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Abstract

A�ribute-based encryption (ABE) extends public-key encryption to enable fine-grained control to encrypted data.

However, this comes at the cost of needing a central trusted authority to issue decryption keys. A multi-authority

ABE (MA-ABE) scheme decentralizes ABE and allows anyone to serve as an authority. Existing constructions of

MA-ABE only achieve security in the random oracle model.

In this work, we develop new techniques for constructing MA-ABE for the class of subset policies (which captures

policies such as conjunctions and DNF formulas) whose security can be based in the plain model without random

oracles. We achieve this by relying on the recently-proposed “evasive” learning with errors (LWE) assumption by

Wee (EUROCRYPT 2022) and Tsabury (CRYPTO 2022).

Along the way, we also provide a modular view of the MA-ABE scheme for DNF formulas by Da�a et al. (EU-

ROCRYPT 2021) in the random oracle model. We formalize this via a general version of a related-trapdoor LWE

assumption by Brakerski and Vaikuntanathan (ITCS 2022), which can in turn be reduced to the plain LWE assumption.

As a corollary, we also obtain an MA-ABE scheme for subset policies from plain LWE with a polynomial modulus-to-

noise ratio in the random oracle model. �is improves upon the Da�a et al. construction which relied on LWE with

a sub-exponential modulus-to-noise ratio. Moreover, we are optimistic that the generalized related-trapdoor LWE

assumption will also be useful for analyzing the security of other la�ice-based constructions.

1 Introduction

A�ribute-based encryption (ABE) [SW05, GPSW06] extends classic public-key encryption to support fine-grained
access control on encrypted data. For instance, in a ciphertext-policy ABE (CP-ABE) scheme, each ciphertext ct is
associated with a policy 5 together with a message ` while decryption keys sk are associated with an a�ribute G .
Decryption successfully recovers the message ` when G satisfies 5 . Security requires that an adversary who only
possesses secret keys for a collection of a�ributes G1, . . . , G= that do not satisfy 5 does not learn anything about the
message. In this work, we are interested in systems that are secure against unbounded collusions: that is, security
holds against an adversary that has any arbitrary (polynomial) number of non-satisfying a�ributes.

Multi-authority ABE. In a traditional ABE scheme, there exists a central trusted authority that generates and
issues decryption keys. �e central authority has the ability to decrypt all ciphertexts encrypted using the system.
To mitigate the reliance on a single central trusted authority, a line of works [Cha07, LCLS08, MKE08, CC09] have
introduced and studied the notion of a “multi-authority” ABE (MA-ABE) scheme where anyone can become an
authority. In an MA-ABE scheme, each authority controls different a�ributes and can independently issue secret keys
corresponding to the set of a�ributes under their control. Policies in an MA-ABE system are formulated with respect
to the a�ributes of one or more authorities. To decrypt, a user combines the secret keys for a�ributes from a set of
authorities that satisfy the policy. Security is still required to hold against users who possess an arbitrary number
of unauthorized secret keys, with an additional challenge that some subset of the authorities (associated with the
ciphertext policy) could now be corrupted and colluding with the adversary.

Earlier constructions of MA-ABE had various limitations in terms of functionality or security (or both). �e
first construction that achieved the first fully decentralized MA-ABE scheme was by Lewko and Waters [LW11].
Unlike previous schemes, the Lewko-Waters scheme allows any user to become an authority, and moreover, the
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only coordination needed among users and authorities is a one-time sampling of a set of global parameters. �e
Lewko-Waters construction supports any access policy computable by an NC1 circuit (i.e., a Boolean formula) and
security relies on assumptions on groups with bilinear maps and in the random oracle model. Subsequently, a number
of works have realized new constructions for NC1 policies based on bilinear maps [RW15, DKW21b], and recently,
Da�a et al. [DKW21a] showed how to construct an MA-ABE scheme for access policies computable by DNF formulas
(of a priori bounded size) from the learning with errors (LWE) assumption [DKW21a]. All of these constructions rely
on the random oracle model. �is motivates the following question:

Can we construct a multi-authority ABE scheme without random oracles?

1.1 Our Contributions

In this work, we show how to leverage the recently-introduced evasive LWE assumption [Wee22, Tsa22] to obtain an
MA-ABE scheme for subset policies without random oracles. Subset policies capture DNF policies as in [DKW21a].1

Moreover, our MA-ABE construction supports subset policies and DNFs of arbitrary polynomial size which improves
upon the previous la�ice-based construction in the random oracle model [DKW21a]. We summarize this result in the
following informal theorem and provide the full details in Section 6:

�eorem 1.1 (Informal). Assuming polynomial hardness of LWE and of evasive LWE (both with a sub-exponential

modulus-to-noise ratio), there exists a statically-secure multi-authority ABE for subset policies (of arbitrary polynomial

size).

Understanding the evasive LWE assumption. While the evasive LWE assumption is much less well-understood
compared to the plain LWE assumption, our construction provides a new avenue towards realizing MA-ABE without

random oracles. In particular, pu�ing assumptions aside, our construction constitutes the first heuristic MA-ABE
without random oracles. In all previous constructions of multi-authority ABE, the random oracle was used to hash a
global user identifier (denoted gid) to obtain common randomness that is used to bind different keys to a single user.
For the particular case of [DKW21a], the random oracle was used to hash an identifier to obtain a discrete Gaussian
sample. Our candidate replaces the random oracle with a subset product of public low-norm matrices. To prove
security of the resulting scheme, we rely on the fact that under LWE, multiplying a secret key by a subset product of
(public) low-norm matrices yields a pseudorandom function [BLMR13] in addition to the evasive LWE assumption.

A modular approach in the random oracle model. �e starting point of our construction is the MA-ABE
construction for (bounded-size) DNF policies by Da�a et al. [DKW21a]. Along the way to our construction without
random oracles (�eorem 1.1), we provide a more modular description of the Da�a et al. scheme. Specifically, we
extract a new trapdoor sampling lemma that is implicitly used in their construction. �is lemma can be viewed as a
generalization of the related trapdoor LWE lemma from the recent work of Brakerski and Vaikuntanathan [BV22],
and may prove useful for constructing other primitives from the standard LWE assumption. We provide an overview
of our generalized related-trapdoor lemma in Section 2 and provide the full details in Section 4.

Using our generalized related-trapdoor LWE lemma, we in turn provide a more modular description of the MA-
ABE scheme of Da�a et al. [DKW21a], and moreover, base hardness on the plain LWE assumption with a polynomial

modulus-to-noise ratio in the random oracle model. Previously, Da�a et al. relied on noise smudging for trapdoor
sampling in their security analysis2, and consequently, could only reduce security to LWE with a sub-exponential
modulus-to-noise ratio. We summarize these results in the following (informal) theorem and provide the full details
in Section 5:

�eorem 1.2 (Informal). Let _ be a security parameter. Assuming polynomial hardness of LWE with a polynomial

modulus-to-noise ratio, there exists a statically-secure multi-authority ABE scheme for subset policies of a priori bounded
length ! = !(_) in the random oracle model. �e size of the ciphertext is quasi-linear in the bound !.

