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Abstract: This paper presents a study of perception and robust model-predictive control
(MPC) strategies in realistic traffic environments, which are simulated using data from real-
world driving experiments. In this paper, we consider a heterogeneous traffic environment, which
includes human-driven vehicles, and study the performance of currently available automation
in production vehicles. We then present a data-driven preceding vehicle’s velocity and position
prediction algorithm, and a robust MPC strategy that optimizes fuel consumption and takes
into account the prediction errors. Data used in this paper are taken from experiments using a
2018 Cadillac CT6 vehicle. Simulation results show up to 6.39% energy efficiency improvement.
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1. INTRODUCTION

According to the Intelligent Transportation System Joint
Program Office (ITS-JPO) of USA, safety, tuel efficiency,
mobility and emissions are some of the major issues of
the current transportation system. Vehicle automation and
connectivity is expected to address these issues, since they
are considered to be more efficient in catering these factors
than human-driven vehicles (HDVs). However, full (hun-
dred percent) market penetration of automated vehicles
(AVs) or connected and automated vehicles (CAVs) in
the transportation system cannot be expected in the near
future. Hence, these AVs and CAVs will share the road
with HDVs, whose intent and actions are harder to predict
and suboptimal with respect to some global objective.
Thus, it is important to focus on developing perception
and control strategies for AVs and CAVs that take into
account the presence of HDVs in the system. Moreover,
it is important to study the impact of these strategies in
real-world driving scenarios, and capabilities of the current
production vehicles.

According to a report in Metz et al. (2007) by the
United States Environmental Protection Agency, 29% of
the greenhouse gas emissions in the United States is con-
tributed by the transportation sector. According to the
ITS-JPO website, traffic congestion costs $87.2 billion to
the U.S. economy. The report in fue (2020) suggests 142
and 123 hillion gallons of gasoline was consumed in 2019
and 2020 in the US, respectively. Although introduction
of more electric and hybrid electric vehicles can alleviate
these issues, majority of the on-road vehicles are conven-
tional vehicles. Thus, it is important to focus on different
ways in which the fuel efficiency of a conventional vehicle
can be improved. The fuel efficiency of a vehicle depends on

several factors, such as engine characteristics, powertrain
architecture, vehicle aerodynamics, and road and weather
conditions. Apart from these, the fuel efficiency of a vehicle
has been shown to depend on the way a vehicle is driven
Van Mierlo et al. (2004); Zhou et al. (2016). Generally,
improved fuel economy is achieved when the acceleration
and braking of a vehicle are minimized. This has prompted
most control strategies to focus on driving the vehicle at
a constant cruising velocity Chang and Morlok (2005);
Hellstrom et al. (2010); Hooker (1988).

Numerous research Asadi and Vahidi (2011); Hellstrom
et al. (2010); Mahler and Vahidi (2014); Rakha and
Kamalanathsharma (2011) have aimed at improving the
fuel efficiency while considering a full market penetration
of AVs, which includes our previous works Canosa and
HomChaudhuri (2018); HomChaudhuri et al. (2016, 2015,
2017). The majority of these works focus on making the
vehicle move at a constant cruising velocity Chang and
Morlok (2005); Hellstrom et al. (2010), avoiding red light
idling and minimizing braking and acceleration for urban
traffic scenarios Asadi and Vahidi (2011); Mahler and
Vahidi (2014); Rakha and Kamalanathsharma (2011), and
explicitly utilizing an approximate fuel consumption model
in their cost function HomChaudhuri et al. (2016, 2015,
2017); Kamal et al. (2013); Rakha and Kamalanathsharma
(2011). Du and Pisu (2016); Du et al. (2018) focused
on developing velocity regulation methods at the traffic
infrastructure level to improve the tuel economy of CAVs,
while HomChaudhuri and Bhattacharyya (2022); Hiusler
et al. (2016) investigated motion planning methods to
improve fuel economy and ensure collision avoidance. Since
these works consider all the vehicles to be AVs or CAVs,
they can assume that the positions and velocities of the
vehicles surrounding the ego AV or CAV is tully available

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2022.11.253



634 Tinu Vellamartathil Baby et al. / IFAC PapersOnLine 55-37 (2022) 633-638

to it, which is not a valid assumption in the presence of
HDVs.

