
Parallel Suffix Sorting for Large String Analytics

Zhihui Du1, Sen Zhang2, and David A. Bader1

1 New Jersey Institute of Technology,Nework, New Jersey, US
{zhihui.du,bader}@njit.edu

2 State University of New York, College at Oneonta, New York, US
zhangs@oneonta.edu

Abstract. The suffix array is a fundamental data structure to support
string analysis efficiently. It took about 26 years for the sequential suffix
array construction algorithm to achieve O(n) time complexity and in-
place sorting. In this paper, we develop the DLPI (D Limited Parallel
Induce) algorithm, the first O(n

p
) time parallel suffix array construction

algorithm. The basic idea of DLPI includes two aspects: dividing the
O(n) size problem into p reduced sub-problems with size O(n

p
) so we

can handle them on p processors in parallel; developing an efficient par-
allel induce sorting method to achieve correct order for all the reduced
sub-problems. The complete algorithm description is given to show the
implementation method of the proposed idea. The time and space com-
plexity analysis and proof are also given to show the correctness and
efficiency of the proposed algorithm. The proposed DLPI algorithm can
handle large strings with scalable performance.

Keywords: Suffix Array · String Algorithm · Parallel Sorting · String
Analysis · Optimal Algorithm.

1 Introduction

Suffix arrays were initially introduced by Manber and Myers [21] as a space
efficient alternative to suffix trees [24, 3, 16]. Suffix arrays can be widely used
in string processing, data compression, text indexing, information retrieval and
computational biology. Since the volume of string data is increasing constantly,
high performance suffix array construction algorithms (SACAs) have been a
challenging problem.

Thirteen years after the suffix array was proposed, the first linear time al-
gorithm for suffix sorting over integer alphabets was achieved by three research
groups, Ko and Aluru [13, 14], Kärkkäinen and Sanders [10] and Kim et al.
[12] at almost the same time. They reduced the time complexity of suffix ar-
ray construction algorithms from original O(nlog(n)) to O(n). These sequential
algorithms are optimal in terms of asymptotic time complexity. Furthermore,
many lightweight algorithms [1, 23, 22, 9] with small working space were devel-
oped. Especially, Nong et al. [25] can achieve O(1) space complexity for constant
alphabets and Li et al. [20] can achieve O(1) in-place sorting for read-only inte-
ger alphabets. This also took about thirteen years to reduce the working space
complexity from O(n) to O(1).

2 Z. Du et al.

Besides the great advance in sequential SACAs, many parallel SACAs have
also been developed. For examples, Futamura et al. [5] gave a very early effort
to implement a parallel SACA based on the sequential prefix-doubling method.
Shun’s problem-based benchmark suite (PBBS) [30] leveraged the task-parallel
Cilk Plus programming model in its parallel multicore skew algorithm implemen-
tation. Osipov [27] and Deo and Keely [2] implemented the parallel Difference
Cover 3 [11] or skewed algorithm on GPU. Homann et al. [7] introduced the
mkESA tool on multithreaded CPUs that could parallelize the sequential in-
duce copy method. Lao et al. [18, 17] implemented their parallel recursive algo-
rithm on multicore computers. All the parallel methods can significantly improve
the practical performance compared with the corresponding sequential methods.
However, none of them can handle very large string on many (p) processors in
O(np) time.

To achieve scalable performance, we need a parallel SACA with O(np) time
complexity. The major contributions of this paper are as follows.

– A high level parallel suffix sorting framework is proposed. This framework
aims to divide a large string’s suffix sorting problem (T (n, p)) into many even
size reduced sub-problems (T (np , 1)) and the large problem can be solved
by handling the many reduced sub-problems on p processors in parallel, or
T (n, p) = T (np , 1).

– The first parallel suffix array construction algorithm DLPI with O(np) time
is presented. DLPI is optimal in terms of asymptotic time complexity.

2 Problem Description

We first give some basic definitions and notations to present the problem clearly.

