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a b s t r a c t 

We analyze the run-time complexity of computing allocations that are both fair and maximize the utili- 

tarian social welfare, defined as the sum of agents’ utilities. We focus on two tractable fairness concepts: 

envy-freeness up to one item (EF1) and proportionality up to one item (PROP1). We consider two com- 

putational problems: (1) Among the utilitarian-maximal allocations, decide whether there exists one that 

is also fair; (2) among the fair allocations, compute one that maximizes the utilitarian welfare. We show 

that both problems are strongly NP-hard when the number of agents is variable, and remain NP-hard for 

a fixed number of agents greater than two. For the special case of two agents, we find that problem (1) 

is polynomial-time solvable, while problem (2) remains NP-hard. Finally, with a fixed number of agents, 

we design pseudopolynomial-time algorithms for both problems. We extend our results to the stronger 

fairness notions envy-freeness up to any item (EFx) and proportionality up to any item (PROPx). 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

There are many problems in which both fairness and efficiency 

re important considerations. Recent examples from the opera- 

ions research literature are scheduling ( Agnetis, Chen, Nicosia, 

 Pacifici, 2019 ), disaster relief ( Erbeyo ̆glu & Bilge, 2020 ), vehi-

le routing ( Jozefowiez, Semet, & Talbi, 2008 ) ambulance plan- 

ing ( Jagtenberg & Mason, 2020 ), and multi-portfolio optimiza- 

ion ( Iancu & Trichakis, 2014 ). In this paper we focus on algo-

ithms for allocating indivisible goods among agents. Such algo- 

ithms have broad impact in a number of areas including school 

hoice ( Abdulkadiro ̆glu, Pathak, & Roth, 2005 ), conference paper 

ssignment ( Lian, Mattei, Noble, & Walsh, 2018 ), course allocation 

 Budish & Cantillion, 2012 ), warehouse delivery ( Karaenke, Bichler, 

erting, & Minner, 2020 ), and many others. Two often competing 

bjectives are balancing the welfare of the allocation, defined as 

he sum of the utilities of the agents, with the fairness , which con- 

erns the utility of each individual agent. 

When allocating indivisible items, perfect fairness may be 

nattainable even when there are two agents and a single item. 

ndeed, many algorithms for fair allocation of indivisible items sim- 

ly fail if a fair allocation does not exist ( Kilgour & Vetschera, 

018 ). An alternative approach, which is arguably more suitable 
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han just failing, is fairness up-to one item . For example, envy- 

reeness up to one item (EF1) requires that, for any pair of agents, 

f at most one item is removed from one agent’s bundle, then 

he other agent does not envy ( Budish, 2011 ). There are many 

ther fairness notions based on the “up-to one item” concept; see 

ection 2 for the formal definitions. 

Fairness requirements are often complemented by requirements 

or economic efficiency, the most common of which is Pareto- 

fficiency (PE) . Many recent works have studied PE+fair allocations 

or various fairness notions (see Related Work). However, PE alone 

s not a sufficient condition for economic efficiency. As an example, 

vidence from course allocation shows that Pareto-efficient mech- 

nisms perform poorly on natural measures such as the fraction 

f students getting their first choice, or the average rank of a stu- 

ent ( Budish & Cantillion, 2012 ). Such measures can be captured 

y a stronger measure of economic efficiency: the utilitarian wel- 

are , defined as the sum of all agents’ utilities, or equivalently, the 

verage utility per agent ( Moulin, 2003 ). 

There are other settings in which the sum of utilities is a nat- 

ral measure of efficiency. For example, if the items for alloca- 

ion are vaccinations, and the utility of an agent is proportional to 

heir probability to survive given the allocated vaccination (which 

an be computed using statistics on past medical records), then 

he utilitarian welfare corresponds to the expected number of sur- 

ivors. If the items are allocated by a politician who wants to be 

e-elected, and the utility of an agent determines the probability 

hat they vote for the politician, then the utilitarian welfare cor- 

esponds to the expected number of supporters. Finally, in situ- 
welfare-Maximizing fair allocations of indivisible goods, European 
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Table 1 

Complexity of existence and computation of allocations that are welfare maximizing and fair. See Section 2 for the formal definitions of the various fairness concepts. BGJKN 

k refers to a result that is implied by Theorem k from ( Barman et al. 2019a ). An asterisk ( ∗) means that the hardness proof uses non-normalized valuations (the sum of 

valuations of one agent is larger than the sum of valuations of the other agent); it is open whether the problem remains hard in the common special case of normalized 

valuations (see Open Problem 1 , at the end of Section 6). 

n = 2 Fixed n ≥ 3 Arbitrary n 

Exists UM and EF1 in P (Th. 6.1 ) NP-complete (Th. 4.4 ),pseudo-poly. (Th. 7.5 ) strongly NP-complete (Th. 4.1 ) 

Exists UM and PROP1 in P (Th. 6.2 ) NP-complete (Th. 5.4 ), pseudo-poly. (Th. 7.2 ) strongly NP-complete (Th. 5.1 ) 

Compute UM within EF1 NP-hard (BGJKN 4) ∗ NP-hard (Cor. 4.6 ),pseudo-poly. (Th. 7.5 ) strongly NP-hard (BGJKN 5; Cor. 4.3 ) 

Compute UM within PROP1 NP-hard (Th. 6.8 ) ∗ NP-hard (Cor. 5.6 ), pseudo-poly. (Th. 7.2 ). strongly NP-hard (Cor. 5.3 ) 

Exists UM and EFx NP-complete (Th. 6.4 ) NP-complete (Th. 4.5 ), pseudo-poly. (Th. 7.6 ) strongly NP-complete (Th. 4.2 ) 

Exists UM and PROPx NP-complete (Th. 6.5 ) NP-complete (Th. 5.5 ),pseudo-poly. (Th. 7.3 ) strongly NP-complete (Th. 5.2 ) 

Compute UM within EFx NP-hard (Cor. 6.6 ) NP-hard (Cor. 4.6 ),pseudo-poly. (Th. 7.6 ) strongly NP-hard (Cor. 4.3 ) 

Compute UM within PROPx NP-hard (Cor. 6.6 ) NP-hard (Cor. 5.6 ), pseudo-poly. (Th. 7.3 ). strongly NP-hard (Cor. 5.3 ) 
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tions of repeated allocations, e.g. when different items are allo- 

ated among the same agents each day, an algorithm attaining a 

igher average utility per agent may eventually lead to a higher 

otal utility for every agent. To illustrate, suppose there are two 

gents and two possible allocations: one gives the first agent util- 

ty 3 and the second agent utility 1, while the other gives the first 

gent utility 1 and the second agent utility 5. Both allocation are 

areto-efficient. However, if the setting repeats daily, with the roles 

f “first agent” and “second agent” selected uniformly at random 

ach day, then the second allocation is superior, since it gives both 

gents an average utility of 3 per day. Some other applications in 

he operations research literature, in which utilitarian welfare is 

sed, are house allocation ( Arnosti & Shi, 2020 ), school choice ( Biró

 Gudmundsson, 2021 ) and product-line design ( Kohli & Sukumar, 

990 ). 

We refer to allocations with a highest utilitarian welfare as util- 

tarian maximal (UM) . We focus on the complexity of computing 

n allocation that maximizes the sum of utilities among those that 

atisfy a given (approximate) fairness notion. We also consider the 

roblem of deciding whether an allocation exists which simultane- 

usly maximizes the sum of utilities and satisfies a fairness notion. 

hese results shed light on the settings where we are able to guar- 

ntee the tractable computation of allocations that are both fair 

nd efficient. It is well-known that any UM allocation is PE, but 

he opposite is not true. So the combination of UM and fairness is 

trictly stronger than PE and fairness. 

Contributions. Given a fairness requirement, we want to decide 

hether there exists a UM allocation that satisfies it. If no such al- 

ocation exists, we want to find an allocation with highest welfare 

mong the fair ones. However, we show that both these goals are 

P-hard for three or more agents even when the number of agents 

s fixed, and strongly NP-hard when the number of agents is vari- 

ble, that is, part of the input. 1 

When there are only two agents, deciding the existence of fair 

nd UM allocations turns out to be polynomial-time solvable. In 

ontrast, welfare maximization within the set of fair allocations 

s NP-hard even for two agents. Finally, for any fixed number of 

gents, we present a pseudopolynomial time algorithm for max- 

mizing welfare constrained to fair allocations. Hence, we obtain 

 clear understanding of the complexity of efficient fair allocation 

.r.t. the number of agents. Our results are summarized in Table 1 ; 

ee Section 2 for the formal definitions of the fairness concepts. 

