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ABSTRACT
Aggregating signals from a collection of noisy sources is a fun-

damental problem in many domains including crowd-sourcing,

multi-agent planning, sensor networks, signal processing, voting,

ensemble learning, and federated learning. The core question is

how to aggregate signals from multiple sources (e.g. experts) in

order to reveal an underlying ground truth. While a full answer

depends on the type of signal, correlation of signals, and desired

output, a problem common to all of these applications is that of

differentiating sources based on their quality and weighting them

accordingly. It is often assumed that this differentiation and aggre-

gation is done by a single, accurate central mechanism or agent (e.g.

judge). We complicate this model in two ways. First, we investigate

the setting with both a single judge, and one with multiple judges.

Second, given this multi-agent interaction of judges, we investigate

various constraints on the judges’ reporting space. We build on

known results for the optimal weighting of experts and prove that

an ensemble of sub-optimal mechanisms can perform optimally un-

der certain conditions. We then show empirically that the ensemble

approximates the performance of the optimal mechanism under a

broader range of conditions.

1 INTRODUCTION
Aggregating noisy information from a group of agents or algo-

rithms into a label or decision is a fundamental problem across

many fields. Take the examples of crowd-sourcing image labels for

training supervised learning models [31], fusing conflicting sensor

data [28], ensemble methods in machine learning [12], interactive

democracy [10], peer review [20], and even guessing the weight

of an ox [35]. In each situation there is some underlying ground

truth, i.e., the weight of the ox or whether the image contains a

tiger. In all these settings we wish to combine a number of weak

signals into a single strong signal or decision. In the simplest cases,

all information sources are treated equally, e.g. anonymous voting

or uniform weighting of image labels, and aggregation methods

depend on some basic notion of centrality, e.g. the mean or median.

However, when one can assess the quality or reliability of a signal

or its source, significant improvement becomes possible.

For example, in a simplistic model of academic peer review, a

conference chair (judge) must determine whether to accept or reject

papers without reading them based on the accept/reject statements
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from reviewers (experts). The chair may reasonably give higher

weight to the reports of reviewers who indicate greater expertise

[20]. Of course, the chair may be inaccurate in how competent they

believe each of the reviewers to be.

We base our investigation on the literature on weighting experts

in both the offline [24, 34] and online settings [11, 14, 37], though

in this work we restrict our focus to a single decision. A set of

independent experts (e.g. sensors, agents, or algorithms) seeks to

determine a binary ground truth. Each expert has a certain com-
petence, or probability of being correct. Each expert can provide a

single bit of information (e.g. True or False), but the experts cannot

communicate otherwise. If nothing is known about the experts

and their competences, and nothing additional is known about the

ground truth, the only reasonable way to aggregate these bits is by

a majority vote [23]. As the number of experts increases, as long

as they are sufficiently competent, e.g. all competences > 0.51, the

Condorcet Jury Theorem says the probability of majority voting

aggregating correctly tends to one [7]. However, when there are

only a few experts the asymptotic behavior is not meaningful, and

when enough of the experts are incompetent, e.g. have competence

≤ 0.50, the theorem no longer holds. Moreover, when the compe-

tences of the experts are known, majority rule becomes sub-optimal

[7].

Fortunately, the optimal aggregation method for maximizing

accuracy with any number of independent experts, with any com-

petences, is straightforward [24, 34]. The optimal method is to

give each expert a weight equal to the log-odds of their compe-

tence, and then take a weighted majority vote. At first this method

would appear to require that the competences of the experts be

known. Currently, the only known method of assigning experts

their optimal weights is for a central authority, who knows the exact

competences, to compute and assign the proper weights. One of our

main contributions, detailed in Section 5, is a proof that no central

authority is required. With multiple judges, no single judge needs

to know either the ground truth or the true competence of any of

the experts. Just as the experts’ votes can be aggregated to achieve

higher accuracy than any of the experts individually [13, 16], aggre-

gating weights from an ensemble of judges can be better than any

one individually, and under certain conditions achieves the optimal

weighting.

