and k′ are the next nearest powers of

2 (repeating rows if necessary) and use a “2-D” permuta-

tion algorithm similar to (Fan et al., 2020) to distribute the

sub-tasks in each round; however our algorithm uses more

general (prime number) step-sizes chosen in each round

and the permutations now occur in “higher dimensions10.”

In particular; we now use a similar procedure to permute

tasks amongst workers if n and k are not powers of 2. For

example if we have n = 6 workers and k = 3 tasks we can

add extra virtual tasks θ3 = θ0, θ4 = θ1, . . . , θx = θx%3

and perform the following toroidal permutations on C(5,3,2)

so that at round r worker i performs task θi+5r%n′ and

similarly at round r we have ti = θi+r%k.

10I.e., our algorithm permutes more than one index; in partic-
ular, it permutes the subtask, worker, and output indices in order
to create “3-D” permutations. The step-sizes are more general
because they must be co-prime to one another to ensure every blue

Lightweight Projective Derivative Codes

ϑ̃0 ϑ̃1 ϑ̃2 ϑ̃3 ϑ̃4

θ̃0 θ̃1 θ̃2 θ̃3 θ̃4 θ̃5 θ̃6 θ̃7












t0 θ0 1 1 0 0 0 0 1 −1
t1 θ1 1 −1 0 0 1 1 0 0
t2 θ2 0 0 1 1 1 −1 0 0

θ3 0 0 1 −1 0 0 1 1

⇒

ϑ̃3 ϑ̃4 ϑ̃0 ϑ̃1 ϑ̃2

θ̃0 θ̃1 θ̃2 θ̃3 θ̃4 θ̃5 θ̃6 θ̃7












θ0 1 1 0 0 0 0 1 −1
t0 θ1 1 −1 0 0 1 1 0 0
t1 θ2 0 0 1 1 1 −1 0 0
t2 θ3 0 0 1 −1 0 0 1 1

.

ϑ̃0 ϑ̃1 ϑ̃2 ϑ̃3 ϑ̃4

θ̃0 θ̃1 θ̃2 θ̃3 θ̃4 θ̃5 θ̃6 θ̃7












t2 θ4 1 1 0 0 0 0 1 −1
θ1 1 −1 0 0 1 1 0 0

t0 θ2 0 0 1 1 1 −1 0 0
t1 θ3 0 0 1 −1 0 0 1 1

⇒

ϑ̃1 ϑ̃2 ϑ̃3 ϑ̃4 ϑ̃0

θ̃0 θ̃1 θ̃2 θ̃3 θ̃4 θ̃5 θ̃6 θ̃7












t1 θ4 1 1 0 0 0 0 1 −1
t2 θ5 1 −1 0 0 1 1 0 0

θ2 0 0 1 1 1 −1 0 0
t0 θ3 0 0 1 −1 0 0 1 1

.

(5)

More generally we find a displacement d equal to an (odd)

prime number that is co-prime11 to k and we let worker i
performs task θi+dr%n′ at round r and let ti = θi+r%k at

round r. This allows gives the following statistical unifor-

mity lemma:

Lemma 3.2. If the displacement, d, is equal to an (odd)

prime number that is co-prime to k then the blue rectangle

in (the general form of) Eq. 5 will visit every entry in the

matrix with every possible pattern of X(t) and every cyclic

permutation of the ti contained inside of the blue rectangle.

Proof. The leftmost point of the blue rectangle is equal

to (i, i) + r(1, d) ≡ (i + r, i + dr) mod Z/n′
Z × Z/kZ.

By the Chinese remainder theorem (see (Ireland & Rosen,

1982) or (Dummit & Foote, 2003)) (1, d) is a generator of

mod Z/n′
Z×Z/kZ since d is coprime to 1, k, and n′.

4. Analysis and Evaluation

4.1. Theoretical Analysis

In this section we give a theoretical comparison of the algo-

rithms, see Table 1, and we prove theorems regarding the

existence and non-existence of codes with certain properties.

The following theorem, i.e., Thm. 4.1, shows that Hamming-

distance MDS coding schemes must have the workers do

an arbitrarily large amount of work. We then later show

that our codes are approximately MDS with respects to the

projective geometry metric which maximize the amount of

information sent back by the workers12 while keeping the

rectangle (see Eq. 5) is visited.
11Although it is notoriously hard to find a prime divisor of

number, it is surprisingly easy to find a prime non-divisor. This
easy to see since one can just test divisibility by 2,3,5,... and since
the product of the first primes less than 100 is approximately equal
to 2120 this will halt very quickly, i.e. it will halt in less than 25
steps for k < 2120 since there are only 25 primes less than 100.

