
BulletArm: An Open-Source Robotic Manipulation

Benchmark and Learning Framework

Dian Wang*, Colin Kohler*, Xupeng Zhu, Mingxi Jia, and Robert Platt

Khoury College of Computer Sciences

Northeastern University

Boston, MA 02115, USA

{wang.dian, kohler.c, zhu.xup, jia.ming,

r.platt}@northeastern.edu

Abstract. We present BulletArm, a novel benchmark and learning-environment

for robotic manipulation. BulletArm is designed around two key principles: re-

producibility and extensibility. We aim to encourage more direct comparisons

between robotic learning methods by providing a set of standardized benchmark

tasks in simulation alongside a collection of baseline algorithms. The framework

consists of 31 different manipulation tasks of varying difficulty, ranging from

simple reaching and picking tasks to more realistic tasks such as bin packing and

pallet stacking. In addition to the provided tasks, BulletArm has been built to fa-

cilitate easy expansion and provides a suite of tools to assist users when adding

new tasks to the framework. Moreover, we introduce a set of five benchmarks

and evaluate them using a series of state-of-the-art baseline algorithms. By in-

cluding these algorithms as part of our framework, we hope to encourage users

to benchmark their work on any new tasks against these baselines.
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1 Introduction

Inspired by the recent successes of deep learning in the field of computer vision, there

has been an explosion of work aimed at applying deep learning algorithms across a va-

riety of disciplines. Deep reinforcement learning, for example, has been used to learn

policies which achieve superhuman levels of performance across a variety of games

[36,30]. Robotics has seen a similar surge in recent years, especially in the area of

robotic manipulation with reinforcement learning [12,20,51], imitation learning [50],

and multi-task learning [10,14]. However, there is a key difference between current

robotics learning research and past work applying deep learning to other fields. There

currently is no widely accepted standard for comparing learning-based robotic manipu-

lation methods. In computer vision for example, the ImageNet benchmark [8] has been

a crucial factor in the explosion of image classification algorithms we have seen in the

recent past.

While there are benchmarks for policy learning in domains similar to robotic ma-

nipulation, such as the continuous control tasks in OpenAI Gym [4] and the DeepMind
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Control Suite [37], they are not applicable to more real-world tasks we are interested

in robotics. Furthermore, different robotics labs work with drastically different systems

in the real-world using different robots, sensors, etc. As a result, researchers often de-

velop their own training and evaluation environments, making it extremely difficult to

compare different approaches. For example, even simple tasks like block stacking can

have a lot of variability between different works [31,28,43], including different physics

simulators, different manipulators, different object sizes, etc.

In this work, we introduce BulletArm, a novel framework for robotic manipulation

learning based on two key components. First, we provide a flexible, open-source frame-

work that supports many different manipulation tasks. Compared with prior works, we

introduce tasks with various difficulties and require different manipulation skills. This

includes long-term planning tasks like supervising Covid tests and contact-rich tasks

requiring precise nudging or pushing behaviors. BulletArm currently consists of 31

unique tasks which the user can easily customize to mimic their real-world lab setups

(e.g., workspace size, robotic arm type, etc). In addition, BulletArm was developed

with a emphasis on extensability so new tasks can easily be created as needed. Second,

we include five different benchmarks alongside a collection of standardized baselines

for the user to quickly benchmark their work against. We include our implementations

of these baselines in the hopes of new users applying them to their customization of

existing tasks and whatever new tasks they create.

Our contribution can be summarized as three-fold. First, we propose BulletArm,

a benchmark and learning framework containing a set of 21 open-loop manipulation

tasks and 10 close-loop manipulation tasks. We have developed this framework over

the course of many prior works [43,3,45,3,44,42,54]. Second, we provide state-of-the-

art baseline algorithms enabling other researchers to easily compare their work against

our baselines once new tasks are inevitably added to the baseline. Third, BulletArm

provides a extensive suite of tools to allow users to easily create new tasks as needed.

Our code is available at https://github.com/ColinKohler/BulletArm.

2 Related Work

Reinforcement Learning Environments Standardized environments are vitally impor-

tant when comparing different reinforcement learning algorithms. Many prior works

have developed various video game environments, including PacMan [33], Super Mario

[39], Doom [21], and StarCraft [41]. OpenAI Gym [4] provides a standard API for the

communication between agents and environments, and a collection of various different

environments including Atari games from the Arcade Learning Environment (ALE) [2]

and some robotic tasks implemented using MuJoCo [38]. The DeepMind Control Suite

(DMC) [37] provides a similar set of continuous control tasks. Although both OpenAI

Gym and DMC have a small set of robotic environments, they are toy tasks which are

not representative of the real-world tasks we are interested in robotics.