Consider an autonomous system with two kinds of sensors. Both

sensor types take regular measurements of the same kind (e.g. path

obstructed or unobstructed). The first type of sensor is cheap, takes

multiple measurements each second, and can transmit a single

bit every second, but accuracy is highly variable across sensors.

The second type of sensor is more costly, takes a measurement

every few seconds, and is more reliable, but can only receive and

transmit a few bits each minute. If decisions must be made quickly,

the second sensor might seem useless. However, if these slower

sensors can be used to judge the accuracy of the faster sensors
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at regular intervals, the overall accuracy of the entire ensemble

may be improved. The same intuition applies to the use of learning

algorithms and approximation algorithms that require different

amounts of time to compute in time-sensitive applications. More

reliable algorithms can be used to evaluate ensembles of faster, less

accurate algorithms over time, a technique used in many ensemble

solvers for hard computational problems [36].

Our approach of decentralizing the weighting of experts is in-

spired bywork in “wisdom of the crowds" and crowdsourcing [9, 35],

proxy voting [1] and truth-tracking in Liquid Democracy [5, 6, 39].
1

For human agents, it is often more natural for them to assign

weights or scores to the experts rather than to report probabili-

ties as estimates of the experts’ competences. We wish to study

multi-agent learning models with low communication complexity

that are appropriate for human and computational agents alike.

Hence, the judges in our model only provide real-valued weights

for each expert.

We must also address the impractical nature of the optimal

weighting rule. The optimal weights are negative for experts whose

competence is below 0.5. In voting, it can be unnatural to allow neg-

ative weights, especially since any expert who knows their weight

is negative might reverse their vote. Many papers on voting and

variants of the Condorcet Jury Theorem assume all experts have

competence > 0.5, but we do not make this assumption. Rather,

we consider the impact on accuracy when weights are required to

be non-negative. This effectively removes experts whose weights

would be negative rather than negating their votes. Lastly, the op-

timal weights can be arbitrarily large (small) when competences

approach 1.0 (0.0). In the multi-judge setting, this means that a sin-

gle judge may dominate any aggregated set of weights. In practice,

it may be necessary to assume the weights are in some finite range.

We therefore consider the impact on accuracy when the weights

judges assign are normalized so that they sum to 1.0 for each judge.

This is the equivalent of “one-person-one-vote" for the judges. As

with the experts, if nothing is known about the quality of each

judge, treating them all equally may be most reasonable.

2 MODEL AND NOTATION
In our model there are two disjoint sets of agents – judges and

experts. Let 𝐸 be a set of𝑚 experts and 𝐽 be a set of 𝑛 judges. The

experts vote on a single binary issue in which there is only one right

answer. Without loss of generality, the alternatives are represented

by {1, 0} where 1 is correct and 0 is incorrect. Each expert 𝑒 ∈ 𝐸

has a competence, or probability 𝑝𝑒 of voting correctly, independent
of all other experts. We associate each expert’s index with their

vote, so expert 𝑒 ∈ 𝐸 casts a vote 𝑣𝑒 ∈ {1, 0} with competence

𝑝𝑒 = 𝑃 (𝑣𝑒 = 1). We assume that for every 𝑒 ∈ 𝐸 the vote of each

expert is independent from all other experts. The odds of an expert

voting correctly are hence
𝑝𝑒

1−𝑝𝑒 , and their log-odds are log
(

𝑝𝑒
1−𝑝𝑒

)
.

For simplicity (and realism), we assume that 0 < 𝑝𝑒 < 1 for the

experts, meaning that no expert is either always correct or always

incorrect.

WeightedMajority Rules for Aggregating Expert Votes. Aweighted

majority rule gives each expert a weight 𝑤𝑒 ∈ R and elects 1 as

1
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the winner if

∑
𝑣𝑒=1

𝑤𝑒 >
∑
𝑣𝑒=0

𝑤𝑒 , elects 0 as the winner if
∑
𝑣𝑒=1

𝑤𝑒 <∑
𝑣𝑒=0

𝑤𝑒 , and uses a tie-breaking rule (e.g. coin flip) for the edge

case where these sums are equal. Note that if all experts’ weights

are scaled up or down by some constant factor, the rule does not

change.