Definition 1. Suffix Array: Given a string S = S[0..n−1] with n characters, the
string’s suffix array (SA) is an array of integers providing the indices of suffixes
of S in lexicographical order. This means that ∀i < j, we have suf(i′) < suf(j′),
where i′ = SA[i], j′ = SA[j] and suf(k) is the suffix S[k..n− 1].

Definition 2. Read-only integer alphabets: The alphabets Σ is a set of charac-
ters that can be used to build a string. Given a string S = S[0..n − 1] with n
characters, ∀S[i], 0 ≤ i < n, we have S[i] ∈ Σ, where |Σ| = O(n). At the same
time, the given string S cannot be changed during the procedure of building its
suffix array. Since different characters can be encoded as different integers. So,
we assume ∀S[i], we have S[i] ∈ {x|1 ≤ x ≤ |Σ|}.

In this paper, our problem is based on read-only integer alphabets instead of
constant alphabets, which have only constant characters, or integer alphabets,
whose input strings can be updated during the sorting procedure. The constant
or integer alphabets is a particular case of our problem.

The proposed problem is as follows. Given a very large string S built from
a read-only integer alphabets Σ with length n and a parallel random access
machine (PRAM) with p processors, can we have a parallel algorithm to build
the suffix array of S in O(np) time?

Parallel Suffix Sorting for Large String Analytics 3

3 Algorithm Design

Unlike the existing parallel SACAs, we do not try to find parallelism in the
framework of sequential SACAs. Instead, we first build a parallel framework
that aims to divide the whole problem into many reduced sub-problems. Then
we develop a parallel induce method to solve all the reduced sub-problems.

Definition 3. Order of Suffix Sets: Given two non-empty suffix sets Set1 and
Set2 of a string S, if ∀x ∈ Set1, ∀y ∈ Set2, their lexicographical order meets
x < y (or x > y), then we define Set1 < Set2 (or Set1 > Set2).

In this section, we propose an idea to sort the suffixes of a long string in two
steps. First, we construct many (p) suffix subsets to cover all the suffixes. The
suffix subsets are ordered, but suffixes in each suffix subset are not sorted. Then,
we sort each suffix subset in parallel into its own sub-suffix array and achieve the
complete suffix array by combining the different sub-suffix arrays corresponding
to different suffix subsets together.

Algorithm 1: DLPI Algorithm
1 Function DLPI(String, p)
2 Step (1) Build parallel reduced subproblems
3 1.1 Divide all suffixes of S into p suffix subsets

SubSet1, ..., SubSetp, ∀1 ≤ i ≤ p, |SubSeti| = O(n
p

)

4 1.2 Call Parallel Suffix SubSets Sorting function SA = PSSS(SubSet1, ..., SubSetp)

5 1.3 Evenly select (p − 1) splitters from each processor pi’s returned suffix array SA[i]
6 1.4 Add the (p − 1) × p splitters into each subset to get SpSubSeti, 1 ≤ i ≤ p
7 1.5 Call Parallel Suffix SubSets Sorting function SA = PSSS(SpSubSet1, ..., SpSubSetp)

8 1.6 According to the returned SA, divide all suffixes into p ordered subsets that meet
OSubSet1 < ... < OSubSetp

9 Step (2) Sort reduced subproblems in parallel
10 2.1 Call Parallel Suffix SubSets Sorting function SA = PSSS(OSubSet1, ..., OSubSetp)

11 2.2 return SA
12 end

3.1 Algorithm Framework

In Alg. 1, we present the framework of our parallel suffix array construction
algorithm DLPI (D Limited Parallel Induce). This framework transforms a
large T (n, p) problem, which means that the problem size is n and the parallel
random access machine has p processors, into many parallel T (np , 1) problems,
which means that the single problem size is n

p and it can be handled with one
processors.

In line 3 of Alg.1, for all the n suffixes of a given string S, we assign them
into p subsets evenly. The PSSS function will generate different sub-suffix arrays
corresponding to different subsets and we can select (p− 1) different splitters [6]
to divide each subset evenly (line 5). When we add the p× (p− 1) splitters into
the previous subsets (we will use a special array to mark the additional splitters
added to different subsets) and call PSSS again, we can take advantage of the
ordered p × (p − 1) splitters to organize all the suffixes into p ordered subsets,

4 Z. Du et al.

OSubSet1, ..., OSubSetp (lines 6-8). Here, all suffixes are assigned into p ordered
subsets with the same size O(np).