. Setting 

An allocation problem is a tuple (N, O, u ) such that N =
 1 , . . . , n } is a set of agents, O = { o 1 , . . . , o m } is a set of items and u
1 By strongly NP-hard, we mean that the problem remains NP-hard even if the 

umbers in the input are represented in unary representation ( Garey & Johnson, 

978 ). 

a

w

E

2 
pecifies a utility function u i : O → R 
+ for each agent i ∈ N. We as-

ume agents have additive utility. That is, u i (O 
′ ) = 

∑ 

o∈ O ′ u i (o) for
very subset O 

′ ⊆ O . 

An allocation p is a function p : N → 2 O assigning each agent a 

et of items. Allocations must be complete, i.e., all items are allo- 

ated, 
⋃ 

i ∈ N p(i ) = O , and the bundles of items assigned to agents

ust be disjoint, i.e., no two agents can be assigned the same 

tems, p(i ) ∩ p( j) = ∅ for all i, j ∈ N. For a given instance, we de-

ote by A the set of all allocations. We do not consider strategic 

anipulations — we assume that all agents truthfully report their 

aluations — leaving strategic issues for future work ( Bouveret, 

hevaleyre, & Maudet, 2016 ). 

.1. Fairness 

An allocation p is called: 

• Proportional (PROP) if for each agent i ∈ N, u i (p(i )) ≥ u i (O ) /n .
• Proportional up to c items (PROP c) if for each agent i ∈ N, 

there exists a subset O 
′ ⊆ O \ p(i ) of cardinality ≤ c for 

which u i (p(i ) ∪ O 
′ ) ≥ u i (O ) /n . 

• Proportional up to any item (PROPx) if for each agent i ∈ N, 

for all subsets O 
′ ⊆ O \ p(i ) of cardinality 1, it holds that 

u i (p(i ) ∪ O 
′ ) ≥ u i (O ) /n . 

• Envy-free (EF) if u i (p(i )) ≥ u i (p( j)) for all i, j ∈ N. 
• Envy-free up to c items (EF c) if for all i, j ∈ N, there exists

a subset O 
′ ⊆ p( j) of cardinality ≤ c such that u i (p(i )) ≥

u i (p( j) \ O 
′ ) . 

• Envy-free up to any item (EFx) if for all i, j ∈ N, for all subsets

O 
′ ⊆ p( j) of cardinality 1, it holds that u i (p(i )) ≥ u i (p( j) \ 

O 
′ ) . 

• Equitable (EQ) if for all i, j ∈ N, u i (p(i )) = u j (p( j)) . 
• Equitable up to c items (EQ c) if for all i, j ∈ N, there exists

a subset O 
′ ⊆ p( j) of cardinality ≤ c for which u i (p(i )) ≥

u j (p( j) \ O 
′ ) . 

• Equitable up to any item (EQx) if for all i, j ∈ N, for all subsets

O 
′ ⊆ p( j) of cardinality 1, it holds that u i (p(i )) ≥ u j (p( j) \ 

O 
′ ) . 

Note the key differences between the fairness notions: the 

roportionality-based and envy-free-based notions only compare 

aluations of the same agent, while equitability-based notions 

ompare valuations of different agents. We consider intra-agent 

tility comparisons to be more meaningful than inter-agent util- 

ty comparisons; therefore, we focus on fairness notions based on 

roportionality and envy-freeness in the present paper. 

It is well-known that, with additive valuations, EF implies EF1 

nd PROP. Moreover, EF1 implies PROP1, but PROP1 is strictly 

eaker than EF1 even for two agents (see Appendix Appendix A ). 

For a given instance, and a given fairness notion F (EF1, PROP1, 

Fx, PROPx, etc.), we denote by A 
F the sets of all F allocations. 
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2 Simultaneously to the present work, ( Bredereck, Kaczmarczyk, Knop, & Nieder- 

meier, 2021 ) have also improved the practical applicability of their ILP-based ap- 

proach. 
.2. Welfare 

While there are multiple notions of welfare, we focus on 

tilitarian-maximality . Allocation p is: 

• Utilitarian-maximal (UM) if it maximizes the sum of utilities: 

p ∈ arg max 
q ∈A 

∑ 

i ∈ N 
u i (q (i )) . 

• Utilitarian-maximal (UM) within F , for a given fairness notion 

F, if 

p ∈ arg max 
q ∈A F 

∑ 

i ∈ N 
u i (q (i )) . 

. Related work 

( Bouveret et al., 2016 ) present a general survey of the main al-

orithms and considerations in fair item allocation from a com- 

uter science perspective. ( Karsu & Morton, 2015 ) present a more 

ocused survey of the tradeoff between efficiency and fairness in 

he operations research literature. 

It is well-known that an EF1 and PROP1 allocation can be 

omputed in polynomial time ( Lipton, Markakis, Mossel, & Saberi, 

004 ). Similarly, a UM allocation can be computed in polynomial- 

ime by just giving each item to an agent whose value for the item 

s highest. Utilitarian welfare can be maximized even with simple 

equential mechanisms ( Bouveret & Lang, 2011; Kalinowski, Naro- 

ytska, & Walsh, 2013 ). Our results in Table 1 show that the combi-

ation of tractable fairness and tractable welfare requirements may 

e intractable. 

A Pareto-efficient and PROP1 allocation can be computed in 

trongly-polynomial time in various settings ( Aziz, Caragiannis, 

garashi, & Walsh, 2019; Aziz, Moulin, & Sandomirskiy, 2020; 

arman & Krishnamurthy, 2019; Brânzei & Sandomirskiy, 2019; 

onitzer, Freeman, & Shah, 2017 ). The complexity of computing a 

areto-efficient and EF1 allocation is an open question, but a pseu- 

opolynomial time algorithm is known ( Barman, Murthy, & Vaish, 

018c ). Our results show that strengthening Pareto-efficiency to 

tilitarian welfare-maximization leads to strong NP-hardness. 

( Bliem, Bredereck, & Niedermeier, 2016 ); ( Bouveret & Lang, 

008 ); ( de Keijzer, Bouveret, Klos, & Zhang, 2009 ) study the com-

utational complexity of finding an allocation that is both Pareto- 

fficient and envy-free. In their future work, ( Bliem et al., 2016 ) 

ention that “a different theoretical route would be to extend the 

nvestigations also to ... approximate envy-freeness”, which is our 

ocus. 

( Bredereck, Kaczmarczyk, Knop, & Niedermeier, 2019 ) present a 

eta-algorithm that can find efficient and fair allocations for var- 

ous notions of efficiency and fairness. Among others, their algo- 

ithm can handle notions of group Pareto-efficiency ( Aleksandrov & 

alsh, 2018 ), one of which is equivalent to UM. However, the run- 

ime of their algorithm is very large: it is larger than d 2 . 5 d , where

is the number of variables in the resulting integer linear pro- 

ram (see their Proposition 8). This d is larger than ((4 nV ) n ) m (n +1) ,

here n is the number of agents, m the number of item-types, 

nd V the largest value of an item (see the end of their subsec- 

ion 4.3). In other words, their runtime is doubly-exponential in m 

nd n , and singly-exponential in V . Accordingly, they note in their 

onclusion section that their ILP solution is mainly a “classifica- 

ion result”, and note that “this leads us to the open questions of 

roviding an algorithm for efficient envy-free allocation with bet- 

er running time, or running-time lower bounds”. In contrast, our 
3 
lgorithms (in Section 7 ) run in time singly-exponential in n , and 

olynomial in m and V , addressing their open question. 2 

In previous work, ( Barman, Ghalme, Jain, Kulkarni, & Narang, 

019a )[Theorems 4, 5] proved hardness of problems that they call 

A-EF1 and HET-EF1. Their results imply that computing a UM 

ithin EF1 allocation is NP-hard for any fixed number n ≥ 2 of 

gents, and strongly NP-hard when n is arbitrary (unbounded). 

heir results do not cover PROP1, nor the problems of whether 

 UM and fair allocation exists (see Table 1 for comparison). In 

ontrast to our hardness results, ( Benabbou, Chakraborty, Igarashi, 

 Zick, 2020 ) showed that when valuations are submodular with 

inary marginals (each item adds value 0 or 1 to each bundle), 

M+EF1 allocations exist and can be found efficiently. 

( Freeman, Sikdar, Vaish, & Xia, 2019 ) study the computation of 

llocations that are both PE and EQ1, as well as a stronger notion 

hat they call EQx. They prove that, when all utilities are strictly 

ositive, then a PE and EQx allocation always exists, and a PE+EQ1 

llocation can be found in pseudopolynomial time. However, when 

ome utilities may be zero, deciding whether a PE and EQ1 / EQx / 

quitable allocation exists is strongly NP-hard. They do not discuss 

tilitarian-welfare maximization. 

