
Truss Analytics Algorithms and Integration in Arkouda

ZHIHUI DU, JOSEPH PATCHETT, OLIVER ALVARADO RODRIGUEZ, and DAVID A.
BADER, New Jersey Institute of Technology, USA

TheK-Truss of a graph is a cohesive subgraph that has beenwidely used for community detection in applications
such as social networks and security analysis. In this paper, we first propose one optimized triangle search
kernel with a few operations that can be used in both triangle counting and triangle search to replace the
existing list intersection method. Based on the optimized kernel, three truss analytics algorithms, an optimized
K-Truss parallel algorithm, a maximal K-Truss parallel algorithm, and a Truss decomposition parallel algorithm,
are developed to enable different kinds of graph analysis efficiently. Moreover, all proposed parallel algorithms
have been implemented in the highly-productive parallel language Chapel and integrated into the open-
source framework Arkouda. Experimental results compared with the existing list intersection-based method
show that for both synthetic and real-world graphs, the proposed method can significantly improve the
performance of truss analysis on large graphs. The implemented method is publicly available from GitHub
(https://github.com/Bears-R-Us/arkouda-njit).

Additional Key Words and Phrases: K-Truss, Triangle Counting, Graph Analytics

ACM Reference Format:
Zhihui Du, Joseph Patchett, Oliver Alvarado Rodriguez, and David A. Bader. 2022. Truss Analytics Algorithms
and Integration in Arkouda. In .ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
K-Trusses [7] have been widely used to discover close relationships in a graph and are more rigorous
than k-cores (where all the nodes have a degree at least 𝑘 in a subgraph) but less stringent than
k-cliques (where all the nodes are connected pairwise in a subgraph). The clique decision problem is
NP-complete, but K-Trusses can be computed in polynomial time, so K-Trusses can be used in large
graph analysis. Despite this, the increasing size of real-world graphs has become a great challenge
for K-Truss analysis.
At the same time, exploratory data analysis (EDA) [2, 14, 19] has become a critical method to

discover the value of data quickly. Unfortunately, most EDA tools, which often run on laptops
or common personal computers, cannot handle large data efficiently, let alone produce highly
productive analysis results. Developing efficient K-Truss algorithms to enable most EDA users to
conduct their analysis on large graphs productively is the primary goal of this research.
Arkouda [22, 24] is an EDA framework under early development that brings together the pro-

ductivity of Python at the front-end with the high-performance computing capability of Chapel [6]
at the back-end. In this work, we integrate the proposed K-Truss parallel algorithms into Arkouda
so that data scientists can take advantage of Python using their laptops to conduct interactive
real-world graph analysis on very large compute platforms (including clusters) productively.

The major contributions of this paper are as follows.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
CHIUW’2022, June 10, 2022, Virtual
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1

HTTPS://ORCID.ORG/1234-5678-9012
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CHIUW’2022, June 10, 2022, Virtual Du and Patchett, et al.

(1) A fast triangle search kernel that can take advantage of the properties of real-world graphs
is proposed. Multiple parallel and performance optimization methods have been employed in
our K-Truss algorithms.

(2) The proposed K-Truss algorithms have been implemented into the open-source framework
Arkouda to support high-level Python users to analyze large graphs using their laptops with
high productivity.

(3) Experimental results on synthetic and real-world graphs show that the proposed perfor-
mance optimization methods achieve significant speedup compared with the widely used list
intersection method.

2 ALGORITHM DESIGN
2.1 Notation, Analysis, and Data Structure
2.1.1 Notation. The graph,𝐺 = (𝑉 , 𝐸), comprises the vertex set𝑉 and the edge set𝐸.We use△(𝑒,𝐺)
to express the set of all triangles including edge 𝑒 = ⟨𝑢, 𝑣⟩ in the graph 𝐺 . The support of 𝑒 , which
means the number of triangles including edge 𝑒 = ⟨𝑢, 𝑣⟩ in 𝐺 , is expressed as 𝑠𝑢𝑝 (𝑒,𝐺) = |△(𝑒,𝐺) |.

Given an integer𝐾 ≥ 2, theK-Truss of𝐺 is defined as themaximal subgraph𝑆𝑢𝑏𝐺 = ⟨𝑆𝑢𝑏𝑉 , 𝑆𝑢𝑏𝐸⟩
of 𝐺 such that ∀𝑒 ∈ 𝑆𝑢𝑏𝐸 ⊆ 𝐸, we will have 𝑠𝑢𝑝 (𝑒, 𝑆𝑢𝑏𝐺) ≥ 𝐾 − 2. The Max K-Truss is the K-Truss
that has the maximum value of 𝐾 among all the non-empty K-Trusses of 𝐺 . For all 𝑒 ∈ 𝐸, the truss
value or trussness of 𝑒 is defined as the 𝐾 of the maximal K-Truss that includes 𝑒 . It is expressed as
𝑡𝑟𝑢𝑠𝑠 (𝑒,𝐺). Based on the definition, we have 𝑡𝑟𝑢𝑠𝑠 (𝑒,𝐺) ≤ 𝑠𝑢𝑝 (𝑒,𝐺). The truss decomposition of a
graph G is assigning each edge with its truss value.