The second step is straightforward, and we just call PSSS again to generate
the order of suffixes in different subsets and then combine them together as the
complete suffix array SA (lines 10-11).

3.2 Parallel Induce Method

In Alg.2, we describe the essential function PSSS that can support parallel
induce on all reduced sub-problems. The basic idea of this function is that we
first construct p much smaller strings to express the different sub-problems. The
suffixes without long repeated prefixes can be sorted easily and the novel parallel
induce method is used to achieve the order of suffixes with long repeat prefixes.

Algorithm 2: Parallel Suffix SubSets Sorting Algorithm
1 Function PSSS(SubSet1, ..., SubSetp)
2 Step (1) Sort suffixes of each subsets and distinguish Fixed and Changeable suffixes
3 Build D limited shrunk strings DS_S1, ..., DS_Sp according to different subsets
4 forall (i in 1..p) do
5 ESA[i][] = SeqOptSA(DS_Si)
6 Remove all indices ESA[i][j] that are not in Seti and get SA[i][] corresponding to SubSeti
7 var mg=-1
8 for (j in 0..|SubSeti|-1) do
9 if (Suf(SA[i][j]) and its closest suffix in SA have the same D prefix) then

10 Flag[i][j]=Changeable
11 if (Suf(SA[i][j]) is the first Changeable suffix of a new group then
12 mg++
13 ChgGrp[i][mg].head=j
14 end
15 ChgGrp[i][mg].num++
16 end
17 else
18 Flag[i][j]=Fixed
19 end
20 end
21 end
22 Step (2) Induce the order of Changeable suffixes in each Changeable suffix group
23 2.1 Build aligned subsets AliSubSet1, ..., AliSubSetp for Changeable suffix groups
24 2.2 Generate the new suffix array AliSA of the suffixes just like the previous step (1)
25 2.3 Generate the distinguishable tail suffix array DTA for suffixes in the Changeable suffix groups
26 2.4 Induce the correct order of all Changeable suffixes in SA based on DTA and AliSA
27 return SA
28 end

We introduce the first step of PSSS function at first.

Definition 4. D limited substring and D limited shrunk string: Given a con-
stant D, a string S with length n and one of its suffix subset SubSet, if two
suffixes suf(i) ∈ SubSet and suf(j) ∈ SubSet, where i < j and no other suffix
sits between i and j in SubSet(we will let j = n if no such suf(j) in SubSet),
then the D limited substring of suf(i) is substring S[i..j − 1] if j − i ≤ D or
S[i..i+D−1] if j− i > D. The D limited shrunk string DS of S is the string by
concatenating all D limited substrings from SubSet together according to their
original order in S.

Building Reduced Strings The first step of this function is building p much
smaller D limited shrunk strings DS1, ..., DSp so each processor can handle one

Parallel Suffix Sorting for Large String Analytics 5

smaller string in parallel (line 3). We use D limited substrings to replace the
original suffixes.

We will call the existing optimal sequential SACA SeqOptSA [20] to generate
the extended suffix array for the given shrunk string. Since we do not need
to compare the suffixes not included in the given subset, we may remove the
indices of such suffixes in the extended suffix array and get the exact suffix array
SA (lines 5-6). It is a two-dimension array. The first dimension stands for the
number of processors and the second dimension stands for the maximum number
of suffixes assigned to different processors.

For the suffix whose order can be decided based on its D prefix, its rank
in the suffix array is correct. If there are two or more suffixes whose D pre-
fixes are exactly the same, their ranks in SA should be induced based on their
complete suffixes instead of their D limited substrings in the shrunk string. We
use a two-dimension array Flag to mark the correct rank as Fixed and the
rank to be induced as Changeable. At the same time, we use a two-dimension
array ChgGrp to manage the clustered Changeable suffixes by their D prefix.
ChgGrp[i][mg] keeps the current group of Changeable suffixes on processor i.
ChgGrp[i][mg].head is the rank of the first suffix in the corresponding suffix ar-
ray and ChgGrp[i][mg].num is the total number of suffixes in the current group
(lines from 7 to 20).