Optimal Weighting via the Log-Odds Rule. The optimal voting

rule, which maximizes the probability of the vote outcome being

correct, is known to be a particular weighted majority rule that we

refer to as the log-odds rule [24, 34]. Given a vector of competences

®𝑝 = (𝑝1, . . . , 𝑝𝑚), the log-odds rule assigns each expert 𝑒 ∈ 𝐸

a weight 𝑤∗
𝑒 equal to their log-odds: 𝑤∗

𝑒 = log

(
𝑝𝑒

1−𝑝𝑒

)
. When ®𝑝

represents the true competences of the experts, the log-odds rule is

optimal. This optimality result and the nature of the binary choice

motivates us to restrict our attention to weighted majority rules.

Our central concern is how to assign weights to the experts based

on estimates of their competences.

Judges’ Estimates of Expert Competences. In our model, the true

competences of the experts are unknown. In order to derive the

true competences we would need to assume access to the ground

truth outcome, which is never revealed in our setting. Note that

this is in contrast to the standard setup in online learning where

the ground truth is revealed at each time step [11].

Any judge 𝑗 ∈ 𝐽 estimating the competences of the experts

is biased due to their own imperfection (𝑝 𝑗 < 1). Every judge’s

competence is independent of the other judges and experts. A judge

estimates an experts’ competence based on how often they expect

to agree. A judge with competence 𝑝 𝑗 ∈ [0, 1] therefore estimates

the competence of expert 𝑒 as 𝑝 𝑗𝑒 = 𝑝 𝑗 · 𝑝𝑒 + (1 − 𝑝 𝑗 ) (1 − 𝑝𝑒 ).

Aggregating Scores Into Expert Weights. Each judge gives a score

to each expert, and the scores an expert receives from the judges are

then aggregated to give that expert a weight. We assume that judges

try to implement the optimal rule, assigning scores according to

the log-odds rule using their perceived competences of the experts.

Hence, each judge assigns each expert a score of𝑤 𝑗𝑒 = log( 𝑝 𝑗𝑒

1−𝑝 𝑗𝑒
).

In our model, when there are 𝑛 judges, the weight of an expert

becomes the mean of the scores assigned to them:𝑤𝑒 = 1

𝑛

∑
𝑗 𝑤 𝑗𝑒 .

3 RELATEDWORK
While we focus on results for a single decision, our work is intended

to be a contribution towards online group learning, in which a set

of agents (judges) collectively determines a probability distribution

over potential actions. After each action, the judges individually

learn the outcome of the aggregation of the expert opinions, and

determine their expectation of what the future reward will be when

the true rewards are only revealed after some time horizon (as

opposed to being revealed after each time step). We consider perfor-

mance of a single step in the action sequence where the judges all

use a single strategy, although they will receive independent signals

about the reward function. The correspondence between the classi-

cal online learning model and the model we propose in this paper is

that the weighting of the experts and their respective competences

determines a probability distribution over the vote outcomes which

are the set of feasible actions [8]. In this view, a single step of the
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classic Multiplicative Weights algorithm for minimizing regret can

be seen as a variation with a single judge where the voting rule

among experts is random serial dictatorship (distributed according

to the weights) instead of weighted majority voting [15, 21]. Along

the same lines, our work can be seen as a contribution towards

organizational control in multi-agent learning [38].

The abstract models closest to ours are those related to gener-

alizations of the Condorcet Jury Theorem [25, 26], weighting of

experts, optimal committee sizes [22, 32], and variants of proxy vot-

ing. In a recent paper by Zhang and Grossi [39], voters can transfer

their votes to one another, thereby increasing the weight of the

recipient’s vote. This model of liquid democracy for uncovering a

ground truth uses transitive delegations, so weights can be trans-

ferred multiple times along a delegation chain. In the transitive

delegation model Zhang and Grossi [39] provide a sophisticated

centralized mechanism by which the optimal graph of delegations

can be constructed. We contrast this directly with our results in

Section 5. The restricted nature of our score assignments is closer to

that of Pivato and Soh [30], which considers a process of the judges

choosing the experts by an election process that also weights them

and assumes there are many judges and few experts. In contrast

to our approach, their finding is an asymptotic convergence result

when the number of judges tends to infinity, as is common in the

literature on Condorcet Jury Theorems. However, in our work we

assume a small set of judges. A similarly restricted weighting pro-

cess is used by Abramowitz and Mattei [1] who do not consider

the objective of tracking a ground truth and focuses on voting on

many binary issues simultaneously.