1As noted in [DKW21a, Remark 6.1], the MA-ABE scheme therein requires a monotone secret-sharing scheme where reconstruction has small
coefficients and the joint distribution of the unauthorized shares are uniformly random; such a scheme is only known for subset policies and
DNFs.

2See the descriptions of Hybrid 5 and the analysis of Lemmas 5.5 and 6.5 in [DKW21a], where noise smuging is used for simulating secret keys.
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Like previous la�ice-based MA-ABE constructions in the random oracle model [DKW21a], the global public
parameters in �eorem 1.2 imposes an a priori bound ! on the size of the policies that can be associated with
ciphertexts, and moreover, the ciphertext size increases as a function of !. We note that our construction based on
the stronger evasive LWE assumption (�eorem 1.1) supports policies of arbitrary polynomial size in the plain model.

1.2 Additional Related Work

Kim [Kim19] and Wang et al. [WFL19] also studied constructions of multi-authority ABE (for bounded-depth circuits
and Boolean formulas, respectively) from la�ice-based assumptions. However, both schemes operate in a a model
where there is a single central authority that generates the public keys and secret keys for each of the authorities
in the system. Relying on a central trusted party runs against the original goal of decentralizing trust. Moreover,
these constructions only ensure security against bounded collusions. In this work, we focus exclusively on the fully
decentralized se�ing introduced by Lewko and Waters [LW11] that neither requires a centralized setup nor assumes
an a priori bound on the number of authorities or corruptions.

Recently, Tsabury [Tsa22] and Vaikuntanathan et al. [VWW22] showed how to build witness encryption from
a stronger variant of the evasive LWE assumption with private-coin auxiliary input and sub-exponential hardness.
In contrast, our multi-authority ABE construction in the standard model relies on evasive LWE with public-coin

auxiliary input and polynomial hardness with a sub-exponential modulus-to-noise ratio; this was also the case for the
optimal broadcast encryption scheme by Wee [Wee22]. While vanilla witness encryption implies single-authority
ABE [GGSW13], we currently do not know how to construct multi-authority ABE from vanilla witness encryption.

2 Technical Overview

In this section, we provide a technical overview of our la�ice-based MA-ABE constructions. �roughout this work,
we focus exclusively on subset policies (which suffices for supporting DNF formulas). In an ABE scheme for subset
policies, ciphertexts are associated with a set � and secret keys are associated with a set �. Decryption succeeds if
� ⊆ �.

Lattice preliminaries. �e learning with errors (LWE) assumption [Reg05] says that the distribution (A, sTA + eT)
is computationally indistinguishable from (A, uT) where A r← Z=×<@ , s r← Z=@ , e← �<

Z,j
, and u r← Z<@ , where =,<,@, j

are la�ice parameters and �Z,j is the discrete Gaussian distribution with parameter j . To simplify the presentation
in the technical overview, we will use curly underlines in place of (small) noise terms. Namely, instead of writing
sTA + eT, we simply write sTA

✿✿

.

For a matrix A ∈ Z=×<@ and a target vector y ∈ Z=@ , we write A−1j (y) to denote a random variable x ∈ Z<@ whose
distribution is a discrete Gaussian distribution �<

Z,j
conditioned on Ax = y. For ease of notation, we will drop the

subscript j in this technical overview. A sequence of works [Ajt96, GPV08, ABB10b, ABB10a, CHKP10, MP12] (see
also Section 3.2) have shown how to sample a matrix A ∈ Z=×<@ together with a trapdoor tdA to enable efficient

sampling from the distribution A−1 (y) for any target y ∈ Z=@ .
In the following description, we write I= ∈ Z=×=@ to denote the =-by-= identity matrix and G = I= ⊗ gT ∈ Z=×<@ ,

where gT
= [1 | 2 | · · · | 2 ⌊log@⌋], to denote the standard gadget matrix [MP12].

2.1 Starting Point: Single-Authority CP-ABE for Subset Policies

We start by describing a simple CP-ABE for subset policies that lies at the core of our MA-ABE scheme. In the
following, let [!] be the universe of a�ributes. Each ciphertext is associated with a subset � ⊆ [!] and each secret
key is associated with a subset � ⊆ [!]; decryption succeeds as long as � ⊆ �.

• �e master public key consists of (A1,B1, p1), . . . , (A!,B!, p!) r← Z=×<@ × Z=×< (2!−1)@ × Z=@ .

• �e master secret key consist of the trapdoors tdA1 , . . . , tdA!
for A1, . . . ,A! , respectively.
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• An encryption of a message bit ` ∈ {0, 1} with respect to a set - ⊆ [!] is a tuple

ct =
©­­«
{
sTA8
✿✿✿

}
8∈- , sT

∑
8∈-

B8

✿✿✿✿✿✿

, sT
∑
8∈-

p8

✿✿✿✿✿✿

+ ` · ⌊@/2⌉
ª®®¬
,

where s r← Z=@ .

• A secret key for a set . ⊆ [!] consists of a tuple

sk =

({
A−18 (p8 + B8r)

}
8∈. , r

)
,

where r← �
< (2!−1)
Z,j

is sampled from a discrete Gaussian distribution.

Decryption uses the fact that

−
(
sT

∑
8∈-

B8

)
✿✿✿✿✿✿✿✿

· r +
∑
8∈-

sTA8
✿✿✿

· A−18 (p8 + B8r) ≈ −sT
∑
8∈-

B8r + sT
∑
8∈-
(p8 + B8r) = sT

∑
8∈-

p8 ,

since r and A−1 (·) are small. Looking ahead to our multi-authority construction, observe that key generation can be
carried out in a decentralized manner: given a “public” Gaussian vector r, computing the secret-key components
A−18 (p8 + B8r) associated with index 8 only requires knowledge of B8 , p8 and the trapdoor for A8 , which are all specific
to a�ribute 8 (and could be independently generated by the 8th authority).

Selective security. To argue that this CP-ABE scheme is selectively secure3, we proceed as follows:

1. First, we show how to sample a secret key for a set . ⊆ [!] given a trapdoor for B. , where B. ∈ Z= |. |×< (2!−1)@

is the matrix formed by vertically concatenating B8 for all 8 ∈ . .

2. Next, we show that under the LWE assumption, sT
∑

8∈- B8
✿✿✿✿✿✿✿✿

is pseudorandom even given an oracle for B−1
.
(·)

for arbitrary . ⊆ [!] of the adversary’s choosing, provided that for each . , it is the case that - * . . Here,
- ⊆ [!] is the set associated with the challenge ciphertext. Technically, we additionally require that sTA8

✿✿✿

and

sT
∑

8∈- p8
✿✿✿✿✿✿✿✿

are also pseudorandom, but these components are easily handled by the standard LWE assumption.