Many previous works have studied heterogencous traffic
environments, which included both HDVs and AVs or
CAVs. However, many of them, such as Cui et al. (2018);
Monteil and Russo (2019); Rios-Torres and Malikopoulos
(2018), have only studied the impact of the HDVs on the
fuel economy of the traffic network. The effect of partial
market penetration of CAVs for a merging scenario was
analvzed in Rios-Torres and Malikopoulos (2018). Rios-
Torres and Malikopoulos (2018) studied low, medium, and
heavy traffic conditions, and concluded that fuel consump-
tion in heterogenecous environments can be reduced only
for low traffic situations, despite the fuel optimal driving
pattern of the CAVs. Cui et al. (2018) showed that upto
6% improvement in fuel efficiency can be achieved when a
HDYV follows a CAV that is implementing eco control algo-
rithms. A manual to automated mode switching algorithm
for level 3 and level 4 autonomy was proposed in Monteil
and Russo (2019). Input to state stability analysis of a
platoon consisting of HDVs and CAVs was also studied
in Monteil and Russo (2019). A data driven adaptive
dynamic programming based approach was studied in Gao
et al. (2017), which focused on optimizing fuel usage of
an autonomous vehicle when it followed a human-driven
vehicle. Most of the literature that focus on partial pene-
tration of CAVs model the human drivers in the context of
car following. For example, Monteil and Russo (2019) used
a car tollowing model, where the acceleration profile was
modeled with a nonlinear function of distance from preced-
ing vehicle and their relative velocity. Gipps (1981); Rios-
Torres and Malikopoulos (2018) used Gipp’s car following
model to model human behaviour while Khodayari et al.
(2012) exploited neural networks to model car following
behaviour of human drivers.

Despite many previous works on energy efficient mohility
in the presence of V2V and V2I connectivity, a major por-
tion of those works assume all vehicles to be autonomous,
and ignore the presence of human-driven vehicles. Devel-
oping energy efficient strategies for the AVs or CAVs in
the presence of HDVs is challenging, because the HDVs
add significant uncertainty in the system. Moreover, the
actions of the HDVs can be highly suboptimal with respect
to the AV’s ohjective, such as energy efficiency improve-
ment, and that can significantly impact the AV strategies.
Hence, in this research, we aim to address these research
gaps by developing control methods and a HDV’s velocity
prediction method.

In this paper, we study automated driving behavior in pro-
duction vehicles (2018 Cadillac CT6), and make an effort
to develop perception and robust energy-efficient control
strategies for AVs operating in real-world environments.
We have developed a data-driven Neural Network (NN)-
based HDV velocity (and position) prediction method with
real-world driving data, and a robust model-predictive
control (MPC) strategy to optimize energy conswunption,
while ensuring robust collision avoidance. We compare
our strategy in a real-world environment involving 2018
Cadillac CT6 vehicle.

Predicting human driver’s velocity profile is a complex
task that depends on various internal and external driving

factors. Neural Networks (NN) have shown a promising
performance in learning highly nonlinear relations between
their input and output data. Hence, a NN-based approach
is employed in this paper to predict the preceding hu-
man driver’s velocity profile. Among the existing neural
network structures, Recurrent Neural Network (RNN) is
capable of capturing sequential information present in the
input data Yu et al. (2019) because of having recurrent
connections in its hidden layer that cnable storing the
temporal state of the network. Long Short-Term Memory
(LSTM) network, which is a variant of RNNs, performs
better than the traditional RNN networks in learning
temporal dependency of longer range sequences Yu et al.
(2019). LSTM uses a set of gates to control the memorizing
process. A common LSTM unit is composed of a cell, an
input gate, an output gate and a forget gate as schemati-
cally shown in Fig. 1. These gates allow the LSTM to keep
or forget information during training process, thus making
it possible to learn long sequences by keeping relevant in-
formation to make predictions and forgetting non-relevant
data. Therefore, an LSTM neural network is developed
here to predict velocity profile of the preceding human-
driven vehicle over a future horizon. The LSTM-based
velocity and hence position predictions are used by the
robust MPC solver that tightens the collision avoidance
constraints using the learning error.