2.1.2 Bound Analysis. Based on the definition, theminimum value of𝐾 is 2.We use𝑀𝑎𝑥𝐾 to denote
the maximum 𝐾 value for a graph 𝐺 and the corresponding subgraph𝑀𝑎𝑥𝐾𝐺 = ⟨𝑀𝑎𝑥𝑉 ,𝑀𝑎𝑥𝐸⟩.
Then, ∀𝑒 ∈ 𝑀𝑎𝑥𝐸, we will have 𝑠𝑢𝑝 (𝑒,𝑀𝑎𝑥𝐾𝐺) ≥ 𝑀𝑎𝑥𝐾 − 2. This means that the total number of
vertices in𝑀𝑎𝑥𝑉 should meet |𝑀𝑎𝑥𝑉 | ≥ 𝑀𝑎𝑥𝐾 (if |𝑀𝑎𝑥𝑉 | < 𝑀𝑎𝑥𝐾 , ∀𝑒 ∈ 𝑀𝑎𝑥𝐸, we cannot have
another 𝑀𝑎𝑥𝐾 − 2 different vertices to form triangles with 𝑒). We define the degree of an edge
𝑙𝑑 (𝑒) =𝑚𝑖𝑛(𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢), 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣)). If an edge 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝑀𝑎𝑥𝐸, we must have 𝑙𝑑 (𝑒) ≥ 𝑀𝑎𝑥𝐾 − 1.
So for a maximal K-Truss of a given graph, the total number of edges in the subgraph cannot be less
than 𝑀𝑎𝑥𝐾 and the degree of each vertex should not be less than 𝑀𝑎𝑥𝐾 − 1. So we can sort the
vertices in decreasing order based on their degrees and add them into a set 𝑉𝑆𝑒𝑡 step by step. Let
𝐷𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣) |𝑣 ∈ 𝑉𝑆𝑒𝑡} and 𝑘𝑢𝑝 = 𝑚𝑎𝑥{𝑥 |𝑥 = 𝑚𝑖𝑛{𝐷𝑚𝑖𝑛 + 1, |𝑉𝑆𝑒𝑡 |}} for all possible
𝑉𝑆𝑒𝑡 , we will have𝑀𝑎𝑥𝐾 ≤ 𝑘𝑢𝑝 . In this way, we may use 𝑘𝑢𝑝 to set the upper bound of𝑀𝑎𝑥𝐾 .

2.1.3 Double Index Data Structure. This paper focuses on sparse graphs that can model a wide
range of real-world applications such as social networks, bioinformatics, and cybersecurity. A
compact and efficient Double-Index (𝐷𝐼) sparse graph data structure (edge index arrays and vertex
index arrays) that was developed in our previous work [13] is employed in this research to support
our K-Truss analysis. The DI data structure can support both edge-based search and vertex-based
search quickly. At the same time, the edge index arrays can be used to partition a graph’s edges
equally to achieve load balance for edge search based graph algorithms. All these features can
support a quick triangle search.

2.2 Novel Triangle Searching Kernels
Given edges 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸, if the adjacency lists of 𝑢 and 𝑣 are 𝐴𝑑 𝑗𝑢 and 𝐴𝑑 𝑗𝑣 , then the number of
triangles including 𝑒 should be |𝐴𝑑 𝑗𝑢 ∩𝐴𝑑 𝑗𝑣 | . This is the formula of the widely used list intersection
method [9] in K-Truss analysis. If 𝐴𝑑 𝑗𝑢 and 𝐴𝑑 𝑗𝑣 are sorted, then the execution time of sequential
list intersection to find all triangles including edge 𝑒 = ⟨𝑢, 𝑣⟩ can be |𝐴𝑑 𝑗𝑢 | + |𝐴𝑑 𝑗𝑣 | [16]. If we

2

Truss Analytics Algorithms and Integration in Arkouda CHIUW’2022, June 10, 2022, Virtual

use a small number of parallel threads as possible to find all triangles, it will take 𝑙𝑜𝑔2 |𝐴𝑑 𝑗𝑣 | (we
assume |𝐴𝑑 𝑗𝑢 | ≤ |𝐴𝑑 𝑗𝑣 | and |𝐴𝑑 𝑗𝑢 | threads will run a binary search in 𝐴𝑑 𝑗𝑣 in parallel). However,
this method does not take advantage of the property of vertex 𝑤 ∈ 𝐴𝑑 𝑗𝑢 ∩ 𝐴𝑑 𝑗𝑣 to improve the
parallel performance. So, we propose a novel minimum search method to significantly improve the
performance of parallel triangle counting and searching for real-world graphs.