For ease of exposition, we do not focus on these additional components in this overview and refer instead to
Sections 4 and 5 for the full description.

For the second step, we prove a more general statement which generalizes the related-trapdoor LWE lemma previously
introduced by Brakerski and Vaikuntanathan [BV22] in the context of constructing compact CP-ABE for circuits.

Generalized related-trapdoor LWE. Our generalized related-trapdoor LWE assumption asserts that for any
non-zero vector u ∈ {0, 1}! , the vector sT (uT ⊗ I=)B

✿✿✿✿✿✿✿✿✿

is pseudorandom given an oracle for the function (M, t) ↦→

((M ⊗ I=)B)−1 (t), as long as the matrix M̄ =
[
M
uT

]
∈ Z(:+1)×!@ is full rank (and : < !).4 To show that the standard

LWE assumption implies the generalized related-trapdoor LWE assumption, we take an LWE matrix Â and the vector
u ∈ {0, 1}! , and we set the matrix B to be

B =
[
Â | ÂR + U⊥ ⊗ G

]
3In the selective security game, the adversary starts by commi�ing to the set - associated with the challenge ciphertext. �e reduction algorithm
is then allowed to program - into the public parameters of the scheme.

4Some restriction on M is also necessary. For instance, it is easy to distinguish sT (u ⊗ I=)B
✿✿✿✿✿✿✿

if M = uT, or more generally, if uT0M = u for some

u0 ∈ {0, 1}: .

4



where R is a (random) low-norm matrix and U⊥ ∈ {0, 1}!×(!−1) is a full-rank basis for the kernel of uT. By design,
(u ⊗ I=)B = [(u ⊗ I=)Â | (u ⊗ I=)ÂR] which means we do not know a trapdoor for (u ⊗ I=)B. On the other hand,

(M ⊗ I=)B
[
−R

I<̂ (!−1)

]
︸        ︷︷        ︸

R̃

= (M ⊗ I=) (U⊥ ⊗ G) = MU⊥ ⊗ G.

When M̄ =
[
M
uT

]
is full rank, thenMU⊥ is also full rank. Since R̃ is low-norm, it is a trapdoor for (M⊗ I=)B (see [MP12]

and Corollary 3.12).
Returning to the proof of selective security for the above CP-ABE scheme, observe that showing sT

∑
8∈- B8

✿✿✿✿✿✿✿✿

given

an oracle for B−1
.
(·) directly maps to an instance of the related-trapdoor LWE assumption:

• Let B ∈ Z=!×< (2!−1)@ be the matrix obtained by vertically stacking B1, . . . ,B! ∈ Z=×< (2!−1)@ .

• �e vector u ∈ {0, 1}! is the indicator vector for the challenge set - . Namely, D8 = 1 if 8 ∈ - and 0 otherwise.
�en, (u ⊗ I=)B =

∑
8∈- B8 .

• �e oracle B−1
.
(·) can be simulated by querying the related-trapdoor oracle on matrix M. ∈ Z |. |×!@ formed

by taking the rows of I! corresponding to the indices in . . In this case (M ⊗ I=)B = B. defined previously.
Moreover, by construction of M. , whenever - * . , we have that uT is not in the row-span ofM. .

Finally, we remark here that the original version of the related-trapdoor LWE assumption formulated by Brakerski
and Vaikuntanathan [BV22] considered the special case where the matrixM is a row vector with a specific structure.5

Our formulation considers a general matrixMwhich is useful for constructing an ABE scheme with a distributed setup.
We also note that this type of trapdoor sampling was also implicit in the CP-ABE construction of Da�a et al. [DKW21a];
however, they critically relied on noise flooding to simulate the analog of the ((M ⊗ I=)B)−1 (·) oracle. As a result, the
security of their scheme relied on LWE with a super-polynomial modulus-to-noise ratio in the random oracle model.
In this work, we both provide a modular description of the core trapdoor sampling lemma (Section 4) and then show
how to leverage it to obtain a multi-authority ABE for subset policies using LWE with a polynomial modulus-to-noise
ratio in the random oracle model (Section 5). We are optimistic that our generalized version of the related trapdoor
LWE assumption will also be useful for analyzing the security of other la�ice-based constructions.

2.2 MA-ABE for Subset Policies in the Random Oracle Model

First, we observe that our core CP-ABE scheme naturally extends to yield a MA-ABE scheme for subset policies in the
random oracle model. We make the following modifications to the base scheme:

• �e authority associated with a�ribute 8 samples A8 ,B8 , p8 along with a trapdoor tdA8
for A8 .

• To generate a key for a user with identifier gid, we derive r deterministically fromH(gid) and outputA−1 (p8+B8r).
Security of the core CP-ABE implies that the ensuing MA-ABE scheme remains secure as long as no authority is
corrupted. On the other hand, it is easy to see that the scheme is insecure if we allow authority corruptions, since we
can use an authority’s trapdoor to recover the LWE secret s from sTA8

✿✿✿

.

Security with authority corruptions. To defend against corrupted authorities, wemodify the ciphertext structure.
Instead of having a single LWE secret s that is shared across authorities, we instead sample a fresh s8 for each a�ribute
8 ∈ - . �at is, the ciphertext is now given by:

ct =
©­­«
{
sT8A8
✿✿✿

}
8∈- ,

∑
8∈-

sT8B8

✿✿✿✿✿✿

,
∑
8∈-

sT8p8

✿✿✿✿✿✿

+ ` · ⌊@/2⌉
ª®®¬

5Concretely, uT = [1 | xT ] and M = [1 | yT ] for some x, y ∈ {0, 1}!−1. �e adversary is restricted to queries y ≠ x, which is implied by our
requirement that M̄ has full rank.
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Key generation proceeds as before. Decryption still follows from a similar relation as before:

−
(∑
8∈-

sT8B8

)
✿✿✿✿✿✿✿✿

· r +
∑
8∈-

sT8A8
✿✿✿

· A−18 (p8 + B8r) =
∑
8∈-

sT8p8 .

Static security with authority corruptions. We now argue that the resulting MA-ABE scheme is statically
secure.6 Let C denote the set of authorities that are corrupted. �e adversary gets to choose the public keys and
secret keys for authorities in C. In the multi-authority se�ing, a secret-key query consists of a pair (., gid) where .
is a set of honest authorities (i.e., . ∩ C = ∅) and gid is the user identifier. Let - be the set of authorities associated
with the challenge ciphertext. �e admissibility criterion is that - * . ∪ C.

