
Tiny Pointers

Michael A. Bender∗ Alex Conway† Mart́ın Farach-Colton ‡ William Kuszmaul §

Guido Tagliavini ¶

Abstract

This paper introduces a new data-structural object that we call the tiny pointer. In many applications,

traditional log n-bit pointers can be replaced with o(log n)-bit tiny pointers at the cost of only a constant-

factor time overhead. We develop a comprehensive theory of tiny pointers, and give optimal constructions

for both fixed-size tiny pointers (i.e., settings in which all of the tiny pointers must be the same size)

and variable-size tiny pointers (i.e., settings in which the average tiny-pointer size must be small, but

some tiny pointers can be larger). If a tiny pointer references an element in an array filled to load factor

1�1/k, then the optimal tiny-pointer size is ⇥(log log log n+log k) bits in the fixed-size case, and ⇥(log k)

expected bits in the variable-size case. Our tiny-pointer constructions also require us to revisit several

classic problems having to do with balls and bins; these results may be of independent interest.

Using tiny pointers, we revisit five classic data-structure problems. We show that:

• A data structure storing n v-bit values for n keys with constant-time modifications/queries can be

implemented to take space nv+O(n log
(r)

n) bits, for any constant r > 0, as long as the user stores

a tiny pointer of expected size O(1) with each key—here, log
(r)

n is the r-th iterated logarithm.

• Any binary search tree can be made succinct with constant-factor time overhead, and can even be

made to be within O(n) bits of optimal if we allow for O(log
⇤
n)-time modifications—this holds

even for rotation-based trees such as the splay tree and the red-black tree.

• Any fixed-capacity key-value dictionary can be made stable (i.e., items do not move once inserted)

with constant-time overhead and 1 + o(1) space overhead.

• Any key-value dictionary that requires uniform-size values can be made to support arbitrary-size

values with constant-time overhead and with an additional space consumption of log
(r)

n+O(log j)

bits per j-bit value for an arbitrary constant r > 0 of our choice.

• Given an external-memory array A of size (1 + ")n containing a dynamic set of up to n key-value

pairs, it is possible to maintain an internal-memory stash of size O(n log "
�1

) bits so that the

location of any key-value pair in A can be computed in constant time (and with no IOs).

These are all well studied and classic problems, and in each case tiny pointers allow for us to take a

natural space-ine�cient solution that uses pointers and make it space-e�cient for free.

∗Stony Brook University. bender@cs.stonybrook.edu
†VMware Research Group. aconway@vmware.com
‡Rutgers University. martin@farach-colton.com
§Massachusetts Institute of Technology. kuszmaul@mit.edu
¶Rutgers University. guido.tag@rutgers.edu

ar
X

iv
:2

11
1.

12
80

0v
1

 [c
s.D

S]
 2

4
N

ov
 2

02
1

mailto:bender@cs.stonybrook.edu
mailto:aconway@vmware.com
mailto:martin@farach-colton.com
mailto:kuszmaul@mit.edu
mailto:guido.tag@rutgers.edu

1 Introduction

How many bits does it take to store a pointer? If we know nothing about the pointer except that it references
an element in an array of size n, then there is lower bound of log n bits.

For many (and perhaps even most) uses of pointers, however, this information-theoretic lower bound does
not apply. As we shall see in this paper, even a small amount of prior information about a pointer (e.g., a
node’s predecessor in a linked list) can be used to defeat the log n lower bound.

This paper introduces a general-purpose tool, which we call the tiny pointer , for compressing pointers.
In settings where pointers are used, tiny pointers can often be used instead to eliminate almost all of the
space overhead of pointers.

What is a tiny pointer? Suppose n or more users (i.e., Alice, Bob, etc.) are sharing an array A of size n.
A user can request a location in A via a function Allocate(), which returns a pointer p to a location that
is now reserved exclusively for that user, if there is an available location; the user can later relinquish the
memory location by calling a function Free(p). Each user promises only to allocate at most one memory
location at a time.1 For example, if Alice calls Allocate() to get a pointer p, she must call Free(p) before
calling Allocate() again.

How large do the pointers p need to be? The natural answer is that each pointer uses log n bits. However,
the fact that each pointer has a distinct owner makes it possible to compress the pointers to o(log n) bits.
A critical insight is that the same pointer p can mean di↵erent things to di↵erent users, via the following
scheme. A user k can call Allocate(k) in order to get a tiny pointer p; they can dereference the tiny
pointer p by computing a function Dereference(k, p) whose value depends only on k, p, and random bits;
and they can free a tiny pointer p by calling a function Free(k, p).

The reason that tiny pointers are not constrained by the information-theoretic lower bound of log n bits
is that k and p together encode the allocated location, rather than p alone. Thus this scheme provides a
mechanism for how to use information already available about a pointer (namely, who “owns” the pointer)
to compress the pointer to size o(log n) bits.

We refer to the algorithms for the functions Allocate(k)/Dereference(k, p)/Free(k, p), along with
the array A and any associated metadata M , as a dereference table . We will often refer to the users (i.e.,
the owners of tiny pointers) as keys and to the data stored at the allocated locations pointed at by the tiny
pointers as values . A dereference table that stores b-bit values in an array of nb bits (and using O(n) bits
of metadata) is said to support load factor 1� � if the table is capable of storing (1� �)n values at a time.

An ideal dereference table would simultaneously support a load factor with � = o(1), tiny-pointer sizes
of o(log n), and constant-time operations. As we shall discuss shortly, we prove a tradeo↵ curve between
the best achievable load factor 1 � � and the best achievable the tiny-pointer size s. Constructing optimal
dereference tables on this tradeo↵ curve is one of the central questions of this paper.

Using tiny pointers to get tiny data structures. In addition to constructing dereference tables with
tiny pointers, we show that such dereference tables can be used to obtain improved solutions for a number
of classic problems:

• A data structure storing n v-bit values for n keys with constant-time modifications and queries can be
implemented to take space nv +O(n log(r) n) bits, for any constant r > 0, as long as the user stores a
tiny pointer of expected size O(1) with each key—here, log(r) n is the r-th iterated logarithm.2

• Any binary search tree storing n sortable keys in n nodes can be made succinct with constant time
overhead, and can be made within O(n) bits of optimal with O(log⇤ n)-time modifications. This holds
even for rotation-based trees such as the splay tree, which is conjectured to be dynamically optimal.

• Any fixed-capacity key-value dictionary storing v-bit values can be made stable (i.e., items do not move
once inserted) with constant time overhead an additive O(log v)-bit space overhead per value.

• Any key-value dictionary that requires uniform-size values can be made to support arbitrary-size values
with constant time overhead and with an additional space consumption of log(r) n+O(log j) bits per
j-bit value, where r > 0 is an arbitrary constant.

1A user k can request more than one location by creating a unique label ` for each of their allocations. In this case, we simply
treat the “user” for the allocation as the concatenation k � `, so the user k can have multiple allocations without violating the
uniqueness requirement.

2That is, log(1) n := logn and log(i+1)
n := log log(i) n.

1

• Given an external-memory array A of size (1+")n containing a dynamic set of up to n key-value pairs,
it is possible to maintain an internal-memory stash of size O(n log "�1) bits so that the location of any
key-value pair in A can be computed in constant time (and with no IOs).

What unifies these problems is that each is easy to solve space-ine�ciently with pointers, and the di�culty
in solving them space-e�ciently stems from the challenge of eliminating the pointer overhead.

A theme throughout our uses of tiny pointers is the importance of having access to the full tradeo↵ curve of
optimal tiny-pointer constructions. This is because of the need to balance two types of space overheads: that
of storing the tiny pointers themselves, and that of storing the dereference table. The former is determined
by tiny-pointer size and the latter is determined by load factor.

This paper. In this paper, we first develop a comprehensive theory of tiny pointers. We consider both
fixed-size tiny pointers (where every tiny pointer is of bounded size) and variable-size tiny pointers
(where every tiny pointer is of bounded expected size). For both types of tiny pointers we determine the
optimal tradeo↵ curve between load factor and tiny-pointer size in dereference tables. We then go on to
present the five applications of tiny pointers outlined above. As an ancillary result, we also reinterpret
our tiny-pointer constructions as balls-and-bins results. In doing so, we improve on the known bounds for
dynamic load balancing in some important parameter regimes.

1.1 Results: Constructing Optimal Tiny Pointers

In Sections 3, 4, and 5 we develop tight asymptotic bounds for the best achievable tradeo↵ curve between
tiny-pointer size s and the dereference-table load factor 1� �.

Optimal tradeo↵s for fixed and variable size tiny pointers. For fixed-size tiny pointers, we show
that for any load factor 1 � � 62 o(1), there is a lower bound of ⌦(log log log n) on the tiny-pointer size s.
On the other hand, parameterizing by �, we show that it is possible to achieve a fixed tiny-pointer size
s = O(log log log n+ log ��1), and we give a lower bound showing that this tradeo↵ curve is tight.

We show that the log log log n barrier can be eliminated by instead using variable-size tiny pointers. We
prove that for any load factor 1 � �, it is possible to achieve average tiny-pointer size s = O(1 + log ��1),
and again we prove that this tradeo↵ curve is tight for all �.

For variable-size tiny pointers, our construction o↵ers a remarkably strong concentration bound on each
tiny pointer’s size: if the expected size is k, then the probability of any given allocation returning a tiny
pointer of size greater than k + j for any j > 0 is doubly exponentially small in j.

All of our dereference-table constructions guarantee constant-time operations with high probability, that
is, with probability 1� 1/ poly n. Thus, tiny pointers can be integrated into data structures while incurring
only a constant-factor time overhead.

Relationship to balls and bins. In Section 7, we reinterpret our tiny-pointer results as balls-to-bins
results. Notably, we are able to apply our techniques to the dynamic load-balancing problem, where there
are n bins and up to m = nh balls present at a time: for h � 1, we give a balls-and-bins scheme with d+ 1
hash functions that achieves maximum load h + O(

p
h log(hd)) + log logn

d log �d
, which significantly improves the

state of the art [55, 56] when hd = o(log n).
To understand the relationship between dereference tables and balls-and-bins schemes, think of keys as

balls that must be assigned to distinct bins. Each ball x has some probe sequence h1(x), h2(x), . . . 2 [n] of
bins where it can be placed. Supporting tiny pointers of size O(s) is equivalent to maintaining a dynamic
balls-to-bins assignment such that each ball x is in some bin hi(x) satisfying i 2O(s).

What makes this balls-to-bins problem interesting is that the same ball can be inserted, removed, and
subsequently reinserted over time. The first time that a ball is inserted, its probe sequence h1(x), h2(x), . . .
is independent of the dereference table’s state. But if the ball is removed and then later reinserted, then this
is no longer the case: the state of the dereference table has now been a↵ected by (and is partially a function
of) the probe sequence. The result is that, in this fully dynamic setting, even the behaviors of very simple
balls-to-bins schemes (e.g., random probing [40] or linear probing [39,52]) have resisted theoretical analysis.3

3Work in this setting typically treats linear probing and random probing as techniques for building an open-addressed
hash table. In the setting where balls cannot be moved after being placed (or equivalently, where hash-table deletions are
implemented with tombstones), the only known bound on either random probing or linear probing is due to Larson [40], who

2

A key insight in constructing small tiny pointers is that, by designing the probe sequence of each “ball”
to have a certain careful structure, we can achieve small probe complexity (and thus small tiny pointers)
for an arbitrary sequence of ball insertions and removals. The same techniques are also what allow for us to
revisit other related problems such as dynamic load-balancing in bins with unbounded capacities.

1.2 Results: Five Applications to Data Structures

We now describe our five applications of tiny pointers in more detail. The first application is to the classic
data-structural problem of storing a dynamic set of values associated with keys. The next three applications
are each black-box transformations in which we show how to remove space ine�ciency from large classes of
data structures. And the final application is a new data structure for a classic problem in external-memory
storage.

Overcoming the ⌦(log logn)-bit lower bound for the cost of data retrieval. Our first application
revisits the classic data-retrieval problem [5,26–28], in which a data structure must store a v-bit value for
each of the k-bit keys in some set S, and must answer queries that retrieve the value associated with a given
key.4 In the static case, where the keys/values are given up front, it is possible to solve the retrieval problem
with O(1)-time queries using nv+O(log n) bits of space [27,28]; but in the dynamic case where keys/values
are inserted/deleted over time, and there are up to n keys/value pairs present at a time (with keys taken
from some large polynomial-size universe), it is known that any solution to the retrieval problem must use
a lower bound of nv +⌦(n log log n) bits of space, even if super-constant-time operations are allowed [5,26].
This means that the number of metadata bits per value is ⌦(log log n) on average, even if the values are of
size v = o(log log n).

We show that, by just slightly modifying the specification of the retrieval problem, we can completely
dissolve the ⌦(log log n)-wasted-bits-per-item lower bound. Suppose, in particular, that whenever the user
inserts a key/value pair (x, y), they are given back a small hint h that they are responsible for storing. (We
will guarantee that the hint has constant expected size.) In the future, when the user wishes to recover the
value y for x, they present both the key x and the hint h to the retrieval data structure. We call this the
relaxed retrieval problem and we refer to the hints as tiny retrievers.

The relaxed retrieval problem can also be viewed as a relaxation of the tiny-pointer problem: the tiny
retriever h is analogous to a tiny pointer, except that the pair (x, h) does not have to fully encode the position
of y—instead, the relaxed-retrieval data structure can make use of not just x and h, but can also make use
of a small auxiliary data structure whose purpose is to help recover y.

Given that we have already stated tight bounds for tiny pointers, it is tempting to assume that the
same bounds should hold for tiny retrievers. We find that this is not so. We show how to construct
tiny retrievers of expected size O(1), while supporting queries in constant time (with high probability),
and allowing for the following tradeo↵ curve: using time ⇥(r) for insertions/deletions, the size of the data
structure becomes nv +O(n(1 + log(r) n)) bits. So, with constant-time operations, we can achieve size, say,
nv+O(n log log log log log n), and with O(log⇤ n)-time operations, we can achieve size nv+O(n). Moreover,
in the special case where the value length v is sub-logarithmic, satisfying v

logn

log(r) n
, the space consumption

reduces to nv +O(n) bits, even for constant r.
Remarkably, our construction for tiny retrievers is itself a direct application of tiny pointers—in fact,

tiny retrievers are simply variable-length tiny pointers of O(1) expected size. This is because the ability to
construct O(1)-length tiny pointers into an array with ⇥(n) entries ends up allowing for us to reduce the
relaxed retrieval problem to the dictionary problem, for which highly space-e�cient solutions are known [13].

We remark that the distinction between tiny pointers and tiny retrievers ends up being significant in
several of our applications below. In some cases, tiny retrievers o↵er a path to remarkable (and unexpected)
space e�ciency, while in other cases, the smooth tradeo↵ curve and pointer-like behavior o↵ered by tiny
pointers makes them a better fit. The advantage of tiny retrievers is that they o↵er a steep tradeo↵ between
time and space; the advantage of tiny pointers is that they o↵er indirection-less reference to elements, as
well as a flexible tradeo↵ between di↵erent types of space consumption (pointer size and load factor).

analyzed random probing with random insertions/deletions.
4Note that queries are required to be for a key x 2 S—the data structure is allowed to return an arbitrary value if x 62 S.