Many recent works aim to maximize the Nash welfare — the 

roduct of utilities. This problem is NP-hard, but various ap- 

roximations are known ( Amanatidis, Birmpas, Filos-Ratsikas, Hol- 

ender, & Voudouris, 2020 ); ( Brânzei, Gkatzelis, & Mehta, 2017 ); 

 Caragiannis, Gravin, & Huang, 2019a ); ( Caragiannis et al., 2019b ); 

 Cole & Gkatzelis, 2015 ); ( Darmann & Schauer, 2015 ). We focus on

he sum of utilities, which is one of the standard ways to measure 

he total welfare in society. 

The fairness-welfare tradeoff has also been studied through the 

ens of the price of fairness — the ratio between the maximum 

elfare of an arbitrary allocation and the maximum welfare of a 

air allocation. Bounds on the price-of-fairness in indivisible item 

llocation have been proved by ( Agnetis et al., 2019 ); ( Barman, 

haskar, & Shah, 2020 ); ( Bei, Igarashi, Lu, & Suksompong, 2019 ); 

 Caragiannis, Kaklamanisa, Kanellopoulos, & Kyropoulou, 2012 ); 

 Kurz, 2016 ); ( Nicosia, Pacifici, & Pferschy, 2017 ); ( Segal-Halevi,

018 ); ( Suksompong, 2019 ). ( Argyris, Karsu, & Yavuz, 2022 ) pre-

ented a different approach, which is more related to our ap- 

roach: they aim to maximize a social welfare measure, subject 

o the requirement that utility of each agent is at least as high as 

ome reference value. 

. UM And EF1 

It is well-known that EF1 may be incompatible with UM, in the 

ense that some instances do not admit an allocation that is both 

M and EF1. For example, if Alice’s utility for every item is higher 

han Bob’s utility, the only UM allocation gives all items to Alice, 

hich is obviously not EF1 for Bob. Given this incompatibility, we 

ould like to determine whether there exists, among all UM allo- 

ations, one that is also fair, but this is computationally challeng- 

ng. 

heorem 4.1. The problem EXISTSUMANDEF1 — deciding whether 

here exists an allocation that is both UM and EF1 — is strongly NP- 

omplete. 

roof. The problem is in NP as both UM and EF1 can be tested in

olynomial time. To prove NP-hardness, we reduce from the fol- 
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owing problem, which is known to be strongly NP-hard ( Garey & 

ohnson, 1979 ). 

-Partition 

nput: An integer T > 0 , a multiset { a 1 , . . . , a 3 m 
} of integers with

T 
4 < a j < 

T 
2 for all j ∈ [3 m ] , and 

∑ 3 m 

j=1 a j = mT . 

uestion: Can the integers be partitioned into m disjoint triplets 

such that the sum in each triplet is T ? 

We construct an instance of ExistsUMandEF1 with m + 1 

gents and 3 m + 2 items. The first 3 m items correspond to the 3 m

ntegers: their value for the first m agents is equal to the corre- 

ponding integer, and their value for agent m + 1 is 0. The last two

tems are valued at T by the first m agents and (m/ 2 + 1) · T by
he last agent: 

Items: 1 , . . . , 3 m 3 m + 1 , 3 m + 2 Sum 

Agents 1 , . . . , m : v (o j ) = a j T (m + 2) T 

Agent m + 1 : 0 (m/ 2 + 1) · T (m + 2) T 

Note that the instance is normalized, that is, the sum of values 

s the same for all agents. 

In this instance, an allocation is UM if-and-only-if the items 

 m + 1 and 3 m + 2 are given to agent m + 1 , and the items

 , . . . , 3 m are given to agents 1 , . . . , m . 

Suppose we have a “yes” instance of 3-Partition . Then, we can 

llocate the first 3 m items among the first m agents in a way such

hat each agent gets utility T . We can allocate the items numbered 

 m + 1 and 3 m + 2 to agent m + 1 . The first m agents are not envi-

us of each other but they are envious of agent m + 1 whose allo-

ation would give them utility 2 T . However, if one of the items of

gent m + 1 is removed, then envy goes away. Hence there exists a 

elfare maximizing allocation which is also EF1. 

Now suppose that we have a “no” instance of 3-Partition . Since 

here is no equi-partition of the 3 m elements, there is at least one

gent among the first m agents who gets utility less than T . This

gent envies agent m + 1 even if one of the two items of agent

 + 1 is removed. Hence there is no UM+EF1 allocation. �

emark 4.2. The problem ExistsUMandEFx is strongly NP- 

omplete: the proof of Theorem 4.1 holds as-is when EF1 is re- 

laced by EFx, as both items allocated to agent m + 1 have the

ame value. 

As a corollary we get the following hardness results: 

orollary 4.3. The problems COMPUTEUMWITHINEF1 and COMPU- 

EUMWITHINEFX are strongly NP-hard. 

roof. We present a polynomial-time one-to-one reduction from 

xistsUMandEF1 ( Theorem 4.1 ) to ComputeUMwithinEF1 . We use 

n algorithm for the latter problem and compute the value of the 

aximum utilitarian welfare within the set of EF1 allocations. Let 

 1 be this maximum value. Let w 0 be the maximum utilitarian 

elfare without the restriction of being EF1. An allocation max- 

mizing social welfare can be computed in linear time by giving 

ach item to any agent who values it the most. If w 0 = w 1 , we have

 “yes” instance of ExistsUMandEF1 ; If w 0 � = w 1 , we have a “no”

nstance. The same proof holds for ComputeUMwithinEFx . �

The hardness of ComputeUMwithinEF1 follows implicitly from 

heorem 5 of ( Barman et al., 2019a ), while not mentioned explic- 

tly there. 

Next, we show that (weak) NP-hardness holds even for the case 

f three agents. 

heorem 4.4. The problem EXISTSUMANDEF1 for three agents is NP- 

omplete. 
4 
roof. Membership in NP comes directly from Theorem 4.1 . To 

rove hardness we reduce from Partition , which is the following 

roblem. 

artition 

nput: A multiset { a 1 , . . . , a m } of integers, whose sum is 2 W . 

uestion: Is there a partition of the integers into two sets, where 

the sum in each set is W ? 

Given an instance of Partition , define an instance of Exist- 

UMandEF1 with m + 4 items: m number-items { o 1 , . . . , o m } and 4
xtra-items { e 1 , . . . , e 4 } . There are three agents with the following

aluations. 

Items: o i (for i ∈ [ m ] ) e 1 e 2 e 3 e 4 sum 

Alice: 0 W 2 W 6 W 7 W 16 W 

Bob, Chana: a i 3 W 3 W 4 W 4 W 16 W 

An allocation is UM if-and-only-if the extra-items e 3 , e 4 are 

iven to Alice, and the number-items plus e 1 , e 2 go to Bob or

hana. 

Suppose there is an equal partition of the numbers. Then, it 

s possible to give Bob and Chana a utility of W each from the 

umber-items plus a utility of 3 W from e 1 , e 2 , for a total of 4 W .

he other extra items can be given to Alice. Alice does not envy 

t all; Bob and Chana do not envy once e 4 is removed from Alice’s 

undle. Hence the allocation is EF1 and UM. 

Conversely, suppose there is an EF1 and UM allocation. Bob and 

hana value Alice’s bundle at 8 W . Once a highest-valued item (for 

hem) is removed from it, they value it at 4 W . Hence, each of them

ust get a bundle valued at 4 W , so each of them must get one of

 e 1 , e 2 } plus a utility of W from the number-items. Hence, there

ust be an equal partition of the numbers. �

emark 4.5. The problem ExistsUMandEFx is NP-complete for 

hree agents: the proof of Theorem 4.4 holds as-is when EF1 is 

eplaced by EFx, as both items allocated to Alice have the same 

alue for Bob and Chana. 

By arguments similar to Corollary 4.3, Theorem 4.4 implies 

he following hardness result (which follows from Theorem 4 of 

 Barman et al., 2019a ): 

orollary 4.6. The problems COMPUTEUMWITHINEF1 and COMPU- 

EUMWITHINEFX for three agents is NP-hard. 

. UM And PROP1 

While EF1 implies PROP1, the results for EF1 in Section 4 do not 

mply analogous results for PROP1. This is because an algorithm for 

xistsUMandEF1 might return “no” on an instance which admits 

 UM and PROP1 allocation, and an algorithm for ExistsUMand- 

ROP1 might return “yes” on an instance which does not admit a 

M and EF1 allocation. Hence, we provide stand-alone proofs for 

he analogous results for PROP1. 

heorem 5.1. The decision problem EXISTSUMANDPROP1 is strongly 

P-complete. 

roof. The problem is in NP as both UM and PROP1 can be tested 

n polynomial time. To establish NP-hardness, we reduce from 3- 

artition as in Theorem 4.1 . We construct an instance with m + 1

gents and 4 m + 2 items and the following valuations: 

Items: 1 , . . . , 3 m 3 m + 1 , . . . , 4 m + 2 Sum 

Agents 1 , . . . , m : v (o j ) = a j T (2 m + 2) T 

Agent m + 1 : 0 (1 + 
m 

m +2 
) · T (2 m + 2) T 
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Algorithm 1 Finding a UM and EF1 allocation if one exists; two 

agents. 