�e proof of security proceeds similarly to that of our core CP-ABE, except we replace the challenge set - with
the set - \ C. Since . ∩ C = ∅, the MA-ABE admissibility criterion - * . ∪ C is equivalent to - \ C * . , which
coincides with the criterion from our CP-ABE analysis. In particular, the security reduction can basically ignore the
ciphertext components associated with corrupted authorities (since the ciphertext component of each authority is
associated with independent LWE secrets s8 ) and just focus on the a�ributes controlled by the honest authorities. �e
general argument again relies on our (generalized) related-trapdoor LWE assumption:

1. First, we show how to sample a secret key for . given a trapdoor for B. (where B. ∈ Z= |. |×< (2!−1)@ is again the
matrix formed by vertically stacking the matrices B8 associated with the authorities 8 ∈ . .

2. As in the analysis of the CP-ABE scheme, we use the oracle in the related-trapdoor LWE assumption to compute
B−1
.
(·) in the proof. Arguing the correctness of this step additionally requires the ability to “program” the

random oracle. �is is because in the real scheme, the secret keys are sampled by computing r← H(gid) and
then sampling u8 ← A8 (p8 + B8r) for each 8 ∈ - . �e reduction algorithm will instead sample u8 ← �<

Z,j
itself

and then obtain r ∈ Z< (2!−1)@ using its oracle B−1
.
(·). In the random oracle model, the reduction then programs

H(gid) to r. We refer to Section 5 for more details.

3. Finally, to simulate the challenge ciphertext, the reduction algorithm samples a random s8
r← Z=@ for each

corrupted authority 8 ∈ C. For the honest authorities 8 ∈ - \ C, the reduction sets the secret key to be ŝ8 and
programs s8 := s + ŝ8 , where s is the secret in the related-trapdoor

We provide the formal analysis in Section 5. �is construction yields a MA-ABE scheme for subset policies from the
related-trapdoor LWE assumption in the random oracle model. �e related-trapdoor LWE assumption we rely on
here reduces to the standard LWE assumption with a polynomial modulus-to-noise ratio. �is yields �eorem 1.2.

2.3 Removing Random Oracles via Evasive LWE

To obtain an MA-ABE construction without random oracles, we describe a way to concretely implement the hash
function H in our basic construction above. Our specific instantiation relies on computing a subset product of
low-norm matrices. Specifically, let D0,D1 ∈ Z<×<@ be low-norm matrices. �ese are fixed public matrices that

will be included as part of the global parameters. For an input G ∈ {0, 1}ℓ , we define H(G) :=
( ∏

8∈[ℓ ] DG8

)
( ∈ Z<@ ,

where ( ∈ Z<@ is the first canonical basis vector. Previously, Boneh et al. [BLMR13] showed that for any sequence of

G1, . . . , G: ∈ {0, 1}ℓ the values
{
sTH(G8 )
✿✿✿✿✿✿

}
8∈[: ] are pseudorandom. While we do not know how to prove security of

the MA-ABE construction instantiated with this subset-product hash function using the plain learning with errors
assumption, we show how to do so using the recently-introduced evasive LWE assumption by Wee [Wee22] and
Tsabury [Tsa22].

6In the static security model [RW15], we require the adversary to commit to the set of corrupted authorities, the secret-key queries, and the
challenge ciphertext query at the beginning of the security game. Previous la�ice-based MA-ABE constructions were also analyzed in the static
security model [DKW21a].
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Evasive LWE. We start by describing a variant of the evasive LWE assumption introduced by Wee [Wee22] and
refer to Section 3.2 for the formal description. Let P1, . . . , Pℓ be drawn from some efficiently-sampleable distribution of
matrices. Roughly speaking, the evasive LWE assumption says that if the distribution {A8 , s

TP8
✿✿✿

}8∈[ℓ ] is pseudorandom,

then the distributions
{A8 , s

TA8
✿✿✿

, A−18 (P8 )}8∈[ℓ ] and {A8 , u
T

8 , A
−1
8 (P8 )}8∈[ℓ ]

are computationally indistinguishable. Intuitively, the evasive LWE assumption says that the presence of A−18 (P8 )
does not help break LWE so long as sTP8

✿✿✿

is pseudorandom. Indeed, if the distinguisher multiplied sTA
✿✿

with A−1 (P),
then it roughly obtains sTP

✿✿

, which is pseudorandom by assumption.

In the context of our MA-ABE scheme, the matrices A1, . . . ,Aℓ will be associated with the public keys for the
honest authorities, and the columns of P8 will consists of p8 + B8rgid for the user identifiers gid that appear in the
adversary’s secret-key queries. By se�ing P8 properly (see Section 6), the reduction algorithm can in turn answer
the secret-key queries without switching to using a trapdoor for B. to answer key queries. We highlight the key
differences in reduction strategies here:

• Previously (Section 2.2), the reduction sampled u8 itself and used the trapdoor for B. to sample r = H(gid).
�is was necessary because the reduction did not (and cannot) possess a trapdoor for each A8 to sample u8
as in the real scheme. If the reduction did possess such a trapdoor for every 8 that appears in the challenge
ciphertext, then it could trivially break security itself. �en, to ensure consistency of the sampled key with
respect to the outputs of H, this requires the reduction to program the outputs of H. Hence, we model H as a
random oracle in this case.

• In contrast, when we use evasive LWE, the reduction computes r = H(gid) normally and then directly constructs
u8 using the terms provided in the evasive LWE challenge. �ese terms can be simulated without knowledge
of a trapdoor for A8 . Observe that this strategy only relies on the ability to compute H(·), not the ability to
program its outputs. In general, the evasive LWE assumptions allows us to reduce the task of proving security
to that of reasoning about the pseudorandomness of LWE samples with respect to correlated public matrices. In
the la�er distribution, there are no Gaussian samples, and no need to implement any kind of trapdoor sampling.

When we use evasive LWE, the computation of sTP
✿✿

essentially translates to computing sTH(gid)
✿✿✿✿✿✿✿

, which is pseudoran-

dom by the Boneh et al. [BLMR13] analysis. We refer to Section 6 for the formal description.
While the evasive LWE assumption is much less well understood compared to the classic LWE assumption,

proving security under evasive LWE at the minimum indicates that replacing the random oracle with a subset-product
hash function is a sound heuristic for constructing an MA-ABE scheme in the plain model. It is an interesting challenge
to try and prove the security of our construction from the plain LWE assumption; such a proof would provide the
first construction of MA-ABE from standard assumptions in the plain model. Alternatively, it is also interesting to
further cryptanalyze the evasive LWE assumption.

3 Preliminaries

We write _ to denote the security parameter. For a positive integer = ∈ N, we write [=] to denote the set {1, . . . , =}.
For a positive integer @ ∈ N, we write Z@ to denote the integers modulo @. We use bold uppercase le�ers to denote
matrices (e.g., A,B) and bold lowercase le�ers to denote vectors (e.g., u, v). We use non-boldface le�ers to refer to
their components: v = (E1, . . . , E=). For matrices A1, . . . ,Aℓ ∈ Z=×<@ , we write diag(A1, . . . ,Aℓ ) ∈ Z=ℓ×<ℓ

@ to denote
the block diagonal matrix with blocks A1, . . . ,Aℓ along the main diagonal (and 0s elsewhere).