Robotic Manipulation Environments In robotic manipulation, there are many bench-

marks for grasping in the context of supervised learning, e.g., the Cornell dataset [19],

the Jacquard dataset [9], and the GraspNet 1B dataset [11]. In the context of reinforce-

ment learning, on the other hand, the majority of prior frameworks focus on single
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tasks, for example, door opening [40], furniture assembly [27], and in-hand dexter-

ous manipulation [1]. Another strand of prior works propose frameworks containing a

variety of different environments, such as robosuite [55], PyRoboLearn [7], and Meta-

World [48], but are often limited to short horizon tasks. Ravens [50] introduces a set of

environments containing complex manipulation tasks but restricts the end-effector to a

suction cup gripper. RLBench [18] provides a similar learning framework to ours with

a number of key differences. First, RLBench is built around the PyRep [17] interface

and is therefor built on-top of V-REP [34]. Furthermore, RLBench is more restrictive

than BulletArm with limitations placed on the workspace scene, robot, and more.

Robotic Manipulation Control There are two commonly used end-effector control

schemes: open-loop control and close-loop control. In open-loop control, the agent se-

lects both the target pose of target pose of the end-effector and some action primitive

to execute at that pose. Open-loop control generally has shorter time horizon, allowing

the agent to solve complex tasks that require a long trajectory [52,51,43]. In close-loop

control, the agent sets the displacement of the end-effector This allows the agent to

more easily recover from failures which is vital when delaing with contact-rich tasks

[12,20,53,44]. BulletArm provides a collection of environments in both settings, allow-

ing the users to select either one based on their research interests.

3 Architecture

At the core of our learning framework is the PyBullet [6] simulator. PyBullet is a Python

library for robotics simulation and machine learning with a focus on sim-to-real transfer.

Built upon Bullet Physics SDK, PyBullet provides access to forward dynamics simu-

lation, inverse dynamics computation, forward and inverse kinematics, collision detec-

tion, and more. In addition to physics simulation, there are also numerous tools for

scene rendering and visualization. BulletArm builds upon PyBullet, providing a diverse

set of tools tailored to robotic manipulation simulations.

3.1 Design Philosophy

The design philosophy behind our framework focuses on four key principles:

1. Reproducibility: A key challenge when developing new learning algorithms is

the difficulty in comparing them to previous work. In robotics, this problem is espe-

cially prevalent as different researchers have drastically different robotic setups. This

can range from small differences, such as workspace size or degradation of objects, to

large differences such as the robot used to preform the experiments. Moving to sim-

ulation allows for the standardization of these factors but can impact the performance

of the trained algorithm in the real-world. We aim to encourage more direct compar-

isons between works by providing a flexible simulation environment and a number of

baselines to compare against.

2. Extensibility: Although we include a number of tasks, control types, and robots;

there will always be a need for additional development in these areas. Using our frame-

work, users can easily add new tasks, robots, and objects. We make the choice to not



4 Wang et al.

1 from bulletarm import env_factory

2

3 task_config = {’robot’: ’kuka’}

4 env = env_factory.createEnvs(1,

5 ’block_stacking’, task_config)

6 agent = Agent()

7 obs = env.reset()

8 while not done:

9 if expert:

10 action = env.getNextAction()

11 else:

12 action = agent.getAction(obs)

13 obs, reward, done = env.step(action)

14 env.close()

1 from bulletarm.base_env import BaseEnv

2 from bulletarm.constants import CUBE

3

4 class PyramidStackEnv(BaseEnv):

5 def __init__(self, config):

6 super().__init__(config)

7

8 def reset(self):

9 self.resetPybulletWorkspace()

10 self.cubes = self._generateShapes(CUBE, 3)

11 return self._getObservation()

12

13 def _checkTermination(self):

14 return self.areBlocksInPyramid(self.cubes)

Fig. 1. Example scripts using our framework. (Left) Creating and interacting with a environment

running the Block Stacking task. (Right) Creating a new block structure construction task by

subclassing the existing base domain.

restrict tasks, allowing users more freedom create interesting domains. Figure 1 shows

an example of creating a new task using our framework.

3. Performance: Deep learning methods are often time consuming, slow processes

and the addition of a physics simulator can lead to long training times. We have spent a

significant portion of time in ensuring that our framework will not bottleneck training by

optimizing the simulations and allowing the user to run many environments in parallel.

4. Usability: A good open-source framework should be easy to use and understand.

We provide extensive documentation detailing the key components of our framework

and a set of tutorials demonstrating both how to use the environments and how to extend

them.

3.2 Environment

Our simulation setup (Figure 4) consists of a robot arm mounted on the floor of the

simulation environment, a workspace in front of the robot where objects are generated,

and a sensor. Typically, we use top-down sensors which generate heightmaps of the

workspace. As we restrict the perception data to only the defined workspace, we choose

to not add unnecessary elements to the setup such as a table for the arm to sit upon.