Based on the ChgGrp data structure, the induce sorting method is as fol-
lows. When we know the smallest suffix in the group mg, we just need to
switch the rank of the smallest suffix with that of the head suffix, advance
ChgGrp[i][mg].head by one, and reduce ChgGrp[i][mg].num by 1. If a suffix
can split the suffixes into two ordered subsets, we will put the suffix at the cor-
rect position in its SA and split its Changeable suffix group into two smaller
groups. In this way, we can induce one suffix at its correct position. When
ChgGrp[i][mg].num is one, all suffixes in the Changeable group are correctly
sorted. The suffixes in different groups can be induced in parallel.

The major work of the second step is inducing the correct ranks of Changeable
suffixes (line 22). The basic idea is building induce chain for all the Changeable
suffixes; then identifying the tail suffix that can distinguish the Changeable suffix
from other suffixes; inducing the order for each Changeable suffix based on the
tail suffixes. It includes four substeps and we will present the detailed descriptions
as follows.

Definition 5. Aligned suffix set: Given a Changeable suffix group CG and a non
negative integer k, the set {suf(x)|∀e ∈ CG, e = suf(y)∧x = y+D×k∧x < n}
is the k aligned suffix set of CG.

Building Aligned Suffix Sets In the first substep (line 23) we build p com-
pletely new suffix subsets AliSubSet1, ..., AliSubSetp that are used to induce
the correct order of all the Changeable suffixes. Suffixes in an aligned suffix set
will be assigned to the same processor so we can get their order based on each
processor’s suffix array.

6 Z. Du et al.

For all the Changeable suffix groups, we can generate all of their k aligned
suffix set. If |i− j|%D = 0, then ∀suf(i), suf(j) ∈ CG, they may have the same
suffixes in different k aligned suffix sets. We will merge two such overlapping k
aligned suffix sets as one big set (k > 0). Then we evenly distributed these sets
into p processors and form p suffix subsets AliSubSet1, ..., AliSubSetp.

Generating SA for Aligned Suffix Sets In the second substep, we may
employ the similar method as before (lines from 2 to 21) to generate the suffix
array of each aligned suffix subset. Here we use AliSA to express the new suffix
array corresponding to the aligned suffixes. AliF lag has the similar meaning as
before to mark the Fixed and Changeable suffixes.

Building the Distinguishable Tail Suffix Array In the third substep, we
will build an array DTA to store the suffixes that can be used to distinguish one
Changeable suffix from other suffixes in the same Changeable group.

Definition 6. Distinguishable Tail Suffix: For any Changeable suffix suf(x) in
a Changeable suffix group ChgGrp, its distinguishable tail suffix suf(DTA(x))
is the suffix that can distinguish the order of suf(x) from the other Changeable
suffixes according to suf(DTA(x))’s D limited substring.

We will transfer the index t of suffix suf(t) whose flag is Fixed to its left suffix
suf(t−D) and let DTA[t−D] = t if suf(t−D) exists and it is a Changeable
suffix. This procedure will continue to the head of the string along the induce
chain of suf(t). The challenge here is that we should do it in parallel. The basic
idea is as follows.

We first assign all suffixes (not including the additional splitters if there are
such suffixes) to different processors based on the indices of different suffixes
evenly and each processor only checks about n