We write poly(_) to denote a function that is$ (_2 ) for some 2 ∈ N and negl(_) to denote a function that is > (_−2 )
for all 2 ∈ N. An algorithm is efficient if it runs in probabilistic polynomial time in its input length. We say that two
families of distributions D1 = {D1,_}_∈N and D2 = {D2,_}_∈N are computationally indistinguishable if no efficient

algorithm can distinguish them with non-negligible probability. We denote this by writing D1
2≈ D2. We say they are

statistically indistinguishable if the statistical distance Δ(D1,D2) is bounded by a negligible function in _ and denote

this by writing D1
B≈ D2. We say a distribution D is �-bounded if Pr[|G | ≤ � : G ← D] = 1.
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3.1 Multi-Authority Attribute-Based Encryption

In this section, we introduce the syntax of a multi-authority ABE scheme [LW11]. We start with the definition of a
monotone access structure [Bei96].

Definition 3.1 (Access Structure [Bei96]). Let ( be a set and let 2( denote the power set of ( (i.e., the set of all subsets
of (). An access structure on ( is a set A ⊆ 2( \ ∅ of non-empty subsets of ( . We refer to the elements of A as the
authorized sets and those not in A as the unauthorized sets. We say an access structure is monotone if for all sets
�,� ∈ 2( , if � ∈ A and � ⊆ � , then � ∈ A.

Definition 3.2 (Multi-Authority ABE [LW11, RW15, adapted]). Let _ be a security parameter,M be a message
space, AU = {AU_}_∈N be the universe of authority identifiers, and GID = {GID_}_∈N be the universe of global
identifiers for users. To simplify the exposition, we follow the convention in [RW15, DKW21a] and assume that each
authority controls a single a�ribute; this definition generalizes naturally to the se�ing where each authority controls
an arbitrary polynomial number of a�ributes (see [RW15]). A multi-authority a�ribute-based encryption scheme
for a class of policies P = {P_}_∈N (each described by a monotone access structure on a subset of AU) consists of
a tuple of efficient algorithms ΠMA-ABE = (GlobalSetup,AuthSetup,KeyGen, Encrypt,Decrypt) with the following
properties:

• GlobalSetup(1_) → gp: On input the security parameter _, the global setup algorithm outputs the global
parameters gp.

• AuthSetup(gp, aid) → (pkaid,mskaid): On input the global parameters gp and an authority identifier aid ∈ AU,
the authority setup algorithm outputs a public key pkaid and a master secret key mskaid.

• KeyGen(gp,msk, gid) → sk: On input the global parameters gp, the authority’s master secret key msk, and
the user identifier gid ∈ GID, the key-generation algorithm outputs a decryption key sk.

• Encrypt(gp,A, {pkaid}aid∈�, `) → ct: On input the global parameters gp, an access structure A ∈ P on a set of
authorities � ⊆ AU, the set of public keys pkaid associated with each authority aid ∈ �, and a message ` ∈ M,
the encryption algorithm outputs a ciphertext ct.

• Decrypt(gp, {skaid}aid∈�, ct) → `: On input the global parameters gp, a collection of secret keys skaid issued
by a set of authorities aid ∈ �, and a ciphertext ct, the decryption algorithm outputs a message ` ∈ M ∪ {⊥}.

Moreover, ΠMA-ABE should satisfy the following properties:

• Correctness: �e exists a negligible function negl(·) such that for every _ ∈ N, every message ` ∈ M, every
identifier gid ∈ GID_ , every set of authorities � ⊆ AU_ , every access structure A ∈ P_ on �, and every
subset of authorized authorities � ∈ A,

Pr


` ′ = ` :

gp← GlobalSetup(1_);
∀aid ∈ � : (pkaid,mskaid) ← AuthSetup(gp, aid);
∀aid ∈ � : skgid,aid ← KeyGen(gp,mskaid, gid);

ct← Encrypt(gp,A, {pkaid}aid∈�, `);
` ′← Decrypt(gp, {skgid,aid}aid∈�, ct)


= 1 − negl(_).

• Static security: For a security parameter _ ∈ N, an adversary A, and a bit 1 ∈ {0, 1}, we define the static
security game for an multi-authority ABE scheme as follows:

– Setup: �e challenger starts by sampling gp← GlobalSetup(1_) and gives gp to A.

– Attacker queries. �e adversary A now specifies the following:

∗ A set C ⊆ AU_ of corrupt authorities together with a public key pkaid for each corrupt authority
aid ∈ C.

∗ A set N ⊆ AU_ of non-corrupt authorities, where N ∩ C = ∅.
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∗ A setQ = {(gid, �)} of secret key queries where each query consists of a global identifier gid ∈ GID_

and a subset of non-corrupt authorities � ⊂ N .

∗ A pair of challenge messages `0, `1 ∈ M, a set of authorities �∗ ⊆ C ∪ N , and an access structure
A ∈ P_ on �∗.

– Challenge. �e challenger then samples (pkaid,mskaid) ← AuthSetup(gp, aid) for each authority aid ∈
N . It responds to the adversary with the following:

∗ �e public keys pkaid for the non-corrupted authority aid ∈ N .

∗ For each secret-key query (gid, �), the secret keys skgid,aid ← KeyGen(gp,mskaid, gid) for each
aid ∈ �.

∗ �e challenge ciphertext ct1 ← Encrypt(gp,A, {pkaid}aid∈�∗ , `1).
– Output phase: Finally, algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

We say an adversary A is admissible for the above security game if �∗ ∩ C ∉ A and moreover, for every
secret key query (gid, �), it holds that (� ∪ C) ∩ �∗ ∉ A. Finally, we say ΠMA-ABE satisfies static security if
for all efficient and admissible adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,
|Pr[1 ′ = 1|1 = 0] − Pr[1 ′ = 1|1 = 1] | = negl(_) in the above security game.

Remark 3.3 (Static Security in the RandomOracle Model). Following [RW15, DKW21a], we also extend Definition 3.2
to the random oracle model [BR93]. In this se�ing, we assume that a global hash function H (modeled as a random
oracle) is published as part of the global public parameters and accessible to all of the parties in the system. When
extending static security to the random oracle model, we require that the adversary submits its random oracle queries
as part of its initial query in the static security game. �e challenger then includes the responses to the random oracle
queries as part of the challenge. We also allow the adversary to further query the random oracle during the challenge
phase of the game.

Remark 3.4 (Security Notions). �e static security requirement in Definition 3.2 requires that the adversary commits
to all of its queries upfront. A stronger notion of security is adaptive security under static corruptions [LW11] which
requires the adversary pre-commit to the set of corrupted authorities, but therea�er, the adversary can adaptively make
secret-key queries both before and a�er making its challenge ciphertext query. We can also consider intermediate
notions where the adversary needs to commit to the policy associated with the challenge ciphertext, but can then
issue secret key queries adaptively (i.e., the analog of “selective security” in single-authority ABE). Achieving stronger
notions of security (beyond static security) for multi-authority ABE from la�ice-based assumptions is an interesting
open problem.