3

Succinct rotation-based binary search trees. To describe our second application, we first take a
digression into the world of succinct binary trees. Since there are at most 4n ordered binary trees on n
nodes, the pointer structure of a binary tree can be encoded in O(n) bits. This observation has led to
a great deal of work on optimal (and near-optimal) encodings of binary trees [16, 25, 32, 34, 45, 46, 49, 51].
Apart from navigation, state-of-the-art trees also support a wide variety of query operations (e.g., subtree
size [16,32,45,46,51], depth [16,46], lowest-common ancestor [16,46], level ancestor [16,46], etc.), while also
supporting basic dynamism (e.g., inserting/removing leaves [16,32,45,46,51], inserting a node in the middle
of an edge [16,32,45,46,51], compacting a path of length two [16,32,45,46,51], etc.).

One natural form of dynamic operation has proven elusive, however: the known succinct binary trees do
not e�ciently support rotations. The lack of support for rotations is especially important for binary search

trees, which store a set of n sortable keys in n nodes. Almost all dynamic balanced binary search trees (e.g.,
AVL trees [4], red-black trees [36], splay trees [54], treaps [6,53], etc.) rely on rotations when modifying the
tree. None of these tree structures can be encoded with the known succinct-tree techniques.

We give a randomized black-box approach for transforming dynamic binary search trees into succinct
data structures. If there are n keys in the succinct search tree, each of which is k bits long, then the size of
the succinct search tree will be nk + O(n log(r) n) bits. The transformation induces only a constant-factor
time overhead on query operations, and only an O(r)-factor time overhead on tree modifications. So, for
example, if we set r = O(log⇤ n), then edge traversals take time O(1), edge insertions/deletions take time
O(log⇤ n), and the tree structure is encoded using O(n). In contrast, the previous state of the art [46] for
implementing rotations in space-e�cient binary search trees also encoded the tree structure in O(n) bits
(actually, 2n+ o(n) bits) but required !(log n) time to implement a single rotation.

When r is set to be O(1), the fact that running times are preserved means that other properties, such
as dynamic optimality, are as well. For example, if the splay tree [54] is dynamically optimal (as the widely
believed Dynamic-Optimality Conjecture [54] posits), then so is the succinct splay tree.

Space-e�cient stable dictionaries. Our third application is a black-box approach for transforming any
fixed-capacity key-value dictionary into a stable dictionary with the same operation set and with only a
constant-factor time overhead. If the original dictionary stores v-bit values, then the new stable dictionary
also stores v-bit values, and uses O (log v) extra bits of space per value than does the original data structure.

Formally, a key-value dictionary (e.g., a binary search tree, hash table, etc.) is stable if whenever a key-
value pair is inserted, the position in which the value is stored never changes. (This property is sometimes
also referred to as referential integrity [52] or value stability [11].) Stability ensures that users can maintain
pointers into a data structure without those pointers becoming invalidated by changes to the data structure
[37, 52]. Stability is a strict requirement in many library data structures [17–24] (and it is a core reason
why high-performance languages such as C++ use chained hashing [17,18], which is stable, instead of more
space-e�cient alternatives, such as linear probing [38,50] or cuckoo hashing [29,33,48]).

Empirical research on achieving stability in space-e�cient hash tables dates back to the 1980s [37, 52]
(see also discussion in Knuth’s Volume 3 [39]) and the resulting techniques have been built into widely-used
hash tables released by Google [3] and Facebook [31]. On the theoretical side, if a data structure is storing
k-bit keys and v-bit values, where k, v = O(log n), it is known how to achieve stability at the cost of an
extra ⇥(log log n) bits of space per value [26], but it is not known whether ⌦(log log n) bits per value are
necessary.5 Our result shows that it is not—stability can be achieved with O(log v) extra bits per value.
This is especially noteworthy in cases where the value-size v is small6. Our result applies to arbitrary
fixed-capacity dictionaries, including, for example, the succinct splay tree constructed above.

Space-e�cient dictionaries with variable-size values. Our fourth application is a black-box approach
for transforming any key-value dictionary (designed to store fixed-size values) into a dictionary that can store
di↵erent-sized values for di↵erent keys. The resulting data structure induces a constant-factor time overhead
and o↵ers the following guarantee on space e�ciency. Let log(r) n be the r-th iterated logarithm and set r
to be a positive constant of our choice. The new data structure incurs an additive space overhead of only

5Interestingly, there are several specific approaches for which ⌦(log logn) bits per value are known to be necessary, for
example if stability is achieved via perfect hashing (see Theorem 2 of [26]).

6One especially remarkable consequence is the following: if we wish to store O(1) control bits associated with each key in a
data structure, and we wish for the positions of those bits to be stable so that a third party who does not have access to the
data structure can still access/modify the control bits, then we can accomplish this with only O(1) extra bits of space per item.

4

O(log(r) n + log |x|) bits for each value x. (Interestingly, the iterated logarithm log(r) n in this application
comes from an entirely di↵erent source than in our previous applications.)

The ability to store variable-length values also yields a simple solution to the multi-set problem , which
is the problem of how to design a space-e�cient constant-time hash table that stores multi-sets of keys (rather
than just sets). The multi-set problem was first posed as an open question by Arbitman et al. [8], who gave
a succinct constant-time hash table capable of storing sets but not multi-sets. A series of subsequent works
gave solutions to the multi-set problem, first in the case of random multi-sets [14], and then very recently for
arbitrary multi-sets [15]. The known solutions come with a drawback, however: the bound on space is the
same for duplicate keys as it is for non-duplicate keys. So, if there are mi copies of some key, then they are
permitted to take mi times as much space as a single copy would, even though, in principle, mi � 1 of the
copies could be encoded using an logmi-bit counter. Our transformation gives a simple alternative solution
that avoids this drawback and that can even be applied directly to the original hash table of Arbitman et
al. [7]: by storing the multiplicity of each key as a (variable-length) value, one can support arbitrary multisets
at an additional space cost of only log(r) n+ logmi +O(log logmi) bits per key, where mi is the multiplicity
of the key and r is a positive constant of our choice; this is remarkably space e�cient considering the fact
that logmi bits are needed just to store the multiplicity. A nice feature of our solution is that it also applies
directly to other dictionaries such as, for example, the succinct splay tree discussed earlier in the section.

An optimal internal-memory stash. Our final application of tiny pointers revisits one of the oldest
problems in external-memory data structures: the problem of maintaining a small internal-memory stash
that allows for one to directly locate where elements reside in a large external-memory array.

In more detail, the problem can be described as follows [35]. We are given an (initially blank) external-
memory array with (1 + ")n slots, for some parameters ", n. We must maintain a dynamically changing set
S of key-value pairs (where keys are distinct) in the array, such that each time a key-value pair (x, y) is
inserted into S, the pair (x, y) is assigned some permanent position where it resides in the external-memory
array. We must then also maintain a small internal-memory data structure X, known as a stash , that can
be used to recover, for each key x, precisely where its key-value pair (x, y) is stored in the external-memory
array. A stash enables queries to be performed in a single access to external memory.

Work on designing space-e�cient and time-e�cient stashes dates back to the late 1980s [35, 41, 42], and
is also closely related to the problem of designing space-e�cient page tables in operating systems [1, 2, 10].
The best-known theoretical results are due to Gonnet and Larson [35], who give a stash that uses only
O(n log "�1) bits of space. A consequence is that, if " = ⇥(1), the stash uses only O(n) bits.

Gonnet and Larson’s result comes with several drawbacks, however [35]. First, the stash only o↵ers
provable guarantees in the setting where insertions/deletions to S are random; in the case where S is
modified by an arbitrary sequence of insertions/deletions/queries, the problem of designing a space-e�cient
stash remains open. Second, the internal-memory operations on the stash of [35] are not constant-time in
the RAM model (or even constant expected time, when " = o(1)).

By combining tiny pointers with modern techniques for constructing space-e�cient filters, we show that
it is possible to construct a stash of size O(n log "�1) bits that supports constant-time operations in the
RAM model (not just in expectation, but even with high probability) and that supports arbitrary sequences
of insertions/deletions/queries.

2 Preliminaries

Operations. A dereference table with q-bit-values is a data structure that supports the following operations:

• Create(n, q): The procedure creates a new dereference table, and returns a pointer to an array with
n slots, each of size q bits. We call this array the store .

• Allocate(k): Given a key k, the procedure allocates a slot in the store to k, and returns a bit string
p, which we call a tiny pointer .

• Dereference(k, p): Given a key k and a tiny pointer p, the procedure returns the index of the slot
allocated to k in the store. If p is not a valid tiny pointer for k (i.e., p was not returned by a call to
Allocate(k)), then the procedure may return an arbitrary index in the store.

5

• Free(k, p): Given a key k and a tiny pointer p, the procedure deallocates slot Dereference(k, p)
from k. The user is only permitted to call this function on pairs (k, p) where p is a valid tiny pointer
for k (i.e., p was returned by the most recent call to Allocate(k)).

We say a key k is present if it has been allocated more recently than it has been freed; in this case the
tiny pointer p returned by the most recent call to Allocate(k) is said to be k’s tiny pointer. The user is
only permitted to allocate at most one tiny pointer p to each key k. That is, each time that Allocate(k)
is called to obtain some tiny pointer p, the function Free(k, p) must be called before Allocate(k) can be
called again.

We say that slot i in the store is occupied if there is a present key k with tiny pointer p such that
Dereference(k, p) = i, and otherwise we say it is free . We typically refer to the parameter n (i.e., the
number of slots in the store) as the table’s size or capacity .

Guarantees. Dereference tables provide the following guarantees:

• For any two present keys k1 6= k2 with tiny pointers p1 and p2, respectively, Dereference(k1, p1) 6=
Dereference(k2, p2).

• Dereference(k, p) only depends on k, p, random bits, and the parameter n.

The second property ensures that the act of dereferencing a tiny pointer is similar to the act of derefer-
encing a standard pointer; in both cases, one does not need to access the data structure being pointed into
in order to perform the dereference. This ends up being important for several of our applications later. In
particular, it ensures that in external-memory applications, each dereference incurs only a single I/O; and
it ensures that in data-structure applications, the locations pointed at by tiny pointers are stable (i.e., once
a tiny pointer p is allocated to a key k, the location that is being pointed at does not change).

Metadata information. The dereference table may store metadata in order to perform updates (allocations
and frees) e�ciently. Metadata can either be stored as part of the store, or in an auxiliary data structure
that is permitted to consume up to O(n) bits. In other words, the dereference table is allowed to use O(n)
bits (i.e., O(1) bits of overhead per slot) of metadata for “free”, without that counting towards the space
consumption of the store, but any additional metadata must count towards the space consumption of the
store. Note that the dereference table is not allowed to store metadata in any slot of the store that is
currently allocated.

Failure probability. We will permit allocations to have a small failure probability. That is, each allocation
is permitted to fail with probability 1/ poly(n), in which case the allocation simply returns a failure message
rather than a tiny pointer. In general, if a random event occurs with probability 1� 1/ poly(n), we say that
it occurs with high probability (w.h.p.).

We remark that, when analyzing dereference tables, we shall always assume that the sequence of allo-
cations, frees, and dereferences are determined by an oblivious adversary (i.e., the sequence is determined
ahead of time, rather than adapting to the behavior of the dereference table). One consequence of this is
that, if a given allocation fails, the only e↵ect on the operation sequence is that the corresponding call to
free is removed.

Load factor. Any implementation of a dereference table must also specify an additional parameter � 2 [0, 1]
dictating how full the table is allowed to be. This means that the dereference table can support up to (1��)n
allocations at a time—the quantity 1�� is referred to as the table’s load factor . If the Allocate function
is called when there are already (1 � �)n allocations performed, then the dereference table is permitted to
fail the allocation.7

Since dereference tables can use up to O(n) space for metadata, the total amount of space consumed by
a dereference table may be as large as nq+O(n) = (1� �)nq+ �nq+O(n). The first term (1� �)nq is space
that allocations can make use of, and the other terms �nq + O(n) are wasted space. Note that there is no
point in considering � ⌧ 1/q, since this just makes it so that they wasted space is dominated by metadata.

7Note that, even though a dereference table only guarantees the ability to store up to (1 � �)n allocations at a time, we
still use the terms “size” and “capacity” of a dereference table to refer to n, rather than (1� �)n, since n represents the total
number of q-bit entries in the store.

6

Thus, when constructing a reference table with some load factor 1 � �, we shall always implicitly assume
that q � ⌦(��1).

Hashing and independence. Our dereference-table constructions will all make use of hash functions.
For simplicity, we shall treat hash functions in this paper as being uniform and fully independent. This
assumption is without loss of generality since there are already known families of hash functions [30,47] that
simulate n-independence with constant-time evaluation and O(n) random bits, and there are already well
understood techniques [8,43] for applying these families to data structures that require poly n-independence8.
These known techniques can easily be applied directly to all of our data structures; the only caveat is that the
families of hash functions being used [30,47] introduce their own additional 1/ poly(n) failure probability to
the data structure. So, even if a data structure o↵ers sub-polynomial failure probability under the assumption
of fully random hash functions, if we wish to use an explicit family of hash functions, then we must allow
for a 1/ poly(n) failure probability.

3 Upper Bound for Fixed-Size Pointers

In this section, we give optimal constructions for fixed-size tiny pointers. We prove the following theorem:

Theorem 1. For every � 2 (0, 1) there is a dereference table that (i) succeeds on each allocation w.h.p.,

(ii) has load factor at least 1 � �, (iii) has constant-time updates w.h.p., and (iv) has tiny pointers of size

O(log log log n+ log ��1).

In particular, for � = 1/ log log n, we get tiny pointers of size O(log log log n). Thus, we can doubly-
exponentially beat raw log n-bit pointers, while still supporting a load factor of 1� o(1).

The proof is the simplest of our tiny-pointer constructions, and makes use of two algorithmic building
blocks.

The first building block: load-balancing tables. A load-balancing table is a simple type of dereference
table that has a very specific internal representation, and that, unlike normal dereference tables, is permitted
to fail on calls to Allocate with a non-negligible probability. Roughly speaking, if a load-balancing table
has load factor 1� �, then the load-balancing table is permitted to fail on a �-fraction of allocations.

Load-balancing tables are implemented as follows. If the store is of some size m, then we partition it into
m/b buckets of size b = ⇥(��2 log ��1). To allocate a key k, we hash k into one of the buckets, using a hash
function h. If bucket h(k) contains a free slot, then we allocate any free slot i 2 [b] within that bucket, and
we return i as the tiny pointer. Otherwise, all b slots in the bucket are occupied, and the allocation fails.
The function Dereference(k, p) can then be implemented to simply return the p-th slot in bin h(k).