p suffixes. For suffixes assigned to
the current processor i, we will cluster them into D classes based on their indies’
modulo D values. Each processor will scan every class from its end suffix to its
start suffix. The index of the Fixed suffix suf(f) will be passed to its left suffix
suf(f −D) one by one until the new Fixed suffix is met. Then the new Fixed
suffix will replace the old one and be passed to the left suffix. If one end suffix
suf(e) is Changeable, then we use a temporary array tmp[D][p] with (D × p)
elements to pass the value across processors. We let tmp[e%D][i − 1] = −1
and DTA[e] = −(i) that means that suf(e)’s DTA value DTA(e) is unknown
and it will get its value from tmp[e%D][i − 1]. All Changeable suffixes of the
current processor that cannot get its distinguishable tail suffix from its last
suffix will point to the same element tmp[e%D][i − 1]. After this, we will scan
the temporary array from end to start for different modulo values. For current
temporary element tmp[d][i] that is corresponding to the (i + 1) processor and
dth class, if suf(r) is first suffix of its right processor, r%D = d, and DTA[r] > 0,
we will let tmp[d][i] = DTA[r]. If not, we will let tmp[d][i] = tmp[d][i+ 1]. The
temporary array update will start from tmp[d][p − 2] and end with tmp[d][0]
(for all d in [0..D − 1]). Finally, each processor will check all of its suffixes that

Parallel Suffix Sorting for Large String Analytics 7

their DTA value is negative and update them with the corresponding temporary
value. In this way, we can pass the distinguishable tail suffix from the end to
start in parallel and quickly.

Inducing the Order of Changeable Suffixes In the fourth substep, we
have known the distinguishable tail suffix of each Changeable suffix. We can use
such information to induce the order of suffixes in each Changeable suffix group.
For each Changeable suffix group, first we will use its closest distinguishable
tail suffixes to distinguish the corresponding Changeable suffixes from others.
Then, we will induce the correct order of all Changeable suffixes based on their
distinguishable tail suffixes’ indices from small to large. The order of different
Changeable suffix groups can be induced in parallel.

4 Complexity Analysis

In this section, we adopt the widely used Parallel Random Access Machine
(PRAM) model [8] to analyze our parallel algorithm. The time complexity of
the proposed algorithm is O(np) and the space complexity is O(n). We will prove
that every step of our algorithm can be done in O(np) time and at most O(n)

working space (the space except the input string S and the returned suffix array)
is needed to generate the complete suffix array.

The DLPI function gives the framework of our algorithm. For substep 1.1 of
step 1, we can assign the suffixes of the given string S with length n into p parts
and each has about n

p elements using block or cyclic distribution in O(np) time.
The p D limited shrunk strings will need O(p×D× n

p) = O(D×n) = O(n) space.
For substep 1.2, we will give the time and space complexity of the parallel induce
function PSSS later. Selecting (p − 1) splitters for each processor based on its
returned suffix array and adding them into different subsets are straightforward
and can also be done in O(np) time. Here we assume p3 < n, when we add
p × (p − 1) elements to each subset, each subset will have O(np) + O(p × (p −
1)) ≤ O(np) + O(np) = O(np) elements. So, the total working space will also be
O(p× n

p) = O(n).
For substep 1.5, just like before, we will discuss the time complexity of PSSS

later. From substeps 1.3 to 1.6, we know that the total number of elements
between two closest splitters cannot be larger than O(n

p2). So, when we combine
p parts of elements divided by the same splitters together into one subset, its
size cannot be larger than O(np). At the same time, the elements of each subset
will be no larger than O(np). Based on this conclusion, it is feasible for us to
build p ordered subsets according to the p× (p− 1) splitters.

Hence, we can claim that DLPI function can generate the complete suffix
array of a given string S with length n in O(np) time on p processors using O(n)
space if the parallel induce function PSSS can return the suffix array for each
suffix subset in O(np) time on p processors using O(n) working space.

8 Z. Du et al.

Theorem 1. For a string S with length n, if its suffixes are assigned to p given
subsets with size O(np), then the corresponding D limited substrings of each subset
can be sorted in O(np) time on p processors with O(n) space.

Proof. We can build D limited shrunk strings based on given p suffix subsets of
the string S in parallel. The shrunk stings can be done by directly concatenating
all the D limited substrings corresponding to the suffixes in each subset directly.
This work will take O(np) time with O(n) space. Then, we may employ the
existing in-place sequential linear suffix array algorithm SeqOptSA to directly
return their corresponding extended suffix arrays in O(np) time. The extended
suffix arrays will contain more indices than each subset’s elements. So, we need
to remove the additional indices. This can also be done in at most O(np) time.
Totally, O(np) time and O(n) space will be needed to sort the D limited substrings
of suffixes in all the given subsets.