1: Give all items with d(o) > 0 to Bob and d(o) < 0 to Al- 
ice. 

2: for each item o ∈ O eq do 

3: if one of the agents is envious then 

4: Give o to him/her; 
5: else 
6: Give o to an arbitrary agent. 
7: end if 
8: end for 
9: if the allocation is EF1 then 

10: return the allocation and say yes 
11: else 
12: return no 
13: end if 
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An allocation is UM if-and-only-if agent m + 1 gets the items 

umbered 3 m + 1 to 4 m + 2 . 

Suppose we have a “yes” instance of 3-Partition . Then, we can 

llocate the first 3 m items among the first m agents in a way that

ach agent gets utility T . We can allocate the remaining items 

o agent m + 1 . For the first m agents, the sum of valuations is

m + 1) · 2 T so their proportional share is 2 T . If they get one of
he items numbered from 3 m + 1 to 4 m + 2 , then they get addi-

ional utility of T so that their total utility becomes 2 T . Hence, the

llocation is PROP1. 

Now suppose that we have a “no” instance of 3-Partition . Since 

here is no equi-partition of the 3 m elements, at least one agent 

mong the first m agents gets utility less than T . This agent does

ot get utility 2 T even when adding one of the items numbered 

rom 3 m + 1 to 4 m + 2 . Note that every other item has value less

han T . Hence there is no UM+PROP1 allocation. �

emark 5.2. The problem ExistsUMandPROPx is strongly NP- 

omplete: the proof of Theorem 5.4 holds as-is when PROP1 is re- 

laced by PROPx, as all items allocated to agent m + 1 have the

ame value. 

orollary 5.3. The problems COMPUTEUMWITHINPROP1 and COMPU- 

EUMWITHINPROPX are strongly NP-hard. 

Weak NP-hardness persists even for three agents. 

heorem 5.4. For three agents, the decision problem EXISTSUMAND- 

ROP1 is NP-complete. 

roof. The reduction is similar to Theorem 4.4 , only with 6 extra- 

tems and the following valuations: 

o i e 1 e 2 e 3 e 4 e 5 e 6 sum 

A: 0 2 W 2 W 5 W 5 W 5 W 5 W 24 W 

B,C: a i 3 W 3 W 4 W 4 W 4 W 4 W 24 W 

An allocation is UM if-and-only-if Alice gets all and only the 

tems e 3 , . . . , e 6 . Any such allocation is PROP for Alice. 

Bob and Chana value the set of all items at 24 W , so their pro-

ortional share is 8 W . If there is an equal partition of the numbers,

hen it is possible to give Bob and Chana a bundle worth 4 W each,

hich is proportional after adding to it one of Alice’s items. Con- 

ersely, if there is a PROP1 allocation then Bob and Chana’s value 

ust be at least 4 W , so each of them must get at least W from the

umber-items, so there is an equal partition. �

emark 5.5. The problem ExistsUMandPROPx is NP-complete for 

hree agents: the proof of Theorem 5.4 holds as-is when EF1 is 

eplaced by EFx, as all items allocated to Alice have the same value 

or Bob and Chana. 

orollary 5.6. For three agents, the problems COMPUTEUMWITHIN- 

ROP1 and COMPUTEUMWITHINPROPX are NP-hard. 

. UM And fairness for two agents 

In this section, we consider the case of two agents. Many fair 

ivision problems arise between two parties so it is an important 

pecial case to consider. 

heorem 6.1. For two agents, there exists a polynomial-time algo- 

ithm that solves EXISTSUMANDEF1 . 

roof. For each item o ∈ O , we denote Alice’s utility by u (o) and

ob’s utility by u (o) + d(o) . We denote by O eq the set of items for

hich both agents have the same utility, i.e., d(o) = 0 . We claim

hat Algorithm 1 finds a UM and EF1 allocation if-and-only-if such 

llocation exists. 
5 
It is easy to see that an allocation is UM if-and-only-if every 

tem with d(o) > 0 is given to Bob and every item with d(0) < 0

s given to Alice. Therefore, line 1 is necessary and sufficient for 

uaranteeing that the final allocation is UM, regardless of how the 

emaining items are allocated. 

In every UM allocation for two agents, at most one agent is en- 

ious — otherwise the utilitarian welfare could be increased by ex- 

hanging the bundles. Therefore, throughout the loop in lines 2–8, 

t most one agent is envious. 

We now consider two cases. First, suppose that the loop in lines 

–8 gives all items in O eq to a single agent, say Alice. This means

hat Bob was not envious before the last item was given, so the 

llocation is EF1 for Bob. If the allocation is EF1 for Alice too, then 

he algorithm says “yes” correctly. Otherwise, no allocation is UM 

nd EF1, as this is the allocation that gives Alice the highest possi- 

le value among the UM allocations. Then the algorithm says “no”

orrectly. 

The second case is that the loop switches from the case “Alice 

nvies” to the case “Bob envies”. So there is an item o such that, 

ithout o, Bob does not envy Alice, but once o is given to Alice, 

ob envies her. At this point, the allocation is EF for Alice and EF1 

or Bob. From here, at most one agent envies, and the envy level 

emains at most one item. Therefore, when the algorithm ends at 

ine 10, the allocation is UM and EF1. �

Algorithm 1 does not directly solve ExistsUMandPROP1 be- 

ause, even for 2 agents, EF1 is strictly stronger than PROP1 (see 

ppendix Appendix A ). Therefore, Algorithm 1 may return “no”

ven though a UM and PROP1 allocation exists. However, a very 

imilar algorithm can handle UM and PROP1. 

heorem 6.2. For two agents, there exists a polynomial-time algo- 

ithm that solves EXISTSUMANDPROP1 . 

roof. We can use an algorithm almost identical to Algorithm 1 , 

xcept for line which should read “if the allocation is PROP1 then”. 

Similarly to the previous proof, we consider two cases. If the 

lgorithm allocates all items in O eq to a single agent (say Alice), 

hen this is the largest possible value Alice can get in a UM alloca- 

ion, so a UM-and-PROP1 allocation exists if-and-only-if this final 

llocation is PROP1. 

Otherwise, the allocation switches between “Alice envies” and 

Bob envies”. Once this switch happens, the allocation is EF1 and 

t remains EF1 until the end, so the algorithm finds a UM+EF1 al- 

ocation, which is also UM+PROP1. �

emark 6.3. Algorithm 1 can be adapted to solve ExistsUMan- 

EQ1 . Let us change line 3 to “if one of the agents has a smaller
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tility than the other agent”, and change line 9 to “if the allocation 

s EQ1 then”. 

The proof argument is similar to Theorem 6.2 . If the algorithm 

llocates all items in O eq to a single agent (say Alice), then this is

he largest possible value Alice can get in a UM allocation, so a 

M-and-EQ1 allocation exists if-and-only-if this final allocation is 

Q1. 

Otherwise, the allocation switches from “Alice’s utility is 

maller” to “Bob’s utility is smaller”. Once this switch happens, the 

llocation is EQ1 and it remains EQ1 until the end, so the algo- 

ithm finds a UM+EQ1 allocation. 

In contrast to the above positive results, we get a hardness re- 

ult if we replace EF1 with EFx. 

heorem 6.4. The decision problem EXISTSUMANDEFX is NP-complete 

ven for two agents. 

roof. By reduction from Partition . Given an instance of Partition 

ith m integers, define an instance of ExistsUMandEFx with m + 

 items: m number-items { o 1 , . . . , o m } and 2 extra-items { e 1 , e 2 } .
here are two agents with the following valuations. 

Items: o i (for i ∈ [ m ] ) e 1 e 2 sum 

Alice: 10 a i 2 1 20 W + 3 

Bob 10 a i 1 2 20 W + 3 

An allocation is UM if-and-only-if e 1 is given to Alice and e 2 is 

iven to Bob (regardless of how the number-items are allocated). 

If there is an equal partition of the integers, then there exists an 

llocation in which each agent gets exactly the same value ( 10 W )

rom the number-items. So each agent values his/her own bundle 

t 10 W + 2 and the other agent’s bundle at 10 W + 1 . This alloca-

ion is EF and therefore EFx. 