Load-balancing tables will serve as a building block in the dereference tables that we construct. The
basic idea is that we can use a load-balancing table to handle all but a �-fraction of allocations, and the
remaining allocations can be handled via some other mechanism. Thus, we will need the following lemma
which bounds the total number of failed allocations at any given moment:

Lemma 1. Consider a load-balancing table with size m and load factor 1 � �. Consider a sequence of

allocations and frees such that no more than (1 � �)m allocations are made at any given moment. If an

allocation fails, and the allocation would have been freed at some time t, then we consider the allocation to

be alive up until that time t. At any given moment, the number of allocations that have failed and are still

alive is O(�m) with probability at least 1� exp(� poly(�)m).

We remark that in all of our applications of Lemma 1, we will have w.l.o.g. that log ��1 = o(logm) (since,
otherwise, we would have log ��1 = ⌦(logm) and so could just use standard O(logm)-bit pointers). Thus
the probability bound o↵ered by the lemma will always be at least 1� exp(m1�o(1)) � 1� 1/ poly(m).

We defer the proof of Lemma 1 to Section 7.1 which establishes a more general version of the lemma.
Although the proof is nontrivial, due to interdependencies that form from the same key potentially being
allocated/freed/reallocated many times, we do not view it as one of the main technical contributes of this

8The basic idea is to simply replace the data structure of capacity n with n
1�" data structures of capacity n

". Each element x
in the full data structure gets hashed at random to one of the n

1�" data structures, each of which only requires poly(n") = o(n)
independence.

7

paper. This is because Lemma 1 follows easily from a lemma that the current authors established in another
recent paper on space-e�cient hash tables [11]. Still, we present an alternative proof in Section 7.1 both for
completeness, as well as because the proof takes a somewhat di↵erent (and more elegant) approach than in
our past work, and in order to cover a larger parameter regime.

To conclude our discussion of load-balancing tables, we must describe how to implement allocations and
frees in constant time. Here, there are two cases, depending on how b compares to the size n of the dereference
table that the load-balancing table is being used within.

If b log n, then we can store a b-bit bitmap for each bucket indicating which slots in the bucket are free;
and we can use standard bit-manipulation on the bitmap to implement the allocation and free functions in
constant time.

We take a di↵erent approach if b � log n. In this case, we claim that without loss of generality, q =
!(log b), where q is the size in bits the elements being stored (we will prove this claim in a moment). This
claim means that we can keep track of which slots are free in each bucket of a load-balancing table as follows:
we simply store a free list in each bucket, that is, a linked list consisting of all the free slots, where each
free slot contains a pointer to the next free slot in the list. This is possible since each free slot is q bits and
each pointer in the linked list needs only log b = o(q) bits. The log b-bit base pointers of the m/b linked lists
can be stored in an auxiliary metadata array of size O((m/b) · log b) O(m), where m is the size of the
load-balancing table. The free lists allow for us to implement the allocation and free functions in constant
time.

To prove that this free-list approach works, it remains to show that q = !(log b) without loss of generality.
Let 1 � � be the load factor of the full dereference table (that the load-balancing table is part of) and let
1� �0 be the load factor of the load-balancing table. Since b � log n, we must have �0�1 = ⌦̃(

p
log n). In all

of our constructions of dereference tables, if we use a load-balancing table with load factor 1� �0 satisfying
�0�1 = ⌦̃(

p
log n) (or even �0�1 = !(log log n)), we will always have log ��1

� ⌦(log �0�1). Recall that, if a
dereference table has load factor 1� �, then it is assumed that the dereference table is storing objects of size
q � ⌦(��1) bits. Thus, we have that q = !(log ��1) = !(log �0�1) = !(log b), as desired.

The second building block: a power-of-two-choices dereference table. To compensate for the high
failure probability of load-balancing tables, we develop our second building block: a simple dereference table
that supports O(log log log n)-bit tiny pointers and, unlike a load-balancing table, has low failure probability.
The downside of this second building block is that it only supports a very small load factor.

Lemma 2. There exists a � satisfying 1� � = ⇥(1/ log log n), such that there is a dereference table that (i)

succeeds on each allocation w.h.p., (ii) has load factor at least 1� �, (iii) has constant-time updates w.h.p.,

and (iv) has tiny pointers of size O(log log log n).

Proof. We partition the store into buckets of size b = ⇥(log log n). When allocate(k) is called, the key k
is hashed to two buckets h1(k), h2(k) 2 [1, n/b]. The key k is allocated a slot in whichever of the two buckets
contains the most free slots. The tiny pointer p is 1 + log b = O(log log log n) bits, and indicates which slot
in the two buckets was allocated.

We can think of the allocations as balls that are inserted into bins using the power-of-two-choices rule
[55, 56], with the same ball possibly being inserted/deleted/reinserted over time. Since the load factor is
⇥(1/ log log n), the expected number of balls in each bin is O(1). In this setting, it is known that, w.h.p.,
the number of balls in the fullest bin is O(log log n) [56]. Thus allocations succeed w.h.p.

Finally, to implement allocations and frees in constant time, we can just use a bitmap to keep track of
which slots in each bucket are free; since each bucket is only O(log log n) slots, the bitmaps are each only
O(log log n) bits, and thus each bitmap fits into a machine word. Using standard bit manipulation, the
bitmaps can be used to keep track of which slots are free in constant time per allocation/free (and to find a
free slot for a given allocation also in constant time). The bitmaps consume a total of O(n) bits of space.

Putting the pieces together. Of course, power-of-two-choices dereference tables are not very useful on
their own, because they only support o(1) load factors. We now show how to combine them with load-
balancing tables in order to prove Theorem 1.

8

Figure 1: A pictoral representation of the layouts of the primary and secondary tables. The primary table is
implemented to support load factor 1�⇥(�2), so that only �2n allocations overflow to the secondary table
at a time. The secondary table is implemented to have size n0 = �n/2 and to support a (much sparser) load
factor of ⇥(1/ log log n0) = !(�), so that it can successfully store all of the overflowed allocations from the
primary table.

Proof of Theorem 1. Since we are willing to have tiny pointers of size ⇥(log log log n + log ��1), we can

assume without loss of generality that � = o
⇣

1
log logn

⌘
.

We store a 1 � �2 fraction of the allocations in a load-balancing table of size m = (1 � �/2)n slots that
supports load factor 1� �2/c for some su�ciently large positive constant c; we call this the primary table .
Allocations that fail in the primary table are stored in a secondary table implemented with Lemma 2 to have
size n0 := �n/2 slots and support load factor 1� �0 := ⇥(1/ log log n0). If an allocation fails in the secondary
table, or if the load factor of the secondary table ever exceeds ⇥(1/ log log n0), then the allocation fails in
the full dereference table as well. Note that the total size (in terms of slots) of the primary and secondary
tables is n. See Figure 1 for a picture of the layouts of the two tables.

Since both the primary and secondary tables are constant time, so is the full dereference table. Addition-
ally, each allocation can return a tiny pointer that is either in the primary table or in the secondary table
(plus 1 bit of information indicating which table it is being pointed into). Since the primary and secondary
tables both have tiny pointers of size O(log log log n + log ��1), the claim about tiny-pointer size is also
proven.

Our final task is to bound the probability of a given allocation failing. Lemma 1 tells us that the number
of allocations in the secondary table will be a most �2n at any given moment w.h.p. Since the secondary table

has n0 = ⇥(�n/2) slots, and since � = o
⇣

1
log logn

⌘
, it follows that the number of allocations in the secondary

table at any given moment is o(n0/ log log n) = o(n0/ log log n0) with high probability. We therefore get from
Lemma 2 that the allocations in the secondary table each succeed with high probability in n0. Without loss
of generality, n0

�
p
n (since otherwise � O(1/

p
n), and we can just use standard log n-bit pointers). Thus

the allocations in the secondary table each succeed with high probability in n.

4 Upper Bounds for Variable-Sized Pointers

In this section, we give optimal constructions for variable-size tiny pointers. We prove the following theorem:

Theorem 2. For every � 2 (0, 1), there exists a dereference table that (i) succeeds on each allocation w.h.p.,

(ii) has load factor at least 1 � �, (iii) has constant-time updates w.h.p., and (iv) has tiny pointer size

O(P + log ��1), where P is a random variable such that Pr [P � i] 2�2⌦(i)

for all i. In particular, the tiny

pointer size is O(1 + log ��1) in expectation.

9

Figure 2: A pictoral representation of the layout used to implement each container of size ⇥(log n). When
an allocation fails in the i-th load-balancing table, it either proceeds to the (i + 1)-th load-balancing table
(if Li+1 < si+1) or it proceeds to the i-th overflow array (which is deterministically guaranteed to have a
free slot).

We can assume without loss of generality that 1 � � < ↵ for some su�ciently small positive constant ↵
of our choice (if 1� � > ↵, we can reset � = 1� ↵ = ⇥(1) without changing the guarantee of the theorem).

Observe that, using the same primary/secondary-table construction as in the proof of Theorem 1, we can
immediately reduce to the case where the load factor is a positive constant of our choice. Indeed, suppose
that we could implement a dereference table T with load factor ↵ for some positive constant ↵ > 0 and
average tiny pointer size O(1). Then we can use T as the secondary table in the construction: if the entire
dereference table supports load factor 1� �, then the requirement from the secondary table is that it must
be able to support �2n elements using �n/2 slots. So as long as � < ↵/2 (which is without loss of generality)
then T su�ces.

Thus our task of proving Theorem 2 reduces to the task of proving the following proposition.

Proposition 1. There exists a dereference table that (i) succeeds w.h.p. (ii) has load factor ⌦(1), (iii) has

constant-time updates w.h.p. in n, and (iv) has tiny pointer size P , where P is a random variable satisfying

Pr [P � i] 2�2⌦(i)

for all i.

For ease of discussion, throughout the rest of the section, we use n to denote the maximum number of
items that can be stored in the dereference table (rather than the number of slots), and we aim to construct
a dereference table with O(n) slots.

Constructing the dereference table. We now describe our construction for the dereference table that we
use to prove Proposition 1. The dereference table initially hashes every key into one of n/ log n containers,
so that, at all times, any container has log n items in expectation. We deterministically limit the number of
elements in each container to s = c log n items, for some large enough constant c > 1 to be determined later.
When a key is hashed into a container that already has c log n items, the allocation fails.

Each container is managed independently, and its allocations/frees are performed using a scheme with
log2 s levels, as follows. For every 0 i < log2 s, the ith level is a load-balancing table with si := s/2i

buckets, each with b slots, for some large enough constant b � 2 to be determined.
The basic idea is that, when an allocation in level i fails due to bucket fullness, we recursively attempt

the allocation in the next level i + 1 (which uses a di↵erent hash function than does level i). Intuitively,

10

as long as b is a su�ciently large constant, then each level should succeed on at least 1/2 of its allocations,
which is why the next level i+ 1 can a↵ord to be half the size of the previous one.

The problem with this basic construction is that if even just a few consecutive levels behave badly,
resulting in !(si) elements being sent to some level i, then there may not be room for those elements in all
of the levels i, . . . , log2 s combined. On the other hand, our construction must be able to handle such bad
scenarios, because most of the levels are so small that we cannot o↵er high-probability guarantees on their
behavior. Thus, we must modify the construction so that, when a level behaves badly, the e↵ects of that are
isolated.

To do this, we add a fallback structure to each level, that we call overflow array , to prevent excessive
occupancy. The overflow array in each level i has si slots (the same number of slots as the load-balancing
table at that level). Let Li be the random variable denoting the number of values currently stored in levels
i or larger, including their overflow arrays. Whenever an allocation at some level i fails (due to bucket
fullness), we recursively allocate in the next level only if Li+1 < si+1, and otherwise, we place the value in
any available slot in the overflow array of level i. The result of this is that we deterministically guarantee
Li si for every level i (including level 0, for which this is trivial, since s0 = s).

Importantly, no overflow array can ever run out of space: since Li si (deterministically), the total
number of elements in the overflow array for level i is also a guaranteed to be a most si, which is precisely
the capacity of the overflow array.

We are now ready to describe the full allocation algorithm. See Figure 2 for a picture of the layout used
to implement each container.

Allocate(k):

1. Hash k into one of the n/ log n containers.

2. If the selected container is already at full capacity s, fail.

3. Else, allocate k in the selected container:

(a) For each i = 0, 1, . . . , log2 s� 1:

i. Increment Li.

ii. Try to allocate k in the ith load-balancing table.

iii. If the allocation succeeds:

• Let j be the chosen slot within the chosen bucket.

• Return (level i, load-balancing table, bucket slot j).

iv. If Li+1 � si+1:

• Pick any free slot in the i-th overflow array.

• Let j be the chosen slot in the array.

• Return (level from the back log2 s� 1� i, overflow array, slot j).

Notice that, if an allocation ends up using a slot j in some bucket in the i-th level’s load-balancing
table, then the tiny pointer encodes: the quantity i, which is O(log i) bits; the fact that the allocation used
the load-balancing table rather than the overflow array, which is O(1) bits; and the quantity j, which is
O(log b) = O(1) bits. The total length of the tiny pointer is O(log i) in this case.9

On the other hand, if an allocation ends up using the j-th slot in the i-th level’s overflow array, then the
tiny pointer encodes: the quantity log2 s�1�i, which is O(log(log2 s�1�i)) bits; the fact that the allocation
used the overflow array rather than the load-balancing table, which is O(1) bits; and the quantity j, which is
O(log si) bits. Importantly, in this case, we elect to encode log2 s�1� i, rather than the equivalent quantity
i. This allows us to bound the total size of the tiny pointer by

O(log(log2 s� 1� i)) +O(1) +O(log si) = O(log log(s/2i) + log si) = O(log log si + log si) = O(log si).

9We follow the convention that log i = ⌦(1) for all i, so log 0 and log 1 are set to 1.

11

Thus, when an allocation uses the overflow array in level i, we can bound the tiny-pointer size by O(log si).

Implementing operations in constant time. The information in the tiny pointers allows for dereferences
to easily be performed in time O(1). Performing allocations and frees in time O(1) is slightly more di�cult,
however.

Let us start by considering the näıve approach to implementing allocations and see why this is too slow.
We must first identify which container to use (this just requires us to evaluate a hash function, taking
constant time). We must then determine which level we will be using; if we end up using level i, then this
takes time ⇥(i), which is too slow when i = !(1).

We solve this problem as follows. Let d to be some su�ciently large positive constant. We will implement
levels 0, 1, . . . , d� 1 using the naive approach, and then we will implement the levels d, . . . , log2 s using the
Method of Four Russians (i.e., the “lookup-table approach”). Notice that the total number of slots in the
levels d, . . . , log2 s is at most 4sd/2d (log n)/10. Thus the entire state of which slots are free in those
levels can be encoded in (log n)/10 bits; we store this quantity as metadata for each container, totaling to
O(n) bits of metadata across all n/ log n containers. Moreover, the hashes h1(k), h2(k), . . . , hlog2 s(k) that
are used to select a bucket in each level together represent only O((log log n)2) bits (and can be implemented
to just be the first O((log log n)2) bits of a single hash function). Thus, the entire state of levels d, . . . , log2 s,
plus all of the information about the hashes h1(k), h2(k), . . . , hlog2 s(k), can be encoded in an integer � of
(log n)/2 bits that can be constructed in time O(1). This means that we can pre-construct a lookup table of
size 2(logn)/2 =

p
n that we can use to determine, for any given value of �, which level the allocation should

use. The lookup table takes a negligible amount of metadata space, allows for allocations to be performed
in time O(1), and can be constructed in time Õ(

p
n) during the dereference table’s creation.

