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Abstract—Building on the principles of openness and intelli-
gence, there has been a concerted global effort from the operators
towards enhancing the radio access network (RAN) architecture.
The objective is to build an operator-defined RAN architecture
(and associated interfaces) on open hardware that provides
intelligent radio control for beyond fifth generation (5G) as well
as future sixth generation (6G) wireless networks. Specifically,
the open-radio access network (O-RAN) alliance has been formed
by merging xRAN forum and C-RAN alliance to formally define
the requirements that would help achieve this objective. Owing
to the importance of O-RAN in the current wireless landscape,
this article provides an introduction to the concepts, principles,
and requirements of the Open RAN as specified by the O-RAN
alliance. In order to illustrate the role of intelligence in O-RAN,
we propose an intelligent radio resource management scheme
to handle traffic congestion and demonstrate its efficacy on a
real-world dataset obtained from a large operator. A high-level
architecture of this deployment scenario that is compliant with
the O-RAN requirements is also discussed. The article concludes
with key technical challenges and open problems for future
research and development.

Index Terms—Open RAN, 6G, beyond 5G, radio resource
management, machine learning, intelligent controller.

I. INTRODUCTION

The existing 5G wireless architecture lacks sufficient flex-
ibility and intelligence to efficiently handle stringent and
diverse demands [1]. As a result, the evolution towards beyond
5G and sixth generation (6G) wireless calls for an architectural
transformation required to support service heterogeneity, co-
ordination of multi-connectivity technologies, and on-demand
service deployment. Open radio access network (RAN) is an
emerging idea that enables such a transformation using the
concepts of virtualization, flexibility, and intelligence. Natu-
rally, over the last few years, multiple independent alliances
and forums have initiated research on accelerating this trans-
formation of RAN by increasing infrastructure virtualization,
combined with embedded intelligence to deliver more agile
services and advanced capabilities to end users.
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One such effort is known as OpenRAN, a project group
within the Telecom Infra Project (TIP), that focuses on
building RAN solution based on software-defined technology
and open and general-purpose hardware [2]. Another separate
effort is xRAN forum that has been formed to promote an open
alternative to traditionally vendor-based RAN architecture.
The xRAN effort is focused towards advancing RAN in three
areas including separation of user and control planes, open
interfaces, and modular RAN software stack on commercial
off-the-shelf (COTS) hardware [3]. On February 2018, open-
radio access network (O-RAN) was conceived by merging
xRAN forum and C-RAN alliance to drive new levels of
openness in the radio access network that would support the
evolution towards beyond 5G and 6G wireless. The main
objective of O-RAN is to enhance the RAN performance
through virtualized network elements and open interfaces that
incorporate intelligence in RAN. Openness and intelligence
are the two core pillars of the efforts pursued by the O-RAN
alliance, which is a global force consisting of more than 160
contributors from large vendors, small and medium companies,
network operators, start-ups and academic institutions [4].
Openness aims to eliminate vendor lock-in and proprietary
implementation of hardware and software by establishing open
standard RF interfaces, which help in increasing operational
savings already provided by virtual RAN (vRAN) and cloud
RAN (C-RAN). This will enable the deployment of remote
radio heads (RRHs) and baseband units (BBUs) from dif-
ferent vendors to build flexible and scalable RAN networks.
Besides flexibility, openness of RAN components accelerates
the delivery of new features and services where services can
be dynamically introduced to users.

Intelligence is quickly becoming a necessity for the de-
ployment, optimization, and operation of wireless networks
beyond 5G [5], [6]. This is primarily because of the increasing
complexity of 5G wireless networks and beyond, in response
to the need to handle demanding service requirements [7],
[8]. Therefore, “O-RAN alliance strives to leverage emerging
learning techniques to embed intelligence in every layer of the
RAN architecture.” [4]. Ratification of several specifications



and release of millions of lines of open-source code (in
partnership with Linux) is gradually establishing O-RAN as
the harbinger of a collaborative platform to support the evo-
lution towards the next generation of wireless communication
networks.