In the literature on Condorcet Jury theorems and weighting ex-

perts, the inaccessibility of expert competences has been addressed

in several ways. One is to use each expert’s frequency of agreement

with the majority vote as a proxy for their competence, and to

iteratively re-weigh them over time [3, 19, 33]. It has also been sug-

gested to have the experts assess each other’s competences, treat

this matrix as a Markov chain, and use its eigenvector values as the

experts’ weights [17] in a manner reminiscent of PageRank [27].

There has also been attention paid to how group accuracy depends

on the size of the group and their mean competence [16, 18], the

latter of which is demonstrated in part in our empirical results in

Section 6. Most recently, Baharad et al. [4] demonstrated empiri-

cally that when the competences of experts come from a truncated

normal distribution, the optimal weighting of experts does not per-

form much better than an equal weighting of the experts, and the

difference depends on the variance of the competence distribution.

This phenomenon can be observed in our Figure 2 by comparing

the central row to the top row in each of the four heatmaps for the

single judge case.

3.1 Contributions
We begin Section 4 by looking at what happens when an imperfect

central judge assigns weights to experts, i.e., the case where |𝐽 | =
𝑛 = 1. We demonstrate the effects both from their bias and from

requiring the weights to be non-negative. In Section 5 we prove that,

under the right conditions, aggregating expert scores from many

imperfect judges, i.e., |𝐽 | = 𝑛 > 1, can reproduce the optimal log-

odds rule even when none of the individual judges gives the optimal

weights as their scores. However, as we argue, these conditions

may not be realistic in many circumstances. Finally, in Section

6, we provide empirical results where imperfect judges score the

experts and these scores are aggregated into weights. Again, the

judges are inaccurate in how they estimate the competences of

the experts. We look at what happens when the scores judges give

must be non-negative, and when we normalize the scores of each

individual judge, i.e., the contribution of each individual judge to

the aggregation are all equal.

4 CENTRAL JUDGE
We start by looking at the case where a single judge must assign

weights to experts (𝑤 𝑗𝑒 = 𝑤𝑒 ), but their estimation of the experts’

competences is inaccurate as the judge does not observe the ground

truth, only the output of the expert aggregation. We look at how

their perception of the experts’ competences influences the overall

accuracy of the system. Next, we investigate what happens when

the weights that the judge can assign to the experts are bounded

from below by zero.

Recall that each expert 𝑒 ∈ 𝐸 has a true competence, or probability
𝑝𝑒 of voting correctly, independent of all other experts. Our central

judge 𝑗 also has a competence 𝑝 𝑗 . The central judge’s estimate of

each expert’s competence 𝑝 𝑗𝑒 is based on how often they tend to

agree with one another: 𝑝 𝑗𝑒 = 𝑝 𝑗 ·𝑝𝑒 + (1−𝑝 𝑗 ) (1−𝑝𝑒 ). We assume

that our central judge, unaware of their own imperfect competence,

then attempts to implement the log-odds rule by assigning each

expert a weight of𝑤 𝑗𝑒 = log( 𝑝 𝑗𝑒

1−𝑝 𝑗𝑒
).