Multi-authority ABE for subset policies. Our focus in this work is on constructing multi-authority ABE for
the class of subset policies. Here, the ciphertext is associated with a set of authorities � and decryption succeeds
whenever a user possesses keys from a set of authorities � where � ⊆ �. We define this more formally below.

Definition 3.5 (Multi-Authority ABE for Subset Policies). Let _ be a security parameter and AU = {AU_}_∈N be
the universe of authority identifiers. We define the class of subset policies P = {P_}_∈N to be the set

P_ = {A : A = {� : � ⊆ �} where � ⊆ AU_} .

Notably, an access structure A for a subset policy is fully determined by the set � ⊆ AU_ . �us, when describing an
MA-ABE scheme ΠMA-ABE = (GlobalSetup,AuthSetup,KeyGen, Encrypt,Decrypt) for the class of subset policies, we
omit the specification of A in the encryption algorithm and have the encryption algorithm only take as input the
public keys associated with the authorities in �. More precisely, we modify the syntax of the encryption algorithm as
follows:

• Encrypt(gp, {pkaid}aid∈�, `) → ct: On input the global parameters gp, the set of public keys pkaid associated
with each authority aid ∈ �, and a message ` ∈ M, the encryption algorithm outputs a ciphertext ct.
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Remark 3.6 (Multi-Authority ABE for DNFs). A multi-authority ABE scheme for subset policies directly implies a
multi-authority ABE scheme for access structures that can be decided by a polynomial-size conjunction or a DNF
formula. First, we define the notion of an access structure decidable by a Boolean formula. LetA be an access structure
on a set� = {01, . . . , 0=}. For a subset � ⊆ �, we define indicator bits 11, . . . , 1= where 18 = 1 if 08 ∈ � and 0 otherwise.
We say that A can be computed by a Boolean formula i if there exists a Boolean formula i : {0, 1}= → {0, 1} such
that � ∈ A if and only if i (11, . . . , 1=) = 1. It is straightforward to use an MA-ABE scheme for subset policies to
construct MA-ABE schemes for policies computable by either a conjunction or a DNF:

• Conjunction: Let A be an access structure on � that is computable by a conjunction on variables 181 , . . . , 183 .
�is is equivalent to a subset policy for the set {081 , . . . , 083 }.

• DNF formulas: Let A be an access structure on � that is computable by a DNF i : {0, 1}= → {0, 1}. By
construction, we can write i (G1, . . . , G=) =

∨
8∈[C ] i8 (G1, . . . , G=), where each i8 is a conjunction. In this case,

decryption succeeds as long as at least one of the i8 is satisfied. In this case, we simply concatenate C ciphertexts
together, where the 8th ciphertext is an encryption to the 8th conjunction i8 . Correctness follows by construction
while security follows by a standard hybrid argument.

Remark 3.7 (Multi-Authority ABE for :-CNFs). In the single-authority se�ing, ABE for subset policies implies
an ABE scheme for :-CNF formulas for constant : ∈ N [Tsa19, GLW21]. However, this generic approach does
not easily translate to the multi-authority se�ing. Here, a :-CNF formula i : {0, 1}= → {0, 1} can be wri�en as
i (G1, . . . , G=) =

∧
8∈[C ] i8 (G1, . . . , G=), where each clause i8 (G1, . . . , G=) is a disjunction on up to : variables. To support

:-CNF formulas i : {0, 1}= → {0, 1} on a set � = {01, . . . , 0=}, the approach is to first define a universe * of size
|* | = $ (:=: ), where each element D ∈ * is associated with a distinct subset of (D ⊆ � of size |(D | ≤ : . A secret key
for 08 consists of secret keys for all D ∈ * where 08 ∈ (D . A :-CNF policy i (G1, . . . , G=) =

∧
8∈[C ] i8 (G1, . . . , G=) where

each clause i8 depends on a set )8 ⊆ � of at most : variables corresponds to a subset policy for the set {D)1 , . . . , D)C }.
In the multi-authority se�ing, different authorities own the different a�ributes 01, . . . , 0= . To implement :-CNF

policies as subset policies via the above transformation, we require a multi-authority ABE scheme that supports subset
policies where the basic a�ributes are combinations of a�ributes from different authorities. �is conflicts with the
requirement that authorities be independent in the multi-authority se�ing. It is an interesting question to construct a
multi-authority ABE scheme capable of supporting :-CNF formulas from one that supports subset policies.

3.2 Lattice Preliminaries

�roughout this work, we always use the ℓ∞ norm for vectors and matrices. Specifically, for a vector u, we write
‖u‖ := max8 |G8 |, and for a matrix A, we write ‖A‖ = max8, 9

���8, 9

��. For a dimension : ∈ N, we write I: ∈ Z:×:@ to
denote the :-by-: identity matrix.

Discrete Gaussians. We write �Z,j to denote the (centered) discrete Gaussian distribution over Z with parameter
j ∈ R+. For a matrix A ∈ Z=×C@ , and a vector v ∈ Z=@ , we write A−1j (v) to denote a random variable x ← �<

Z,j

conditioned on Ax = v mod @. We extend A−1B to matrices by applying A−1B to each column of the input. �roughout
this work, we will use the following standard tail bound on Gaussian distributions:

Fact 3.8 (Gaussian Tail Bound). Let _ be a security parameter and B = B (_) be a Gaussian width parameter. �en, for
all polynomials = = =(_), there exists a negligible function negl(_) such that for all _ ∈ N,

Pr
[
‖v‖ >

√
_B : v← �=

Z,B

]
= negl(_).

Assumption 3.9 (Learning with Errors [Reg05]). Let _ be a security parameter and let = = =(_),< =<(_), @ = @(_),
j = j (_) be integers. �en, the decisional learning with errors assumption LWE=,<,@,j states that for A r← Z=×<@ ,

s
r← Z=@ , e← �<

Z,j
, and u

r← Z<@ ,
(A, sTA + eT) 2≈ (A, u).
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�e gadget matrix. We recall the definition of the gadget matrix [MP12]. For positive integers =, @ ∈ N, let
G= = I= ⊗ gT ∈ Z=×<@ be the gadget matrix where gT

= [1, 2, . . . , 2log@−1] and< = = ⌈log@⌉. �e inverse function

G−1= : Z=×C@ → Z<×C@ expands each entry G ∈ Z@ into a column of size ⌈log@⌉ consisting of the bits in the binary

representation of G . By construction, for every matrix A ∈ Z=×C@ , it follows that G= · G−1= (A) = A mod @. When the

la�ice dimension = is clear, we will omit the subscript and simply write G and G−1 (·) to denote G= and G−1= (·).