For the other direction, suppose that there is a UM+EFx alloca- 

ion of the items. For both agents, the least valuable item in the 

ther agent’s bundle has a value of 1. Therefore, each agent must 

alue his/her own bundle at least as much as the other agent’s 

undle minus 1. Since the values of the number-items are all mul- 

iples of 10, both agents must get exactly the same value from 

hese items, so there exists an equal partition of the integers. �

emark 6.5. The same reduction shows that the problem Exist- 

UMandPROPx is NP-complete for two agents. 

orollary 6.6. The optimization problems COMPUTEUMWITHINEFX and 

OMPUTEUMWITHINPROPX are NP-hard even for two agents. 

For EF1 and PROP1 we showed that, for three agents, both the 

ecision problems (UM and fair) and the corresponding maximiza- 

ion problems (UM within fair) are NP-hard. Below we show that, 

or two agents, there is a substantial gap between the decision 

nd the maximization problems: while deciding the existence of 

M and fair allocations is in P, computing an allocation that is 

M within the fair allocations is NP-hard. ( Barman et al., 2019a,b ) 

roved this hardness for EF1. 3 

heorem 6.7 ( Barman, Ghalme, Jain, Kulkarni, & Narang, 

019b ) . For two agents, the problem COMPUTEUMWITHINEF1 is 

P-hard. 

Below we show, using a different reduction, that the hardness 

olds for the weaker PROP1 condition too. 
3 In fact, ( Barman et al., 2019a )[Appendix A] prove a stronger inapproximability 

esult: it is NP-hard to obtain an m 
δ factor approximation to the maximal utilitarian 

elfare subject to EF1, where δ > 0 is a fixed constant. Note that they use the term 

A-EF1 for the problem we call ComputeUMwithinEF1 . 

 

A
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heorem 6.8. For two agents, the problem COMPUTEUMWITHINPROP1 

s NP-hard. 

roof. The proof is by reduction from Knapsack . 

Knapsack A set M of m elements, and a threshold value T . Each 

item i has value v i and weight w i . For each subset S of el-

ements, denote its value by v (S) := 

∑ 

i ∈ S v i and its weight by 

w (S) := 

∑ 

i ∈ S w i . What is a set S ⊂ M that maximizes v (S) sub-
ject to w (S) ≤ T ? 

Let W := 

∑ 

i ∈ M 
w i be the sum of all weights, w 

∗ = max i ∈ M 
w i be

he largest weight and V := 

∑ 

i ∈ M 
v i be the sum of all values. 

Initially, we assume that T ≥ W/ 2 . We construct a fair alloca- 

ion instance m + 2 items: m “usual items” o i and two “big items”

 A , o B , and two agents with the following valuations: 

Items: o i (for i ∈ [ m ] ) o A o B sum 

Alice: w i 2 T −W + w 
∗ w 

∗ 2 T + 2 w 
∗

Bob: w i + v i 2 T + V + w 
∗ W + V + w 

∗ 2 W + 3 V + 2 T + 2 w 
∗

We prove that maximizing the utilitarian welfare subject to 

ROP1 in the allocation instance is equivalent to maximizing the 

alue subject to the weight constraint in the Knapsack instance. 

e make several observations. 

Observation 1. Bob’s value for every item is larger than Alice’s 

alue. Therefore, the unique UM allocation gives all items to Bob. 

enote its utilitarian welfare by U max . This allocation is not PROP1; 

o construct a PROP1 allocation, we must move some items from 

ob to Alice; to construct an allocation that is UM within PROP1, 

e must choose which items to move such that the utilitarian wel- 

are does not decrease too much w.r.t. U max . 

Observation 2. For any big item, Alice’s value is smaller than 

ob’s value by W + V . So in any allocation in which a big item is

llocated to Alice, the utilitarian welfare is at most U max −W −V . 

Observation 3. Denote the allocation in which Alice gets all 

umber-items and Bob gets all big items by p 0 . Its utilitarian wel- 

are is U max −V . It is EF1 (and PROP1) since: 

• u A (p 0 (A )) = W , while Alice’s valuation to Bob’s bundle with-

out o A is only w 
∗ ≤ W ; 

• u B (p 0 (B )) = W + 2 V + 2 T + 2 w 
∗, while Bob’s valuation to Al-

ice’s bundle is only W + V . 

Any allocation that is UM within PROP1 must have a utilitarian 

elfare at least as high as p 0 , that is, at least U max −V > U max −
 −W . By observation 2, any such allocation must give both big 

tems to Bob. We focus only on these allocations from now on; let 

s call these allocations “reasonable”. 

There is a one-to-one correspondence between the subsets of 

napsack items (subsets of M) to the set of reasonable allocations. 

ach subset S ⊂ M corresponds to a reasonable allocation, p S , in 

hich: (1) The big items, and all usual items in S, are given to

ob; and (2) all usual items not in S are given to Alice. In the al-

ocation p S , the utilitarian welfare coming from the big items is 

 T + 2 V + W + 2 w 
∗. The utilitarian welfare coming from the usual

tems is W + v (S) . Therefore, the total welfare in p S is C + v (S) ,
here C := 2 W + 2 V + 2 T + 2 w 

∗. Note that C is a constant that

oes not depend on the selection of S. Thus, finding a reasonable 

llocation p S with maximum welfare is equivalent to finding a sub- 

et S ⊆ M with maximum value. 

The value of o A and o B for Bob is so big, that Bob never envies

lice regardless of how the usual items are allocated. Moreover, for 

lice, o A is the most valuable item in Bob’s bundle (since T ≥ W/ 2 ).

herefore, an allocation is PROP1 if-and-only-if, when o A is added 

o Alice’s bundle, she will have at least half of her total value. Al- 

ce’s valuation of o is 2 T −W + w 
∗, and her valuation of her own
A 
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undle is W − w (S) . Therefore, the PROP1 condition for Alice is: 

 − w (S)+ ( 2 T −W + w 
∗) ≥ T + w 

∗

hich holds if-and-only-if w (S) ≤ T . Therefore, maximizing utili- 

arian welfare subject to PROP1 is equivalent to maximizing v (S) 
ubject to w (S) ≤ T , as claimed. 

In the complementary case T < W/ 2 , the reduction is similar, 

ut with one more big item o C : 

Items: o i (for 

i ∈ [ m ] ) 

o A o B o C sum 

Alice: w i W − 2 T + 2 w 
∗ W − 2 T + w 

∗ W − 2 T + w 
∗ 4 W − 6 T + 4 w 

∗

Bob: w i + v i W − 2 T + 

2 w 
∗ + V 

W − 2 T + w 
∗ + 

V 

W − 2 T + w 
∗ + 

V 

4 W − 6 T + 

4 w 
∗ + 4 V 

Now, all big items o A , o B and o C are allocated to Bob; o A is still

ost valuable to Alice. Alice’s valuation of item o A is W − 2 T +
 w 

∗, and her valuation of her own bundle is W − w (S) . Therefore,

he PROP1 condition for Alice is: 

 − w (S) + ( W − 2 T + 2 w 
∗) ≥ 2 W − 3 T + 2 w 

∗

hich holds if-and-only-if w (S) ≤ T as before. �

The hardness proofs in both Theorem 6.8 and ( Barman et al., 

019a ) use an instance that is not normalized — the sum of Alice’s 

aluations is smaller than the sum of Bob’s valuations. In many sit- 

ations, the agents’ valuations are normalized such that the sum 

f valuations is the same for all agents. For example, in the pop- 

lar fair division website spliddit.org each person enters utilities 

hat sum up to 10 0 0. Therefore, a natural question is whether 

he two problems ComputeUMwithinEF1 and ComputeUMwithin- 

ROP1 remain NP-hard with two agents even when restricted to 

ormalized valuations. Despite many effort s, we could not modify 

he reduction of Theorem 6.8 to work with normalized valuations. 

pen Problem 1. For two agents with normalized valuations, 

hat is the run-time complexity of computing an allocation that 

s UM within EF1, or UM within PROP1? 

. UM Within fairness for few agents 

We have proved that all our problems are strongly NP-hard 

hen the number of agents is unbounded, and weakly NP-hard 

hen the number of agents is fixed. This raises the question of 

hether the problems are strongly NP-hard when the number of 

gents is fixed. We show that the answer is “no” by presenting 

seudopolynomial time algorithms for ComputeUMwithinEF1 and 

omputeUMwithinPROP1 , and hence for deciding ExistsUMan- 

EF1 and ExistsUMandPROP1 (see Corollary 4.3 ). 

Our algorithms assume that valuations are non-negative inte- 

ers, and the sum of all values for a single agent is upper-bounded 

y some integer V . The run-time is polynomial in V . Therefore, in

he special case in which the valuations are binary , i.e., u i (o) ∈
 0 , 1 } for all i ∈ N, o ∈ O , we have V ≤ m , so the run-time is in

 ( poly (m )) . This special case has been studied substantially in the 

air division literature ( Barman, Biswas, Krishnamurthy, & Nara- 

ari, 2018a; Barman, Krishnamurthy, & Vaish, 2018b; Bouveret & 

emaitre, 2016; Darmann & Schauer, 2015; Halpern, Procaccia, Pso- 

as, & Shah, 2020 ). 