The paper contributions can be listed as (i) development
of a LSTM-based velocity prediction algorithm using real-
world driving data, (ii) development of robust MPC-based
energy efficiency improvement strategy that takes into
account the prediction errors, and (ii) generation of real-
world simulation environments using experimental data
and comparing energy efficiency results with a current
production vehicle (2018 Cadillac CT6).

The paper is organized as follows, Section 2 details the
problem to be solved, while Section 3 discusses the pro-
posed approaches. The simulation results and the paper
conclusions are provided in Section 4 and 5, respectively.

2. PROBLEM DESCRIPTION

We first describe the system dynamics, followed by the
energy-efficient optimal control problem that the au-
tonomous vehicle needs to solve. The instantaneous power
generated at the engine helps the vehicle to move forward
after compensating for the losses due to friction and aero-
dynamic drag. The losses can be modeled as a second order
polynomial function of velocity with ABC coefficients as

Floss = A+ Bv + Cv? (1)
where A accounts for the tire rolling resistance, B factors
other speed dependent frictional losses, and C' accounts
for the aerodynamic drag. These parameters for the 2018
Cadillac CT6 (the test vehicle) with mass M = 2041.2 kg
are A = 208.31 N, B = 4.67 Ns/m and C' = 0.38 Ns?/m?
EPA (2022). Hence, the actual acceleration ‘a’ of the
vehicle can be modeled using the force of propulsion (Mu)
and the losses Fjyqe as

Mu= Ma + Floss
Mu = Ma+ (A+ Bv+ Cv?)

() = ¥47) = u(r) = J) - gprln) -5
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and the vehicle dynamics can be represented as in (3),
where s is the position and u is the control action.

() = v(r) 3)
o(T)| T~ u(r) — %1)2(7') — %1)(7’) — % *
Given the above system dynamics, the energy-efficient

optimal control problem is given by
E4T—1 .
(7)

min - ”;JET +wi (vr(7) — o(7))? (4a)
7=k

subject to s(7+1) = s(7) + Tsv(7) (4b)

(T + 1) =v(7) + Tsa(7) (4c)

a(t) =u(r) — ;'L‘Q(T) — %L(T) - jj\i[ (4d)

sH(r) = s(7) > dimin + av(7) (4e)

Umnin < U(T) < Ymaz, Umin < u(T) < Umaz (41)

where s!(7) is the position of the preceding vehicle (which
is unknown), 1 ¢ 1s the rate of fuel consumption, d,;,, s a
predefined safety distance, « is the headway time, and T
is the sampling time. The first term in the cost function
in (4a) tries to minimize the fuel consumption per unit
distance, i.e., maximize miles per gallon, and the second
term penalizes deviation from a desired target velocity v,
which is generally the road speed limit.

A major challenge in solving the above problem in (4)
is predicting the future positions s‘(7) of the preceding
vehicle over the time horizon T, so that collision avoidance
constraint in (4e) can be accurately enforced. Additionally,
an accurate estimate of the rate of fuel consumption 2, as
a function of velocity and acceleration, is needed to solve
the above problem.

3. APPROACH
3.1 Data-driven Prediction Method

Predicting the future velocity profile of a human-driven
vehicle is a complex problem, and depends on many
factors. It depends on factors such as the road’s speed
limits, traffic and environmental situations, and also the
driver’s driving pattern. Since the autonomous vehicle only
has the information of the previous position and velocity
measurements of the preceding vehicle, we predict the
future velocities (and hence positions) of the preceding
vehicle based on its previous velocities. For this, recurrent
neural networks, and more specifically LSTM networks,
seem to be an effective approach to learn the nonlinear
mapping between the past and future velocities. Hence,
an LSTM network is incorporated into our proposed
control structure to predict velocity (and position s!) of
the preceding wvehicle over each horizon. The input of
the developed LSTM network is the historical vehicle’s
velocity sequence, and its output is the wvehicle’s future
velocities over the prediction horizon, as shown in Fig. 1.
The length of the past and future horizons (Hp and Hp,
respectively) are considered to be 10 discrete time units.