Now that we have specified how to implement allocations, frees are simple to implement, since they just
update the metadata to reflect that the slot has been freed (this just flips a single bit in the metadata).

We have now fully specified the construction and implementation of our dereference table. It remains to
analyze its properties, namely the probability of failure, the load factor, and the tiny-pointer sizes.

Probability of failure. The only way that an allocation can fail is if there is no room in the container
that it hashes to, i.e., the container has c log n elements already. Otherwise, if the container has fewer than
c log n elements, then the allocation is guaranteed to succeed (but, of course, it is not guaranteed to result
in a small tiny pointer).

On average, log n items hash to any particular container, so by a Cherno↵ bound the maximum size
across all containers is at most c log n w.h.p. in n for some positive constant c. By the union bound, this
holds for all of the n/ log n containers simultaneously, w.h.p. in n. Thus, if we pick s = c log n for some large
enough constant c, at any point in time, all containers will be below capacity w.h.p. in n.

Load factor. Next, we verify that the total number of slots is O(n). The dereference table for each container
uses space O(

P
i
si) = O(s0) = O(s) = O(log n) slots, and there are n/ log n containers. Hence, the total

space is O(n), so the load factor is ⌦(1), as desired.

Tiny pointer size. To conclude the proof of Proposition 1, we analyze the tiny pointer size of a given
allocation, conditioned on the event that the allocation doesn’t fail. The size of the tiny pointer depends on
where the key ends up allocated. Specifically, it is:

• O(log i) if the key is allocated in the ith load-balancing table;

• O(log si) if the key is allocated in the ith overflow array.

Fix an arbitrary container to be the one where the allocation takes place, and consider the following
events:

• Bi: the key is allocated in the ith load-balancing table;

• Oi: the key is allocated in the ith overflow array;

• Li: Li < si.

12

We will condition on two events: (i) that the element picks the container we fixed, and (ii) that the container
contains fewer than c log n elements (i.e., the allocation doesn’t fail). We will drop the conditioning notation
for clarity. Let P be the size of the output tiny pointer. Then, by the law of conditional expectation,

E [P]
X

i

Pr [Bi] ·O(log i) +
X

i

Pr [Oi] ·O(log si). (1)

We bound each term separately. On the one hand,

Pr [Bi] Pr
⇥
B0,L1,B1, . . . ,Li�1,Bi�1

⇤

 Pr
⇥
B0

⇤
· Pr

⇥
B1 | B0,L1

⇤
· · ·Pr

⇥
Bi�1 | B0,L1, . . . ,Bi�2,Li�1

⇤
. (2)

For every j, the load factor of level j is at most 1/b, because there are Lj < sj items, sj buckets, and each
bucket has capacity b. This means that at most 1/b of the bins are full, deterministically, so the probability
that a full bucket is chosen at most 1/b. Hence, every term in Equation (2) is bounded by 1/b, and

Pr [Bi] 1/bi 1/2i.

On the other hand,
Pr[Oi] Pr[Li+1].

We can bound the latter probability using Lemma 1. By construction, the load-balancing table in level i
always has at most si allocations made to it (including the failed ones, since Li si and Li counts both the
elements in level i and the elements in levels i+ 1, i+ 2, . . .); moreover, the allocations and frees performed
on the table are independent of the randomness used in the table. Assuming that the bucket-size b is a
su�ciently large constant, it follows that we can apply Lemma 1 to deduce that, with probability at least

1� exp(� poly(b)si) = 1� exp(�⌦(si)),

the number of failed allocations at level i at any given moment is at less than si/2 = si+1 (and hence Li+1

holds). Thus, we can conclude that
Pr[Oi] 1/2⌦(si).

Putting the pieces together,

E [P] =
X

i

O(log i)

2i
+

X

i

O(log si)

2⌦(si)
= O(1).

Notice that these calculations show that a tiny pointer of size O(log `) has probability 2�⌦(`), or, equiv-

alently, a tiny pointer of size O(`) has probability 2�2⌦(`)

. This suggests that the tiny pointer size decays at
a doubly-exponential rate. We prove this next. For any `,

Pr [P � `]
X

i:O(log i)�`

Pr [Bi] +
X

i:O(log si)�`

Pr [Oi]

=
X

i�2⌦(`)

Pr [Bi] +
X

si�2⌦(`)

Pr [Oi]

=
X

i�2⌦(`)

1

2i
+

X

si�2⌦(`)

1

2⌦(si)
.

Both sums are dominated by their first terms, and are thus 1/22
⌦(`)

. Therefore,

Pr [P � `]
1

22⌦(`) ,

which completes the proof of Proposition 1. As discussed earlier, Proposition 1, in turn, implies Theorem 2.

Bounding sums of tiny-pointer sizes. In our applications of tiny pointers, a common way of using

variable-size pointers will be to pack ⇥
⇣

logn

log ��1

⌘
of them into ⇥(log n) bits. Therefore, we conclude this

section by proving a bound of the total number of bits consumed by a set S of O(log n/ log ��1) tiny
pointers.

13

Proposition 2. Using the construction in Theorem 2, for any set S of O
⇣

logn

log ��1

⌘
tiny pointers, the sum

of their sizes will be O(log n) bits w.h.p.

Proof. With high probability, all of the allocations for S succeed. This means that we can ignore the case
where allocations fail, so when an allocation fails, we shall treat it as contributing a tiny pointer of size 0.

Let K be the set of keys corresponding to the tiny pointers in S. The easy case is if every key k 2 S
hashes to a di↵erent container; in this case, we can analyze each container separately to conclude that

each tiny pointer Allocate(k) independently has length O(log ��1 + Pk) bits, where Pr[Pk > `] 2�2⌦(`)

.
Applying a Cherno↵ bound for sums of independent geometric random variables, we can conclude thatP

k2K
Pk O(log n) w.h.p., and thus that the total number of bits consumed by S is O(log n).

What if some of the keys k 2 K hash to the same container as others k0 2 K? Then we can no longer
analyze the lengths of the resulting tiny pointers independently. Let X denote the set of such keys k. Since
each tiny pointer is deterministically at most O(log n) bits, we can complete the proof by establishing that,
with w.h.p., |X| = O(1).

Let k1, k2, . . . denote the keys in K, and let Xi be the indicator random variable for the event that ki
hashes to the same container as one of k1, k2, . . . , ki�1. Then |X| 2

P
i
Xi. On the other hand, each Xi

independently satisfies Pr[Xi] (i � 1)/n |S|/n O(log n/n). Thus
P

i
Xi is a sum of independent

indicator random variables with total mean O(log2 n/n). Applying a Cherno↵ bound, we conclude thatP
i
Xi = O(1) w.h.p./, which completes the proof.

5 Lower Bounds

In this section we prove that the bounds in Theorems 1 and 2 are tight. We begin by proving a lower bound
for variable-size tiny pointers, since it is then used as part of the proof for the fixed size case.

What makes the lower bound for variably sized tiny pointer tricky is that any single tiny pointer might
be very small. For example, the dereference table could have a single special slot that corresponds to the
tiny pointer 0 (for every key), and then if the dereference table ever wanted to make a single tiny pointer
small, it could allocate the special slot. Thus, our proof treats di↵erent types of slots di↵erently: for each
slot j, we define a potential function �(j) indicating how “useful” that slot is to a random insertion. The
idea is that insertions that use slots j with small potentials �(j) must, on average, have relatively large tiny
pointers; but insertions that use slots j with large potentials �(j) must be rare, since only a relatively small
fraction of the slots can have large potentials, and the number of insertions into them can be bounded by
the number of deletions out of them.

Theorem 3. Consider a universe U of keys, where U is assumed to have a su�ciently large polynomial size.

If a dereference table supports variable-sized tiny pointers of expected size s and load factor 1 � � = ⌦(1),
then s = ⌦(log ��1).

Proof. Let U be a universe of size nc where c is a su�ciently large constant. Let � < 1/4. Let T be a
dereference table with n slots and load factor 1 � � (i.e., it is capable of allocating up to (1 � �)n slots to
keys from U at a time). Moreover, suppose that T guarantees an expected tiny-pointer length of at most µ.
Then we wish to show that

µ � ⌦(log ��1).

To simplify our discussion, we shall think of a key k 2 U as residing in the location that is allocated to
it. Thus allocations correspond to insertions, and frees correspond to deletions.

Consider a workload in which the table is initialized to contain (1 � �)n arbitrary elements, and then
we alternate between insertions and deletions for nc/2 steps. Each insertion selects a random element of U
(with high probability in n, we never insert an element that is already present), and each deletion selects a
random element out of those present.

We treat tiny pointers as taking values in N. If the tiny pointer takes value i, then it uses ⌦(log i) bits.
For each element x 2 U , let hi(x) denote the position where x would reside in T if x had a tiny pointer with
value i. Set ` = ��1/32. For each position j 2 [n] in the table, define the potential �(j) to be

�(j) =
|{u 2 U , i 2 [`] | hi(u) = j}|

|U|
.

14

Call an insertion safe if the element x that is inserted is inserted into one of positions h1(x), . . . , h`(x).
Call an insertion resource e�cient if the element x that is inserted is inserted into a position j satisfying
�(j) 4`

n
.

The probability that a given insertion is both safe and resource e�cient is at most

X

empty position j2[n]
�(j) 4`

n

`X

i=1

Pr
x2U

[hi(x) = j]

=
X

empty position j2[n]
�(j) 4`

n

`X

i=1

1

|U|

X

x2U
Ihi(x)=j

=
X

empty position j2[n]
�(j) 4`

n

�(j)

X

empty position j2[n]

4`

n

= �n
4`

n

=
1

8
.

It follows that the expected number of insertions that are safe and resource e�cient is at most nc/2/8.
Next we bound the expected number of insertions A that are safe but not resource e�cient. Rather than

bound A directly, we instead examine the number of deletions B where the deleted element is deleted from
a position j satisfying �(j) > 4`

n
. Note, in particular, that

A B + n.

By the definition of �(j), we have that
P

n

j=1 �(j) = `. It follows that |{j 2 [n] | �(j) > 4`
n
}| n/8.

Each random deletion therefore has probability at most n/8
(1��)n 1/4 of removing an element in a position

j satisfying �(j) > 4`
n
. Thus E[B] nc/2/4 which means that

E[A] nc/2/4 + n nc/2/2.

Since the expected number of insertions that are safe and resource e�cient is at most nc/2/8 and the
expected number of insertions that are safe and resource ine�cient is at most nc/2/2, the expected number of
insertions that are safe is at most 5

8n
c/2. The expected number of insertions that are not safe is therefore at

least 3
8n

c/2. Each unsafe insertion results in a tiny pointer of length at least ⌦(log `) = ⌦(log ��1) bits. Since
a constant fraction of the insertions are expected to result in a tiny pointer of length at least ⌦(log ��1), we
must have µ � ⌦(log ��1).

Next we prove a lower bound for fixed-sized tiny pointers, which shows that the bound in Theorem 1 is
tight.

Theorem 4. Consider a universe U of keys, where U is assumed to have a su�ciently large polynomial

size. If a dereference table supports fixed-sized tiny pointers of size s and load factor 1 � � = ⌦(1), then

s = ⌦(log log log n+ log ��1).

It su�ces to prove that s = ⌦(log log log n), since we have already shown that s = ⌦(log ��1).
The proof re-purposes a classic balls-and-bins lower bound. Say that a ball-placement rule is sequential

if balls are placed sequentially, without knowledge of future ball arrivals, and if balls are never moved after
being placed.

15

Theorem 5 (Theorem 2 in [55]). Suppose that m balls are placed sequentially into m bins using an arbitrary

sequential ball placement rule choosing d bins for each ball at random according to an arbitrary probability

distribution on [m]d. Then the number of balls in the fullest bin is ⌦((log logm)/d) w.h.p.

We now prove Theorem 4.

Proof of Theorem 4. Assume for contradiction that there exists a dereference table with load factor 1� � =
⌦(1) and that supports fixed-size tiny pointers of size s = o(log log log n) bits. Let n be the number of slots in
the dereference table, and let m = (1��)n be the maximum number of allocations that the dereference table
can support at a time; assume without loss of generality that 1/(1� �) 2 N, so n is a multiple of m. Finally,
let S = 2s, and observe that, by assumption, S = o(log log n)—and since m = ⇥(n), S = o(log logm).

Recall that U is the universe from which the keys are taken. For each key x 2 U , define the sequence
h1(x), h2(x), . . . , hS(x) 2 [m] so that hi(x) = b

m

n
Dereference(x, i)c. Note that, by the definition of the

Dereference function, the sequence h1(x), h2(x), . . . , hS(x) is a function of only on x, i, n, and the random
bits of the dereference table—therefore, the sequence is predetermined by the coin flips, and is independent of
the sequence of allocations/deallocations that are performed. Let R 2 [m]S be a random variable obtained
by selecting x 2 U at random and setting R = hh1(x), h2(x), . . . , hS(x)i; and let R be the probability
distribution for R.

We will now construct a sequential ball-placement rule for mapping m balls to m bins. Our rule inde-
pendently assigns each ball a random bin sequence hh1, h2, . . . , hSi ⇠ R of S bins. Equivalently, we can
think of the m balls as being m keys x1, x2, . . . , xm, where each xi is selected uniformly and independently
at random from U , and each xi has a bin sequence of hh1(x), h2(x), . . . , hS(x)i 2 [m]S .

Since |U| � poly(n), we have that with high probability in n, the xi’s are distinct. Our ball placement
rule uses our dereference table to decide where to place balls. To place ball xi into a bin, we compute
pi = Allocate(xi), and we place xi into the pi-th bin in xi’s bin sequence, which is given by bin

hpi(xi) =
jm
n
Dereference(xi, pi)

k
2 [m].

In summary, we have constructed a sequential ball placement rule that places m balls sequentially into
m bins and that chooses a set of d = S bins for each ball according to a probability distribution R over [m]d.
By Theorem 5, we can deduce that the fullest bin contains at least

⌦ ((log logm)/d) = ⌦ ((log logm)/S) = !(1)

balls with high probability in m.
On the other hand, the dereference table guarantees that Dereference(xi, pi) 2 [n] is unique for each

i 2 [m]. The number of balls xi satisfying

jm
n
Dereference(xi, pi)

k
= j

for a given j is therefore at most n

m
= O(1). This means that the number of balls in any given bin is also

O(1). Since the dereference table succeeds with high probability in n, we can deduce that there are O(1)
balls in the fullest bin with high probability in n. This contradicts the fact that the number of balls in the
fullest bin is !(1), thereby completing the proof by contradiction.

6 Applying Tiny Pointers to Five Problems in Data Structures

In this section we present several applications of tiny pointers to classical problems in data structures:

• Relaxed Retrieval: we show that a slight modification to the classic retrieval problem eliminates the
classical lower bound of ⌦(log log n) wasted-bits-per-item (Section 6.2).