Currently there are four different robot arms available in BulletArm (Figure 3): KUKA

IIWA, Frane Emika Panda, Universal Robots UR5 with either a simple parallel jaw

gripper or the Robotiq 2F-85 gripper.

Environment, Configuration, and Episode are three key terms within our frame-

work. An environment is an instance of the PyBullet simulator in which the robot inter-

acts with objects while trying to solve some task. This includes the initial environment

state, the reward function, and termination requirements. A configuration contains ad-

ditional specifications for the task such as the robotic arm, the size of the workspace,

the physics mode, etc (see Appendix B for an full list of parameters). Episodes are

generated by taking actions (steps) within an environment until the episode ends. An

episode trajectory τ contains a series of observations o, actions a, and rewards r:

τ = [(o0, a0, r0), ..., (oT , aT , rT )].
Users interface with the learning environment through the EnvironmentFactory and

EnvironmentRunner classes. The EnvironmentFactory is the entry point and creates the
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Fig. 2. The Deconstruction planner. Left to right: a deconstruction episode where the expert de-

constructs the block structure in the left-most figure. Right to left: a construction episode is gen-

erated by reversing the deconstruction episode. This is inspired by [49] where the authors propose

a method to learn kit assembly through disassembly by reversing disassembly transitions.

Environment class specified by the Configuration passed as input. The Environment-

Factory can create either a single environment or multiple environmaents meant to be

run in parallel. In either case, an EnvironmentRunner instance is returned and provides

the API which interacts with the environments. This API, Figure 1, is modelled after

the typical agent-environment RL setup popularized by OpenAI Gym [4].

The benchmark tasks we provide have a sparse reward function which returns +1
on successful task completion and 0 otherwise. While we find this reward function to be

advantageous as it avoids problems due to reward shaping, we do not require that new

tasks conform to this. When defining a new task, the reward function defaults to sparse

but users can easily define their custom reward for a new task. We separate our tasks into

two categories based on the action spaces: open-loop control and closed-loop control.

These two control modes are commonly used in robotics manipulation research.

3.3 Expert Demonstrations

Expert demonstrations are crucial to many robotic learning fields. Methods such as

imitation and model-based learning, for example, learn directly from expert demonstra-

tions. Additionally, we find that in the context of reinforcement learning, it is vital to

seed learning with expert demonstrations due to the difficulties in exploring large state-

action spaces. We provide two types of planners to facilitate expert data generation: the

Waypoint Planner and the Deconstruction Planner.

The Waypoint Planner is a online planning method which moves the end-effector

through a series of waypoints in the workspace. We define a waypoint as wt = (pt, at)
where pt is the desired pose of the end effector and at is the action primitive to exe-

cute at that pose. These waypoints can either be absolute positions in the workspace

or positions relative to the objects in the workspace. In open-loop control, the planner

returns the waypoint wt as the action executed at time t. In close-loop control, the plan-

ner will continuously return a small displacement from the current end-effector pose as

the action at time t. This process is repeated until the waypoint has been reached. The

Deconstruction Planner is a more limited planning method which can only be applied

to pick-and-place tasks where the goal is to arrange objects in a specific manner. For ex-

ample, we utilize this planner for the various block construction tasks examined in this

work (Figure 2). When using this planner, the workspace is initialized with the objects
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(a) Kuka (b) Panda (c) UR5 Parallel (d) UR5 Robotiq

Fig. 3. Our work currently supports four different arms: Kuka, Panda, UR5 with parallel jaw

gripper, and UR5 with Robotiq gripper.

Fig. 4. The environment containing a

robot arm, a camera, and a workspace

(a) (b)

Fig. 5. (a) The manipulation scene. (b) The state includ-

ing a top-down heightmap I , an in-hand image H and the

gripper state g.

in their target configuration and objects are then removed one-by-one until the initial

state of the task is reached. This deconstruction trajectory, is then reversed to produce

an expert construction trajectory, τexpert = reverse(τdeconstruct).

4 Environments

The core of any good benchmark is its set of environments. In robotic manipulation,

in particular, it is important to cover a broad range of task difficulty and diversity. To

this end, we introduce tasks covering a variety of skills for both open-loop and close-

loop control. Moreover, the configurable parameters of our environments enable the

user to select different task variations (e.g., the user can select whether the objects

in the workspace will be initialized with a random orientation). BulletArm currently

provides a collection of 21 open-loop manipulation environments and a collection of 10

close-loop environments. These environments are limited to kinematic tasks where the

robot has to directly manipulate a collection of objects in order to reach some desired

configuration.