Lattice trapdoors. In this work, we use the gadget trapdoors introduced by Micciancio and Peikert [MP12]. Our
description below follows many of the notational conventions from [BTVW17].

�eorem 3.10 (La�ice Trapdoors [Ajt96, GPV08, ABB10b, ABB10a, CHKP10, MP12]). Let =,<,@ be la�ice parameters.

�en there exist efficient algorithms (TrapGen, SamplePre) with the following syntax:

• TrapGen(1=, @,<) → (A, tdA): On input the la�ice dimension =, the modulus @, the number of samples<, the

trapdoor-generation algorithm outputs a matrix A ∈ Z=×<@ together with a trapdoor tdA.

• SamplePre(A, tdA, v, B) → u: On input a matrix A, a trapdoor tdA, a target vector v, and a Gaussian width

parameter B , the preimage-sampling algorithm outputs a vector u.

Moreover, there exists a polynomial<0 =<0 (=, @) = $ (= log@) such that for all< ≥ <0, the above algorithms satisfy

the following properties:

• Trapdoor distribution: �e matrix A output by TrapGen(1=, @,<) is statistically close to uniform. Specifically,

if (A, tdA) ← TrapGen(1=, @,<) and A′ r← Z=×<@ , then Δ(A,A′) ≤ 2−= .

• Trapdoor quality: �e trapdoor tdA output by TrapGen(1=, @,<) is a g-trapdoor where g = $
(√

= log@ log=
)
.

We refer to the parameter g as the quality of the trapdoor.

• Preimage sampling: Suppose tdA is a g-trapdoor for A. �en, for all B ≥ g · l (
√
log=) and all target vectors

v ∈ Z=@ , the statistical distance between the following distributions is at most 2−= :

{u← SamplePre(A, tdA, v, B)} 0=3 {u← A−1B (v)}.

Gadget trapdoors. In this work, we will work with the gadget trapdoors introduced by Micciancio and Peik-
ert [MP12]. We recall the key properties of gadget trapdoors from [MP12] and then state a direct corollary that we
will use in this work (Corollary 3.12).

�eorem 3.11 (Gadget Trapdoors [MP12]). �e gadget matrix G ∈ Z=×<@ has a public g-trapdoor tdG where g = $ (1).
In addition, if AR = HG where A ∈ Z=×<′@ , R ∈ Z<′×<@ ,< = = ⌈log@⌉, and H ∈ Z=×=@ is invertible, then tdA = (R,H)
can be used as a g-trapdoor (by extending SamplePre from �eorem 3.10 accordingly) for A where g = B1 (R) and
B1 (R) ≤

√
<<′‖R‖ denotes the largest singular value of R.

Corollary 3.12 (Gadget Trapdoors). Let H ∈ Z:×C@ be a full rank matrix where : ≤ C (i.e., H has full row rank). Suppose

AR = H ⊗ G. Let A ∈ Z:=×<′@ and R ∈ Z<′×<C
@ with< = = ⌈log@⌉. �en, tdA = (R,H) can be used as a g-trapdoor for A

where g ≤
√
:<<′ ·<C ‖R‖.

Proof. We can write H ⊗ G = (H ⊗ I=) (IC ⊗ G) = (H ⊗ I=)G=C . Since H is full rank (with : ≤ C ), there exists a matrix
H∗ ∈ ZC×:@ such that HH∗ = I: . Correspondingly, (H ⊗ I=) (H∗ ⊗ I=) = I:= . Let R̄ = RG−1=C ((H∗ ⊗ I=)G:=) ∈ Z<

′×:<
@ .

Now, we can write

AR̄ = ARG−1=C ((H∗ ⊗ I=)G:=) = (H ⊗ I=)G=CG
−1
=C ((H∗ ⊗ I=)G:=) = G:=,

and so R̄ is a trapdoor for A (�eorem 3.11). Moreover, ‖R̄‖ ≤ <C ‖R‖, and the claim follows. �
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Preimage sampling. We will also use the following property of discrete Gaussian distributions which follows
from [GPV08]:

Lemma 3.13 (Preimage Sampling [GPV08, adapted]). Let =,<,@ be la�ice parameters. �ere exists polynomials

<0 (=, @) = $ (= log@) and j0 (=, @) =
√
= log@ ·l (

√
log=) such that for all< ≥ <0 (=, @) and j ≥ j0 (=, @), the statistical

distance between the following distributions is negl(=):{
(A, x,Ax) : A r← Z=×<@ , x← �<

Z,j

}
and

{
(A, x, y) : A r← Z=×<@ , y

r← Z=@ , x← A−1j (y)
}
.

Lemma 3.14 (Le�over Hash Lemma [ABB10a]). Let =,<,@ be la�ice parameters where @ > 2 is prime. �ere exists a

polynomial<0 (=, @) = $ (= log@) such that for all< ≥ <0 (=, @), all vectors e ∈ Z<@ , and all polynomials : = : (=), the
statistical distance between the following distributions is negl(=):

{(A,AR, eTR) : A r← Z=×<@ ,R
r← {−1, 1}<×: } and {(A,B, eTR) : A r← Z=×<@ ,B

r← Z=×:@ ,R
r← {−1, 1}<×: }. (3.1)

Smudging lemma. We will also use the following standard smudging lemma (see [BDE+18] for a proof):

Lemma 3.15 (Smudging Lemma). Let _ be a security parameter. Take any 4 ∈ Z where |4 | ≤ �. Suppose j ≥ � · _l (1) .
�en, the statistical distance between the distributions

{
I : I ← �Z,j

}
and

{
I + 4 : I ← �Z,j

}
is negl(_).

�eevasive LWE assumption. We now state a variant of the evasive LWE assumption introduced byWee [Wee22]
and Tsabury [Tsa22]. We compare our formulation with the original version by Wee in Remark 3.18.