• Succinct binary search trees: we give an approach for transforming arbitrary dynamic binary search
trees into succinct data structures (Section 6.3).

16

• Space-e�cient stable dictionaries: we transform any fixed-capacity key-value dictionary into a key-value
stable dictionary (Section 6.4).

• Space-e�cient dictionaries: we transform any dictionary with fixed-size values into one which can
space-e�ciently store variably sized values (Section 6.5).

• An optimal internal-memory stash: we construct a constant-time stash that space-e�ciently stores the
locations of elements residing in a large external-memory data structure (Section 6.6).

6.1 Some General-Purpose Techniques for Using Tiny Pointers

Before diving into specific applications, we briefly discuss several preliminary definitions and techniques that
will be useful in multiple of the applications.

Key-value dictionaries. Several of our applications will perform black-box transformations in order to add
new features (namely, stability and variable-sized values) to key-value dictionaries. Formally, a key-value
dictionary (often just called a dictionary) is any data structure that stores key-value pairs (e.g., a hash
table or a tree), where each key appears at most once. Typically, a key-value dictionary supports insertions,
deletions, and queries, where queries, in particular, return the value associated to some key. Depending on
the data structure, additional operations may also be supported, for example successor queries, which return
the successor to some key.

We say that a key-value dictionary uses a value array if it designates some contiguous chunk of memory
(that can be extended or shrunk over time) whose purpose is to store the values corresponding to keys. If
values are k bits long, then the value array can be viewed as a array of k-bit objects.

In our applications, we will restrict ourselves to dictionaries that store their values in value arrays. For
simplicity, we will assume that the dictionary uses a single value array, although all of our results can also
easily be applied to a dictionary that makes use of many separately-allocated value arrays (as long as each
individual value array is at least ⌦(log n) bits). The reason that we assume a single value array is because, to
the best of our knowledge, all of the known space-e�cient key-value dictionaries can easily be implemented
in this format, so we choose to avoid introducing unnecessary complication to the results.

How to store value arrays of tiny pointers. A theme in several of our applications will be to modify a
value array so that, rather than storing values directly, we instead store tiny pointers of some size k. Recall,
however, that tiny pointers of size k = o(log log log n) bits are not fixed-size, meaning that some tiny pointers
may require more than k bits. Nonetheless, if we are willing to use a value-array that is a constant-factor
larger, then there is a simple trick, which we call chunked pointer storage , that lets us interact with these
variable-length tiny pointers in the same way that we would interact with fixed-length tiny pointers.

Break the value array into contiguous chunks of O(log n/k) tiny pointers. By Proposition 2, the total
number of bits used by the tiny pointers in each chunk is O(log n) with high probability in n. Thus each
chunk can be stored in O(log n) bits, meaning that the entire value array can be stored in O(nk) bits.

There is, however, the remaining issue of how to e�ciently access and modify the j-th tiny pointer in
a given chunk. For each chunk, we can store an additional O(log n)-bit bitmap where the bits that are
set to 1 indicate the positions in the chunk where tiny pointers begin and end. To e�ciently find the j-
th tiny pointer, it su�ces to find the j-th and j + 1-th 1s in the bitmap. (The tiny pointer can then be
extracted, modified, and reinserted, in constant time using standard bit manipulation on the bitmap and the
chunk.) The problem of finding the j-th 1 in a O(log n)-bit bitmap is easily solved with the method of four
Russians [9]: simply store an auxiliary lookup table of size

p
n that allows for such queries to be answered

in a (log n)/2-bit bitmap in a single lookup, and then perform O(1) lookups to perform such a query in an
O(log n)-bit bitmap.

How to dynamically resize a data structure using tiny pointers. Several of our applications will
also encounter the problem of using tiny pointers in a data structure whose size dynamically changes over
time. Of course, this means that we must also dynamically resize dereference tables. Our applications will
take the following approach, which we call zone-aggregated resizing .

Consider a value array storing tiny pointers to k-bit items in a dereference table (and assume k bits fit in
O(1) machine words). Suppose that we wish to maintain the dereference table at a load factor of 1�⇥(1/k),

17

that way the number of bits wasted per item stored is O(1); note that this means that the tiny pointers in
the value array are ⇥(log k) bits on average. Further suppose, however, that the value array dynamically
changes size over time (meaning that elements must be added and removed from the dereference table). For
our discussion here, we will assume that the value array itself is dynamically resized to always be at a load
factor of at least ⌦(1).

How can we update the dereference table to maintain a load factor of 1 � ⇥(1/k) while the number of
items changes over time? Rather than just using a single dereference table, we use k dereference tables, and
add ⇥(log k) bits to each tiny pointer in order to indicate which dereference table is being pointed into (this
doesn’t change the asymptotic size of the tiny pointers). We can grow and shrink the capacity (i.e., number
of slots) of the dereference tables by either (a) rebuilding the smallest dereference table to double its size, or
(b) rebuilding the largest dereference table to halve its size. If we assume for the moment that rebuilding a
dereference table takes time proportional to the table’s size, then the rebuilds can be de-amortized to take
time O(1) per operation (i.e., per modification to the dereference tables), while maintaining the desired load
factor of 1�⇥(1/k).

The problem with rebuilding a dereference table is that all of the tiny pointers into that dereference table
become invalidated. The actual construction of the new dereference table can easily be performed in linear
time, but how do we update the tiny pointers in the value array? If the value array has size n, then the
dereference table being rebuilt consists of only ⇥(n/k) items. We want to identify where the tiny pointers
to those items are in the value array in time ⇥(n/k) rather than time ⇥(n).

The solution to this issue is very simple: break the value array into contiguous zones each of which
consists of k values. Within each zone, maintain k linked lists, where the i-th linked list contains the tiny
pointers that point into the i-th dereference table. Importantly, because these linked lists are within a zone
of size k, the pointers within each linked list only require ⇥(log k) bits each; thus the linked lists do not
asymptotically increase the size of the value array. On the other hand, in order to find all of the tiny pointers
for a given dereference table, one can simply look at one linked list in each of the ⇥(n/k) zones, allowing for
all ⇥(n/k) of the tiny pointers to be identified in time ⇥(n/k).

For reasons that we shall see later, one of our applications will also require us to use larger zones of size
poly(k) rather than just of size k. For now, we simply remark that using larger zones of size poly(k) still
allows for the linked-list overhead of each tiny pointer to be bounded by ⇥(log k) bits, and that the time
needed to identify the tiny pointers to a dereference table of size j is only

O(j + n/ poly(k)), (3)

since the number of linked lists that must be examined is only O(n/ poly(k)).

6.2 Overcoming the ⌦(log log n)-Bit Lower Bound for Data Retrieval

Our first application revisits the classic retrieval problem [5, 26–28], in which a data structure must store
a v-bit value for each of the k-bit keys in some set S, and must answer queries that retrieve the value
associated with a given key. Here, we address the dynamic version of the problem, where the data structure
must support the functions Insert(x, y) (which inserts a new x 2 [2k] into S and associates it with value
y 2 [2v]), Delete(x) (which removes some x 2 S from S), and Query(x) (which returns the value y
corresponding to x for some x 2 S), allowing for the set S to grow up to some maximum size n. Note that,
in the retrieval problem, it is the user’s responsibility to ensure that every invocation of Insert is on a key
x 62 S, every invocation of Query is on a key x 2 S, and every invocation of Delete is on a key x 2 S.

It is known that, if k = (1 + ⌦(1)) log n bits, then any solution to the dynamic retrieval problem must
use at least nv + ⌦(n log log n) bits of space [5], regardless of the time complexity, and even if v = 1. It
is further known that, if k = ⇥(log n) and v = O(log n), then the nv + ⇥(n log log n) space bound can be
accomplished by a randomized constant-time data structure [26].

We will now show that, by slightly relaxing the retrieval problem, we can use tiny pointers to obtain sig-
nificantly better space bounds. In the relaxed retrieval problem , the insertion/deletion/query operations
are modified to work as follows. The operation Insert(x, y) now returns a tiny retriever r which the user
must remember. In the future, if the user wishes to query x (and they have not yet deleted x), they call
Query(x, r) to obtain the value y. Finally, if the user ever wishes to remove x from the set S, then the user
calls Delete(x, r).

18

The role of the tiny retriever is similar to that of a tiny pointer—it acts as a hint to assist the data
structure. Unlike for tiny pointers, however, the pair (x, r) does not have to fully encode the position of y;
instead, query operations Query(x, r) can use auxiliary metadata, beyond just x and r, to determine the
value y. We shall now see that this distinction is very important, allowing for us to do better than both the
lower bound for the retrieval problem [5] and our lower bound for the tiny-pointer problem (Theorem 3). At
the same time (almost paradoxically), it is our construction for variable-size tiny pointers that allows for us
to get around both of these lower bounds.

Theorem 6. Consider the relaxed retrieval problem with k-bit keys, v-bit values, and a maximum capacity

of n key/value pairs. Let r 2 [log⇤ n] be a parameter. There is a solution to the relaxed retrieval problem

that uses tiny retrievers of expected size O(1), and that with high probability in n: takes constant time per

query, takes O(r) time per insertion/deletion, and uses total space nv +O(n log(r) n) bits.
Furthermore, if log(r) n = !(1) and v

logn

log(r) n
, then the space consumption becomes nv +O(n) bits.

The above theorem comes with an interesting tradeo↵ curve: constant-time insertions/deletions can
achieve a space consumption of, for example, nv + O(n log log log log log n) bits, and O(log⇤ n)-time inser-
tion/deletions can achieve space consumption nv+O(n) bits. Moreover, if v is slightly sub-logarithmic, then
even constant-time insertions/deletions can achieve nv +O(n) bits.

We remark that the tiny retrievers in Theorem 6 are, in fact, variable-size tiny pointers as constructed
in Theorem 2. They therefore satisfy the doubly-exponential tail inequality given by Theorem 2, as well as
the concentration inequality given by Proposition 2.

Proof. We shall make use of Theorem 2 to construct a dereference table T with 2n slots. What makes our
application of Theorem 2 unusual, however, is that we will not store anything in the store (if fact, we need
not even allocate space for it). Instead, we will take advantage of the fact that Dereference(x, p) is a
(1 + log n)-bit number that has been uniquely allocated to x.

To implement the operation Insert(x, y), we call Allocate(x) to obtain a tiny pointer p of expected
size O(1) (note that p will also be our tiny retriever). Define sx = Dereference(x, p) to be the slot number
in [2n] allocated to x. The main property that we will exploit is that sx 6= sx0 for all other x0

2 S. To
complete the Insert operation, we insert the key/value pair (sx, y) into a succinct hash table H (whose spec-
ifications we will describe later). Queries and deletes are then implemented as follows: Query(x, p) returns
H[Dereference(x, p)]; and Delete(x, p) deletes key Dereference(x, p) from H and calls Free(x, p) on
the dereference table T .

The correctness of the data structure follows from the fact that, for each x 2 S with tiny retriever p,
Dereference(x, p) is unique. The dereference table uses space only O(n) bits and supports constant-time
operations (with high probability). Thus, to prove the theorem, it remains to analyze the hash table H.

We construct H using the most space-e�cient known construction for a hash table [13]. If H is storing
up to n keys from a universe U and values are v bits, then it supports the following guarantees with high
probability: queries are constant-time, insertions/deletions take time O(r), and the total space consumption
is

log

✓
|U |

n

◆
+ nv +O(n log(r) n)

bits. If, in addition, log(r) n = !(1) and v
logn

log(r) n
, then the space becomes log

�|U |
n

�
+ nv +O(n) bits.

Our use of tiny pointers ensures that the keys in H are from the very small universe U = [2n]. So

log

✓
|U |

n

◆
= log

✓
2n

n

◆
= O(n)

by Stirling’s approximation. This completes the proof of the theorem.

A remark on resizing. In Subsection 6.3, we shall see an application of tiny retrievers to the problem
of constructing succinct binary search trees. In this application, we will want to have two relaxed-retrieval
data structures whose sizes sum to at most n. Here, we can take advantage of the fact that the hash table

19

H used above actually o↵ers a dynamically-resizing guarantee: if, at any given moment, the hash table has
size m, then it uses space at most

p
n+ log

✓
2n

m

◆
+mv +O(m log(r) n),

with high probability in n. The full retrieval data structure (consisting of the hash tableH and the dereference
table T) therefore uses space at most

log

✓
2n

m

◆
+mv +O(n+m log(r) n).

By Stirling’s inequality, this is at most

m log n�m logm+mv +O(n+m log(r) n).

Thus, if we have two relaxed-retrieval data structures, one of size m1 n and one of size m2 n, and
m = m1 +m2 = ⇥(n), then their total space consumption will be at most

(m1 +m2) log n�m1 logm1 �m2 logm2 + (m1 +m2)v +O((m1 +m2) log
(r) n)

=m log n�m1 logm1 �m2 logm2 +mv +O(m log(r) n).

By Jensen’s inequality, m1 logm1 +m2 logm2 � (m1 +m2) log
m1+m2

2 = m log m

2 = m log n � O(n). Thus
the total space is at most

m log n� (m log n�O(n)) +mv +O(m log(r) n)

= mv +O(m log(r) n)

= mv +O(m log(r) m)

This, of course, is the same bound that we get for a single relaxed-retriever data structure of size m.
The reason that this matters is that it allows for a simple way to perform dynamic resizing: every time

that the size m of a data structure changes by a factor of two, we move all of the elements in the current
relaxed-retrieval data structure D1 into a new relaxed-retrieval data structure D2 (parameterized as having
capacity n = ⇥(m) based on the new value of m). As we move elements from D1 to D2, the total space
consumption of D1 and D2 will continue to be mv + O(m log(r) m) bits. Note that, to move an element
from D1 to D2, we will need to generate a new tiny retriever for that element (since we are deleting the
element from D1 and inserting it into D2). In our binary-search-tree application, this will be easy to do
by simply running through all of the elements and relocating them one by one. Furthermore, since the
work of constructing D2 can be spread across ⇥(n) operations, it can be achieved at a cost of O(r) per
insertion/deletion.

6.3 Succinct Binary Search Trees

Our second application is a black-box approach for transforming dynamic binary search trees into succinct
data structures. If there are n elements in the succinct search tree, each of which is k bits long, then the size
of the succinct search tree will be at most nk+O(n+n log(r) n) bits, where r > 0 is an arbitrary parameter.
Path traversals in the tree incur only a constant-factor overhead, and modifications to the tree incur only
an O(r)-factor overhead.

An advantage of our approach is that it can be applied to rotation-based search trees. This includes, for
example, red-black trees [36], splay trees [54], etc. If the dynamic-optimality conjecture [54] is true, meaning
that the splay tree is dynamically optimal, then our succinct splay tree is also dynamically optimal when
r = O(1).

20

Theorem 7. Consider any binary search tree storing a-bit keys and b-bit values, where every node is as-

sociated with a distinct key, and where each node has pointers to its children. For any r > 0, the tree can

be implemented to o↵er the following guarantees with high probability in the tree size n: the tree takes space

na+ nb+O(n+ n log(r) n) bits, traversals from parents to children take time O(1), and modifications to the

tree (i.e., adding or removing an edge) take time O(r).