The run-time of our algorithms is exponential in n . This is not 

urprising in view of the hardness results for unbounded n . Our 

oal in the present paper is to prove that the problems are not 

trongly NP-hard when n is fixed; we leave to future work the 

roblem of finding algorithms with a smaller exponent. 

Our algorithms use dynamic programming. Each algorithm 

eeps a set of states , which initially contains a single state rep- 

esenting the empty allocation. There are m iterations. At each it- 

ration k , the algorithm considers, for every state in the current 
7 
et, all n possible ways to allocate item k . For each option, a new

tate is added (if it does not exist yet). Finally, the algorithm picks 

he optimal allocation from among the states generated at the last 

the m -th) iteration. The run-time of such an algorithm is upper- 

ounded by the total number of possible states. To flesh out this 

cheme, we have to specify, for each algorithm, what the states 

re, and how the next states are computed at each iteration. 

As a warm-up, we present an algorithm for ComputeUMwith- 

nPROP . Such an algorithm may be useful when a proportional al- 

ocation exists. 

heorem 7.1. Given n agents and m items, when all valuations are 

ositive integers and the sum of all values for a single agent is at 

ost V , it is possible to compute, in time O (mV n ) , a UM within PROP

llocation (whenever a PROP allocation exists), or detect that a PROP 

llocation does not exist. 

roof. The states are of the form (k ; t 1 , . . . , t n ) , where k ∈
 0 , . . . , m } and t i ∈ [0 , V ] for all i ∈ [ n ] . Each such state represents

he fact that, by allocating items o 1 , . . . , o k , it is possible to give a

tility of t i to each agent i . The initial state is (0 ;0 , . . . , 0) , corre-

ponding to the empty allocation. 

Each state (k − 1 ; t 1 , . . . , t n ) with k ∈ [ m ] has n next states: for

ll a ∈ [ n ] , a next state (k ; t 1 , . . . , t a + u a (o k ) , . . . , t n ) corresponds to

llocating the next item o k to agent a . 

The states (m ; t 1 , . . . , t n ) correspond to final allocations. A state 

orresponds to a proportional allocation if and only if t i ≥ v i (O ) /n

or all i ∈ [ n ] . If there are no such states, then we return “No pro-

ortional allocation exists”. Otherwise, we choose a state in which 

he sum t 1 + . . . + t n is maximum; this sum represents the largest 

tilitarian welfare compatible with proportionality. The maximiz- 

ng allocation can be found by backtracking the construction of the 

tates. 

The total number of possible states in each iteration is V n , so 

he total number of possible states overall is O (mV n ) . �

The above scheme cannot be directly applied to Compu- 

eUMwithinPROP1 . This is because PROP1 does not give a unique 

alue-threshold for every agent: the value-threshold depends on 

he highest-valued item that is not assigned to that agent. To han- 

le this we need more elaborate states. 

heorem 7.2. Given n agents and m items, when all valuations are 

ositive integers and the sum of all values for a single agent is at 

ost V , it is possible to compute a UM within PROP1 allocation in 

ime O (m 
n +1 V n ) . 

roof. The states are of the form (k ; t 1 , . . . , t n , b 1 , . . . , b n ) , where

 ∈ { 0 , . . . , m } and t i ∈ [0 , V ] and b i ∈ O ∪ {∅} for all i ∈ [ n ] . Each

uch state represents the fact that there is an allocation of items 

 1 , . . . , o k , where each agent i gets a utility of t i , and the most

aluable item given to agents other than i is b i . The motivation for 

ecording these items in the states is that, in order to check the 

ROP1 condition, we have to add to each agent’s value, the value 

f an item that is allocated to another agent. 

The initial state is (0 ;0 , . . . , 0 ; ∅ , . . . , ∅ ) . It represents the empty

llocation, where each agent gets a utility of 0 and no items. 

For each state (k − 1 ; t 1 , . . . , t n , b 1 , . . . , b n ) with k ∈ [ m ] , there

re n next states, constructed as follows. For all a ∈ [ n ] , there is

 next state (k ; t 1 , . . . , t a + u a (o k ) , . . . , t n ; b ′ 1 , . . . , b ′ n ) , where 

 
′ 
i := 

{ 

o k if i � = a and u i (o k ) > u i (b i ) 
(new most-valuable item for i in p(a ) ); 

b i otherwise. 
(1) 

The states (m ; t 1 , . . . , t n , b 1 , . . . , b n ) correspond to final alloca-
ions. A state corresponds to a PROP1 allocation if and only if 

 i + v i (b i ) ≥ v i (O ) /n for all i ∈ [ n ] . Note that there must be at least

ne such state, since a PROP1 allocation always exists. From these 

http://www.spliddit.org
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tates, we choose one that maximizes the sum t 1 + . . . + t n ; this

um represents the largest utilitarian welfare that is compatible 

ith PROP1. The maximizing allocation can be found by backtrack- 

ng the construction of the states. 

The total number of possible states in each iteration is V n · m 
n , 

o the total number of possible states overall is O (m 
n +1 V n ) . �

emark 7.3. With slight modifications in the state update rules, 

e can compute a UM-within-fair allocation for various other fair- 

ess criteria: 

For UM-within-PROPx ( Li, Li, & Wu, 2021 ), interpret the b i in 

he state as: the least valuable item given to agents other than i ,

nd replace (1) by 

 
′ 
i := 

⎧ ⎨ 

⎩ 

o k if i � = a and u i (o k ) < u i (b i ) or b i = ∅ 
(new least-valuable item for i in p(a ) ); 

b i otherwise. 

(2) 

or UM-within-EQ1, interpret b i as the most valuatble item given 

o agent i , and let 

 
′ 
i := 

⎧ ⎨ 

⎩ 

o k if i = a and u i (o k ) > u i (b i ) 

(new most-valuable item for i in p(i ) ); 

b i otherwise. 

(3) 

 state corresponds to an EQ1 allocation if and only if t j ≥ t i −
 i (b i ) for all i, j ∈ [ n ] . For UM-within-EQx ( Freeman et al., 2019 ),

nterpret b i as the least valuatble item given to agent i , and let 

 
′ 
i := 

⎧ ⎨ 

⎩ 

o k if i = a and u i (o k ) < u i (b i ) or b i = ∅ 
(new least-valuable item for i in p(i ) ); 

b i otherwise. 

(4) 

Next, we give a pseudopolynomial time algorithm for UM- 

ithin-EF. 

heorem 7.4. Given n agents and m items, when all valuations are 

ositive integers and the sum of values for a single agent is at most 

 , it is possible to compute, in time O (mV n (n −1) ) , a UM within EF

llocation (whenever an EF allocation exists), or detect that an EF al- 

ocation does not exist. 

roof. The states are of the form (k ; (t i, j ) i � = j ) , where k ∈ { 0 , . . . , m }
nd t i, j ∈ [ −V, V ] for all i, j ∈ [ n ] such that i � = j. Each such

tate represents the fact that there exists an allocation of items 

 1 , . . . , o k , in which, for all i, j ∈ [ n ] : u i (p(i )) − u i (p( j)) = t i, j . The

nitial state is (0 ;0 , . . . , 0) , corresponding to the empty allocation. 

Each state (k − 1 ; (t i, j ) i � = j ) with k ∈ [ m ] has n next states: for all

 ∈ [ n ] , there is a next state (k ; (t ′ 
i, j 

) i � = j ) that corresponds to allo-

ating the next item o k to agent a , where: 

 
′ 
i, j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

t i, j + u i (o k ) i = a (adding o k to the difference for the receiver)

t i, j − u j (o k ) j = a (subtracting o k from the difference 

for the non-receivers); 

t i, j otherwise. 

(5) 

The states (m ; (t i, j ) i � = j ) correspond to final allocations. A state 

orresponds to an envy-free allocation if and only if t i, j ≥ 0 for all 

 � = j. If there are no such states, then we return “No envy-free al-

ocation exists”. Otherwise, we choose a state that maximizes the 

um of all n (n − 1) elements, t 1 , 2 + t 1 , 3 + . . . + t n,n −1 . We claim that

his corresponds to maximizing the utilitarian welfare. To see this, 

ote that for each agent i ∈ [ n ] : 
n ∑ 

j � = i, j =1 

t i, j = 

n ∑ 

j � = i, j =1 

[ u i (p(i )) − u i (p( j))] = 

n ∑ 

j=1 

[ u i (p(i )) − u i (p(i ))] 

(adding [ u i (p(i )) − u i (p(i ))] ) = 

( 

n ∑ 

j=1 

u i (p(i )) 

) 

−
( 

n ∑ 

j=1 

u i (p( j)) 

) 

= n · u i (p(i )) − u i (O ) . 
g

8 
s the u i (O ) are constants that do not depend on the alloca-

ion, a higher sum t 1 , 2 + t 1 , 3 + . . . + t n,n −1 corresponds to a higher

um u 1 (p(1)) + · · · + u n (p(n )) , which is the utilitarian welfare. The

aximizing allocation can be constructed by backtracking the con- 

truction of states. 