3.2 Rate of fuel consumption model

To solve the optimal control problem in (4), we also need
to model the rate of fuel consumption of the ego vehi-
cle. In our experiments (data available at Liv (2022)),
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Fig. 1. Proposed LSTM-based velocity prediction model.

we collected data on the instantaneous rate of fuel con-
sumption(obtained from CAN signals) of the 2018 Cadillac
CT6 (test vehicle) at a 10 Hz frequency, and a model for
the rate of fuel consumption, my (cc/s), as a function of
velocity v and acceleration a, is obtained by fitting a 3™
degree polynomial on the on-road test data. The 3™ degree
polynomial equation for the rate of fuel consumption of
2018 Cadillac CT6 is given in (5) and the plot of fitted
data and the actual data points is given in Fig. 2. The
mean and standard deviation of the error (between the
experimental and the fitted rate of fuel consumption) are
—1.33 x 107 ce/s and 0.43 ce/s, respectively.

(v, a) = 0.5826 + 0.05113v — 0.08799a — 0.002110°
~+ 0.1565va + 0.02387a2 + 7.975 x 1077?
— 0.0010370v%a + 0.0465va® + 0.02267a*  (5)

o

Rate of fuel consumption (cc/s)
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Fig. 2. Plot of fitted fuel consumption. The red dots
represent experimental data points.

3.8 Robust Model Predictive Control

Since the data-driven prediction approach is subject to
prediction error, we reformulate the problem in (4) by
tightening the constraint (in (6e)) to make it robust to
the prediction errors. The reformulated problem is given
by Problem 1.

Problem 1.
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I (7)
min 3> 2 4 orr) o (60
7=k )
subject to s(r+1) = s(7) + Tsv(7) (6b)
v(T + 1) =v(7) + Tsa(7) (6¢)
C B A
a(t) =u(r) — H”L'Q(T) — ﬁt(r) 7 (6d)
ST) = s(7) = (dmin + BT+ 1 — k)epmsTs) + av(r)
(6¢)
Urnin = U(T) < Umazs UWUmin < U'(T) < Umax (61)

where the target velocity Vi is considered to be the road
speed limit (=~ 65 mph) and the rate of fuel consumption
in (5) is converted to fuel consumed per unit distance
by dividing it with the velocity of the vehicle. (6h), (6c)
and (6d) represent the vehicle dynamics as described in
(2) and (3) and T is the sampling time which is taken
to be 1 second. (6e) is the tightened constraint, which
helps to ensure the collision avoidance in the presence of
prediction errors. The position s’ of the preceding vehicle
is obtained from its predicted velocity as described in
section 3.1. We formulate the collision avoidance in a
robust fashion in which the safety distance grows linearly
over the MPC horizon, thus tightening the constraint. e,
here is the root-mean-square error of velocity prediction
and 3 is a safety factor with g € [0,1]. In this work, /3
is formulated as a constant or linearly decreasing tunction
over prediction horizon. With a decreasing 3, we enforce
robust collision avoidance in the near-future of the horizon
and relax it in the far-future. Solving the problem at every
time instant (as done in any MPC approach) alleviates
any safety issue due to such relaxation. The bounds on
the vehicle velocity and control action are shown in (6tf).

4. SIMULATION RESULTS

We used a segment of 5 minutes duration of the data on
real world operational scenario available on Liv (2022). In
this drive time, we observed multiple instances where a
vehicle from an adjacent lane cuts-in (such incidents will
be described as ‘cut-ins’), and it is observed that the test
vehicle decelerates a lot to accommodate the cutting-in
vehicles. This deteriorates the fuel efficiency of the test
vehicle. The test vehicle travelled a distance of 7409.72 m
and the fuel efficiency calculated using (5) is 30.19 mpg.
Fig. 3 shows the speed of test vehicle and the gap with its
preceding vehicle (when a vehicle cuts-in, that becomes
the preceding vehicle). Sudden drop in the gap in Fig. 3
represents vehicles cutting in.

First, we evaluate the data-driven velocity prediction al-
gorithm in Section 3.1. A collection of 11 trips chosen
from the Argonne’s driving cycles dataset (Liv (2022)) are
used for training the LSTM network. 20649 input/output
samples are derived from the driving cycles data with 70%
of them used for training the network, and the rest used for
the network’s validation. The developed neural network’s
structure includes a hidden layer with 100 LSTM blocks
or neurons, and a dense output layer that makes a 10
time units prediction. The Rectified Linear Unit (ReLU)
activation function is used for the LSTM blocks. The
network is trained for 300 epochs and a batch size of 128
is used.
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Fig. 3. Plot showing the actual velocity of the test vehicle
and distance from the preceding vehicle.