Lemma 1. All suffixes can be marked as Fixed or Changeable suffixes and clus-
tered into groups in O(np) time and O(n) space.

Proof. To mark all suffixes as Fixed or Changeable, a Flag[1..p][] array with
O(n) space will be needed. To store the Changeable group information, at most
O(n2) space for a Changeable suffix array ChgGrp[1..p][] will be needed because
the suffixes can be divided into at most (n2) groups. Based on the returned suffix
array, each processor can compare any suffix’s D prefix with its neighbor to check
if they are the same. The different D prefix means the suffix can be marked as
Fixed; otherwise, it will be marked as Changeable. The entire character com-
parison operations for any processor should be O(D × n

p) = O(np). It is similar
to clustering the Changeable suffixes based on their D prefixes and storing the
group information into ChgGrp. So, the marking and clustering operations can
be done in O(np) time and O(n) space.

Lemma 2. The aligned subsets AliSubSet1, ..., AliSubSetp that each is no more
than O(np) elements can be built in O(np) time and O(n) space.

Proof. The total number of aligned suffixes cannot be larger than O(n). Since
we evenly assign aligned suffix sets to different processors, the total number of
suffixes assigned to one processor cannot be larger than O(np). The total number
of suffixes in the Changeable suffix groups cannot be larger than O(n), and
the total number of suffixes in all aligned suffix sets cannot be larger than O(n)
either. So, for the first substep, totally at most O(n) space will be needed to store
all the suffixes. Generate at most O(np) suffixes AliSubSet1, ..., AliSubSetp for
each processor from the Changeable suffix groups is straightforward and it can
be done at most in O(np) time.

Corollary 1. The D limited substrings of subsets AliSubSet1, ..., AliSubSetp
can be sorted in O(np) time on p processors with O(n) space.

Proof. AliSubSet1, ..., AliSubSetp are p suffix subsets and each of them have at
most O(np) suffixes. Based on theorem 1, we can get the corollary and the third
substep can be done in O(np) time and O(n) space.

Parallel Suffix Sorting for Large String Analytics 9

Lemma 3. The distinguishable tail suffix array DTA can be generated in O(np)

time and O(n) space.

Proof. We can allocate the DTA array with size n to cover all suffixes. So, O(n)
space is enough. The basic idea of distinguishable tail suffix generation is passing
the closest Fixed suffix to the current Changeable suffix and storing the Fixed
suffix’s index in DTA. The short passing path will be easy to implement. In order
to reduce the passing time for a very long passing path, our implementation
method divides the long passing path into multiple parallel subpaths. The suffix
passing can be done on different subpaths in parallel. We allocate at most p
temporary memory space to transfer the index across different processors. Since
all the suffixes assigned to one processor cannot be larger than O(np), the first
scan procedure can be done in O(np) time for all the processors. Then we let one
processor pass the value in the temporary memory one by one from end to start.
So, at most O(p) time is needed. Finally, during the last scan, every processor
will assign the suffixes with the value of the temporary memory space if they
point to this memory space. The third substep will need at most O(np) time. So,
totally, O(np) time and O(n) space are needed to generate DTA.

Lemma 4. Inducing the order of all Changeable suffixes based on DTA and
AliSA can be done in O(np) time and O(n) space.

Proof. Generating the relative order of suffixes in each Changeable group based
on its DTA can be done in O(np) time because the length of each suffix to be
sorted will be less than D, and we have at most O(np) such suffixes for each
processor. It will need to scan all the corresponding distinguishable tail suffixes
to induce the order of Changeable suffixes. The total number of distinguishable
tail suffixes is the same as the total number of Changeable suffixes that is no
more than O(np) on each processor. So, the induce procedure also can be done
in O(np) time. The total space to keep the AliSA and the temporary string is
no more than O(n). So the fourth substep can also be done in O(np) time and
O(n) space.

Theorem 2. For a string S with length n, its suffix array can be generated in
O(np) time on p processors with O(n) space in parallel.