Example 1. Suppose we have 5 experts with competences ®𝑝𝐸 =

(0.6, 0.6, 0.6, 0.7, 0.9). The optimal weights as computed by log-odds

rule are approximately ®𝑤∗
𝐸
= (0.41, 0.41, 0.41, 0.85, 2.2). Note that

with these weights, the most competent expert (0.9) receives a

weight (2.2) that would make them a dictator in a weighted ma-

jority vote, since their weight is greater than all other experts

combined. Hence, the accuracy under the log-odds weighting is

exactly 0.9. If all the experts are weighted equally, the accuracy

of the weight majority vote decreases to 0.82. A judge with com-

petence 0.6 would assign the experts weights of approximately

®𝑤0.6
𝐸

= (0.08, 0.08, 0.08, 0.16, 0.323). This is not equivalent to the

log-odds rule because the first four experts outweigh the fifth expert

alone. How high of a competence would the judge need to have

to assign perceived optimal weights that correspond to the log-

odds rule? The judges’ competence would have to be greater than

0.962, which is higher than any of the experts. And yet, the judge’s

weighting still yields an accuracy of 0.898, which is extremely close

to optimal. The question is, how much is generally lost by using

sub-optimal weightings derived from the perceived competences

of imperfect judges? This example is illustrated in Figure 1 where

we graph the overall accuracy as we sweep the judge’s competence

between 0.0 and 1.0.

To begin our empirical investigation, we simulate a setting with

𝑚 = 5 experts and 𝑛 = 1 judge. The 𝑝 𝑗 value ranges from 0.1 to

1 in steps of 0.1. In the edge cases where 𝑝 𝑗 = 0.5 and 𝑝 𝑗 = 1.0,

the 𝑤 𝑗𝑒 values are all equal or correspond to the log-odds rule,

respectively. The 𝑝𝑒 values are drawn from a truncated normal

distribution 𝑁 (𝜇𝐸 , 𝜎𝐸 ) where 𝜇𝐸 ranges from 0.1 to 0.9 in steps of
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Figure 1: Accuracy of perceived optimal weightings from a
single judge with the expert competences in Example 1.

Figure 2: Heatmaps of accuracy for single judge competence
for Gaussian distributions of 5 expert competences with
variances {0.1, 0.2, 0.3, 0.4}.

0.1, 𝜎𝐸 ranges from 0.1 to 0.4 in steps of 0.1, and 𝑝𝑒 ∈ (0.1, 0.9) for
all experts. The average accuracy of the experts’ weighted majority

vote is then estimated for each tuple (𝑝 𝑗 , 𝜇𝐸 , 𝜎𝐸 ). Note that the

values given are how the competences were generated, not their

sample mean and sample variance. This is illustrated in Figure 2.

The accuracy increases smoothly as 𝜇𝐸 increases, but there is

a marked transition where 𝑝 𝑗 goes from competence below 0.5 to

above 0.5. The higher 𝜎𝐸 the more marked the transition. Intuitively,

higher 𝜎𝐸 improves accuracy when the expert weights are ‘closer’

to optimal (𝑝 𝑗 = 1) and further from equality (𝑝 𝑗 = 0.5).

5 OPTIMAL DISTRIBUTEDWEIGHTING
Moving to the multi-agent setting, we now turn our attention to the

potential for improved accuracy when there are multiple judges,

i.e., |𝐽 | = 𝑛 > 1. Recall that 𝐸 is a set of𝑚 experts indexed by 𝑒 ∈ 𝐸.

Every expert 𝑒 ∈ 𝐸 has a competence 𝑝𝑒 ∈ (0, 1) reflecting their

probability of voting correctly, independently of all other experts

and judges. The rule that maximizes the probability of selecting

the correct alternative is the log-odds rule in which every expert

is assigned a weight equal to the log-odds of their competence:

𝑤∗
𝑒 = log

(
𝑝𝑒

1−𝑝𝑒

)
[24, 34]. However, in our work we do not assume

that the experts’ competences are known. We cannot compute𝑤∗
𝑒

directly if we do not know 𝑝𝑒 .

Each judge 𝑗 assigns each expert 𝑒 a score that they believe

is their Bayesian optimal weight 𝑤 𝑗𝑒 = log

(
𝑝 𝑗𝑒

1−𝑝 𝑗𝑒

)
. The average

(arithmetic mean) of these scores becomes the weight of the expert:

𝑤𝑒 = 1

𝑛

∑
𝑗
𝑤 𝑗𝑒 .