Owing to the implications of these developments on the
future wireless and networking research, it is imperative to
provide a timely and accessible introduction to the general
concept and core principles of O-RAN, so that these concepts
can benefit from inputs from the broader community (and not
just the current stakeholders, which are mostly the operators).
Keeping this rather ambitious goal in mind, we take a two-
pronged approach in this article. We first provide a brief
introduction to O-RAN to educate readers about the general
concept, while providing pointers for more advanced reading
(which is necessary because of the space constraints). We then
focus specifically on illustrating the role of intelligence in O-
RAN, which we believe will be an essential factor moving
forward. For this, we propose an intelligent traffic prediction
and radio resource management scheme that is cognizant of the
O-RAN architectural requirements. This scheme is described
next.

We utilize long short-term memory (LSTM) recurrent neural
network (RNN) to learn and predict the traffic pattern of a
real-world cellular network in a densely populated area of
Mumbai, India, in order to identify potential congested cells.
The LSTM model is trained at non-real-time radio intelligence
controller (non-RT RIC) in the O-RAN architecture, using long
term data gathered from RAN. The trained model is then sent
to near-real-time radio intelligence controller (near-RT RIC)
of the O-RAN for inference. Upon the inference outcome,
cell splitting1 is applied to the congested cells to improve the
related key performance indicators (KPIs). Traffic prediction
and the corresponding congestion treatments are continuously
applied until the target KPI values are met. In order to show the
compliance of the overall scheme with O-RAN requirements,
we also discuss how the proposed mechanism is mapped into
the O-RAN control loops, specify the location of the machine
learning (ML) training and inference modules, and provide a
high-level architecture of deployment scenarios and the end-
to-end flow.

To the best of our knowledge, this article makes the first
attempt to demonstrate a concrete O-RAN based practical
example with embedded intelligence. The preprint of this
paper was made available on arXiv in May 2020 [10].

II. PRELIMINARIES AND OVERVIEW

The considerable cost involved in the deployment and
optimization of the RAN components is one of the main
reasons behind considering RAN as the most appealing can-
didate for decreasing the network expenditure [2]. One of the

1It is worth mentioning that other radio resource management tech-
niques [9] can be applied. However, our intent is rather to emphasize
that O-RAN would enable intelligence and automation for radio resource
management, by introducing the radio intelligent controllers (non-RT RIC
and near-RT RIC).

Fig. 1. Comparison of O-RAN and vRAN approaches in terms of openness.
The major difference is in RRU hardware and the RRU-BBU interface.

primary RAN architectures introduced to enable cost saving
has been the C-RAN architecture, in which the baseband units
are shared in a centralized baseband pool. This architecture
has opened up an opportunity for RAN virtualization that
further reduces cost. As a result, vRAN has been developed
to simplify the deployment of the RAN nodes and make
the platform readily available for multitude of dynamically
changing services [11].

Although quite cost-effective, these architectures still host
propriety software, hardware and interfaces. In fact, lack
of openness has been identified as a major bottleneck in
maximally utilizing virtualization [12]. Please refer to Fig. 1
for the vRAN architecture.

In order to overcome the limitations of C-RAN and vRAN,
O-RAN has emerged as a new RAN architecture that uses
well-defined open interfaces between the elements imple-
mented on general-purpose hardware. It also allows RRU
and BBU hardware and software from different vendors (see
Fig. 1). Disaggregation is a key factor based on which opera-
tors can select RAN components from different vendors indi-
vidually. In addition, open interfaces between decoupled RAN
components provide efficient multi-vendor interoperability. In
addition to cost reduction, intelligent RAN can handle the
growing network complexity and improve the efficiency and
accuracy by reducing the human-machine interaction. Radio
intelligent controllers, non-RT RIC and near-RT RIC, are two
main modules introduced in O-RAN architecture that enhance
the traditional network functions with embedded intelligence
(see Fig. 2). There are several key steps that need to be
taken in any ML/AI-assisted solution, based on the O-RAN
requirements [13].