4.1 Open-Loop Environments

In the open-loop environments, the agent controls the target pose of the end-effector,

resulting in a shorter time horizon for complex tasks. The open-loop environment is
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Benchmark Environments Action Space

Open-Loop 2D Benchmark open-loop environments with fixed orientation Ag ×Axy

Open-Loop 3D Benchmark open-loop environments with random orientation Ag ×Axyθ

Open-Loop 6D Benchmark open-loop environments 6DoF extensions Ag ×ASE(3)

Close-Loop 3D Benchmark close-loop environments with fixed orientation Aλ ×A
xyz
δ

Close-Loop 4D Benchmark close-loop environments with random orientation Aλ ×A
xyzθ
δ

Table 1. The five benchmarks in our work include three open-loop benchmarks and two close-

loop benchmarks. ‘fixed orientation’ and ‘random orientation’ indicate whether the objects in the

environments will be initialized with a fixed orientation or random orientation.
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Number of Objects 4 4 3 4 6 3 4 8 6 18 6 15

Optimal Number of Steps 6 6 4 6 10 4 6 16 12 36 18 1

Max Number of Steps 10 10 10 10 20 10 10 20 20 40 30 1

Table 2. The number of objects, optimal number of steps per episode, and max number of steps

per episode in our Open-Loop 3D benchmark experiments

top-down orientation θ of the gripper. Figure 9 shows the 10 close-loop environments.

We provide a default sparse reward function for all environments. See Appendix A.2

for a detailed description of the tasks.

5 Benchmark

BulletArm provides a set of 5 benchmarks covering the various environments and action

spaces (Table 1). In this section, we detail the Open-Loop 3D Benchmark and the Close-

Loop 4D Benchmark. See Appendix D for the other three benchmarks.

5.1 Open-Loop 3D Benchmark

In the Open-Loop 3D Benchmark, the agent needs to solve the open-loop tasks shown

in Figure 6 using the Ag × Axyθ action space (see Section 4.1). We provide a set of

baseline algorithms that explicitly control (x, y, θ) ∈ Axyθ and select the gripper mo-

tion using the following heuristic: a PICK action will be executed if g = EMPTY and
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Fig. 10. The Open-Loop 3D Benchmark results. The plots show the evaluation performance of

the greedy policy in terms of the task success rate. The evaluation is performed every 500 training

steps. Results are averaged over four runs. Shading denotes standard error.

a PLACE action will be executed if g = HOLDING. The baselines include: (1) DQN

[30], (2) ADET [24], (3) DQfD [15], and (4) SDQfD [43]. The network architectures

for these different methods can be used interchangeably. We provide the following net-

work architectures:

1. CNN ASR [43]: A two-hierarchy architecture that selects (x, y) and θ sequentially.

2. Equivariant ASR (Equi ASR) [45]: Similar to ASR, but instead of using conven-

tional CNNs, equivariant steerable CNNs [5,46] are used to capture the rotation

symmetry of the tasks.

3. FCN: a Fully Convolutional Network (FCN) [29] which outputs a n channel action-

value map for each discrete rotation.

4. Equivariant FCN [45]: Similar to FCN, but instead of using conventional CNNs,

equivariant steerable CNNs are used.

5. Rot FCN [52,51]: A FCN with 1-channel input and output, the rotation is encoded

by rotating the input and output for each θ.

In this section, we show the performance of SDQfD (which is shown to be better

than DQN, ADET, and DQfD [43]. See the performance of DQN, ADET and DQfD in

Appendix E) equipped with CNN ASR, Equi ASR, FCN, and Rot FCN. We evaluate

SDQfD in the 12 environments shown in Figure 6. Table 2 shows the number of objects,

the optimal number of steps per episode, and the max number of steps per episode in the
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Number of Objects 1 1 1 2 2 2 2 1 1 5

Optimal Number of Steps 3 7 7 7 11 12 12 14 9 7

Max Number of Steps 50 50 50 50 50 50 50 50 50 50

Table 3. The number of objects, optimal number of steps per episode, and max number of steps

per episode in our Close-Loop 4D Benchmark experiments.

open-loop benchmark experiments. Before the start of training, 200 (500 for Covid Test)

episodes of expert data are populated in the replay buffer. Figure 10 shows the results.

Equivariant ASR (blue) has the best performance across all environments, then Rot

FCN (green) and CNN ASR (red), and finally FCN (purple). Notice that Equivariant

ASR is the only method that is capable of solving the most challenging tasks (e.g.,

Improvise House Building 3 and Covid Test).

5.2 Close-Loop 4D Benchmark

The Close-Loop 4D Benchmark requires the agent to solve the close-loop tasks shown

in Figure 9 in the 5-dimensional action space of (λ, x, y, z, θ) ∈ Aλ × A
xyzθ
δ ⊂ R

5,

where the agent controls the positional displacement of the gripper (x, y, z), the ro-

tational displacement of the gripper along the z axis (θ), and the open width of the

gripper (λ). We provide the following baseline algorithms: (1) SAC [13], (2) Equivari-

ant SAC [44], (3) RAD [25] SAC: SAC with data augmentation, (4) DrQ [23] SAC:

Similar to (3), but performs data augmentation when calculating the Q-target and the

loss, and (5) FERM [53]: A Combination of SAC and contrastive learning [26] using

data augmentation. Additionally, we also provide a variation of SAC, SACfD [44], that

applies an auxiliary L2 loss towards the expert action to the actor network. SACfD can

also be used in combination with (2), (3), and (4) to form Equivariant SACfD, RAD

SACfD, DrQ SACfD, and FERM SACfD.