Let ℎ (𝑙) be 𝑢 or 𝑣 which has more (less) adjacent vertices. 𝐴𝑑 𝑗ℎ (𝐴𝑑 𝑗𝑙) be 𝐴𝑑 𝑗𝑢 or 𝐴𝑑 𝑗𝑣 that has
more (less) elements. ∀𝑤 ∈ 𝐴𝑑 𝑗𝑙 , let𝐴𝑑 𝑗𝑤 be the adjacency list of𝑤 . The proposed minimum search
method directly checks if there is a third edge ⟨𝑤,ℎ⟩ that can close the wedge ⟨𝑙, ℎ⟩ and ⟨𝑙,𝑤⟩ to form
a triangle. Furthermore, the check method will be based on the degrees of both vertex𝑤 and ℎ. If
𝐴𝑑 𝑗𝑤 and𝐴𝑑 𝑗ℎ are sorted, the parallel minimum search method will need 𝑙𝑜𝑔2 (𝑚𝑖𝑛(|𝐴𝑑 𝑗𝑤 |, |𝐴𝑑 𝑗ℎ |))
instead of 𝑙𝑜𝑔2 (|𝐴𝑑 𝑗ℎ |) time. So, 𝑙𝑜𝑔2 (|𝐴𝑑 𝑗ℎ |) − 𝑙𝑜𝑔2 (𝑚𝑖𝑛(|𝐴𝑑 𝑗𝑤 |, |𝐴𝑑 𝑗ℎ |)) operations are saved for
checking the third edge ⟨𝑤,ℎ⟩. The larger difference in |𝐴𝑑 𝑗𝑤 | and |𝐴𝑑 𝑗ℎ |, the more operations
can be saved. The total time to get all the triangles including given edge ⟨𝑢, 𝑣⟩ in parallel can be
calculated as in Eq.1.

max
𝑤∈𝐴𝑑 𝑗𝑙

𝑙𝑜𝑔2 (𝑚𝑖𝑛(|𝐴𝑑 𝑗𝑤 |, |𝐴𝑑 𝑗ℎ |)) (1)

List intersection does not care about the degree of the third vertex that may form a triangle with
the given two vertices. However, the proposed minimum search is a fine-grained method. It will
consider the degrees of the third vertex to reduce the search operations as much as possible. For
any vertex 𝑤 ∈ 𝐴𝑑 𝑗𝑙 , if |𝐴𝑑 𝑗𝑤 | ≥ |𝐴𝑑 𝑗ℎ |, the number of operations to decide if 𝑢, 𝑣,𝑤 can form a
triangle will be 𝑙𝑜𝑔2 |𝐴𝑑 𝑗ℎ | that is the same as in the list intersection. If |𝐴𝑑 𝑗𝑤 | < |𝐴𝑑 𝑗ℎ |, then our
method will have fewer operations.
The standard list intersection method can only work on two given lists. However, our method

can take advantage of the adjacency list of the third vertex to further exploit the optimization space
to reduce the total number of operations. If |𝐴𝑑 𝑗𝑙 | = 4, ∀𝑤 ∈ 𝑎𝑑 𝑗𝑙 , |𝐴𝑑 𝑗𝑤 | ≤ 8 and |𝐴𝑑 𝑗ℎ | = 1024,
it will need 4 parallel threads and each thread will execute ⌈𝑙𝑜𝑔21024⌉ = 10 operations to search
the triangles containing given edge ⟨𝑢, 𝑣⟩ . The proposed novel method will also need 4 parallel
threads, and each thread will take ⌈𝑙𝑜𝑔28⌉ = 3 search operations. It is less than half of the standard
list intersection’s parallel execution time. For real-world graphs, their edges are highly skewed,
and only a tiny amount of vertices have huge adjacency lists. So, our method can avoid the large
adjacency list searches and work on smaller adjacency lists to improve the parallel performance.

2.3 Naive K-Truss Parallel Algorithm
In this section, we will first introduce the naive method to show the basic idea of K-Truss analysis.

Algorithm 1: Naive K-Truss Parallel Algorithm
1 𝑁𝑎𝑖𝑣𝑒𝐾𝑇𝑟𝑢𝑠𝑠 (𝐺,𝑘)

/* 𝐺 = ⟨𝐸,𝑉 ⟩ is the input graph with edge set 𝐸 and vertex set 𝑉 . 𝑘 is the given K-Truss value. */

2 𝐸𝑑𝑔𝑒𝐷𝑒𝑙 [] = −1 // initialize all edges as not deleted
3 while there is any edge can be deleted do
4 𝑠𝑢𝑝 [] = 0 // initialize the triangle counting array
5 forall (𝑢𝑛𝑑𝑒𝑙𝑒𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸) && (𝑒 is local) do
6 calculate 𝑠𝑢𝑝 (𝑒,𝐺) using list intersection or minimum search method
7 𝑠𝑢𝑝 [𝑒] = 𝑠𝑢𝑝 (𝑒,𝐺)
8 end
9 forall (𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸) && (𝑒 is local) do
10 if (𝐸𝑑𝑔𝑒𝐷𝑒𝑙 [𝑒] == −1) && (𝑠𝑢𝑝 [𝑒] < 𝑘 − 2) then
11 𝐸𝑑𝑔𝑒𝐷𝑒𝑙 [𝑒] = 𝑘 − 1
12 end
13 end
14 end
15 return 𝐸𝑑𝑔𝑒𝐷𝑒𝑙

3

CHIUW’2022, June 10, 2022, Virtual Du and Patchett, et al.

Based on the DI sparse graph data structure, which can locate both vertex and edge in constant
time [13], we first develop a naive but distributed parallel framework for K-Truss algorithm that
can be easily implemented in Chapel.
Peeling [7] is a simple but very efficient K-Truss subgraph generation method. It removes the

edges whose number of triangles is less than 𝐾 − 2 step by step, like peeling an onion. We propose
a naive version of this method in Alg.1.