• The first step is model capability query that is performed
by the service management and orchestration (SMO),
when the model is to be executed for the first time (or
updated). These capabilities include hardware processing
power, ML engine, and available data sources.

• The next step is model selection and training, where the
ML training host initiates the model training and sends
the trained model back to the non-RT RIC in SMO for



Fig. 2. Representation of O-RAN architecture [4], with RAN intelligent
controllers (near real-time and non real-time), control and distributed units.

deployment.
• The ML inference host is then configured with the model

description file, and the online data shall be used for
inference. The inference outcome is sent to near-RT RIC,
from where the policy is generated to take corrective
actions.

• Depending on the outcome of the model inference, the
corresponding actions are taken using the related actors.
Based on the location of the ML inference and the actors
and type of actions, different interfaces (O1, A1 and E2)
are utilized. A1 interface is an open logical interface to
enable the non-RT RIC to provide policy-based guidance,
ML model management, and enrichment information to
the near-RT RIC function for RAN optimization.
E2 is the interface between near-RT RIC, the centralized
unit (CU) protocol stack and the underlying RAN DU.
This provides a standard interface between the near-RT
RIC and CU/DU in the context of O-RAN architecture.
The role of O1 interface is to provide operation and man-
agement of CU, DU, radio unit (RU), and near-RT RIC
(such as fault management, performance management and
configuration management) to SMO. It can also configure
CU, DU, RU, and near-RT RIC depending on the use
cases [14] which is beyond the scope of this article.

• Finally, upon monitoring the performance of the model,
the inference host feeds back the model performance to
the training host for the purpose of model redeployment
or model update.

There are some initial set of exemplary use cases (showcasing
the utilization of ML/AI models), including context-based dy-
namic handover management for vehicle-to-everything (V2X)
communication, quality of experience (QoE) optimization, and
flight path-based dynamic unmanned aerial vehicle (UAV)
resource allocation, to demonstrate the practical applicability

Fig. 3. User-perceived IP throughput and PRB utilization prediction for a
cell of a selected eNB in the network.

Fig. 4. User-perceived IP throughput performance for different order of cell
splitting.

of O-RAN architecture. Interested readers are referred to [14]
for additional use cases.

III. PROPOSED FRAMEWORK

In order to provide a concrete practical example, we develop
an intelligent radio resource management scheme tailored
for the O-RAN architecture. In this scheme, the temporal
pattern of the data traffic is learned by utilizing LSTM neural
network to predict the possible occurrence of the congestion.
To prevent an upcoming congestion, radio resources are re-
allocated accordingly. This section provides detailed descrip-
tion of the proposed scheme and its compatibility with O-
RAN requirements on the ML/AI-assisted solutions described
in [13].

A. Intelligent Radio Resource Management

In the proposed scheme, we define a cell as congested if
• The average user-perceived IP throughput < 1Mbps;

AND
• The average downlink physical resource block (DL-PRB)

utilization > 80%;
DL-PRB utilization percentage provides the usage (in per-
centage) of PRBs on the downlink for user plane traffic. In
addition, the user-perceived IP throughput is measured in terms
of the packets transmitted between the evolved node-B (eNB)
and users [15]. It is worth mentioning that the above metrics to
identify the congestion event and the corresponding thresholds
are defined based on the operator service level agreement
(SLA) and can be re-configured by the operator based on



their hardware or software requirements. In fact, each operator
usually has its own threshold values in the congestion logic.
That said, the KPIs to measure congestion remain the same.
Following these metrics, network parameters such as PRB
utilization rate and user's downlink data rate are continuously
monitored across all cells of the eNBs in the network. Using
RNN, the temporal pattern of the mentioned parameters are
learned through the current values to predict future values
and the potential congested cells. Subsequently, the network
alarms are set to trigger if the cells are likely to get congested.
It is worth noting that different triggering criteria could be
considered based on the target KPIs. Upon identifying the
congested cells, solutions, such as enabling dual connectivity,
and cell splitting can be applied as remedies. Finally, if the
prediction is erroneous, the weights of the RNN model are
updated based on the actual value of the parameter to reflect
the changes and improve the performance until the target KPI
conditions are met.