12This is because large angles gives us large conditional entropy.

amount of work done by the workers as low as possible; i.e.,

there are approximately projective-MDS that have weights

t = 2, ..., n.

Theorem 4.1. If the parameters (n, k, t) satisfy t ≤ n− k
then there is no Hamming-distance MDS (n, k)-code for

the derivatives.

Proof. If A(C)i =“number of rows of weight i”, then Theo-

rem 7.4.1 in (Huffman & Pless, 2003) gives us that an MDS

will have A(C)i = 0 for i ≤ n− k.

In particular; the proof of Thm. 4.1 can be strengthened to

say that:

Corollary 4.2. In an MDS (n, k)-coding scheme A(C)i = 0,

for i ≤ n− k, where A(C)i = 0 is the weight distribution

of a code.

The importance of Cor. 4.2 is made clear through the fol-

lowing interpretation:

Corollary 4.3. In an MDS (n, k)-coding scheme all of the

workers must do at least n− k amount of work.

However a simple observation of the construction given in

Sec. 3.2 gives us that:

Theorem 4.4. There exists (n, k, t)-LWPD codes for any

t ≥ 2.

The next theorem proves that under the projective distance

we have that our code achieves approximately maximal

distance.

Theorem 4.5. The family (n, k, t)-code are approximately

MDS (n, k)-code for the derivatives in the projective-

distance for n ≤ 2k.

Proof. By Lem. 3.2 it suffices to prove this for powers

of two. The distance between any vectors is arccos 1
2 =

π
3 and this only happens for t out of n choices for any

Lightweight Projective Derivative Codes

Straggler-proofing massive-scale distributed matrix mul-

tiplication with d-dimensional product codes. In 2018

IEEE International Symposium on Information Theory

(ISIT), pp. 1993–1997, 2018. doi: 10.1109/ISIT.2018.

8437549.

Bitar, R., Wootters, M., and Rouayheb, S. E. Stochastic gra-

dient coding for flexible straggler mitigation in distributed

learning. In 2019 IEEE Information Theory Workshop

(ITW), pp. 1–5, 2019. doi: 10.1109/ITW44776.2019.

8989328.

Bitar, R., Wootters, M., and el Rouayheb, S. Stochastic

gradient coding for straggler mitigation in distributed

learning. IEEE Journal on Selected Areas in Information

Theory, 1:277–291, 2020.

Charles, Z. and Papailiopoulos, D. Gradient coding us-

ing the stochastic block model. In IEEE Symposium on

Information Theory, 2018.

Cover, T. M. and Thomas, J. A. Elements of information

theory (2. ed.). 2006.

Dalcı́n, L., Paz, R., and Storti, M. Mpi for python.

Journal of Parallel and Distributed Comput-

ing, 65(9):1108–1115, 2005. ISSN 0743-7315.

doi: https://doi.org/10.1016/j.jpdc.2005.03.010.

URL https://www.sciencedirect.com/

science/article/pii/S0743731505000560.

Dalcı́n, L., Paz, R., Storti, M., and D’Elı́a, J. Mpi

for python: Performance improvements and mpi-

2 extensions. Journal of Parallel and Distributed

Computing, 68(5):655–662, 2008. ISSN 0743-

7315. doi: https://doi.org/10.1016/j.jpdc.2007.09.

005. URL https://www.sciencedirect.com/

science/article/pii/S0743731507001712.

Das, A. B. and Ramamoorthy, A. Distributed matrix-vector

multiplication: A convolutional coding approach. In 2019

IEEE International Symposium on Information Theory

(ISIT), pp. 3022–3026, 2019. doi: 10.1109/ISIT.2019.

8849395.

Dummit, D. and Foote, R. Abstract Algebra. Wiley,

2003. ISBN 9780471433347. URL https://books.

google.com/books?id=KIGbCgAAQBAJ.

Dutta, S., Bai, Z., Jeong, H., Low, T. M., and Grover, P. A

unified coded deep neural network training strategy based

on generalized polydot codes. In 2018 IEEE International

Symposium on Information Theory (ISIT), pp. 1585–1589,

2018a. doi: 10.1109/ISIT.2018.8437852.