The total number of possible states in each iteration is V n (n −1) , 

o the total number of possible states overall is O (mV n (n −1) ) . �

Finally, to compute UM within EF1, we need more state ele- 

ents tracing the most valuable objects given to agents. 

heorem 7.5. Given n agents and m items, when all valuations are 

ositive integers and the sum of all values for a single agent is at 

ost V , it is possible to compute a UM within EF1 allocation in time

 (m 
n (n −1)+1 ·V n (n −1) ) ≈ O (m 

n 2 V n 
2 
) . 

roof. The states are of the form (k ; (t i, j ) i � = j ; (b i, j ) i � = j ) , where k ∈
 0 , . . . , m } and t i, j ∈ [ −V, V ] and b i, j ∈ O ∪ {∅} for all i, j ∈ [ n ] such

hat i � = j. Each such state represents the fact that there is an al-

ocation of items o 1 , . . . , o k in which, for all i, j ∈ [ n ] : u i (p(i )) −
 i (p( j)) = t i, j , and in addition, item b i, j is the item that maximizes

 i in p( j) . We allow b i, j to be ∅ , to handle the case in which p( j)

s empty. 

The initial state is (0 ;0 , . . . , 0 ; ∅ , . . . , ∅ ) , which represents the

mpty allocation. For each state (k − 1 ; (t i, j ) i � = j ; (b i, j ) i � = j ) with k ∈
 m ] , there are n next states. For each agent a ∈ [ n ] , the next state

s (k ; (t ′ 
i, j 

) i � = j ; (b ′ i, j ) i � = j ) , where t ′ 
i, j 

is defined as in (5) , and 

 
′ 
i, j = 

⎧ ⎨ 

⎩ 

o k j = a and u i (o k ) > u i (b i, j ) 

(new most-valuable item for i in p(a ) ); 

b i, j otherwise. 

(6) 

As in the proof of Theorem 7.4 , maximizing utilitarian welfare 

s equivalent to maximizing the sum of t 1 , 2 + · · · + t n,n −1 . So we

hoose a state maximizing this sum such that for all i, j we have 

 i, j + b i, j ≥ 0 . This corresponds to an EF1 allocation maximizing the 

tilitarian welfare, which can be constructed by backtracking. 

The total number of possible states in each iteration is 

 
n (n −1) ·V n (n −1) , so the total number of possible states overall is 

 (m 
n (n −1)+1 ·V n (n −1) ) . �

emark 7.6. We can adapt the algorithm to find an allocation that 

s UM-within-EFx ( Caragiannis et al., 2019a ). The interpretation of 

he elements b i, j in the states should change to : the item that 

inimizes u i in p( j) . Equation (6) should be modified to: 

 
′ 
i, j = 

{
o k j = a and (u i (o k ) < u i (b i, j ) or b i, j = ∅ ) 
b i, j otherwise. 

(7) 

emark 7.7. We need n (n − 1) variables b i, j because the most- 

aluable item in p( j ′ ) can be different for different agents j. In the
pecial case in which the instance is ordered (all agents rank the 

tems in the same order), we can use a single b j for each agent,

nd the run-time becomes O (m 
n +1 V n (n −1) ) . 

. Empirical evaluation 

Allocating indivisible items fairly is receiving growing attention 

n many application areas including allocating time slots ( Goldman 

 Procaccia, 2014 ), recommendations online ( Burke, Voida, Mat- 

ei, & Sonboli, 2020 ); ( Chakraborty, Patro, Ganguly, Gummadi, & 

oiseau, 2019 ), rides in taxies ( Dickerson, Sankararaman, Srini- 

asan, & Xu, 2018 ), and conference papers for review ( Lian et al.,

018 ); ( Stelmakh, Shah, & Singh, 2021 ). To check the practical ap-

licability of computing efficient and fair allocation, in this sec- 

ion we investigate the runtime of the dynamic programmig al- 

orithms of Section 7 for UM within EF/EF1 and UM within 

ROP/PROP1 compared with direct implementations as Mixed Inte- 

er Linear Programs (MILPs). To this end, we implemented a simple 
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llocation ILP in Gurobi 9.1 using the Python interface 4 and com- 

ared it with our direct dynamic programming implementations. 5 

.1. Mixed integer linear programs for finding utilitarian maximal 

llocations with EF/EF1 and PROP/PROP1 

In this section we give formulations for the mixed integer lin- 

ar programs that we used in our experiments. We begin with UM 

ithin Prop. Given a binary variable assigned[ a, o] for each a ∈ N

nd o ∈ O , which takes value 1 if agent a is assigned object o in the

atching, as well as a continuos variable ut ilit y [ a ] for each agent

 ∈ N which will take the total utility for agent a for the assign-

ent, we can find the utilitarian maximal (UM) assignment within 

he set of Proportional (PROP) assignments as follows. 

max 
∑ 

a ∈ N ut ilit y [ a ] , s.t ., 
(1) ut ilit y [ a ] = 

∑ 

o∈ O assigned[ a, o] · u a [ o] ∀ a ∈ N 

(2) ut ilit y [ a ] ≥ u a [ O ] | N| ∀ a ∈ N 

e can use a similar formulation for the UMinEF formulation. Note 

hat the constraint (2) needs to be for all n (n − 1) ordered pairs of

, j ∈ N, as envy is not necessarily a symmetric relation. 

max 
∑ 

a ∈ N ut ilit y [ a ] , s.t ., 
(1) ut ilit y [ a ] = 

∑ 

o∈ O assigned[ a, o] · u a [ o] ∀ a ∈ N 

(2) ut ilit y [ i ] ≥ ∑ 

o∈ O assigned[ j, o] · u i [ o] ∀ i, j ∈ N 

he EF1/PROP1 formulations are slightly more complicated to en- 

ode without too large an increase in model size. Informally, 

or the PROP1 setting we add an auxiliary variable to track 

he highest value item (to agent i ) that has not been allocated 

o agent i . We use a similar trick but for every pair i, j of

gents for EF1. Specifically, for PROP1, given additional contin- 

os variable v alue _ not _ assigned _ best[ a ] for each a ∈ N that tracks

he value of the maximal unassigned object and binary variable 

ot _ assigned _ best[ a, o] for every a ∈ N and o ∈ O to track what ob-

ects are unassigned to agent a , we can express the UMinPROP1 

ILP as follows. 

max 
∑ 

a ∈ N ut ilit y [ a ] , s.t ., 
(1) ut ilit y [ a ] = 

∑ 

o∈ O assigned[ a, o] · u a [ o] 
(2) not _ assigned _ best[ a, o] ≤ 1 − assigned[ a, o] 

(3) 
∑ 

o∈ O not _ assigned _ best[ a, o] ≤ 1 

(4) v alue _ not _ assigned _ best[ a ] ≤ ∑ 

o∈ O not _ assigned _ best[ a, o
(5) ut ilit y [ a ] + v alue _ not _ assigned _ best[ a ] ≥ u a [ O ] | N| 

Constraints (2) and (3) enforce that at most one item o, which 

s not assigned to a , has not _ assigned _ best[ a, o] = 1 ; constraint (4)

ets v alue _ not _ assigned _ best[ a ] to at most the largest value of a

ot-assigned item; constraint (5) uses this value to enforce the 

ROP1 constraint. 