We remark that, information theoretically, the tree use consume n(a + b) bits of space. And since the
keys are distinct, na = ⌦(n log n). Thus, for any r > 1, the search tree above is succinct.

Proof. We will make use of our solution to the relaxed retrieval problem (Theorem 6). However, the key/value
pairs (x, y) that we will store in the relaxed-retrieval data structure will be a bit unusual in that y will take
the following form: y contains x’s b-bit value, along with two tiny retrievers r1 and r2. Since r1 and r2 are
themselves variable-length tiny pointers of expected size O(1), this means that y is also variable-length. On
the other hand, the relaxed-retrieval data structure is designed for fixed-length values. Fortunately, we can
store the tiny retrievers r1 and r2 with the following method. Recall that, in our construction for the relaxed
retrieval problem, we create a dereference table with 2n slots, but we do not actually store anything in the
dereference table’s store. We now change this so that the store is a value array with 2n slots that stores the
tiny retrievers r1 and r2 for each item in the dereference table (so, if p is the tiny pointer for x, then r1, r2
are in the Dereference(x, p)-th position of the value array). Using the chunked pointer storage technique,
we can ensure that the total size of the value array is O(n) bits, even though the pointers that it stores are
variable length.

We now describe our encoding of the binary search tree: Each node in the search tree stores the key-value
pair (x, y) corresponding to that node along with two tiny retrievers r1 and r2. The tiny retriever r1 is for
the left child and uses x � 0 as its key (so Query(x � 0, r1) returns the left child of x), and the tiny retriever
r2 is for the right child and uses x � 1 as its key (so Query(x � 1, r1) returns the right child of x). Note that,
if the left child (resp. right child) does not exist, then we simply set r1 (resp. r2) to null.

Let us begin by assuming that our binary search tree has a fixed capacity of n keys/values, so we
can use a relaxed-retrieval data structure with capacity n. Then our relaxed-retrieval data structure uses
na+nb+O(n+n log(r) n) bits. Navigating from a node to its child takes time O(1) (since it requires a single
query to the relaxed-retrieval data structure) and adding/removing an edge (x, z) from a node x to a child
z takes time O(r), with high probability, since it requires only a single insert/delete to the relaxed-retrieval
data structure; importantly, if z is the root of some subtree, the act of setting z to be x’s child does not

require any nodes besides z to inserted/deleted in the relaxed-retrieval data structure.
Finally, let us modify our data structure so that it dynamically resizes as a function of the current number

n of key/value pairs. For this, we can simply use the resizing approach outlined in Section 6.2. Every time
that n changes by a constant factor, we rebuild the relaxed-retrieval data structure to have capacity ⇥(n)
for the new value of n. (Note that this does not require us to rebuild the tree; it just requires us to update
the tiny retrievers used in each node.) For each relaxed retriever in the binary search tree, we can store
an extra bit indicating which of the two relaxed-retrieval data structures it uses—this preserves correctness.
As observed in Section 6.2 the act of moving items from the old relaxed-retrieval data structure to the new
one does not violate our desired space guarantee: the total number of bits used by our search tree remains
na+ nb+O(n+ n log(r) n) at all times. And, by spreading the work of rebuilding the relaxed-retrieval data
structure across ⇥(n) operations, we maintain the property that each edge insertion/deletion takes time
O(r). Thus the theorem is proven.

6.4 Space-E�cient Stable Dictionaries

Using tiny pointers, we give a black-box approach for transforming any fixed-capacity key-value dictionary
into a stable dictionary, meaning that the position in which a value is stored never changes after the value
is inserted. If the original dictionary stored k-bit values, then the new dictionary also stores k-bit values,
and uses at most O (log k) extra bits of space per value than the original data structure.

Theorem 8. Consider a fixed-capacity key-value dictionary data structure T that stores its values in a value

array of some size m. Let v denote the size of each value in bits.

21

It is possible to construct a new data structure T 0
with the same operations and asymptotics (with high

probability) as T , but with the additional property that T 0
is stable. Moreover, the total space consumed by

T 0
is guaranteed (with high probability in m) to be at most O(m log v) more bits than T .

Proof. To construct T 0, we simply replace the value array for T with an array of m tiny pointers, each of
size ⇥(log v) bits. (If log v < log log log n, then the chunked-storage technique can be used to handle the
fact that di↵erent tiny pointers have di↵erent sizes.) The tiny pointers point into a dereference table of size
(1 + 1/v)m that stores the m v-bit values. (So the load factor is 1�⇥(1/v).) If a tiny pointer points at the
value y corresponding to a key x, then the tiny pointer uses x as its key. This ensures stability, since even if
the location in which the tiny pointer is stored changes, the tiny pointer does not have to change (and the
value y does not have to move).

The array of tiny pointers consumes O(m log v) space. Whereas the value array in T consumes mv bits,
the dereference table in T 0 consumes (1 + 1/v)mv bits, which is only O(m) more bits then used in T . Thus
the claim on space e�ciency is proven. Since tiny pointers only add constant time per access/modification
of the value, the asymptotics are (with high probability in m) the same for both T and T 0.

6.5 Space-E�cient Dictionaries with Variable-Size Values

Our fourth application is a black-box approach for transforming any key-value dictionary (designed to store
fixed-size values) into a dictionary that can store di↵erent-sized values for di↵erent keys. The resulting data
structure o↵ers the following remarkable guarantee on space e�ciency. Let log(r) n = log log · · · log n denote
the r-th iterated logarithm of n. Let r be a positive constant of our choice, and let m be the number of
entries in the value array used by the original dictionary (at some given moment). The new dictionary, which
allows for values to be arbitrary lengths, replaces the value array for T with a data structure that consumes
at most

O(m log(r) m) +
mX

i=1

(vi +O(log vi))

bits, where v1, v2, . . . , vm denote the lengths in bits of the values being stored.

Theorem 9. Consider a key-value dictionary data structure T that stores its values in a value array, and

that is designed to store fixed-length keys. Let r be a positive constant of our choice.

It is possible to construct a new data structure T 0
with the same operations and asymptotics (with high

probability) as T , but with the additional property that T 0
can store values of arbitrary lengths (up to O(1)

machine words).

At any given moment, if T would have been using a value array of size m, and the machine word size w
satisfies w mo(1)

, then the total space consumed by T 0
to implement the value array is guaranteed (with

high probability in m) to be at most

O(m log(r) m) +
mX

i=1

(vi +O(log vi)) (4)

bits, where v1, v2, . . . are the sizes of the values.

We remark that the limitation on value-size to be O(1) machine words is simply so that each value can
be written/read in constant time, that way it is easy to discuss how the asymptotics of T and T 0 compare.
The same techniques work for even larger values without modification, as long as one is willing to spend the
necessary time to read/write values that are of super-constant size.

Proof of Theorem 4. Values in T 0 are stored with up to r levels of indirection. If a value is k bits, then it is
pointed at by a tiny pointer p1 of size O(log k) bits. The tiny pointer p1 is, in turn, pointed at by a tiny pointer
p2 of size O(log log k) bits, and so on, with pointers of size O(log log log k), O(log log log log k), . . . , O(log(r) n).
That is, every value is stored at the end of a linked list of length O(1), where the base pointer of the linked
list is O(log(r) n) bits, and each subsequent pointer is exponentially larger than the previous one.

For each tiny pointer of some size j in the data structure, we must also store O(j) extra bits of information
indicating (a) whether the tiny pointer is pointing at another tiny pointer or at a final value, and (b) what

22

the size is of the tiny-pointer/value being pointed at. Throughout the rest of the proof, we will count these
O(j) extra bits as being part of the size of the tiny pointer.

Since there are both values and tiny pointers of many di↵erent sizes, we must use a di↵erent dereference
table for each size-class of tiny-pointer and the di↵erent dereference table for each size-class of values being
stored. (Note that the dereference tables storing tiny pointers may need to use the chunked-storage technique
to handle variable-sized tiny pointers, so the same dereference table should not be used to store both tiny
pointers and values.)

The problem of dynamically resizing all of the dereference tables simultaneously is slightly tricky. Con-
sider a dereference table A (to A could also be the value array) that stores j-bit tiny pointers for some
j. There are K = 2⇥(j) di↵erent dereference tables B1, B2, . . . , Bk that these tiny pointers can point into
(depending on the size of the object being pointed at, and whether the object is a tiny pointer or a value).
Each Bi must individually be dynamically resized. We will maintain what we call the dynamic-sizing
invariant , which guarantees that each Bi is either (a) at a load factor 1 � O(1/j0), where j0 is the size of
the objects stored in Bi, or (b) is at most a o(1/(Kj))-fraction the size (in bits) of A.

To implement the dynamic-sizing invariant, we dynamically resize each Bi using zone-aggregated resizing
(recall from Section 6.1 that this means Bi is broken into multiple components, and each component is
occasionally rebuilt so that its size either doubles or halves). To allow for components of each Bi to be
rebuilt e�ciently, we break A into zones of size poly(K), meaning by (3) from Section 6.1 that a given
component (of some Bi) consisting of s entries can be rebuilt in time

|A|/ poly(K) + s,

where |A| is the number of entries in A. We perform dynamic resizing on Bi di↵erently depending on whether
it is very small (its components contain fewer than |A|/ poly(K) elements each) or not:

• If the components contain s = ⌦(|A|/ poly(K)) elements each, then we perform zone-aggregated resiz-
ing (exactly as in Section 6.1) to keep Bi at a load factor 1�O(1/j0), where j0 is the size of the objects
stored in Bi. In this case, the time needed to rebuild a component of size s is ⇥(s), so the dynamic
resizing of Bi can be deamortized to take O(1) time per operation (on Bi). Note that, here, Bi is in
case (a) of the dynamic-resizing invariant.

• If the components contain fewer than |A|/ poly(K) elements each, then we perform zone-aggregated
resizing to keep each component of Bi at a capacity of ⇥(|A|/ poly(K)) (even as |A| changes over time,
and regardless of whether the number of elements per component may be significantly smaller than
|A|/ poly(K)). Note that, here, Bi is in case (b) of the dynamic-resizing invariant.

When Bi is in this regime, we cannot amortize the work spent rebuilding Bi to the operations that are
performed on Bi. Instead, we spread out the work spent rebuilding components of Bi in the following
way: for every ⇥(K) work that is spent on A we also spend O(1) time on resizing Bi. Since Bi is more
than a factor of K smaller than A, this is su�cient time to keep Bi in a state where each component
has capacity ⇥(|A|/ poly(K)).

From the perspective of A, every time that we spend constant time on insertions/deletions/rebuilding
A, we also may spend constant time performing rebuild-work on one of the Bis (which, in turn, may
recursively lead us to spend constant time on rebuilding one of the dereference tables pointed at by Bi,
etc.). Importantly, since chains of tiny pointers are at most r O(1) long, the time spent on rebuilds
only introduces a constant-factor overhead on running time per operation.

The resizing approach described above guarantees the dynamic-sizing invariant while incurring only a
constant-factor time overhead per operation. Next we use the invariant to bound the space consumption of
T 0. The dereference tables Bi in case (a) are implemented space-e�ciently enough that the empty slots in
them take negligible space compared to the actual objects stored in them (i.e., the empty slots add O(1)
bits per object), and the dereference tables Bi in case (b) are small enough that they take negligible space
compared to the size of the parent dereference table A (i.e., they cumulatively add o(1) bits per slot in A).
It follows that the total space consumed by dereference tables will be at most the sum of the sizes of the
objects being stored in the dereference tables, plus O(1) bits per object; this, in turn, means that the space
used by T 0 to store values/tiny pointers is given by (4).

23

Next, we bound the time-overhead of T 0 when compared to T . We have already shown that the time-
overhead of performing dynamic-resizing on dereference tables is O(1) per operation. Since values are stored
with at most r = O(1) levels of indirection, the time needed to access/modify a value is also O(1). Thus T 0

has the same time asymptotics as T .
Finally, we argue that the dereference tables used by T 0 succeed at their allocations with high probabil-

ity.10 There are several approaches that we could take to doing this; the simplest is to just add one more
modification to how we perform dereference-table resizing: whenever a dereference table gets down to size
⇥(

p
m), we do not ever resize it to be any smaller.11 This means that some dereference tables could be very

sparse, containing
p
m slots, but containing far fewer elements. Since there are only O(w) = mo(1) di↵erent

dereference tables (recall that w is the machine-word size), the net space consumption of the dereference
tables of size ⇥(

p
m) is o(m) bits. The fact that every dereference table has size at least ⌦(

p
m) means that

all of the dereference tables o↵er high probability guarantees, as desired.

6.6 An Optimal Internal-Memory Stash

Our final application of tiny pointers revisits one of the oldest problems in external-memory data structures:
the problem of maintaining a small internal-memory stash that allows for one to locate where elements
reside in a large external-memory data structure.

The problem can be formalized as follows. We must store a dynamically changing set S of up to n key-
value pairs, where each key-value pair can be stored in one machine word, and where each key is unique. We
are given an external memory consisting of (1+ ")n machine words, where the key-value pairs S are to be
stored. In addition to storing key-value pairs in external memory, we must maintain a small internal-memory
data structure X, which we will refer to as the stash , that supports the following operations:

• Query(k): Using only information in the stash data structure, returns the position in external memory
where the key k and its corresponding value v are stored.

• Insert(k, v): Inserts the key-value pair (k, v), placing the pair somewhere in external memory, and
updating the stash.

• Delete(k, v): Removes the key/value pair (k, v) from the external-memory array, and updates the
stash.

The important feature of a stash is that queries can be completed with a single access to external memory.
On the other hand, in order for a stash to be useful, several other objectives must be achieved:

• Compactness: The stash X needs to be as small as possible, that way it can fit into an internal
memory with limited size.

• E�cient inserts and deletes: Although a stash prioritizes queries, insertions and deletions should
ideally also require only O(1) accesses/modifications to external memory.

• RAM e�ciency: Finally, so that computational overhead does not become a bottleneck, the opera-
tions on a stash should be as e�cient as possible in the RAM model, ideally taking time O(1).

A concrete example of a stash that is used in real-world systems is the page table [1, 2, 10], which is
an operating-system-level dictionary that maps virtual page addresses to where their corresponding physical
pages reside in memory. The page table is accessed for every address translation, so it is performance critical
and thus highly optimized. Additionally, it is important that the page table be space-e�cient, so that it may
be e↵ectively cached in the processor cache hierarchy. Note that, although page tables get to select where
physical pages reside in memory, they do not get to move physical pages that have already been placed; thus
any stash that is used as a page table must also be stable. For this reason, past work [35,41,42] has typically
included stability as an additional criterion for a stash.

10There are many di↵erent ways that one could handle allocation failures, including, for example, performing batch-rebuilds
of the data structure.

11However, since m may dynamically change over time, we do need to spend constant time per operation resizing dereference
tables of size ⇥(

p
m) so that they stay size ⇥(

p
m) as m changes.

24

Work on designing space-e�cient and time-e�cient stashes dates back to the late 1980s [35,41,42]. The
best-known theoretical results are due to Gonnet and Larson [35], who give a stable stash that uses only
O(n log "�1) bits. A remarkable consequence of this is that, when " = ⇥(1), it is possible to construct a
stash using only O(n) bits.