Dutta, S., Joshi, G., Ghosh, S., Dube, P., and Nagpurkar,

P. Slow and stale gradients can win the race: Error-

runtime trade-offs in distributed sgd. In Storkey, A. and

Perez-Cruz, F. (eds.), Proceedings of the Twenty-First

International Conference on Artificial Intelligence and

Statistics, volume 84 of Proceedings of Machine Learn-

ing Research, pp. 803–812. PMLR, 09–11 Apr 2018b.

URL https://proceedings.mlr.press/v84/

dutta18a.html.

Dutta, S., Cadambe, V., and Grover, P. “short-dot”: Com-

puting large linear transforms distributedly using coded

short dot products. IEEE Transactions on Information

Theory, 65(10):6171–6193, 2019. doi: 10.1109/TIT.2019.

2927558.

Dutta, S., Fahim, M., Haddadpour, F., Jeong, H., Cadambe,

V., and Grover, P. On the optimal recovery threshold

of coded matrix multiplication. IEEE Transactions on

Information Theory, 66(1):278–301, 2020. doi: 10.1109/

TIT.2019.2929328.

Dutta, S., Joshi, G., Ghosh, S., Dube, P., and Nagpurkar, P.

Slow and stale gradients can win the race. IEEE Journal

on Selected Areas in Information Theory, 2:1012–1024,

2021.

Fan, X., Soto, P., Zhong, X., Xi, D., Wang, Y., and Li, J.

Leveraging stragglers in coded computing with hetero-

geneous servers. In 2020 IEEE/ACM 28th International

Symposium on Quality of Service (IWQoS), pp. 1–10,

2020. doi: 10.1109/IWQoS49365.2020.9213028.

Ferdinand, N. S. and Draper, S. C. Anytime stochastic

gradient descent: A time to hear from all the workers.

2018 56th Annual Allerton Conference on Communica-

tion, Control, and Computing (Allerton), pp. 552–559,

2018.

Ferdinand, N. S., Gharachorloo, B., and Draper, S. C. Any-

time exploitation of stragglers in synchronous stochastic

gradient descent. 2017 16th IEEE International Confer-

ence on Machine Learning and Applications (ICMLA),

pp. 141–146, 2017.

Ferdinand, N. S., Al-Lawati, H., Draper, S. C., and Nokleby,

M. S. Anytime minibatch: Exploiting stragglers in online

distributed optimization. CoRR, abs/2006.05752, 2020.

URL https://arxiv.org/abs/2006.05752.

Fulton, W. and Harris, J. Representation Theory: A First

Course. Graduate Texts in Mathematics. Springer

New York, 1991. ISBN 9780387974958. URL

https://books.google.com/books?id=

qGFzi20nMcYC.

Halbawi, W., Azizan, N., Salehi, F., and Hassibi, B. Im-

proving distributed gradient descent using reed-solomon

codes. In 2018 IEEE International Symposium on In-

formation Theory (ISIT), pp. 2027–2031, 2018. doi:

10.1109/ISIT.2018.8437467.

Lightweight Projective Derivative Codes

Hong, S., Yang, H., Yoon, Y., Cho, T., and Lee, J. Cheby-

shev polynomial codes: Task entanglement-based coding

for distributed matrix multiplication. In Meila, M. and

Zhang, T. (eds.), Proceedings of the 38th International

Conference on Machine Learning, volume 139 of Pro-

ceedings of Machine Learning Research, pp. 4319–4327.

PMLR, 18–24 Jul 2021.

Horii, S., Yoshida, T., Kobayashi, M., and Matsushima, T.

Distributed stochastic gradient descent using ldgm codes.

In 2019 IEEE International Symposium on Information

Theory (ISIT), pp. 1417–1421, 2019. doi: 10.1109/ISIT.

2019.8849580.

Huffman, W. and Pless, V. Fundamentals of Error-

Correcting Codes. Cambridge University Press, 2003.

ISBN 9780521782807. URL https://books.

google.com/books?id=B2FjPXtS_QUC.

Ireland, K. and Rosen, M. A classical introduc-

tion to modern number theory. Graduate texts

in mathematics. Springer-Verlag, 1982. ISBN

9783540906254. URL https://books.google.

com/books?id=WvjuAAAAMAAJ.

Jia, Z. and Jafar, S. A. Generalized cross subspace alignment

codes for coded distributed batch matrix multiplication.