The parameters of an RNN model that include 2 layers of
12 LSTM units (12-hour window), are learned to predict the
future traffic for the next hour. This can be configured by
operators as per the available data and its periodicity. The
RNN training is carried out over a real-world mobile traffic
dataset from a cellular network in Mumbai, India2. The dataset
contains network measurements in terms of user-perceived IP
throughput, downlink PRB utilization, collected from 17 LTE
eNBs (18 cells in each eNB), over a duration of 25 days,
August 1 to August 25, 2019. The dataset contains 368424
data points (80% training set, 20% test set) and the training
time is around 100 seconds per cell. Simulation parameters
are summarized in Table I. The RNN model is implemented
using Keras, the open-source high-level TensorFlow applica-
tion programming interface. The model training is carried out
on a server with dual Xeon Gold CPU (44 threads/CPU) along
with 512 GB RAM. In order to illustrate the performance of
the ML model prediction, Fig. 3 represents the performance of
the RNN model in terms of user-perceived IP throughput and
percentage of DL-PRB utilization. In this figure, both actual
and predicted values for user-perceived IP throughput (left y-
axis) and percentage of DL-PRB utilization (right y-axis) of a
cell in a selected eNB in the network are shown. The average
accuracy of the prediction is 92.64%.

As a congestion relief solution, we utilize cell splitting
approach. Here, cell splitting refers to the general idea of
splitting the coverage footprint of congested cells into two
or more cell sites. For the purpose of this discussion, one
can achieve cell splitting by activating eNBs (especially, small
cells) that may be put into sleep mode during highly loaded
periods to save energy. Since power consumption is one of
the biggest costs for the operators, strategies that are “green”
are of strategic importance to them. Another economically
viable way of doing this is through infrastructure sharing. For

2We should clarify that the dataset belongs to a 4G network. However,
the type of dataset (e.g., 5G or even 6G) would only determine the choice of
parameters in the prediction stage while the general principles discussed in
the paper would still apply.

TABLE I
SIMULATION PARAMETERS

Parameter Value
No. of eNB 17
No. of cell in each eNB 18
% of the cell splitting (R) [60,75]
LSTM layer 2
No. of LSTM unit in each layer 12
Batch size 16
No. of epoch 150
Activation function tanh
Optimizer Adam

instance, instead of operators building their own systems to ac-
commodate peak traffic activity, they can rely on infrastructure
sharing to access additional cells or offload their additional
traffic to base stations operating in unlicensed spectrum, such
as citizens broadband radio service (CBRS). This strategy
complements emerging business models of both network and
spectrum sharing to increase network capacity.

That said, since our focus is on demonstrating how in-
telligence can be embedded in O-RAN, the exact choice of
the congestion solution is immaterial; because of which we
selected a simple scheme that is easy to describe on a real
network. As a result of cell splitting, some users from the
original cell are moved to the splitted cells. Therefore, in order
to emulate such an effect in our simulation, a random number
R ∈ [60, 75] is generated in each round of split. Subsequently,
R% of the users are assumed to move to the new cell, while
the remaining users stay in the original cell. For higher cell
splitting factors, i.e. 4 or 8, the same process is repeated for
the splitted cells in each round.