Our naive algorithm can run on distributed memory clusters to take advantage of multiple com-
puting resources to handle huge graphs. At the same time, in each shared-memory multicore/SMP
node, the triangle counting and the checking for different edges on the current locale can also be
executed in parallel. The Chapel 𝑓 𝑜𝑟𝑎𝑙𝑙 parallel construct can implement implicit synchronization
among all the parallel threads so we do not need explicit synchronization operation between the
first 𝑓 𝑜𝑟𝑎𝑙𝑙 construct from lines 5 to 8 and the second 𝑓 𝑜𝑟𝑎𝑙𝑙 construct from lines 9 to 13.

The naive K-Truss algorithm shows how we can exploit parallelism and employ our novel triangle
search kernel in K-Truss analysis using Chapel.

2.4 Optimized K-Truss Parallel Algorithm
The naive K-Truss algorithm is simple and easy to implement. Under most scenarios, it cannot
achieve high performance even though it has an excellent parallel framework. The reason for low
performance is that it will recalculate the number of triangles in each iteration. The more iterations
it has, the more unnecessary triangle counting operations will be executed.

If an edge is deleted, all other edges that can form a triangle with such an edge will be affected.
The affected edges can be found from the deleted edges. The basic idea of the optimized method is
that we just update the number of triangles of affected edges instead of recalculating the number
of triangles of all edges.

Algorithm 2: Optimized K-Truss Parallel Algorithm
1 𝑂𝑝𝑡𝐾𝑇𝑟𝑢𝑠𝑠 (𝐺,𝑘)

/* 𝐺 = ⟨𝐸,𝑉 ⟩ is the input graph with edges set 𝐸 and vertices set 𝑉 . 𝑘 is the given K-Truss value. */

2 𝐸𝑑𝑔𝑒𝐷𝑒𝑙 [] = −1 // initialize all edges as undeleted
3 𝑠𝑢𝑝 [] = 0 // initialize the support array of each edge
4 𝑆𝑒𝑡𝐷𝑒𝑙 = 𝜙 ;𝑆𝑒𝑡𝐴𝑓 𝑓 = 𝜙

5 forall (𝑒𝑑𝑔𝑒 𝑒 ∈ 𝐸) && (𝑒 is local) do
6 𝑠𝑢𝑝 [𝑒] = 𝑠𝑢𝑝 (𝑒,𝐺) using minimum search method
7 end
8 forall (𝑒 ∈ 𝐸) && (𝑒 is local) do
9 if (𝐸𝑑𝑔𝑒𝐷𝑒𝑙 [𝑒] == −1) && (𝑠𝑢𝑝 [𝑒] < 𝑘 − 2) then
10 𝐸𝑑𝑔𝑒𝐷𝑒𝑙 [𝑒] = 1 − 𝑘
11 Add 𝑒 into 𝑆𝑒𝑡𝐷𝑒𝑙
12 end
13 end
14 while (𝑆𝑒𝑡𝐷𝑒𝑙 is not empty) do
15 forall (𝑒1 ∈ 𝑆𝑒𝑡𝐷𝑒𝑙) && (𝑒1 is local) do
16 using minimum search method to find 𝑒2 and 𝑒3 that can form a triangle with 𝑒1
17 reduce the support of 𝑒2 and 𝑒3 if they are undeleted edges
18 add the affected edges into 𝑆𝑒𝑡𝐴𝑓 𝑓 if their supports are less than 𝑘 − 2
19 end
20 forall (𝑒 ∈ 𝑆𝑒𝑡𝐷𝑒𝑙) && (𝑒 is local) do
21 if (𝐸𝑑𝑔𝑒𝐷𝑒𝑙 [𝑒] == 1 − 𝑘) then
22 𝐸𝑑𝑔𝑒𝐷𝑒𝑙 [𝑒] = 𝑘 − 1
23 end
24 end
25 𝑆𝑒𝑡𝐷𝑒𝑙 .𝑐𝑙𝑒𝑎𝑟 ()
26 𝑆𝑒𝑡𝐷𝑒𝑙 <=> 𝑆𝑒𝑡𝐴𝑓 𝑓 // switch the values of the two sets.
27 end
28 return 𝐸𝑑𝑔𝑒𝐷𝑒𝑙

The major optimization method of algorithm Alg. 2 is parallel searching affected edges to avoid
repeat triangle counting[1, 4, 10, 15, 21]. If edge 𝑒1 was deleted and 𝑒1, 𝑒2, and 𝑒3 can form a triangle,

4

Truss Analytics Algorithms and Integration in Arkouda CHIUW’2022, June 10, 2022, Virtual

then 𝑒2 and 𝑒3 are the affected edges of 𝑒1. Wewill reduce the number of triangles of unremoved edges
that will be affected by the removed edges. Two removed edges may affect the same unremoved
edge in the same triangle. So, our algorithm should avoid updating the same undeleted edge in
the same triangle twice. At the same time, one unremoved edge may be affected by two removed
edges in two different triangles. So, we use an atomic subtraction operation provided by Chapel to
reduce the support of the unremoved edge to avoid the write race. Chapel’s atomic array is very
convenient to support such operations.

After all affected edges have been updated, the unremoved edges whose support values are less
than 𝑘 − 2 will also be removed. All the newly removed edges will be used to parallel search new
affected edges until no affected edges can be found. This optimization can avoid repeat triangle
counting from scratch, so it can significantly reduce the total number of operations.
Alg. 2 includes two main procedures. The first procedure is the minimum search kernel based

triangle counting part, just like the naive method. The second part is the affected edges search
based support updating method. Two additional data structures are introduced in the optimized
algorithms. 𝑆𝑒𝑡𝐷𝑒𝑙 is the set of edges that were just removed. 𝑆𝑒𝑡𝐴𝑓 𝑓 is the set of edges that may be
deleted because we delete the edges in 𝑆𝑒𝑡𝐷𝑒𝑙 will affect and reduce their support values. Chapel’s
Set module can support set operations well.