Gonnet and Larson’s result comes with several significant drawbacks, however [35], which have proven
di�cult to fix. First, due to its reliance on stable uniform probing [40] as a mechanism for determining where
keys/values should reside, the stash only o↵ers provable guarantees in the setting where insertions/deletions
are performed randomly. Second, the data structure is not constant-time in the RAM model, instead taking
expected time ⇥("�1).

Using tiny pointers, we show that modern techniques for constructing filters can easily be adapted in
order to construct a stable stash of size O(n log "�1) bits that supports constant-time operations in the RAM
model (with high probability) and that supports arbitrary sequences of insertions/deletions/queries.

Theorem 10. It is possible to construct a stable stash that supports constant-time operations in the RAM

model, that stores up to m keys/values in an external-memory array of size (1 + ")m, and that uses only

O(m log "�1) bits of internal-memory space. All of the guarantees for the stash hold with high probability in

m.

Proof. The starting point for our design is the adaptive filter of Bender et al. [12]. Like a stash, their
filter is a space-e�cient internal-memory data structure that summarizes the state of an external-memory
key-value dictionary. Unlike a stash, their filter does not indicate where in external memory each key/value
is stored. Instead, the filter answers containment queries with the following guarantee: each positive query
is guaranteed to return true, and each negative query is guaranteed to return false with probability at least
1� " (for some parameter "). The size of their internal-memory data structure is only (1+ o(1))m log "�1 =
O(m log "�1) bits, where m is the capacity of the filter.12

The basic idea behind the adaptive filter of [12] is to store a fingerprint for each key x, where each
fingerprint is taken to be some prefix of the hash h(x). Di↵erent keys have di↵erent-length fingerprints, and
the invariant maintained by the filter is that no fingerprint is a prefix of any other fingerprint. To maintain
this invariant while also keeping the fingerprints as small as possible, the filter will sometimes change the
lengths of O(1) di↵erent fingerprints during a given insertion/deletion; to change the length of a fingerprint,
the key corresponding to that fingerprint must first be fetched from external memory, that way the hash
h(x) of that key can be recomputed.13

The fingerprints in the filter are stored as follows. The first lg n bits of each fingerprint are called the
quotient , and these bits are used to assign the key to one of n bins; importantly, the fact that the bin-choice
encodes the quotient of each of the keys in the bin means that the data structure does not have to explicitly
store the quotients of the fingerprints. The next log "�1 bits of each fingerprint are called the baseline
bits, and these bits are included for every fingerprint in the data structure. Finally, any subsequent bits
in a fingerprint are called the adaptivity bits, and these bits are added/removed in order to maintain the
prefix-freeness invariant. A central piece of [12]’s analysis is to show that there are only O(m) adaptivity
bits in total, and that these bits can be stored e�ciently.

We now describe how to modify the filter to be a stash. In addition to storing a fingerprint for each key,
we now also store a tiny pointer with expected size ⇥(log "�1). These tiny pointers are easy to store, since the
filter has already made room for log "�1 baseline bits for each key. Of course, di↵erent tiny pointers may have
di↵erent lengths, but this issue can easily be resolved by either using the chunked-storage technique described
in Section 6.1 (or by adapting the techniques already used in [12] to handle variable-length fingerprints).

One minor di�culty is that the filter assumes access to an external-memory dictionary (rather than just
a dereference table) that way it can lookup keys in order to modify their fingerprints. In the case of our
stash, however, these lookups can easily be performed using the tiny pointers that are already stored, so one
does not need a full dictionary in external memory.

The fact that the tiny pointers have size ⇥(log "�1) means that external memory can be implemented as
a dereference table with load factor 1� ". The fact that the original adaptive filter supported constant-time
operations (with high probability in m) translates to the stash also supporting constant-time operations.

12In fact, their data structures also dynamically resizable, but for our application that will not be necessary.
13The original data structure also sometimes updates the lengths of fingerprints during negative queries, but such updates

are not needed for the purposes of our data structure.

25

And the fact that the original adaptive filter used space O(m log "�1) bits in internal memory also translates
the same guarantee for the stash. Thus the theorem is proven.

7 Dynamic Balls and Bins

In this section, we reinterpret our tiny-pointer constructions as balls-and-bins schemes in order to improve
the state of the art for the classic dynamic load balancing problem.

In the dynamic load-balancing problem, there is a system of n bins and a large universe U of balls. Balls
are inserted and deleted (and sometimes reinserted) over time by an oblivious adversary, so that the total
number of balls in the system never exceeds m = hn for some parameter h. Whenever a ball x is inserted, it
must be placed in one of d bins from among Bin1(x), . . . ,Bind(x), where Bini() is some hash function from
balls to bins. Once a ball is placed in a bin, it cannot be moved until it is deleted. The goal of the dynamic
load-balancing problem is to assign balls to bins in order to achieve the smallest maximum-load possible
(i.e., to minimize the number of balls in the fullest bins). We refer to the special case where balls can be
inserted and deleted but not reinserted as the semi-dynamic load-balancing problem.

There are two classic solutions to the problem. The first is Single balls-to-bins assignment: we set d = 1
and just place each x in h1(x). The second is Left[d] balls-to-bins assignment: divide the bins into d groups
so that each hi is uniform into the i-th group; when inserting x, pick the bin hi(x) with the smallest load,
and break ties by minimizing i.

Single’s behavior history independent, in that the maximum load at any time only depends on which
balls are present, and not the history of their arrival. The maximum load is then completely characterized
by standard Cherno↵ bounds.

Left[d], on the other hand, is highly history dependent. The first time that a ball x is inserted, the
hashes Bin1(x), . . . ,Bind(x) are independent of the system state, but if a ball x is ever deleted and then later
reinserted, then the past insertion of x can have long-term side e↵ects on the system state meaning that the
state is not necessarily independent of Bin1(x), . . . ,Bind(x).

In the insertion-only setting (i.e., balls are not deleted), Left[d] o↵ers a celebrated bound [55] of

h+
log log n

d log �d

+O(1) (5)

on maximum load, where �d is the generalized golden ratio. In the dynamic setting, Left[d] has proven to
be significantly more di�cult to analyze. The original analysis of Left[d] by Vöcking [55] can be used to
achieve a bound of

O(h) +
log log n

d log �d

(6)

for the semi-dynamic setting, but as Woefel observed[56], the same argument does not apply directly to the
fully dynamic setting.14 He shows how modify Vöcking’s proof to achieve a bound of

O(d) +
log log n

d log �d

(7)

in the setting where h = 1. In general, when h > 0, Woefel’s argument yields a bound of

O(1 + hd) +
log log n

d log �d

, (8)

which has remained the state of the art.
14The di�culty has to do with the analysis of the leaves in the witness tree, and is easy to describe in the case where h = 1.

To analyze a leaf ball x, the original analysis uses Markov’s inequality to deduce that each of x’s d bins has at most a 1/3
probability of having 3 or more balls, and the analysis concludes that the probability of all d bins containing 3 or more balls
is at most 1/3d. This same analysis does not apply in the fully dynamic setting since it would need the state of the system of
to be independent of x’s hash functions Bin1(x), . . . ,Bind(x), which is not the case due to subtle history dependencies in the
system’s state.

26

The bound (8) is most interesting in the case where h is relatively small, that is, h = o(log n). Here, (8)
can be significantly better than the ⇥(log n/ log log n) bound that would be achieved by Single. Of course,
the question remains as to whether there exists a balls-to-bins scheme that achieves a better bound. We
answer this question in the a�rmative, by giving a bin-selection rule with d+1 hash functions that achieves
maximum load

h+
log log n

d log �d

+O(
p

h log(hd)). (9)

We remark that, even when h is a constant, this bound improves the dependence on d from O(d) to O(
p
log d).

Our rule, which we call Iceberg[d] is a hybrid of Single and Left[d]. This rule is closely related to the
rule that we used in Section 3 for constructing fixed-size tiny pointers.

The rest of the section proceeds as follows. We begin in Subsection 7.1 by proving a useful technical
lemma. In Subsection 7.2, we present and analyze Iceberg[d]. Finally, in Subsection 7.3, we reinterpret
our variable-size tiny-pointer construction as a result about probe-complexity of balls-and-bins schemes with
bins of capacity 1; in particular, we give the first dynamic ball-allocation scheme to o↵er poly(��1) average
probe complexity in the setting where there are up to (1� �)n balls present in the system at a time.

7.1 A Useful Lemma

This section proves a generalization of a technical lemma introduced by a subset of the current authors in
recent work on space-e�cient hash tables [11]. The new lemma extends the original to a wider parameter
regime. We also take a di↵erent combinatorial approach than in the previous paper, resulting in a simpler
proof that reveals an interesting relationship between the lemma and Talagrand’s inequality.

Consider a dynamic balls-and-bins game with n bins and at most m = hn balls at all times, that are
placed with the Single rule. Whenever a ball is thrown into a bin, if the bin contains h+ ⌧ or more balls,
then the ball is labeled as ⌧-exposed (and the label persists until the ball is next deleted).

Lemma 3. Suppose 1 ⌧ h. At any fixed point in time, the number of ⌧ -exposed balls is poly(h)·ne�⌧
2
/(3h)

with probability 1� exp(�⌦(me�⌧
2
/(3h))).

Our proof of the lemma will make use of a variant of Talagrand’s inequality [44, Chapter 12]:

Theorem 11 (Talagrand’s inequality). Let X1, . . . , Xn be n independent random variables from an arbitrary

domain. Let F be a function of X1, . . . , Xn, not identically 0. Suppose that for some c, r > 0, F is c-Lipschitz
and r-certifiable, defined as follows:

• F is c-Lipschitz if changing the outcome of any single Xi changes F by at most c.

• F is r-certifiable if, for any s, if F (X1, . . . , Xn) � s, then there is a certifying set of at most rs Xi’s

whose outcomes serve as a witness that F � s, that is, F � s no matter the outcome of the other Xj

not in the certifying set.

Then, for any 0 t E [F],

Pr
h
|F � E [F] | > t+ 60c

p
rE [F]

i
 4 exp

✓
�

t2

8c2rE [F]

◆
.

The proof of the lemma proceeds by bounding the expected number of exposed balls, then using Tala-
grand’s inequality to achieve a concentration bound.

In what follows, we refer to the balls which are present at the end as a1, . . . , ak and we refer to the
remaining balls in the universe as ak+1, . . . , a`. We denote by ↵i the bin choice for ai. For i 2 [k], we define
ti to be the last time at which ai is inserted, we define Xi to be the random variable indicating if ai is an
exposed ball at the end of the game, and we define X =

P
k

i=1 Xi to be the total number of exposed balls.

Claim 1. The expected number of exposed balls satisfies E [X] = O(me�⌧
2
/(3h)).

27

Proof. Recall that X =
P

i
Xi where Xi indicates whether ai is exposed. By linearity of expectation, it

su�ces to show that E [Xi] = O(e�⌧
2
/(3h)) for each i 2 [k].

Fix i 2 [k]. Consider the final time ti at which ball ai is inserted. The ball ai is exposed if and only if
the number of balls in bin ↵i is at least h + ⌧ . If we set Y to be the number of balls in bin ↵i, and we set
" = ⌧/h, then we can bound the probability of Y � h+ ⌧ using a Cherno↵ bound:

Pr [Y � h+ ⌧] = Pr [Y � (1 + ")h] e�"
2
h/3 = e�⌧

2
/(3h).

Thus Pr [Xi] = e�⌧
2
/(3h).

Claim 2. The random variable X is (h+⌧+1)-Lipschitz and (h+⌧+1)-certifiable as a function of {↵i}
`

i=1.

Proof. Changing the value of a single ↵i to ↵0
i
can only a↵ect the number of exposed balls in bin ↵i (which

may decrease) and in bin ↵0
i
(which may increase). The number of unexposed balls in a bin is deterministically

at most h+ ⌧ . This means that moving ball ai out of bin ↵i can increase the number of unexposed balls in
the bin by at most h+ ⌧ , and thus can decrease the number of exposed balls by at most h+ ⌧ +1 (where the
+1 accounts for the removal of ai itself). Similarly, moving ball ai into bin ↵0

i
can decrease the number of

unexposed balls in the bin by at most h+ ⌧ , and thus can increase the number of exposed balls by at most
h+ ⌧ + 1. This establishes that X is (h+ ⌧ + 1)-Lipschitz.

To certify that X � s, let J with |J | = s be a set of values j 2 [k] such that aj is exposed at the end of
the game. For each j 2 J , let Rj be a selection of h+ ⌧ balls i such that ball ai was present at the last time
tj that aj was inserted and such that ↵i = ↵j . The set of random variables {↵i | i 2 Rj} [{↵j} acts as a
certificate that aj is exposed. Thus the set

[

j2J

{↵i | i 2 Rj} [{↵j}

acts as a certificate that X � s. This certificate consists of s(h + ⌧ + 1) random variables, hence X is
(h+ ⌧ + 1)-certifiable.

Proof of Lemma 3. Set Q = m exp (�⌧2/(3h)). By Claim 1, we know that E [X] Q. By Claim 2, we can
apply Talagrand’s inequality (Theorem 11) to X with c = r = h + ⌧ + 1 = O(h). Applying Talagrand’s
inequality with t = ⇥(c

p
rQ), and using Q as an upper bound on E[X], we can deduce that

X = O(c
p
rQ)

with probability at least
1� exp(�⌦(Q)).

It follows that X poly(h) ·O(ne�⌧
2
/(3h)) with probability 1� exp(�⌦(me�⌧

2
/(3h))).

7.2 Iceberg[d]

We now present the Iceberg[d] balls-in-bins rule. Let n be the number of bins, let hn be the maximum
number of balls allowed to be present at any given moment, and let d > 1 be a parameter. Partitioning the
bins into d equal-size sets S1, . . . , Sd. Let g be a hash function mapping balls uniformly at random to bins,
and let h1, . . . , hd be hash functions such that each hi maps balls uniformly at random to a random bin in
Si.

We shall have three types of balls: level-one balls, level-two balls, and level-three balls. Each level-one
ball x will reside in bin g(x), each level-two ball x will reside in one of bins h1(x), . . . , hd(x), and each
level-three ball x will reside in bin 1 (but, at any given moment, the number of level-three balls will be zero
w.h.p.).

Set ⌧ = c
p
h log(hd) for some su�ciently large positive constant c. We shall also keep track of a variable

q counting the number of level-two balls present at any given moment.
The procedure for inserting a ball x is as follows. If bin g(x) contains h + ⌧ level-one balls or fewer,

then we place x in bin g(x), and we classify x as a level-one ball. Otherwise, we check whether q < n/d. If
q < n/d, then we examine bins h1(x), . . . , hd(x), and we place x as a level-two ball into whichever bin hi(x)
contains the fewest level-two balls (breaking ties towards the smallest i). Finally, if q � n/d, then we place
x as a level-three ball into bin 1.