In ICC 2020 - 2020 IEEE International Conference on

Communications (ICC), pp. 1–6, 2020. doi: 10.1109/

ICC40277.2020.9149322.

Karakus, C., Sun, Y., Diggavi, S., and Yin, W. Redun-

dancy techniques for straggler mitigation in distributed

optimization and learning. Journal of Machine Learn-

ing Research, 20(72):1–47, 2019. URL http://jmlr.

org/papers/v20/18-148.html.

Kosaian, J., Rashmi, K. V., and Venkataraman, S. Learning

a code: Machine learning for approximate non-linear

coded computation. CoRR, abs/1806.01259, 2018. URL

http://arxiv.org/abs/1806.01259.

Kosaian, J., Rashmi, K. V., and Venkataraman, S. Par-

ity models: Erasure-coded resilience for prediction serv-

ing systems. In Proceedings of the 27th ACM Sympo-

sium on Operating Systems Principles, SOSP ’19, pp.

30–46, New York, NY, USA, 2019a. Association for

Computing Machinery. ISBN 9781450368735. doi: 10.

1145/3341301.3359654. URL https://doi.org/

10.1145/3341301.3359654.

Kosaian, J., Rashmi, K. V., and Venkataraman, S. Parity

models: A general framework for coding-based resilience

in ml inference. ArXiv, abs/1905.00863, 2019b.

Kühnel, W., Hunt, B., and Society, A. M. Differential Geom-

etry: Curves - Surfaces - Manifolds. Student mathemati-

cal library. American Mathematical Society, 2006. ISBN

9780821839881. URL https://books.google.

com/books?id=TyqUnlyV4Y4C.

Lee, K., Suh, C., and Ramchandran, K. High-dimensional

coded matrix multiplication. In 2017 IEEE International

Symposium on Information Theory (ISIT), pp. 2418–2422,

2017. doi: 10.1109/ISIT.2017.8006963.

Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D., and

Ramchandran, K. Speeding Up Distributed Machine

Learning Using Codes. IEEE Transactions on Informa-

tion Theory, 64(3):1514–1529, 2018.

Maity, R. K., Rawa, A. S., and Mazumdar, A. Robust

gradient descent via moment encoding and ldpc codes.

In 2019 IEEE International Symposium on Information

Theory (ISIT), pp. 2734–2738. IEEE, 2019.

Ozfatura, E., Gündüz, D., and Ulukus, S. Gradient coding

with clustering and multi-message communication. In

2019 IEEE Data Science Workshop (DSW), pp. 42–46.

IEEE, 2019a.

Ozfatura, E., Gündüz, D., and Ulukus, S. Speeding up

distributed gradient descent by utilizing non-persistent

stragglers. In 2019 IEEE International Symposium on

Information Theory (ISIT), pp. 2729–2733, 2019b. doi:

10.1109/ISIT.2019.8849684.

Ozfatura, E., Ulukus, S., and Gündüz, D. Distributed gra-

dient descent with coded partial gradient computations.

ICASSP 2019 - 2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp.

3492–3496, 2019c.

Ozfatura, E., Ulukus, S., and Gündüz, D. Straggler-aware

distributed learning: Communication–computation la-

tency trade-off. Entropy, 22(5), 2020. ISSN 1099-4300.

doi: 10.3390/e22050544. URL https://www.mdpi.

com/1099-4300/22/5/544.

Raviv, N., Tamo, I., Tandon, R., and Dimakis, A. G. Gradi-

ent coding from cyclic mds codes and expander graphs.

IEEE Transactions on Information Theory, 66(12):7475–

7489, 2020. doi: 10.1109/TIT.2020.3029396.

Reisizadeh, A., Prakash, S., Pedarsani, R., and Avestimehr,

A. S. Tree gradient coding. In 2019 IEEE International

Symposium on Information Theory (ISIT), pp. 2808–2812,

2019a. doi: 10.1109/ISIT.2019.8849431.

Reisizadeh, A., Taheri, H., Mokhtari, A., Hassani, H.,

and Pedarsani, R. Robust and communication-efficient

collaborative learning. In Wallach, H., Larochelle,

H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and

Garnett, R. (eds.), Advances in Neural Information

Processing Systems, volume 32. Curran Associates,

Inc., 2019b. URL https://proceedings.

Lightweight Projective Derivative Codes

neurips.cc/paper/2019/file/

3eb2f1a06667bfb9daba7f7effa0284b-Paper.

pdf.