The proposed minimum search kernel can be adopted in the optimized algorithm to search and
update the affected edges in a much smaller set, and no unnecessary operations will be executed.
At the same time, each deleted edge will be assigned a thread to search the affected edges, and all
the threads are executed in parallel.

2.5 Max K-Truss Parallel Algorithm
Based on the proposed optimized parallel K-Truss algorithm, we can design the algorithm to find
the maximum truss value of the given graph. We develop a 𝐷𝑜𝑤𝑛𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ method to locate the
maximum truss value quickly.
Based on the discussion in section 2.1, we can first get the upper bound 𝑘𝑢𝑝 of the maximum

K-Truss value. So we only need to check the maximum 𝑘 value in range [3..𝑘𝑢𝑝] that will not delete
all the edges in a graph. Then 𝑘 will be the maximum K-Truss value of the given graph. In Alg.3 we
give the description of our Max K-Truss parallel algorithm.
In line 2 we initialize the range of maximum K-Truss search value 𝑘𝑙𝑜𝑤 and 𝑘𝑢𝑝 . Based on

the feature of K-Truss search, we have the inequality 𝑘𝑙𝑜𝑤 − 1 ≤ 𝑀𝑎𝑥𝐾 ≤ 𝑘𝑢𝑝 . We call the
𝐷𝑜𝑤𝑛𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ procedure at line 3 to return the maximum 𝑘 value and the edge array 𝐸𝑑𝑔𝑒𝐷𝑒𝑙
that describes the remaining subgraph of a given graph.
In lines from 4 to 30, we implement the 𝐷𝑜𝑤𝑛𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ search function. After checking the

lower and upper bounds, we update the search bounds in lines from 15 to 28. If we find that the
𝑘𝑚𝑖𝑑 value is too large, we will continuously reduce the value of 𝑘𝑢𝑝 and 𝑘𝑚𝑖𝑑 until we find a 𝑘𝑚𝑖𝑑
value that will not delete all the edges. This is the downward search procedure. The particular
downward search procedure is different from the general binary search method.

Based on our optimized K-Truss parallel algorithm, the Truss Decomposition procedure is straight-
forward. We just need to increase the value of 𝑘 step-by-step until all edges have been removed. So
we ignore the detailed description here.

3 INTEGRATIONWITH ARKOUDA
Arkouda is an open-source framework that allows data scientists to take the next step in data
analytics from their own laptops by transferring the burden of high-performance computing to
a back-end server. Arkouda contains three major components: an interactive Python front-end,

5

CHIUW’2022, June 10, 2022, Virtual Du and Patchett, et al.

Algorithm 3:Max K-Truss Parallel Algorithm
1 𝑀𝑎𝑥𝐾𝑇𝑟𝑢𝑠𝑠 (𝐺)

/* 𝐺 = ⟨𝐸,𝑉 ⟩ is the input graph with edges set 𝐸 and vertices set 𝑉 . */

2 Let 𝑘𝑙𝑜𝑤 = 3 and set 𝑘𝑢𝑝 based on the proposed analysis method
3 return 𝐷𝑜𝑤𝑛𝑊𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ (𝐺,𝑘𝑙𝑜𝑤 , 𝑘𝑢𝑝)
4 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷𝑜𝑤𝑛𝑊𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ (𝐺,𝑘𝑙𝑜𝑤 , 𝑘𝑢𝑝)
5 𝐸𝑑𝑔𝑒𝐷𝑒𝑙 = 𝑘𝑇𝑟𝑢𝑠𝑠 (𝐺,𝑘𝑙𝑜𝑤)
6 if (All edges have been deleted) then
7 return (𝑘𝑙𝑜𝑤 − 1, 𝐸𝑑𝑔𝑒𝐷𝑒𝑙)
8 end
9 else
10 𝐸𝑑𝑔𝑒𝐷𝑒𝑙 = 𝑘𝑇𝑟𝑢𝑠𝑠 (𝐺,𝑘𝑢𝑝)
11 if (there are undeleted edges in 𝐸𝑑𝑔𝑒𝐷𝑒𝑙) then
12 return (𝑘𝑢𝑝 , 𝐸𝑑𝑔𝑒𝐷𝑒𝑙)
13 end
14 else
15 𝑘𝑚𝑖𝑑 = (𝑘𝑙𝑜𝑤 + 𝑘𝑢𝑝)/2
16 𝐸𝑑𝑔𝑒𝐷𝑒𝑙 = 𝑘𝑇𝑟𝑢𝑠𝑠 (𝐺,𝑘𝑚𝑖𝑑)
17 while (All edges have been deleted in 𝐸𝑑𝑔𝑒𝐷𝑒𝑙) do
18 𝑘𝑢𝑝 = 𝑘𝑚𝑖𝑑 − 1
19 𝑘𝑚𝑖𝑑 = (𝑘𝑙𝑜𝑤 + 𝑘𝑢𝑝)/2
20 𝐸𝑑𝑔𝑒𝐷𝑒𝑙 = 𝑘𝑇𝑟𝑢𝑠𝑠 (𝐺,𝑘𝑚𝑖𝑑)
21 end
22 if (𝑘𝑚𝑖𝑑 == 𝑘𝑢𝑝 − 1) then
23 return (𝑘𝑚𝑖𝑑 , 𝐸𝑑𝑔𝑒𝐷𝑒𝑙)
24 end
25 else
26 𝑘𝑙𝑜𝑤 = 𝑘𝑚𝑖𝑑 + 1
27 return 𝐷𝑜𝑤𝑛𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ (𝐺,𝑘𝑙𝑜𝑤 , 𝑘𝑢𝑝)
28 end
29 end
30 end