In this section, we show the performance of SACfD, Equivariant SACfD (Equi

SACfD), Equivariant SACfD using Prioritized Experience Replay (PER [35]) and data

augmentation (Equi SACfD + PER + Aug), and FERM SACfD. (See Appendix F for

the performance of RAD SACfD and DrQ SACfD.) We use a continuous action space

where x, y, z ∈ [−0.05m, 0.05m], θ ∈ [−π
4 ,

π
4 ], λ ∈ [0, 1]. We evaluate the various

methods in the 10 environments shown in Figure 9. Table 3 shows the number of ob-

jects, the optimal number of steps for solving each task, and the maximal number of

steps for each episode. In all tasks, we pre-load 100 episodes of expert demonstrations

in the replay buffer.

Figure 11 shows the performance of the baselines. Equivariant SACfD with PER

and data augmentation (blue) has the best overall performance followed by standard
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Fig. 11. The Close-Loop 4D benchmark results. The plots show the evaluation performance of the

greedy policy in terms of the task success rate. The evaluation is performed every 500 training

steps. Results are averaged over four runs. Shading denotes standard error.

Equivariant SACfD (red). The equivariant algorithms show a significant improvement

when compared to the other algorithms which do not encode rotation symmetry, i.e.

CNN SACfD and FERM SACfD.

6 Conclusions

In this paper, we present BulletArm, a novel benchmark and learning environment

aimed at robotic manipulation. By providing a number of manipulation tasks along-

side our baseline algorithms, we hope to encourage more direct comparisons between

new methods. This type of standardization through direct comparison has been a key

aspect of improving research in deep learning methods for both computer vision and

reinforcement learning. We aim to maintain and improve this framework for the fore-

seeable future adding new features, tasks, and baseline algorithms over time. An area of

particular interest for us is to extend the existing suite of tasks to include more dynamic

environments where the robot is tasked with utilizing tools to accomplish various tasks.

We hope that with the aid of the community, this repository will grow over time to con-

tain both a large number of interesting tasks and state-of-the-art baseline algorithms.



14 Wang et al.

Acknowledgments

This work is supported in part by NSF 1724257, NSF 1724191, NSF 1763878, NSF

1750649, and NASA 80NSSC19K1474.

References

1. O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,

A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.

The International Journal of Robotics Research, 39(1):3–20, 2020.

2. M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environ-

ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,

47:253–279, 2013.

3. O. Biza, D. Wang, R. Platt, J.-W. van de Meent, and L. L. Wong. Action priors for large action

spaces in robotics. In Proceedings of the 20th International Conference on Autonomous

Agents and MultiAgent Systems, pages 205–213, 2021.

4. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.

Openai gym. arXiv preprint arXiv:1606.01540, 2016.

5. T. S. Cohen and M. Welling. Steerable cnns. arXiv preprint arXiv:1612.08498, 2016.

6. E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics

and machine learning. GitHub repository, 2016.

7. B. Delhaisse, L. D. Rozo, and D. G. Caldwell. Pyrobolearn: A python framework for robot

learning practitioners. In CoRL, 2019.

8. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierar-

chical image database. In 2009 IEEE conference on computer vision and pattern recognition,

pages 248–255. Ieee, 2009.
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A Detail Description of Environments

A.1 Open-Loop Environments

Block Stacking In the Block Stacking environment (Figure 6a), there are N cubic

blocks with a size of 3cm × 3cm × 3cm. The blocks are randomly initialized in the

workspace. The goal of this task is to stack all blocks in a stack. An optimal policy

requires 2(N − 1) steps to finish this task. The number of blocks N is configurable. By

default, N = 4, and the maximal number of steps per episode is 10.

House Building 1 In the House Building 1 environment (Figure 6b), there are N − 1
cubic blocks with a size of 3cm× 3cm× 3cm and one triangle block with a bounding

box size of around 3cm × 3cm × 3cm. The blocks are randomly initialized in the

workspace. The goal of this task is to first form a stack using the N − 1 cubic blocks,

then place the triangle block on top of the stack. An optimal policy requires 2(N − 1)
steps to finish this task. The number of blocks N is configurable. By default, N = 4,

and the maximal number of steps per episode is 10.