Sasi, S., Lalitha, V., Aggarwal, V., and Rajan, B. S. Straggler

mitigation with tiered gradient codes. IEEE Transactions

on Communications, 68(8):4632–4647, 2020. doi: 10.

1109/TCOMM.2020.2992721.

Serre, J. Linear Representations of Finite Groups. Graduate

Texts in Mathematics. Springer New York, 2012. ISBN

9781468494587. URL https://books.google.

com/books?id=9mT1BwAAQBAJ.

Soto, P., Li, J., and Fan, X. Dual entangled polynomial code:

Three-dimensional coding for distributed matrix multi-

plication. In Chaudhuri, K. and Salakhutdinov, R. (eds.),

Proceedings of the 36th International Conference on Ma-

chine Learning, volume 97 of Proceedings of Machine

Learning Research, pp. 5937–5945. PMLR, 09–15 Jun

2019. URL http://proceedings.mlr.press/

v97/soto19a.html.

Suetin, P. K., Kostrikin, A. I., and Manin, Y. I. Linear

algebra and geometry. 1989.

Tandon, R. gradient coding. https://github.com/

rashisht1/gradient_coding, 2017.

Tandon, R., Lei, Q., Dimakis, A. G., and Karampatziakis,

N. Gradient coding: Avoiding stragglers in distributed

learning. In Precup, D. and Teh, Y. W. (eds.), Proceed-

ings of the 34th International Conference on Machine

Learning, volume 70 of Proceedings of Machine Learn-

ing Research, pp. 3368–3376. PMLR, 06–11 Aug 2017.

URL https://proceedings.mlr.press/v70/

tandon17a.html.

Tao, T. and Vu, V. Additive Combinatorics. Number v. 13

in Additive combinatorics. Cambridge University Press,

2006. ISBN 9780521853866. URL https://books.

google.com/books?id=WY8YnwEACAAJ.

Vogtmann, K., Weinstein, A., and Arnol’d, V. Math-

ematical Methods of Classical Mechanics. Graduate

Texts in Mathematics. Springer New York, 2013. ISBN

9781475720648. URL https://books.google.

com/books?id=BXIAswEACAAJ.

Wang, H., Guo, S., Tang, B., Li, R., Yang, Y., Qu, Z.,

and Wang, Y. Heterogeneity-aware gradient coding for

tolerating and leveraging stragglers. IEEE Transactions

on Computers, pp. 1–1, 2021. doi: 10.1109/TC.2021.

3063180.

Wang, S., Liu, J., and Shroff, N. Coded sparse matrix

multiplication. In Dy, J. and Krause, A. (eds.), Proceed-

ings of the 35th International Conference on Machine

Learning, volume 80 of Proceedings of Machine Learn-

ing Research, pp. 5152–5160. PMLR, 10–15 Jul 2018.

URL https://proceedings.mlr.press/v80/

wang18e.html.

Ye, M. and Abbe, E. Communication-computation efficient

gradient coding. In ICML, 2018.

Yu, Q., Maddah-Ali, M., and Avestimehr, S. Polyno-

mial codes: an optimal design for high-dimensional

coded matrix multiplication. In Guyon, I., Luxburg,

U. V., Bengio, S., Wallach, H., Fergus, R., Vish-

wanathan, S., and Garnett, R. (eds.), Advances in Neural

Information Processing Systems, volume 30. Curran As-

sociates, Inc., 2017. URL https://proceedings.

neurips.cc/paper/2017/file/

e6c2dc3dee4a51dcec3a876aa2339a78-Paper.

pdf.

Yu, Q., Li, S., Raviv, N., Kalan, S. M. M., Soltanolkotabi,

M., and Avestimehr, S. A. Lagrange coded computing:

Optimal design for resiliency, security, and privacy. In

Chaudhuri, K. and Sugiyama, M. (eds.), Proceedings of

the Twenty-Second International Conference on Artificial

Intelligence and Statistics, volume 89 of Proceedings

of Machine Learning Research, pp. 1215–1225. PMLR,

16–18 Apr 2019. URL http://proceedings.mlr.

press/v89/yu19b.html.

Zhang, J. and Simeone, O. Lagc: Lazily aggregated gradient

coding for straggler-tolerant and communication-efficient

distributed learning. IEEE Transactions on Neural Net-

works and Learning Systems, 32:962–974, 2021.