a ZeroMQ middleware, and a Chapel back-end. The front-end python mimics the workflow of a
Jupyter notebook and abstracts away the computations done on the back-end.

After implementing the kernel Chapel data structure and algorithm, we need to follow Arkouda’s
integration rule to make the new functionality work well to create an end-to-end response from
Chapel to Python.
We developed our calling method in Python as KTruss(graph, k) where to be called, the user

needs to pass a graph to the function as well as some integer 𝑘 . This 𝑘 can be either −1 (for Max
K-Truss) , −2 (for Truss Decomposition), or ≥ 3. This method is added into Arkouda’s front-end file
graph.py.
The developed Chapel functions are located in the TrussMsg.chpl file. This procedure accepts

the command’s name, a payload message, and a symbol table name where our data will be housed
from the Chapel back-end. The payload is parsed to extract the name of the Chapel graph class
that houses our graph data, and then using the name, we extract the data from the symbol table
and then work with it to run our algorithm. These are the integration steps for Arkouda.

4 EXPERIMENTS
4.1 Experimental Setup
Our datasets were chosen from a selection of publicly available synthetic and real-world datasets.
Real-world graphs have degree distributions that follow a power-law distribution, while sparse
synthetic graphs follow a normal distribution. The real-world graphs are downloaded from SNAP 1.
The synthetic graphs were Delaunay from the DIMACS10.

1Stanford Large Network Dataset Collection, https://snap.stanford.edu/data/

6

Truss Analytics Algorithms and Integration in Arkouda CHIUW’2022, June 10, 2022, Virtual

Experiments were performed on a 32-node high-performance server connected through Infini-
band FDR 56 Gbit/s loaded with 2 x Intel Xeon E5-2650 v3 @ 2.30GHz CPUs with ten cores per
CPU. It also has 512GB of DDR4 RAM per node. The utilized Chapel and Arkouda version used
during testing were 1.25.0 and 2022.3.15 respectively.

4.2 Performance Results
This part will provide three kinds of truss analysis algorithms’ results based on our minimum search
based triangle search kernel. We implemented three different versions to provide the comparison
results for the k-truss algorithm (we let k=4 in the experiments). Table 1 shows the experimental
results. Column "LI Naive K-Truss" is the execution time of the list intersection method based on
the naive k-truss algorithm framework. "MS Naive K-Truss" is the execution time of the minimum
search method based on the naive k-truss algorithm framework. "MS Opt K-Truss" results from a
minimum search method based on the optimized k-truss algorithm framework. It will search and
update the affected edges without recalculating the number of triangles from scratch. Based on
the results of the three experiments, we can see the advantage of the minimum search method
compared with the list intersection method. At the same time, we can further show the optimized
search based method compared with the naive method. "MS Max K-Truss" is the execution time
of the minimum search based max k-truss method. "MS Truss Decomposition" is the execution
time of the minimum search based truss decomposition method. We let the "LI Naive K-Truss" as
the baseline, "Speedup 1" is the performance improvement of our "MS Naive K-Truss" algorithm
compared with the baseline. "Speedup 2" is the performance improvement of our "MS Opt K-Truss"
algorithm compared with the baseline.
The experimental results in Table 1 show that the proposed minimum search based triangle

search method is better than the widely used list intersection method. The results from "Speedup
1" show that most graphs can achieve more than two times speedup. "Speedup 2" shows that most
graphs can achieve more than ten times speedup. Some can achieve more than one hundred times
speedup. Furthermore, based on our minimum search based kernel, the optimized affected edges
search method can also significantly improve the performance. All our k-truss algorithms are based
on the novel minimum search kernel, and the experimental results show that this kernel can help
to improve the performance compared with the widely used list intersection method.

Table 1. Execution time (seconds) of different k-truss algorithms and speedup compared with list
intersection method.

Graph LI Naive K-Truss MS Naive K-Truss MS Opt K-Truss MS Max K Truss MS Truss Decomposition Speedup 1 Speedup 2
amazon0601 1008.58 509.29 60.61 93.22 66.22 2.0 16.6

as-caida20071105 16.70 2.98 1.00 1.73 0.88 5.6 16.7
ca-AstroPh 113.28 56.11 9.64 11.16 5.17 2.0 11.7
ca-CondMat 23.52 11.58 2.11 2.58 2.21 2.0 11.2
ca-GrQc 2.49 1.24 0.29 0.35 0.36 2.0 8.6
ca-HepPh 29.33 14.69 3.07 3.22 3.45 2.0 9.6
ca-HepTh 3.88 1.93 0.50 0.61 0.61 2.0 7.7

com-Youtube 4885.27 302.37 55.72 71.89 61.94 16.2 87.7
delaunay_n10 2.04 1.05 0.08 0.09 0.08 1.9 25.5
delaunay_n11 5.50 2.81 0.16 0.18 0.16 2.0 34.2
delaunay_n12 14.00 7.15 0.32 0.36 0.31 2.0 44.3
delaunay_n13 36.69 18.74 0.62 0.70 0.61 2.0 58.9
delaunay_n14 98.61 50.46 1.23 1.46 1.22 2.0 79.9
delaunay_n15 266.96 136.52 2.49 2.93 2.45 2.0 107.3
delaunay_n16 735.75 378.16 4.91 5.83 4.87 1.9 149.8

7

CHIUW’2022, June 10, 2022, Virtual Du and Patchett, et al.