House Building 2 In the House Building 2 environment (Figure 6c), there are two cubic

blocks with a size of 3cm× 3cm× 3cm, and a roof block with a bounding box size of

around 12cm× 3cm× 3cm. The blocks are randomly initialized in the workspace. The

goal of this task is to place the two cubic blocks next to each other, then place the roof

block on top of the two cubic blocks. An optimal policy requires 4 steps to finish this

task. The default maximal number of steps per episode is 10.

House Building 3 In the House Building 3 environment (Figure 6d), there are two

cubic blocks with a size of 3cm× 3cm× 3cm, one cuboid block with a size of 12cm×

3cm× 3cm, and a roof block with a bounding box size of around 12cm× 3cm× 3cm.

The blocks are randomly initialized in the workspace. The goal of this task is to first

place the two cubic blocks next to each other, place the cuboid block on top of the two

cubic blocks, then place the roof block on top of the cuboid block. An optimal policy

requires 6 steps to finish this task. The default maximal number of steps per episode is

10.

House Building 4 In the House Building 4 environment (Figure 6e), there are four

cubic blocks with a size of 3cm× 3cm× 3cm, one cuboid block with a size of 12cm×

3cm× 3cm, and a roof block with a bounding box size of around 12cm× 3cm× 3cm.

The blocks are randomly initialized in the workspace. The goal of this task is to first

place two cubic blocks next to each other, place the cuboid block on top of the two

cubic blocks, place another two cubic blocks on top of the cuboid block, then place the

roof block on top of the two cubic blocks. An optimal policy requires 10 steps to finish

this task. The default maximal number of steps per episode is 20.
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Fig. 16. The object set in the Object Grasping environment.

A.2 Close-Loop Environments

Block Reaching In the Block Reaching environment (Figure 9a), there is a cubic block

with a size of 5cm× 5cm× 5cm. The block is randomly initialized in the workspace.

The goal of this task is to move the gripper towards the block such that the distance of

the fingertip and the block is within 3cm. By default, the maximal number of steps per

episode is 50.

Block Picking In the Block Picking environment (Figure 9b), there is a cubic block

with a size of 5cm× 5cm× 5cm. The block is randomly initialized in the workspace.

The goal of this task is to grasp the block and raise the gripper such that the gripper is

15cm above the ground. By default, the maximal number of steps per episode is 50.

Block Pushing In the Block Pushing environment (Figure 9c), there is a cubic block

with a size of 5cm× 5cm× 5cm and a goal area with a size of 9cm× 9cm. The block

and the goal area are randomly initialized in the workspace. The goal of this task is to

push the block such that the distance between the block’s center and the goal’s center is

within 5cm. By default, the maximal number of steps per episode is 50.

Block Pulling In the Block Pulling environment (Figure 9d), there are two cuboid

blocks with a size of 8cm × 8cm × 5cm. The blocks are randomly initialized in the

workspace. The goal of this task is to pull one of the two blocks such that it makes

contact with another block. By default, the maximal number of steps per episode is 50.

Block in Bowl In the Block in Bowl environment (Figure 9e), there is a cubic block

with a size of 5cm × 5cm × 5cm, and a Bowl with a bounding box size of 16cm ×
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16cm × 7cm. The block and the bowl are randomly initialized in the workspace. The

goal of this task is to pick up the block and place it inside the bowl. By default, the

maximal number of steps per episode is 50.

Block Stacking In the Block Stacking environment (Figure 9f), there are N cubic

blocks with a size of 5cm × 5cm × 5cm. The blocks are randomly initialized in the

workspace. The goal of this task is to form a stack using the N blocks. By default,

N = 2, the maximum number of steps per episode is 50.

House Building In the House Building environment (Figure 9g), there areN−1 cubic

blocks with a size of 5cm × 5cm × 5cm and one triangle with a bounding box size of

5cm× 5cm× 5cm. The blocks are randomly initialized in the workspace. The goal of

this task is to first form a stack using the N − 1 cubic blocks, then place the triangle

block on top. By default, N = 2, the maximum number of steps per episode is 50.

Corner Picking In the Corner Picking environment (Figure 9h), there is a cubic block

with a size of 5cm × 5cm × 5cm and a corner formed by two walls. The poses of the

block and the corner are randomly initialized with a fixed relative pose between them

so that the block is right next to the two walls. The wall is fixed in the workspace and

not movable. The goal of this task is to nudge the block out from the corner and then

pick it up at least 15cm above the ground. By default, the maximum number of steps

per episode is 50.

Drawer Opening In the Drawer Opening environment (Figure 9i), there is a drawer

with a random pose in the workspace. The outer part of the drawer is fixed and not

movable. The goal of this task is to pull the drawer handle to open the drawer. By

default, the maximum number of steps per episode is 50.