Fig. 4 demonstrates the network performance in terms of
user-perceived IP throughput. Each bar in the histogram rep-
resents the number of hours that the user-perceived IP through-
put of the given cell is within a certain interval, specified by
the range of the bar on the IP throughput-axis. As evident
from the result, the preemptive cell splitting of the congested
cells in the network significantly improves the performance.
For instance, if you consider the blue bar, for majority of
the time, the user-perceived IP throughput is in the range of
0-2.5 Mbps, while after prediction and utilizing cell-splitting
(e.g. the yellow bar representing cell-splitting with factor 4),
the fraction of hours with 0-2.5 Mbps IP throughput decreases
and the yellow bar in regions with higher IP-throughput (2.5-5
or 5-7.5 Mbps) increases. Although, as seen in the figure, one
can achieve a higher network capacity by more aggressive cell
splitting (due to denser frequency reuse), it can stress some
other factors, such as increasing the complexity of channel
assignment and increasing the occurrence of handovers, to
name a few. Therefore, cell splitting should be implemented in
moderation to ensure that the cell congestion is avoided with
minimal degradation in the aforementioned factors.

It is worth noting that the proposed O-RAN based con-
gestion prediction and mitigation operates without any human
intervention. Therefore, it can provide continuity of services
which is one of the important requirements of next generation



Fig. 5. High-level structure of deploying the proposed intelligent congestion prediction and radio resource management scheme in the O-RAN architecture.

networks.

B. Deployment Architecture

In this section, we explain how the proposed scheme is im-
plemented in the O-RAN architecture. The high-level structure
of deployment scenarios and end-to-end flow of the proposed
solution in the O-RAN architecture are illustrated in Fig. 5.

1 The related RAN counters from control and distributed
units are collected in the data collector located in the
SMO. Depending on the SMO platform, different en-
tity would be responsible for data collection [13]. For
instance, if open network automation platform (ONAP)
is considered as the SMO, virtual event streaming (VES)
collectors of data collection, analytics and events (DCAE)
subsystem in the ONAP is used to collect the data. This
step is carried out over O1 interface of the O-RAN
architecture. It is worth noting that assuming DCAE,
some data preprocessing such as adding virtual network
function (VNF) names and IDs and converting counters
into KPIs are carried out by open-source cask data
application platform (CDAP).

2 The collected data at the SMO is shared with non-RT RIC
deployed in the SMO using a data bus, such as Kafka.

3 The related ML/AI model, hosted in the AI server inside
the SMO, is queried by non-RT RIC. We have utilized
Acumos AI (in the AI server in the architecture, it is
the module located in the upper left corner in Fig. 5) to
deploy the training module.

4 After training the model in the AI server, the inference
is sent back to non-RT RIC.

5 Subsequently, the inference results and policies are for-
warded to congestion prediction and mitigation (CPM)
xAPP in near-RT RIC over the A1 interface of the O-
RAN. xAPPs are applications that are specific to radio-

function to make the RAN components programmable.
It is designed to run on the near-RT RIC and likely
consist of one or more microservices. At the point of
on-boarding, it identifies the type of data it requires and
provides. The application is independent of the near-RT
RIC and may be provided by any third party. Fig. 5
provides details of the ML training and inference host
locations (non-RT RIC and near-RT RIC, respectively)
in our proposed architecture. This is based on the second
set of deployment scenarios3 specified by the O-RAN
alliance in technical report [13].

6 The congestion relief solution is configured once the
congestion occurrence is predicted.

7 Finally, the corresponding solution is applied to CU or
DU through E2 interface.

IV. CHALLENGES AND OPEN PROBLEMS

Statistical and atmospheric metadata. In an actual wire-
less network, a group of cells may have specific performance
patterns and infrastructural requirements that would depend
on their locations within the network and subsequently the
statistics of the load they are serving. Information about
these specific requirements will help to increase the efficacy
of models for self-estimation and self-healing of congestion.
This includes analysis of busy-hour traffic patterns and the
associated atmospheric conditions across ultra-dense cells in
major metropolitan cities.