We prove that when the geometric mean of the judges’ estimates

of experts competence odds are the experts true competence odds,

i.e.,

(
𝑝𝑒

1−𝑝𝑒

)
=

(∏
𝑗

𝑝 𝑗𝑒

1−𝑝 𝑗𝑒

) 1

𝑛

, all experts are assigned their Bayesian

optimal weights𝑤𝑒 = 𝑤∗
𝑒 . Remarkably, this does not require any of

the individual judges to know the experts’ true competences.

Theorem 1. If each judge assigns each expert a score equal to the

log-odds of their perceived competence, and the geometric mean

of the judges’ estimates of each expert’s competence odds is the

expert’s true odds, then the weighted majority rule using judges’

average scores to weight each expert is exactly the optimal log-odds

rule.

Proof. We begin by assuming that the judges give each expert

a score of 𝑤 𝑗𝑒 = log

(
𝑝 𝑗𝑒

1−𝑝 𝑗𝑒

)
, corresponding to what they believe

the optimal weight of that expert to be, and we take the average as

the weight of the expert.

𝑤𝑒 =
1

𝑛

∑
𝑗

𝑤 𝑗𝑒 =
1

𝑛

∑
𝑗

log

(
𝑝 𝑗𝑒

1 − 𝑝 𝑗𝑒

)
(1)

𝑤𝑒 =
1

𝑛
log

©«
∏
𝑗

𝑝 𝑗𝑒

1 − 𝑝 𝑗𝑒

ª®¬ (2)

𝑤𝑒 = log

©«
©«
∏
𝑗

𝑝 𝑗𝑒

1 − 𝑝 𝑗𝑒

ª®¬
1

𝑛 ª®®¬ (3)

Now we assume the geometric mean of judges’ estimates of

the experts’ competence odds is correct. We assume

(
𝑝𝑒

1−𝑝𝑒

)
=(∏

𝑗

𝑝 𝑗𝑒

1−𝑝 𝑗𝑒

) 1

𝑛

. Therefore,

𝑤𝑒 = log

(
𝑝𝑒

1 − 𝑝𝑒

)
= 𝑤∗

𝑒 (4)

□
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Corollary 1. If the geometric mean of judge estimates of compe-

tence odds is off by some multiplicative factor 𝛼 for some expert,

then the error of that expert’s weight is only log(𝛼).

Proof. In the proof above, assume instead that 𝛼

(
𝑝𝑒

1−𝑝𝑒

)
=(∏

𝑗

𝑝 𝑗𝑒

1−𝑝 𝑗𝑒

) 1

𝑛

. Then,

𝑤𝑒 = log

(
𝛼 · 𝑝𝑒

1 − 𝑝𝑒

)
= 𝑤∗

𝑒 + log(𝛼) (5)

□

Theorem 1 and Corollary 1 provide us with a starting point for

our investigation of distributed weighting of experts. Together they

state that if all judges individually form personal estimates of the

experts’ competences, then so long as their collective estimate is

reasonably accurate – the geometric mean of the odds implied by

the weights is within a small multiplicative factor of the true odds

– the weights they assign to the experts by averaging their scores

will be “close” to the Bayesian optimal weights. This corollary is

promising because any set of weights defines a collection of subsets,

or “winning coalitions", such that the outcome is guaranteed if all

experts in the subset vote the same way. Altering the weights only

changes the weighted majority rule if the set of winning coalitions

changes.

However, there are clear shortcomings to this result. The first

is that for the result to hold judges must be able to assign neg-

ative scores to experts, which may not be desirable in many cir-

cumstances. The second issue is that if judges express complete

certainty, by privately estimating the competence of an expert as

either 1 or 0 (always correct or always incorrect), then the expert’s

score is undefined. The third issue is that the scores judges are

able to assign can be arbitrarily large or small even when they are

defined. There is no bound on how large a positive or negative score

could be, so a single judge assigning huge scores could completely

determine the outcome.

These shortcomings related to the practicality of the judges

reporting space motivates the study of limits on the judges’ scores.

There are a few ways to bound the scores that judges can assign

to experts that address these issue. The simplest is by ensuring

“one person, one vote," i.e., normalization, so that each judge gets

a budget of points that they can distribute among the experts to

construct their scores: ∀𝑖 ∑
𝑗 ∈𝐸

𝑤 𝑗𝑒 = 1.