Finally, for UMinEF1 we use a similar idea as our UMinPROP1 

ormulation but instead of not _ assigned _ best for each agent, we in- 

tead introduce variable not _ assigned _ best[ i, j, o] for each ordered 

air i, j ∈ N and object o ∈ O that captures the best, according to i ,

tem assigned to j that is not assigned to i , and we also must track

 alue _ not _ assigned _ best[ i, j] for each ordered pair i, j ∈ N. 

max 
∑ 

a ∈ N ut ilit y [ a ] , s.t ., 
(1) ut ilit y [ a ] = 

∑ 

o∈ O assigned[ a, o] · u a [ o] 
(2) not _ assigned _ best[ i, j, o] ≤ 1 − assigned[ i, o] 

(3) not _ assigned _ best[ i, j, o] ≤ assigned[ j, o] 

(4) 
∑ 

o∈ O not _ assigned _ best[ i, j, o] ≤ 1 

(5) v alue _ not _ assigned _ best[ i, j] ≤ ∑ 

o∈ O not _ assigned _ best[ i,
(6) ut ilit y [ i ] + v alue _ not _ assigned _ best[ i, j] ≥ ∑ 

o∈ O assigned[
4 Source Code: github.com/tu-dai/IndivisibleAllocation . 
5 Source Code: github.com/erelsgl/dynprog . 
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∀ a ∈ N 

∀ a ∈ N, o ∈ O 

∀ a ∈ N 

 [ o] ∀ a ∈ N 

∀ a ∈ N 

∀ a ∈ N 

∀ i, j ∈ N, o ∈ O 

∀ i, j ∈ N, o ∈ O 

∀ i, j ∈ N 

u i [ o] ∀ a ∈ N 

· u i [ o] ∀ i ∈ N 

.2. Experimental details and results 

We generate synthetic data for our experiments using a Mal- 

ows model and assigning agents Borda utilities, i.e., m − 1 , m −
 , . . . , 0 for the m items as is often done in the empirical literature

n this area ( Mattei & Walsh, 2013, 2017 ). A Mallows model is con-

rolled by a dispersion parameter , φ, which changes the distribution 

f preferences around a reference ranking Mallows, 1957 ). Infor- 

ally, Mallows models allow us to simulate the situation when 

ll agents have identical preferences, φ = 0 . 0 , and the situation 

hen agents have preferences drawn uniformly at random, φ = 

 . 0 , and every point in between as parameterized by the Kendall- 

au (sometimes called the swap) distance between the ordinal 

ankings. Hence we are able to test what the impact of agents hav- 

ng correlated preferences has on the runtime of the algorithms. 

For all our settings we held the number of agents and items 

o be the same, m = n , and swept this value between 2 and 7. For

ach step we generated 50 instances as described above for φ ∈ 

 0 . 5 , 0 . 75 . 1 . 0 } . All experiments were run on a 2018 Mac Book Pro-

ith 2.6 GHz 6-Core Intel Core i7 and 32 GB of RAM. Our results 

with a log scale y-axis) are depicted in Figs. 1 and 2 . 

Looking first at Fig. 1 , the UM within EF versions of both the DP

nd the MILP versions of the algorithms take more time to solve 

han the UM within PROP. the MILP implementations are able to 

cale much better as we increase the size of the instances. The 

untime over the 50 samples is fairly constant for each of the algo- 

ithms. While it is hard to distinguish in the graph, there is a small 

ifference in average runtime as we change φ, generally speaking, 

ess correlated preferences, i.e., lower φ results in faster runtimes. 

Turning to Fig. 2 we see much of the same performance. Again 

he MILP implementations outperform the dynamic programming 

olutions as we scale up the number of agents and items. In the 

F1/PROP1 setting we do see a slightly more pronounced differ- 

nce in runtime based on φ with less correlated preferences lead- 

ng to faster runtimes. 

In comparing Fig. 1 and 2 we can make some general 

tatements about the reletive performance of EF/PROP versus 

F1/PROP1. First, it is interesting to note that when n < 5 , the

ynamic programming algorithms are faster for both EF/EF1 and 

ROP/PROP1 settings. Secondly, for both cases, and more so for the 

F1/PROP1, we can clearly see that for both the MILP solution and 

he dynamic programming solution, PROP/PROP1 is an easier prob- 

em than EF/EF1, resulting in faster runtimes. 

Finally, we tracked the number of instances that had solutions 

hat admitted either an EF or PROP allocation. Of the 900 instances 

e generated, only 11.2% admitted an EF solution while 71.3% ad- 

itted a PROP solution. Whereas, when looking at the EF1/PROP1 

elaxations, that number is 100% for both since we know these 

llocations always exist. This can be seen as evidence for the 

mportance of studying the relaxation of the solution concepts 

https://github.com/tu-dai/IndivisibleAllocation
https://github.com/erelsgl/dynprog
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Fig. 1. Run-time (on a logarithmic scale) of the Dynamic Programming algorithms (DP) and Mixed Integer Linear Programming (GRB) versions of algorithms to find UM 

within EF or PROP allocations. We plotted the run-times for three different settings of the Mallows model dispersion parameter φ; the plots for these three settings are 

almost completely overlapping, though if we do not display on a log scale y-axis, we can see a small difference in runtime. The MILP implementations are able to scale much 

better as we increase the number of agents and objects. At n = 7 , the bottom plot is GRB-PROP (denoting the fastest performance), the next one is GRB-EF, then DP-PROP, 

and finally DP-EF. 

Fig. 2. Run-time (on a logarithmic scale) of the Dynamic Programming algorithms (DP) and Mixed Integer Linear Programming (GRB) versions of algorithms to find UM 

within EF1 or PROP1 allocations. We plotted the run-times for three different settings of the Mallows model dispersion parameter φ; the plots for these three settings are 

almost completely overlapping, though if we do not display on a log scale y-axis, we can see a small difference in runtime. The MILP implementations are able to scale 

much better as we increase the number of agents and objects. At n = 7 , the bottom plot is GRB-PROP1 (denoting the fastest performance), the next one is GRB-EF1, then 

DP-PROP1, and finally DP-EF1. 

10 
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o EF1 and PROP1 since many instances do not admit fully EF or 

ROP solutions. 

. Conclusions and future work 

We provide a clear picture of the computational complexity of 

omputing allocations that are both fair and maximize the utilitar- 

an social welfare. We find that while existence can be decided ef- 

ciently when we have n = 2 agents, in most cases both the ques-

ion of existence for UM and fair allocations as well as finding UM 

ithin fair allocations, is computationally hard. However, we are 

ble to demonstrate positive results in the form of pseudopoly- 

omial time algorithms when the number of agents is a constant 

 ≥ 3 for both the fairness concepts EF1 and PROP1 as well as their 

tronger counterparts EF and PROP. 

Although EF1 is stronger than PROP1, an algorithm for UM- 

ithin-EF1 does not imply an algorithm for UM-within-PROP1, 

ince the maximum utilitarian welfare in a PROP1 allocation might 

e higher than the maximum utilitarian welfare in an EF1 alloca- 

ion. This raises an interesting question of how much utilitarian 

elfare is lost when moving from PROP1 to EF1 allocations. Our 

lgorithms allow to study this question empirically in future work. 

By using different thresholds in the algorithms of 

heorems 7.1 and 7.2 , these algorithms can be adapted to handle 

ther fairness notions, such as weighted proportionality (for agents 

ith different entitlements), maximin-share fairness ( Budish, 2011 ) 

n cases in which the maximin-shares of the agents are known, or 

hresholds computed from picking sequences, recently introduced 

y ( Gourvès, Lesca, & Wilczynski, 2021 ). 

Our other algorithms can be adapted to handle other notions of 

airness that are based on the “up to 1 item” concept. This is be- 

ause the tables constructed by these algorithms contain informa- 

ion about the bundle values and about items that are contained / 

ot contained in them. 

Similarly, our algorithms can be adapted to handle egalitarian 

ptimality (maximizing the minimum utility), by using the mini- 

um in the last step instead of the sum. However, we do not know 

f they can be adapted to more complex efficiency notion, such 

s rank maximality ( Irving, Kavitha, Mehlhorn, Michail, & Paluch, 

006 ). 

Other directions for future work include: 

(i) Improving the run-time complexity of the algorithms for a 

fixed number of agents 

(ii) Devising faster algorithms for restricted domains, and for 

approximately-maximal utilitarian welfare 

(iii) Constructing datasets of utilities based on experiments 

with humans, and examining the performance of our algo- 

rithms on such datasets ( Mattei, 2020 ). 
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ppendix A. EF1 vs. PROP1 

It is known that, with additive valuations, EF1 implies PROP1. 

or completeness, we provide a proof below. 

roposition A.1. Let i ∈ N be an agent with an additive utility func- 

ion u i . If an allocation p is EF1 for i , then p is PROP1 for i . 

roof. If p(i ) = O then the allocation if obviously PROP1 for i , so

e assume p(i ) � O . Let U := max o∈ O \ p(i ) u i (o) = the value of the

ost valuable item that is not allocated to i . 

The definition of EF1 implies that, for every agent j � = i : 

 i (p(i )) ≥ u i (p( j)) −U. 

he same obviously holds when j = i . Summing over all j ∈
 1 , . . . , n } yields: 
 · u i (p(i )) ≥ u i (O ) − n ·U. 

ividing by n yields: 

u i (p(i )) ≥ u i (O ) /n −U 

 u i (p(i )) + U ≥ u i (O ) /n 

hich is the condition for PROP1. �

The following example shows that EF1 is strictly stronger than 

ROP1, even when there are only two agents. 

xample A.2. Consider the following instance with 2 agents and 7 

tems where the number is the utility to each agent. 

a b ( ×6 ) 

Alice: 4 1 

Bob: 4 1 

Suppose Alice has a and Bob has all the six b items. Then the 

llocation is PROP1 but not EF1 for Alice. 
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