LSTM network’s velocity prediction for the preceding ve-
hicle is illustrated in the upper plot of Fig. 4. The average
of Root Mean Square Error (RMSE) of predictions over
all the horizons is 1.5 m/s. The cumulative distribution
function (CDF) plot of RMSE of predictions is also shown
(the lower plot of Fig. 4). The CDF plot shows that 90%
of velocity predictions over horizons of 10 seconds, have
an RMSE less than 2.86 m/s.
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Fig. 4. Velocity prediction for the preceding vehicle and
CDF of the prediction error (RMSE).

Using the predicted velocity of the preceding vehicle, we
solve Problem 1 in a robust MPC framework. The rate
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of fuel consumption as given in (5) is used in estimating
the cost. The positions of the preceding vehicle is adjusted
so that the gap remains the same as that for the on-road
test. In this way, we ensured that the test vehicle had a
similar experience during simulation as that with the on-
road scenario. The parameter w; prioritizes the time to
reach the destination over fuel efficiency. Higher the value
of w1, quicker the destination is reached, but at the cost of
fuel efficiency. The parameter 3 weighs between robustness
and optimality. Greater the value of /3, the system will be
more robust, but it too decreases the fuel efficiency. The
effects of w; and 8 on the fuel efficiency is depicted in
Table 1.

Fuel Distance | percent
parameters efficiency | travelled | change
wi, 3 (mpg) (m) in mpg
Actual - 30.19 7409.72 -
MPC with
perfect le — 3,0 32.06 7414.18 6.19
prediction
0.9e — 3,1 32.43 7250.15 7.42
0.95e — 3,1 32.12 7347.57 6.39
MPC le—3,1 31.75 7434.55 5.17
le —3,0.85 31.87 7438.01 5.56
le —3,0.7 31.97 7441.08 5.90
le —3,[0.7,0.3] 31.98 7443.79 5.96
Table 1.

For perfect prediction, the gap from the preceding vehicle
over the MPC horizon is taken to be the actual gap during
the on-road test and the fuel efficiency in this case with
w; = le — 3 is 32.06 mpg which is a 6.19% improvement
from that of the production vehicle. When the positions
of the preceding vehicle over the MPC horizon are derived
from the velocity profile predicted as discussed in section
3.1, the fuel efficiency of the test vehicle improves by
5.17% for parameter values w; = le — 3 and 5 = 1.
The improvement in fuel efficiency is further increased to
5.9% when robustness is sacrificed by reducing /3 to 0.7 as
shown in Table 1. The last row of Table 1 represents the
scenario where the parameter § is modeled as a linearly
decreasing function where 3 = 0.7 when 7 = k and 3 = 0.3
when 7 = k£ 4+ T — 1. The fuel efficiency in this scenario is
improved by 5.96%.
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Fig. 5. Plot showing the velocity of the test vehicle and
distance from the preceding vehicle obtained from
solving Problem 1 with wy; =1e —3, 5= 0.7.

The simulated velocity profile of test vehicle when w, =
le — 3 and 7 = 0.7 is shown in Fig. 5. The wvehicle

using a model predictive controller mostly cruises without
acceleration compared to the actual test scenario where
its velocity oscillates more. Also the variation in velocity
is smaller for simulated case compared to the actual case
in the events of cut-ins. These factors help the model
predictive controller to result in a better fuel efficiency
compared to that of the production vehicles.

5. CONCLUSION

In this paper, we use data collected tfrom real-world driving
experiments to evaluate the performance of a production
vehicle in relation to energy efficiency. The data shows that
the production vehicle is suboptimal in its driving profile,
especially in the events of cut-ins. We developed a LSTM-
based velocity prediction algorithm to predict the velocity
of preceding vehicle and incorporated it in a robust MPC
controller to improve the energy efficiency. Simulation
studies show that the proposed method is capable of
improving the energy efficiency of the production vehicle.
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