Proof. Based on the above theorem and the lemmas, every algorithm step can
be done in O(np) time and O(n) space. So, after we add them together, we will
get the conclusion.

5 Related work

There have been many works on the suffix array construction algorithm since
suffix array was invented in 1990 by Manber and Myers[21]. “Induce”, which
means that we can take advantage of the existing order of some suffixes to
induce the order of other suffixes, is an essential technique in suffix sorting.

10 Z. Du et al.

Although prefix-doubling [28] adopts the induce technique, it cannot reduce the
problem size step by step. This is why it cannot achieve O(n) time complexity.
The following works [13, 10, 12] recursively solves the problem by constructing a
reduced problem and employing the induce technique to sort the suffixes.

All existing parallel suffix array construction algorithms were trying to par-
allelize one or combined sequential algorithm. Futamura et al. [5] gave the early
effort to parallel the prefix-doubling method. Larsson et al. [19] implemented op-
timized methods based on the previous prefix-doubling technology and improved
its performance in parallel. Osipov et al. [27] implemented prefix-doubling algo-
rithm on GPUs. Flick and Aluru [4]’s parallel MPI-based implementation of
prefix-doubling method can achieve very high practical performance on human
genome datasets.

Kulla et al. [15] parallelized the sequential DC3 method, which regularly
samples the string to build a smaller 2

3n problem. Deo et al. [2] further implement
the DC3 method on GPUs. Shun [29]’s parallel skew (DC3) algorithm could
achieve good performance on shared-memory multicore computers. Wang et al.
[31] implemented a hybrid prefix-doubling and DC3 method on GPUs to improve
the existing GPU methods significantly.

Lao et al. [18, 17] employed pipeline technology to parallelize their previous
sequential linear algorithm [26, 25] on multicore computers.

The existing parallel suffix array construction algorithms can significantly
improve the practical performance compared with the corresponding sequen-
tial algorithms. However, they cannot achieve O(np) time complexity. The exist-
ing sequential algorithm framework is the major barrier to the existing parallel
methods of achieving scalable performance. We develop a parallel framework
and propose a parallel induce method to achieve O(np) time complexity.

6 Conclusion

The novel idea provided in this paper is that we propose the concept of D
limited substring to divide the complete problem with size n into p reduced
sub-problems with size O(np). String data are increasing significantly, and an
optimal parallel suffix array construction algorithm that can handle the problem
in O(np) is critical for us to handle large strings with scalable performance. The
critical technology is parallel induce. The suffixes with long repeat prefixes can
induce their order based on their distinguishable tail suffixes in parallel. We take
advantage of the existing optimal sequential suffix array construction algorithm
as an independent execution unit to generate the order of all D limited substrings
that can be used to separate suffixes with long repeat prefixes from those with
short unique prefixes.

The simplicity and the O(np) time complexity make the proposed DLPI

(D Limited Parallel Induce) algorithm very promising to handle huge strings
with scalable performance. DLPI is the first parallel suffix array construction
algorithm with O(np) time complexity. It is optimal in terms of asymptotic time

Parallel Suffix Sorting for Large String Analytics 11

complexity. We will focus on further reducing the total working space in the
future work.

7 Acknowledgement

This research was funded in part by NSF grant number CCF-2109988.

References

1. Burkhardt, S., Kärkkäinen, J.: Fast lightweight suffix array construction and
checking. In: Annual Symposium on Combinatorial Pattern Matching. pp. 55–69.
Springer (2003)

2. Deo, M., Keely, S.: Parallel suffix array and least common prefix for the GPU. In:
Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of
parallel programming. pp. 197–206 (2013)

3. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proceedings
38th Annual Symposium on Foundations of Computer Science. pp. 137–143. IEEE
(1997)

4. Flick, P., Aluru, S.: Parallel distributed memory construction of suffix and longest
common prefix arrays. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. pp. 1–10 (2015)

5. Futamura, N., Aluru, S., Kurtz, S.: Parallel suffix sorting (2001)
6. Helman, D.R., JáJá, J., Bader, D.A.: A new deterministic parallel sorting algorithm

with an experimental evaluation. Journal of Experimental Algorithmics (JEA) 3,
4–es (1998)