5 RELATEDWORK
GraphChallenge 2 is a vital effort combined by academics and industry to develop new solutions for
analyzing graphs and sparse data. K-Truss is one of the graph challenging algorithms. The seminal
paper about truss decomposition is that by Cohen[7], who introduced the concept of K-Truss,
motivating it as an effective community indicator.
In this paper, we borrow many fine-grained optimization methods on GPUs to develop our

algorithm, such as parallel triangles search for given edge. Green et al.[15] uses a new dynamic
graph formulation to achieve scalable performance on GPUs for both K-Truss and Max K-Truss
analysis. Almasri et al.[1] can use multiple GPUs to improve the binary search Max K-Truss
performance on large graphs. Blanco et al. [5] presents a linear-algebraic formulation of the K-Truss
graph algorithm and demonstrates the efficiency of their fine-grained parallel approach on both
CPU and GPU. Diab et al.[12] explores the design space of different optimizations on GPUs including
edge-centric[1, 10, 21, 26] and vertex-centric parallelization[3], directing edges by degree[4, 17],
tiling[17, 27], parallelizing intersections[4, 17], removing deleted edges intermediately[4, 5, 10], and
recomputing support values to achieve better performance for specific input graphs[1, 4, 10, 15, 21].
Date et al. [10, 21] takes advantage of the heterogeneous platform (CPU+GPU) to improve the
performance.

Besides on GPUs, there are a lot researches [20] [25][26] [18][11][8][23] [9] that try to optimize
the performance of K-Truss from different aspects. We develop a fast triangle search kernel to
optimize the performance by significantly reducing the total number of triangle search operations.
At the same time, our parallel method is implemented using high-level parallel language Chapel
and integrated into Arkouda to enable productive K-Truss analysis.

6 CONCLUSION
Productive K-Truss analysis is critical to exploit the value of large networks. K-Truss is a widely
employed community detection method for different applications. This paper develops a very fast
triangle search kernel to replace the existing list intersection method. Based on our fast triangle
search kernel, we develop highly optimized K-Truss analysis algorithms for different truss analyses.
Furthermore, our algorithms have been implemented in a productive high-level parallel language
Chapel. Our implementationmethod can employ parallel platforms to achieve high performance and
code development efficiency. Our code has been integrated with an open-source EDA framework
Arkouda. So the increasing number of developers familiar with Python in the EDA community can
easily use Python on their laptops to conduct large graph analysis productively. This work can
support more users to solve their real-world problems with high productivity without knowing the
low-level implementations.

ACKNOWLEDGMENTS
We appreciate the help from the Arkouda co-creators Michael Merrill and William Reus, as well as
Brad Chamberlain, Elliot Joseph Ronaghan, Engin Kayraklioglu, David Longnecker and the Chapel
community when we integrated the algorithms into Arkouda. This research was funded in part by
NSF grant number CCF-2109988.

REFERENCES
[1] Mohammad Almasri, Omer Anjum, Carl Pearson, Zaid Qureshi, Vikram S Mailthody, Rakesh Nagi, Jinjun Xiong, and

Wen-mei Hwu. 2019. Update on k-truss decomposition on GPU. In 2019 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 1–7.

[2] John T Behrens. 1997. Principles and procedures of exploratory data analysis. Psychological Methods 2, 2 (1997), 131.

2https://graphchallenge.mit.edu/challenges

8

Truss Analytics Algorithms and Integration in Arkouda CHIUW’2022, June 10, 2022, Virtual

[3] Mauro Bisson and Massimiliano Fatica. 2017. Static graph challenge on GPU. In 2017 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 1–8.

[4] Mauro Bisson and Massimiliano Fatica. 2018. Update on static graph challenge on GPU. In 2018 IEEE High Performance
extreme Computing Conference (HPEC). IEEE, 1–8.

[5] Mark Blanco, Tze Meng Low, and Kyungjoo Kim. 2019. Exploration of fine-grained parallelism for load balancing
eager k-truss on GPU and CPU. In 2019 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–7.

[6] Bradford L Chamberlain, David Callahan, and Hans P Zima. 2007. Parallel programmability and the chapel language.
The International Journal of High Performance Computing Applications 21, 3 (2007), 291–312.

[7] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis. National security agency technical
report 16, 3.1 (2008).

[8] Alessio Conte, Daniele De Sensi, Roberto Grossi, Andrea Marino, and Luca Versari. 2018. Discovering 𝑘-trusses in
large-scale networks. In 2018 IEEE High Performance extreme Computing Conference (HPEC). IEEE, 1–6.