28

Theorem 12. Suppose 1 h no(1)
and 1 < d no(1)

. Suppose balls are inserted/deleted/reinserted

into n bins over time (by an oblivious adversary) according to Iceberg[d] rule, with no more than hn
balls present at a time. Then, w.h.p. in n, at any given moment, the number of balls in the fullest bin is

h+ log logn

d log �d
+O(

p
h log(hd)).

Proof. Each bin deterministically contains at most h + ⌧ = h + O(
p
h log(hd)) level-one balls. Thus, it

su�ces to bound the number of level-two and level-three balls in each bin by log logn

d log �d
+O(1).

The number q of level-two balls in the entire system is deterministically at most n/d at any given moment.
In other words, the level-two balls are placed according to the Left[d] rule with h0n balls, where h0 = 1/d.
Thus we can apply (8) to deduce that, w.h.p., the maximum number of such balls per bin is

O(1 + h0d) +
log log n

d log �d

=
log log n

d log �d

+O(1),

Note that, in this application of (8), we are using Woefel’s analysis [56] of Left[d] in a somewhat unusual
parameter regime; that is, the analysis is intended primarily to be used in the regime h0

� 1 (and Woefel’s
result was only explicitly stated for h0 = ⇥(1)), but we are taking advantage of the fact that the analysis
also holds for h0 = o(1) without modification.

We complete the proof by showing that, w.h.p., The number of level-three bins is zero. By Lemma
3, the number q of level-two balls satisfies q < n/h (at any given moment) with probability at least 1 �

exp(�n/ poly(hd)), which by the assumption h, d, no(1) is at least 1 � 1/ poly(n). It follows that each
individual ball insertion has probability at most 1/ poly(n) of being level-three. Taking a union bound over
all of the balls in the system, the probability that any of them are level-three is 1/ poly(n), as desired.

7.3 Assigning Balls to Capacity-1 Bins with Low Average Probe Complexity

Our final result of the section considers a dynamic balls-and-bins game in which there are n bins each with
capacity 1, and at most (1 � �)n balls are present at a time. Each ball x has a predetermined (infinite)
sequence h1(x), h2(x), . . . of bins where it can reside, and we wish to minimize the probe complexity of
each ball x, which is defined to be the smallest i such that ball x is in bin hi(x). Since we are in the dynamic
setting, the same ball may be inserted, deleted, and reinserted many times.

First note that, in the insertion-only setting, it is easy to achieve probe average complexity O(��1) by
simply using uniform probing, which sets each hi(x) to be random, and places each ball x into the first
available slot in the seqeunce h1(x), h2(x), In the dynamic setting, however, there is not yet any known
bin-assignment scheme that achieves average probe complexity poly(��1) (for example, uniform probing
has only successfully been analyzed in the random-deletions setting [40], and the analysis of linear probing
without moving elements around remains an open problem [52]).

We now construct a bin-assignment scheme that achieves average probe complexity poly(��1).

Theorem 13. Suppose � = 1/no(1)
. There exists a bin-assignment scheme that supports arbitrary ball

insertions/deletions/reinsertions, and guarantees an expected probe complexity of O(poly(��1) for each ball

in the system.

Proof. Consider a variable-size-tiny-pointer dereference table with n slots and load factor 1 � �. For each
ball x and each i 2 N, define hi(x) = Dereference(x, i). To assign a ball x to a bin, we call the function
i = Allocate(x), and place x into bin hi(x) = Dereference(x, i). To delete a ball x, we call Free(x, i)
in order to deallocate the appropriate slot in the dereference table.

Let c > 0 be a su�ciently small positive constant. By Theorem 2, each ball x gets assigned to a bin
hi(x) where i (which is the tiny pointer returned by Allocate(x)) is

O(log ��1 + P)

bits for some random variable P satisfying Pr[P � j] O
⇣
2�2cj

⌘
. It follows that Pr[i � poly(��1)k]

O(2�2c log k

) = O(2k
c

), and hence that the expected probe complexity of each ball x is poly(��1).

29

Acknowledgments

This research was supported in part by NSF grants CSR-1938180, CCF-2106999, CCF-2118620, CCF-
2118832, CCF-2106827, CCF-1725543, CSR-1763680, CCF-1716252 and CNS-1938709, as well as an NSF
GRFP fellowship and a Fannie and John Hertz Fellowship.

This research was also partially sponsored by the United States Air Force Research Laboratory and
the United States Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative
Agreement Number FA8750-19-2-1000. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the o�cial policies, either expressed or implied,
of the United States Air Force or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation herein.

References

[1] Amd64 architecture programmer’s manual volume 2: System programming. https://www.amd.com/
system/files/TechDocs/24593.pdf. Accessed: 07/04/2021.

[2] Intel®64 and ia-32 architectures software developer’s manual combined volumes 3a, 3b, 3c, and 3d:
System programming guide. https://software.intel.com/content/www/us/en/develop/download/
intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.
html. Accessed: 07/04/2021.

[3] Google’s Abseil C++ library. https://abseil.io/. Accessed: 2020-11-06.

[4] George M Adel’son-Vel’skii and Evgenii Mikhailovich Landis. An algorithm for organization of infor-
mation. In Doklady Akademii Nauk, volume 146, pages 263–266. Russian Academy of Sciences, 1962.

[5] Stephen Alstrup, Gerth Brodal, and Theis Rauhe. Optimal static range reporting in one dimension.
In Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing (STOC), pages
476–482, 2001.

[6] Cecilia R. Aragon and Raimund Seidel. Randomized search trees. In Proceedings of the 30th Annual

IEEE Symposium on Foundations of Computer Science (FOCS), pages 540–545, 1989.

[7] Yuriy Arbitman, Moni Naor, and Gil Segev. De-amortized cuckoo hashing: Provable worst-case perfor-
mance and experimental results. In International Colloquium on Automata, Languages and Program-

ming (ICALP), pages 107–118, Berlin, Heidelberg, 2009.

[8] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant worst-case operations
with a succinct representation. In Proceedings of the 51st Annual IEEE Symposium on Foundations of

Computer Science (FOCS), pages 787–796, 2010.

[9] Vladimir L’vovich Arlazarov, Yefim A Dinitz, MA Kronrod, and IgorAleksandrovich Faradzhev. On
economical construction of the transitive closure of an oriented graph. In Doklady Akademii Nauk,
volume 194, pages 487–488. Russian Academy of Sciences, 1970.

[10] Michael A. Bender, Abhishek Bhattacharjee, Alex Conway, Mart́ın Farach-Colton, Rob Johnson,
William Kuszmaul, Don Porter, Guido Tagliavini, Janet Vorobyeva, and Evan West. Paging and
the address-translation problem. In Proc. 32nd ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA), July 2021.

[11] Michael A Bender, Alex Conway, Mart́ın Farach-Colton, William Kuszmaul, and Guido Tagliavini.
All-purpose hashing. arXiv preprint arXiv:2109.04548, 2021.

[12] Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson, Samuel McCauley, and
Shikha Singh. Bloom filters, adaptivity, and the dictionary problem. In Proceedings of the 59th Annual

IEEE Symposium on Foundations of Computer Science (FOCS), pages 182–193, Paris, France, October
2018.

30

https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://abseil.io/

[13] Michael A. Bender, Mart́ın Farach-Colton, John Kuszmaul, William Kuszmaul, and Mingmou Liu. On
the optimal time/space tradeo↵ for hash tables, 2021.

[14] Ioana Oriana Bercea and Guy Even. Fully-dynamic space-e�cient dictionaries and filters with constant
number of memory accesses. CoRR, abs/1911.05060, 2019.

[15] Ioana Oriana Bercea and Guy Even. A space-e�cient dynamic dictionary for multisets with constant
time operations. CoRR, abs/2005.02143, 2020.

[16] Joshimar Cordova and Gonzalo Navarro. Simple and e�cient fully-functional succinct trees. Theor.

Comput. Sci., 656(PB):135–145, December 2016.

[17] cpppreference std::unordered map. https://en.cppreference.com/w/cpp/container/unordered_
map. Accessed: 2020-11-06.

[18] gcc-mirror/gcc libstdc++-v3 unordered map.h. https://github.com/gcc-mirror/gcc/blob/master/
libstdc%2B%2B-v3/include/bits/unordered_map.h. Accessed: 2020-11-06.

[19] cpppreference std::unordered set. https://en.cppreference.com/w/cpp/container/unordered_set.
Accessed: 2020-11-06.

[20] gcc-mirror/gcc libstdc++-v3 unordered set.h. https://github.com/gcc-mirror/gcc/blob/master/
libstdc%2B%2B-v3/include/bits/unordered_set.h. Accessed: 2020-11-06.

[21] cpppreference std::map. https://en.cppreference.com/w/cpp/container/map. Accessed: 2020-11-
06.

[22] gcc-mirror/gcc libstdc++-v3 stl map.h. https://github.com/gcc-mirror/gcc/blob/master/
libstdc%2B%2B-v3/include/bits/stl_map.h. Accessed: 2020-11-06.

[23] cpppreference std::set. https://en.cppreference.com/w/cpp/container/set. Accessed: 2020-11-06.

[24] gcc-mirror/gcc libstdc++-v3 stl set.h. https://github.com/gcc-mirror/gcc/blob/master/
libstdc%2B%2B-v3/include/bits/stl_set.h. Accessed: 2020-11-06.

[25] Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. On succinct representations of binary trees.
Mathematics in Computer Science, 11:177–189, 2017.

[26] Erik D Demaine, Friedhelm Meyer auf der Heide, Rasmus Pagh, and Mihai Pǎtraşcu. De dictionariis
dynamicis pauco spatio utentibus. In Latin American Symposium on Theoretical Informatics (LATIN),
pages 349–361. Springer, 2006.

[27] Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for retrieval and approximate mem-
bership. In International Colloquium on Automata, Languages, and Programming (ICALP), pages
385–396. Springer, 2008.

[28] Martin Dietzfelbinger and Stefan Walzer. Constant-time retrieval with o (log m) extra bits. In 36th

International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019.

[29] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with tightly packed
constant size bins. In International Colloquium on Automata, Languages, and Programming (ICALP),
pages 166–178. Springer, 2005.

[30] Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs with simple hash functions. In
Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing (STOC), pages 629–
638, 2003.

[31] Facebook’s F14 hash table. https://engineering.fb.com/2019/04/25/developer-tools/f14/. Ac-
cessed: 2020-11-06.

31

https://en.cppreference.com/w/cpp/container/unordered_map
https://en.cppreference.com/w/cpp/container/unordered_map
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_map.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_map.h
https://en.cppreference.com/w/cpp/container/unordered_set
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_set.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_set.h
https://en.cppreference.com/w/cpp/container/map
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_map.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_map.h
https://en.cppreference.com/w/cpp/container/set
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_set.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_set.h
https://engineering.fb.com/2019/04/25/developer-tools/f14/

[32] Arash Farzan and J. Ian Munro. Succinct representation of dynamic trees. Theoretical Computer

Science, 412(24):2668 – 2678, 2011. Selected Papers from 36th International Colloquium on Automata,
Languages and Programming (ICALP).

[33] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space e�cient hash tables with
worst case constant access time. Theory of Computing Systems, 38(2):229–248, December 2005.

[34] Gianni Franceschini and Roberto Grossi. Optimal worst-case operations for implicit cache-oblivious
search trees. In Workshop on Algorithms and Data Structures (WADS), pages 114–126. Springer, 2003.

[35] Gaston H. Gonnet and Per-Åke Larson. External hashing with limited internal storage. J. ACM,
35(1):161–184, 1988.

[36] Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In Proceedings

of the 19th Annual Symposium on Foundations of Computer Science (FOCS), pages 8–21, 1978.

[37] Takao Gunji and E Goto. Studies on hashing part-1: A comparison of hashing algorithms with key
deletion. J. Information Processing, 3(1):1–12, 1980.

[38] Don Knuth. Notes on “open” addressing, 1963.

[39] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-
Wesley, 1973.

[40] Per-Åke Larson. Analysis of uniform hashing. J. ACM, 30(4):805–819, 1983.

[41] Per-Åke Larson. Linear hashing with separators - A dynamic hashing scheme achieving one-access
retrieval. ACM Trans. Database Syst., 13(3):366–388, 1988.

[42] Per-Åke Larson and Ajay Kajla. File organization: Implementation of a method guaranteeing retrieval
in one access. Commun. ACM, 27(7):670–677, 1984.

[43] Mingmou Liu, Yitong Yin, and Huacheng Yu. Succinct Filters for Sets of Unknown Sizes. In 47th

International Colloquium on Automata, Languages, and Programming (ICALP), volume 168 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 79:1–79:19. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2020.

[44] Michael Molloy and Bruce Reed. Graph coloring and the probabilistic method. New York I Springer,
23:1329–356, 2002.

[45] J. Ian Munro, Venkatesh Raman, and Adam J. Storm. Representing dynamic binary trees succinctly.
In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
529–536, USA, 2001. Society for Industrial and Applied Mathematics.

[46] Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees. ACM

Trans. Algorithms, 10(3), May 2014.

[47] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal space. SIAM Journal on

Computing, 38(1):85–96, 2008.

[48] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In European Symposium on Algorithms

(ESA), pages 121–133. Springer, 2001.

[49] M. Patrascu. Succincter. In Proceedings of the 49th Annual IEEE Symposium on Foundations of

Computer Science (FOCS), pages 305–313, 2008.

[50] W Wesley Peterson. Addressing for random-access storage. IBM journal of Research and Development,
1(2):130–146, 1957.

32

[51] Rajeev Raman and Satti Srinivasa Rao. Succinct dynamic dictionaries and trees. In Proceedings of the

30th International Conference on Automata, Languages and Programming (ICALP), pages 357–368.
Springer-Verlag, 2003.

[52] Peter Sanders. Hashing with linear probing and referential integrity. arXiv preprint arXiv:1808.04602,
2018.

[53] Raimund Seidel and Cecilia R. Aragon. Randomized search trees. Algorithmica, 16(4/5):464–497, 1996.

[54] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM, 32(3):652–
686, 1985.

[55] Berthold Vöcking. How asymmetry helps load balancing. J. ACM, 50(4):568–589, July 2003.

[56] Philipp Woelfel. Asymmetric balanced allocation with simple hash functions. In Proceedings of the

Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 424–433. ACM
Press, 2006.

33

	1 Introduction
	1.1 Results: Constructing Optimal Tiny Pointers
	1.2 Results: Five Applications to Data Structures

	2 Preliminaries
	3 Upper Bound for Fixed-Size Pointers
	4 Upper Bounds for Variable-Sized Pointers
	5 Lower Bounds
	6 Applying Tiny Pointers to Five Problems in Data Structures
	6.1 Some General-Purpose Techniques for Using Tiny Pointers
	6.2 Overcoming the (loglogn)-Bit Lower Bound for Data Retrieval
	6.3 Succinct Binary Search Trees
	6.4 Space-Efficient Stable Dictionaries
	6.5 Space-Efficient Dictionaries with Variable-Size Values
	6.6 An Optimal Internal-Memory Stash

	7 Dynamic Balls and Bins
	7.1 A Useful Lemma
	7.2 Iceberg[d]
	7.3 Assigning Balls to Capacity-1 Bins with Low Average Probe Complexity