7. Homann, R., Fleer, D., Giegerich, R., Rehmsmeier, M.: mkESA: enhanced suffix
array construction tool. Bioinformatics 25(8), 1084–1085 (2009)

8. JéJé, J.: An introduction to parallel algorithms. Reading, MA: Addison-Wesley 10,
133889 (1992)

9. Kärkkäinen, J.: Fast BWT in small space by blockwise suffix sorting. Theoretical
Computer Science 387(3), 249–257 (2007)

10. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In: In-
ternational colloquium on automata, languages, and programming. pp. 943–955.
Springer (2003)

11. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
Journal of the ACM (JACM) 53(6), 918–936 (2006)

12. Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction of suffix arrays.
In: Annual Symposium on Combinatorial Pattern Matching. pp. 186–199. Springer
(2003)

13. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Annual
Symposium on Combinatorial Pattern Matching. pp. 200–210. Springer (2003)

14. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms 3(2-4), 143–156 (2005)

15. Kulla, F., Sanders, P.: Scalable parallel suffix array construction. Parallel Comput-
ing 33(9), 605–612 (2007)

16. Kurtz, S.: Reducing the space requirement of suffix trees. Software: Practice and
Experience 29(13), 1149–1171 (1999)

12 Z. Du et al.

17. Lao, B., Nong, G., Chan, W.H., Pan, Y.: Fast induced sorting suffixes on a multi-
core machine. The Journal of Supercomputing 74(7), 3468–3485 (2018)

18. Lao, B., Nong, G., Chan, W.H., Xie, J.Y.: Fast in-place suffix sorting on a multicore
computer. IEEE Transactions on Computers 67(12), 1737–1749 (2018)

19. Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theoretical Computer Science
387(3), 258–272 (2007)

20. Li, Z., Li, J., Huo, H.: Optimal in-place suffix sorting. In: International Symposium
on String Processing and Information Retrieval. pp. 268–284. Springer (2018)

21. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
siam Journal on Computing 22(5), 935–948 (1993)

22. Maniscalco, M.A., Puglisi, S.J.: Faster lightweight suffix array construction. In:
Proc. of International Workshop On Combinatorial Algorithms (IWOCA). pp. 16–
29. Citeseer (2006)

23. Manzini, G., Ferragina, P.: Engineering a lightweight suffix array construction al-
gorithm. Algorithmica 40(1), 33–50 (2004)

24. McCreight, E.M.: A space-economical suffix tree construction algorithm. Journal
of the ACM (JACM) 23(2), 262–272 (1976)

25. Nong, G.: Practical linear-time O(1)-workspace suffix sorting for constant alpha-
bets. ACM Transactions on Information Systems (TOIS) 31(3), 1–15 (2013)

26. Nong, G., Zhang, S., Chan, W.H.: Two efficient algorithms for linear time suffix
array construction. IEEE Transactions on Computers 60(10), 1471–1484 (2010)

27. Osipov, V.: Parallel suffix array construction for shared memory architectures.
In: International Symposium on String Processing and Information Retrieval. pp.
379–384. Springer (2012)

28. Puglisi, S.J., Smyth, W.F., Turpin, A.H.: A taxonomy of suffix array construction
algorithms. acm Computing Surveys (CSUR) 39(2), 4–es (2007)

29. Shun, J.: Fast parallel computation of longest common prefixes. In: SC’14: Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. pp. 387–398. IEEE (2014)

30. Shun, J., Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Kyrola, A., Simhadri, H.V.,
Tangwongsan, K.: Brief announcement: the problem based benchmark suite. In:
Proceedings of the twenty-fourth annual ACM symposium on Parallelism in algo-
rithms and architectures. pp. 68–70 (2012)

31. Wang, L., Baxter, S., Owens, J.D.: Fast parallel skew and prefix-doubling suf-
fix array construction on the GPU. Concurrency and Computation: Practice and
Experience 28(12), 3466–3484 (2016)