[9] Alessio Conte, Daniele De Sensi, Roberto Grossi, Andrea Marino, and Luca Versari. 2020. Truly Scalable K-Truss and
Max-Truss Algorithms for Community Detection in Graphs. IEEE Access 8 (2020), 139096–139109.

[10] Ketan Date, Keven Feng, Rakesh Nagi, Jinjun Xiong, Nam Sung Kim, andWen-Mei Hwu. 2017. Collaborative (CPU+GPU)
algorithms for triangle counting and truss decomposition on the minsky architecture: Static graph challenge: Subgraph
isomorphism. In 2017 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–7.

[11] Timothy A Davis. 2018. Graph algorithms via SuiteSparse: GraphBLAS: triangle counting and k-truss. In 2018 IEEE
High Performance extreme Computing Conference (HPEC). IEEE, 1–6.

[12] Safaa Diab, Mhd Ghaith Olabi, and Izzat El Hajj. 2020. KTrussExplorer: Exploring the design space of k-truss
decomposition optimizations on GPUs. In 2020 IEEE High Performance Extreme Computing Conference (HPEC). IEEE,
1–8.

[13] Zhihui Du, Oliver Alvarado Rodriguez, Joseph Patchett, and David A Bader. 2021. Interactive Graph Stream Analytics
in Arkouda. Algorithms 14, 8 (2021), 221.

[14] Irving J Good. 1983. The philosophy of exploratory data analysis. Philosophy of science 50, 2 (1983), 283–295.
[15] Oded Green, James Fox, Euna Kim, Federico Busato, Nicola Bombieri, Kartik Lakhotia, Shijie Zhou, Shreyas Singapura,

Hanqing Zeng, Rajgopal Kannan, et al. 2017. Quickly finding a truss in a haystack. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 1–7.

[16] Oded Green, Pavan Yalamanchili, and Lluís-Miquel Munguía. 2014. Fast triangle counting on the GPU. In Proceedings
of the 4th Workshop on Irregular Applications: Architectures and Algorithms. 1–8.

[17] Yang Hu, Pradeep Kumar, Guy Swope, and H Howie Huang. 2017. Trix: Triangle counting at extreme scale. In 2017
IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–7.

[18] Sitao Huang, Mohamed El-Hadedy, Cong Hao, Qin Li, Vikram S Mailthody, Ketan Date, Jinjun Xiong, Deming Chen,
Rakesh Nagi, and Wen-mei Hwu. 2018. Triangle counting and truss decomposition using fpga. In 2018 IEEE High
Performance extreme Computing Conference (HPEC). IEEE, 1–7.

[19] Andrew T Jebb, Scott Parrigon, and Sang Eun Woo. 2017. Exploratory data analysis as a foundation of inductive
research. Human Resource Management Review 27, 2 (2017), 265–276.

[20] Humayun Kabir and Kamesh Madduri. 2017. Parallel k-truss decomposition on multicore systems. In 2017 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 1–7.

[21] Vikram S Mailthody, Ketan Date, Zaid Qureshi, Carl Pearson, Rakesh Nagi, Jinjun Xiong, and Wen-mei Hwu. 2018.
Collaborative (CPU+ GPU) algorithms for triangle counting and truss decomposition. In 2018 IEEE High Performance
extreme Computing Conference (HPEC). IEEE, 1–7.

[22] Michael Merrill, William Reus, and Timothy Neumann. 2019. Arkouda: interactive data exploration backed by Chapel.
In Proceedings of the ACM SIGPLAN 6th on Chapel Implementers and Users Workshop. 28–28.

[23] Roger Pearce and Geoffrey Sanders. 2018. K-truss decomposition for scale-free graphs at scale in distributed memory.
In 2018 IEEE High Performance extreme Computing Conference (HPEC). IEEE, 1–6.

[24] William Reus. 2020. CHIUW 2020 Keynote: Arkouda: Chapel-Powered, Interactive Supercomputing for Data Science.
In Chapel Implementers and Users Workshop, 2020 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 650–650.

[25] Shaden Smith, Xing Liu, Nesreen K Ahmed, Ancy Sarah Tom, Fabrizio Petrini, and George Karypis. 2017. Truss
decomposition on shared-memory parallel systems. In 2017 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 1–6.

[26] Chad Voegele, Yi-Shan Lu, Sreepathi Pai, and Keshav Pingali. 2017. Parallel triangle counting and k-truss identification
using graph-centric methods. In 2017 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–7.

[27] Abdurrahman Yaşar, Sivasankaran Rajamanickam, Jonathan Berry, Michael Wolf, Jeffrey S Young, and Ümit V
ÇatalyÜrek. 2019. Linear algebra-based triangle counting via fine-grained tasking on heterogeneous environ-
ments:(Update on static graph challenge). In 2019 IEEE High Performance Extreme Computing Conference (HPEC).

9

CHIUW’2022, June 10, 2022, Virtual Du and Patchett, et al.

IEEE, 1–4.

10

	Abstract
	1 Introduction
	2 Algorithm Design
	2.1 Notation, Analysis, and Data Structure
	2.2 Novel Triangle Searching Kernels
	2.3 Naive K-Truss Parallel Algorithm
	2.4 Optimized K-Truss Parallel Algorithm
	2.5 Max K-Truss Parallel Algorithm

	3 Integration with Arkouda
	4 Experiments
	4.1 Experimental Setup
	4.2 Performance Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