Compatibility. Interestingly, as O-RAN introduces the con-
cept of openness, an operator can have different equipment
from different vendors. All the operators and vendors have
different naming conventions for counters and KPIs. Thus,

3Depending on the training and inference locations, there are three dif-
ferent deployment scenarios specified by O-RAN alliance. Interested readers
are referred to [13].



the model needs to be flexible enough to dynamically adapt
to different metadata from different operators and vendors.
Moreover, difference in hardware and software performance
often results in operators and vendors having different SLAs
to measure cell congestion. In such scenarios, we expect
the vendors and operators to either cooperate in agreeing on
common SLAs or improve our models to dynamically adapt
based on different SLAs.

Computational requirement. Keeping inference models
for thousands of cells in near-RT RIC is quite complex. Such
complex models are generally not efficient for execution in
existing high performance CPUs and might require GPUs to
take care of this complexity, which in turn, might involve
higher capital and operating expenditures.

Security. Since O-RAN stems from the key principle of
RAN virtualization, it inherits deployment-specific security
challenges attributed by virtualization and software defined
network (SDN). These security challenges include authenti-
cation and authorization of virtual machine (VM) migration,
VM instantiation, hypervisor security, orchestration security,
and SDN controller security [16]. In addition, the shared BBU
pool in the O-RAN cloud native deployment may impose
the risk of breaking user privacy and accessing sensitive
data. Therefore, although O-RAN enables the creation of
flexible service tailored to the needs of distinct customers,
it is important to weigh these benefits in the light of security
challenges brought in by the open and virtual approaches.

Supporting distinct use cases. Extreme data rate require-
ment of eMBB application stretches the limits of common
public radio interface (CPRI)-based fronthaul. In addition,
large bandwidth requirement in CPRI fronthaul limits the
cloud native deployment, which is an integral part of the O-
RAN vision. However, utilizing an Ethernet-based transport
through the 7.2x specification in the O-RAN architecture has
moderated this limitation [14]. While Ethernet has been able
to meet stringent data rate requirement, fronthaul transport
requirements are significantly more challenging in network
slices with uRLLC requirement, such as tactile Internet, indus-
trial control and automotive applications. In such applications,
the network transport capacity may not be sufficient and using
virtual BBU may add higher latency [2]. Therefore, backup
strategies for distinct use case scenarios should be in place.

Interoperability. Another challenge associated with open
architectures that incorporate multi-vendor elements is inter-
operability. In fact, to maintain the stability and reliability of
the operation in O-RAN, multi-vendor products must inter-
operate. Furthermore, risk mitigation strategies should be in
place, in case implementations do not work with each other
successfully. Therefore, it is crucial to identify the risks of
incompatibilities between the radio and control products from
different vendors [12].

V. SUMMARY AND CONCLUDING REMARKS

In this article, we started off by providing an accessible
introduction to the general concept of O-RAN and its two core
principles of openness and intelligence. In order to provide a

concrete O-RAN based practical example, the temporal pattern
of a real-world data traffic from a dense urban cellular network
in Mumbai, India, was learned by utilizing LSTM neural
network to predict the possible congestion with high accuracy.
In order to prevent an upcoming congestion, we discussed a
cell-splitting based radio resource management scheme along
with its corresponding high-level architecture (as well as the
end-to-end flow) that is cognizant of the O-RAN requirements.
As evident from the result, the preemptive cell splitting of
the congested cells in the network significantly improves the
performance. Since our real objective in this article was to
discuss architectural subtleties of embedding intelligence in
O-RAN, we limited our attention to a specific congestion
solution that is easy to describe in an actual network. We
conclude this discussion with the hope that this article will
convey the essence of O-RAN to the broader community to
actively engage them in this exciting new area, which clearly
has important implications for future communications and
network research. In order to help the uninitiated, we have
also provided pointers to several open research questions.
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