Object Grasping In the Object Grasping task (Figure 6l), the robot needs to grasp an

object from a clutter of at mostN objects. At the start of training,N random objects are

initialized with random position and orientation. The shapes of the objects are randomly

sampled from the object set shown in Figure 16. The object set contains 86 objects

derived from the GraspNet1B [11] dataset. Every time the agent successfully grasps all

N objects, the environment will re-generate N random objects with random positions

and orientations. If an episode terminates with any remaining objects in the bin, the

objects will not be re-initialized. The goal of this task is to grasp any object and lift it

such that the gripper is at least 0.15m above the ground. The number of objects N in

this environment is configurable. By default, there will be 5 objects, and the maximum

number of steps per episode is 50.

B List of Configurable Environment Parameters

Table 4 shows a list of configuration parameters in our framework.
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Parameter Example Description

robot kuka the robot to use in the experiment.

action sequence pxyzr The action space. ‘pxyzr’ means the action space a

5-vector, including the gripper action (p), the posi-

tion of the gripper (x, y, z), and its top-down rota-

tion (r).

workspace array([[0.25, 0.65],

[-0.2, 0.2], [0, 1]])

The workspace in terms of the range in x, y, and z.

object scale range 0.6 The scale of the size of the objects in the environ-

ment.

max steps 10 The maximal steps per episode.

num objects 1 The number of objects in the environment.

obs size 128 The pixel size of the observation I .

in hand size 24 The pixel size of the in-hand image H .

fast mode True If True, teleport the arm when possible to speed up

the simulation.

render False If True, render the PyBullet GUI.

random orientation True If True, the objects in the environments will be ini-

tialized with random orientations.

half rotation True If True, constrain the gripper rotation between 0

and π.

workspace check point/bounding box Check object out of bound using the object center

of mass or the bounding box

close loop tray False If True, generate a tray like in the Object Grasping

(Figure 9j) in the close-loop environment.

Table 4. List of example configurable parameters in our framework.

C Open-Loop 6DoF Environments

Most of the 6DoF environments mirror those in Figure 6, but the workspace is initial-

ized with two ramps in the ramp environments or with a bumpy surface in the bump

environments.

In the ramp environments (Figure 17a-Figure 17g), the two ramps are always par-

allel to each other. The distance between the ramps is randomly sampled between 4cm
and 20cm. The orientation of the two ramps along the z-axis is randomly sampled be-

tween 0 and 2π. The slope of each ramp is randomly sampled between 0 and π
6 . The

height of each ramp above the ground is randomly sampled between 0cm and 1cm.

In addition, the relevant objects are initialized with random positions and orientations

either on the ramps or on the ground.
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Fig. 18. The Open-Loop 2D benchmark result. The plots show the evaluation performance of the

greedy policy in terms of the task success rate. The evaluation is performed every 500 training

steps. Results are averaged over four runs. Shading denotes standard error.

initialized with a fixed orientation. The action space in this benchmark is Ag × Axy ,

i.e., the agent only controls the target (x, y) position of the gripper, while θ is fixed

at 0 degree. Other environment parameters mirror the Open-Loop 3D Benchmark in

Section 5.1.

Similar as in Section 5.1, we provide DQN, ADET, DQfD, and SDQfD algorithms

with FCN and Equivariant FCN (Equi FCN) network architectures (the other architec-

tures do not apply to this benchmark because the agent does not control θ). In this sec-

tion, we show the performance of SDQfD equipped with FCN and Equivariant FCN.

Figure 18 shows the result. Equivariant FCN (blue) generally shows a better perfor-

mance compared with standard FCN (red).

D.2 Open-Loop 6D Benchmark

In the Open-Loop 6D Benchmark, the agent needs to solve the open-loop 6DoF envi-

ronments (Appendix C) in an action space of Ag ×ASE(3), i.e., the position (x, y, z) of

the gripper and the rotation (θ, φ, ψ) of the gripper along the z, y, x axes.

We provide two baselines in this benchmark: 1) ASR [43]: a hierarchical approach

that selects the actions in a sequence of ((x, y), θ, z, φ, ψ) using 5 networks; 2) Equiv-

ariant Deictic ASR [45] (Equi Deictic ASR): similar as 1), but replace the standard

networks with equivariant networks and the deictic encoding to improve the sample
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Fig. 19. The Open-Loop 6D benchmark result. The plots show the evaluation performance of the

greedy policy in terms of the task success rate. The evaluation is performed every 500 training

steps. Results are averaged over four runs. Shading denotes standard error.

efficiency. We use 1000 planner episodes for the ramp environments and 200 planner

episodes for the bump environments. The in-hand image H in this experiment is a 3-

channel orthographic projection image of a voxel grid generated from the point cloud

at the previous pick pose. Other environment parameters mirror the Open-Loop 3D

Benchmark in Section 5.1.

Figure 19 shows the results. Equivariant Deictic ASR (blue) demonstrates a stronger

performance compared with standard ASR (red).