6 DISTRIBUTED WEIGHTING
We now turn our attention back to the empirical study of the dis-

tributed weighting of experts with 𝑛 = 10 judges rather than 𝑛 = 1.

Based on the results of Section 4, we consider a low variance (0.1)

and high variance (0.4) condition for the competences of both ex-

perts and judges. For each condition, we look at the loss of accuracy

when scores given by the judges are restricted to being non-negative

and when they must be normalized.

Figure 3 illustrates the case of unrestricted scores for 50k trials.

We see a pattern very similar to what we observed with a single

judge in Figure 2. Notably, when 𝜎𝐸 is high but 𝜎𝐽 is low, we see the

marked phase transition, where any competent judge (𝑝 𝑗 > 0.5)

seems to yield scores similar to the optimal weights (Figure 3 bottom

left). However, when both sets of agents are in the high variance

condition (Figure 3 bottom right), 𝜇𝐸 seems to hardly matter at all

in comparison to 𝜇 𝐽 . When 𝜎𝐸 is low (top row), the effects from

greater expert competence are more pronounced, particularly when

𝜎𝐽 is low too.

Figure 3: Heatmaps of accuracy for 10 judges and 5 experts
with competence variances in {0.1, 0.4}.

Restricting the weights to be non-negative has a significant,

observable impact on accuracy, as shown in Figure 4. When 𝜎𝐸 is

low and weights are non-negative (4 top row), the effect of changes

in 𝜇 𝐽 is dwarfed by the impact of changes in the expert mean

competence.

Surprisingly, normalizing the weights from each judge causes

very little loss in accuracy compared to restricting the weights to

be non-negative. This holds true in all four {high, low} × {high, low}

variance conditions in Figure 5.

5



Conference’17, July 2017, Washington, DC, USA Ben Abramowitz and Nicholas Mattei

Figure 4: Heatmaps of accuracy for 10 judges and 5 experts
with competence variances in {0.1, 0.4} and non-negative
weights.

Figure 5: Heatmaps of accuracy for 10 judges and 5 ex-
perts with competence variances in {0.1, 0.4} and normalized
weights.

7 DISCUSSION
Building on the literature of weighting experts, we have introduced

a model in which a set of judges assesses the competence of a set

of experts, and weights them accordingly in a distributed fashion

before the experts use a weighted majority vote to make a decision.

When the scores from independent judges are averaged to give

each expert their weight, we have given sufficient conditions for

the weights to be optimal even when no individual judge knows the

true competence of any expert or the ground truth. Our empirical

results show (1) judges’ perception of the experts’ competences

leads to sub-optimal weightings that produce lower accuracy but

compete well with the optimal log-odds rule in many cases, (2) the

variance in expert and judge competences determines the relative

effect sizes of changes in the mean competences, and (3) requiring

weights to be non-negative leads to a moderate loss of accuracy,

but normalizing the weights causes very little additional loss.

8 FUTUREWORK
We leave many avenues open to further exploration. There are

many alternative ways in which judges might estimate experts’

competences and assign their weights, and different distributions

of competences may be relevant to different applications. We did

not begin to address here any correlation between the competences,

weights, or votes of the judges and experts [34]. Following the

sensor example, we would also like to assess the performance of

these distributed judge-expert systems when all judges are not

always available; similar to the delegation rate in some delegative

voting models [1]. Also in line with the voting literature would be

the consideration of multiple binary issues simultaneously [2, 18].

Characterizing the equilibria when judges and experts are strate-

gic, in the manner of Zhang and Grossi [39], is another promising

direction which would be complicated by an understanding of how

judges can learn to optimize their weightings over time given their

signals. We hope that our results are seen as a small step towards a

deeper understanding of online multi-agent learning.

Another line of thought is in the design of judge-expert systems

with resource constraints. For instance, if one has a fixed number

of agents and knows something about the distribution of their

competences, how does one optimally divide them into judges

and experts? And how does the distributed weighting of experts

compete with models of weighting experts based on their voting

histories or having the experts all weight each other [17]?
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