D.3 Close-Loop 3D Benchmark

The Close-Loop 3D Benchmark is similar as the Close-Loop 4D Benchmark (Sec-

tion 5.2), but with the following two changes: first, the environments are initialized

with a fixed orientation; second, the action space is A
xyz
λ ∈ R

4 instead of A
xyzθ
λ ∈ R

5,

i.e., the agent only controls the delta (x, y, z) position of the end-effector and the open-

width λ of the gripper.

We provide the same baseline algorithms as in Section 5.2. In this section, we show

the performance of SDQfD, Equivariant SDQfD (Equi SDQfD), and FERM SDQfD.

Figure 20 shows the result. Equivariant SACfD (blue) shows the best performance

across all tasks. FERM SACfD (green) and SACfD (red) has similar performance, ex-

cept for Block Reaching, where FERM SACfD outperforms standard SACfD.
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Fig. 20. The Close-Loop 3D benchmark result. The plots show the evaluation performance of the

greedy policy in terms of the task success rate. The evaluation is performed every 500 training

steps. Results are averaged over four runs. Shading denotes standard error.

E Additional Baselines for Open-Loop 3D Benchmark

In this section, we show the performance of three additional baseline algorithms in the

Open-Loop 3D Benchmark (Section 5.1): DQfD, ADET, and DQN. We compare them

with SDQfD (the algorithm used in Section 5.1). All algorithms are equipped with

the Equivariant ASR architecture. Figure 21 shows the result. Notice that SDQfD and

DQfD generally perform the best, while SDQfD has a marginal advantage compared

with DQfD. ADET learns faster in some tasks (e.g., House Building 1), but normally

converges to a lower performance compared with SDQfD and DQfD. DQN performs

the worst across all environments because of the lack of imitation loss.

F Additional Baselines for Close-Loop 4D Benchmark

In this section, we show the performance of two additional baseline algorithms in

the Close-Loop 4D Benchmark (Section 5.2): RAD SACfD and DrQ SACfD. As is

shown in Figure 22, RAD SACfD (yellow) performs poorly in all 10 environments.

DrQ SACfD (brown) outperforms FERM SACfD (purple) in Block Picking and Block

Pulling, but still underperforms the equivariant methods (blue and red).
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Fig. 21. The Open-Loop 3D benchmark result with additional baselines. The plots show the eval-

uation performance of the greedy policy in terms of the task success rate. The evaluation is per-

formed every 500 training steps. Results are averaged over four runs. Shading denotes standard

error.

G Benchmark Details

G.1 Open-Loop Benchmark

In all environments, the kuka arm is used as the manipulator. The workspace has a

size of 0.4m× 0.4m. The top-down observation I covers the workspace with a size of

128×128 pixels. (In the Rot FCN baseline, I’s size is 90×90 pixels, and is padded with

0 to 128×128 pixels. This is padding required for the Rot FCN baseline because it needs

to rotate the image to encode θ.) The size of the in-hand image H is 24× 24 pixels for

the Open-Loop 2D and Open-Loop 3D benchmarks. In the Open-Loop 6D Benchmark,

H is a 3-channel orthographic projection image, with a shape of 3×24×24 in the ramp

environments, and 3 × 40 × 40 in the bump environments. We train our models using

PyTorch [32] with the Adam optimizer [22] with a learning rate of 10−4 and weight

decay of 10−5. We use Huber loss [16] for the TD loss. The discount factor γ is 0.95.

The mini-batch size is 16. The replay buffer has a size of 100,000 transitions. At each

training step, the replay buffer will separately draw half of the samples from the expert

data and half of the samples from the online transitions. The weight w for the margin

loss term of SDQfD is 0.1, and the margin l = 0.1. We use the greedy policy as the

behavior policy. We use 5 environments running in parallel.
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Fig. 22. The Close-Loop 4D benchmark result with additional baselines. The plots show the eval-

uation performance of the greedy policy in terms of the task success rate. The evaluation is per-

formed every 500 training steps. Results are averaged over four runs. Shading denotes standard

error.

G.2 Close-Loop Benchmark

In all environments, the kuka arm is used as the manipulator. The workspace has a size

of 0.3m× 0.3m× 0.24m. The pixel size of the top-down depth image O is 128× 128
(except for the FERM baseline, where I’s size is 142 × 142 and will be cropped to

128 × 128). I’s FOV is 0.45m × 0.45m. We use the Adam optimizer with a learn-

ing rate of 10−3. The entropy temperature α is initialized at 10−2. The target entropy

is -5. The discount factor γ = 0.99. The batch size is 64. The buffer has a capac-

ity of 100,000 transitions. In baselines using the prioritized replay buffer (PER), PER

has a prioritized replay exponent of 0.6 and prioritized importance sampling exponent

β0 = 0.4 as in [35]. The expert transitions are given a priority bonus of εd = 1. The

FERM baseline’s contrastive encoder is pretrained for 1.6k steps using the expert data

as in [53]. We use 5 environments running in parallel.
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