Assumption 3.16 (Evasive LWE). Let _ be a security parameter, and let = = =(_),< = <(_), @ = @(_), j = j (_),
B = B (_) with B ≥ $ (

√
< log@). Let Samp be an algorithm that takes the security parameter 1_ as input and outputs

a matrix B ∈ Z=ℓ×<′@ , a set of ℓ target matrices P1 ∈ Z=×#1
@ , . . . , Pℓ ∈ Z=×#ℓ

@ , and auxiliary information aux ∈ {0, 1}∗.
�en, for adversaries A0 and A1, we define advantage functions

Adv
(pre)
A0
(_) ≔

�� Pr [
A0 ({(A8 , s

T

8A8 + eT1,8 )}8∈[ℓ ],B, sTB + eT2, {sT8P8 + eT3,8 }8∈[ℓ ], aux) = 1
]

− Pr
[
A0 ({(A8 , u

T

1,8 )}8∈[ℓ ],B, uT

2, {uT

3,8 }8∈[ℓ ], aux) = 1
] ��

Adv
(post)
A1

(_) ≔
�� Pr [
A1 ({(A8 , s

T

8A8 + eT1,8 )}8∈[ℓ ],B, sTB + eT2, {K8 }8∈[ℓ ], aux) = 1
]

− Pr
[
A1 ({(A8 , u

T

1,8 )}8∈[ℓ ],B, uT

2, {K8 }8∈[ℓ ], aux) = 1
] ��,

where
(B, P1, . . . , Pℓ , aux) ← Samp(1_) ,
A1, . . . ,Aℓ

r← Z=×<@ ,

s1, . . . , sℓ
r← Z=@ , sT ← [sT1 | · · · | sTℓ ] ∈ Z=ℓ@ ,

u1,8
r← Z<@ , e1,8 ← �<

Z,j
∀8 ∈ [ℓ],

u2
r← Z<′@ , e2 ← �<′

Z,j
,

u3,8
r← Z#8

@ , e3,8 ← �#8

Z,j
∀8 ∈ [ℓ],

K8 ← (A8 )−1B (P8 ) ∀8 ∈ [ℓ] .
We say that the evasive LWE assumption holds if for every efficient sampler Samp and every efficient adversary A1,
there exists an efficient algorithm A0, polynomial poly(·), and negligible function negl(·) such that for all _ ∈ N,

Adv
(pre)
A0
(_) ≥ Adv

(post)
A1

(_)/poly(_) − negl(_).

Remark 3.17 (Auxiliary Input Distribution). As in [Wee22], we only require that the assumption holds for samplers
where aux additionally contains all of the coin tosses used by Samp (i.e., public-coin samplers). �is avoids obfuscation-
based counter-examples where aux contains an obfuscation of a program related to a trapdoor for matrix B or P8 .
�is is a weaker assumption compared to the evasive LWE assumptions needed to realize witness encryption (which
rely on security of evasive LWE to hold for private-coin samplers) [Tsa22, VWW22].
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Remark 3.18 (Comparison with [Wee22]). �e original formulation of the evasive LWE assumption by Wee [Wee22]
corresponds to the special case where ℓ = 1 (i.e., there is just a single matrix A1 and single target P1). When
constructing multi-authority ABE, we rely on multiple independent matrices A1, . . . ,Aℓ (one associated with each
authority). It is an interesting question to reduce Assumption 3.16 to the simpler se�ing of ℓ = 1. We note that the
justification given in [Wee22] for evasive LWE are equally applicable to this se�ing.

4 Generalized Related-Trapdoor LWE Assumption

In this section, we introduce a generalized variant of the related-trapdoor robust LWE assumption of Brakerski and
Vaikuntanathan [BV22] and then show that its hardness can be based on the standard LWE assumption (�eorem 4.2).
As described in Section 2, the generalized related-trapdoor LWE assumption essentially asserts that given a vector
u ∈ {0, 1}! , an LWE sample with respect to (u ⊗ I=)B is pseudorandom (where B ∈ Z=×<!

@ ) given an oracle that takes

as input (M, t) and outputs (M ⊗ I=)B)−1 (t) whenever M̄ =
[
M
uT

]
∈ Z(:+1)×!@ is full rank. �e original formulation

of the related trapdoor assumption in [BV22] (for the se�ing of single-authority ciphertext-policy ABE) considered
the special case where the matrixM ∈ Z1×!@ is a row vector. Here, we consider the case where M can be an arbitrary
matrix. �is generalization will be useful for distributing the setup in an ABE scheme to obtain a multi-authority
ABE (see Section 5).

A similar approach is also implicit in the ciphertext-policy ABE scheme by Da�a et al. [DKW21a]. �eir approach
relied on noise smudging to simulate the preimage-sampling oracle, and as such, security relied on a super-polynomial
modulus. In this work, we abstract out the core technique through the related-trapdoor LWE assumption and then
show a direct reduction to LWE without relying on noise smudging. �is allows us to base security on LWE with a
polynomial modulus.

Assumption 4.1 (Generalized Related-Trapdoor LWE). Let _ ∈ N be a security parameter, and = = =(_),< =<(_),
<̂ = <̂(_), and j = j (_) be la�ice parameters. Let @ = @(_) be a prime modulus. Let ! = !(_) be a length parameter.
For a bit 1 ∈ {0, 1}, we define the related-trapdoor LWE game between a challenger and an adversary A:

1. �e adversary A starts by choosing a non-zero vector u ∈ {0, 1}! .

2. �e challenger samples matrices A r← Z=×<@ and B
r← Z=!×<̂ (2!−1)@ and constructs the challenge as follows:

• If 1 = 0, the challenger samples s r← Z=@ , R
r← {−1, 1}<̂!×<̂ (!−1) , e← �<

Z,j
, ê0 ← �<̂!

Z,j
, êT ← êT0 [I<̂! | R] ∈

Z
<̂ (2!−1)
@ , and gives

(
A, B, sTA + eT, sT (uT ⊗ I=)B + êT

)
to A.

• If 1 = 1, the challenger samples v r← Z<@ , v̂
r← Z<̂ (2!−1)@ and gives (A,B, vT, v̂T) to A.

3. Adversary A can now make queries of the form (M, t) whereM ∈ Z:×!@ where : < ! and t ∈ Z:=@ .

• Define the matrix M̄ =
[
M
uT

]
. If M̄ is not full rank (over Z@), the challenger replies with ⊥.

• If t is not in the column span of (M ⊗ I=)B, then the challenger also replies with ⊥.
• Otherwise, it samples and replies with y ← ((M ⊗ I=)B)−1j (t). Namely, y ∈ Z< (2!−1)@ is sampled from the

distribution �
< (2!−1)
Z,j

conditioned on (M ⊗ I=)By = t.

4. At the end of the game, algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is also the output of the experiment.

We say that the RTLWE=,<,<̂,@,j,! assumption holds if for all efficient adversaries A, there exists a negligible function
negl(·) such that for all _ ∈ N, |Pr[1 ′ = 1 | 1 = 0] − Pr[1 ′ = 1 | 1 = 1] | = negl(_) in the above security game.

�eorem 4.2 (Generalized Related-Trapdoor LWE). Let _ be a security parameter, and let = = =(_), @ = @(_),
< =<(_), <̂ = <̂(_), and j = j (_) be la�ice parameters. Suppose that @ > 2 is a prime and j > 2<̂2!2 · l (

√
log=).

�en, there exists a fixed polynomial<0 (=, @) = $ (= log@) such that for all <̂ > <0 (=, @) and under the LWE=,<+<̂!,@,j

assumption, the RTLWE=,<,<̂,@,j,! assumption holds.
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Proof. �roughout the analysis, we use the fact that since @ is prime, Z@ is a field and Z!@ is a vector space (where
notions like “rank” are well-defined). We start by defining a sequence of hybrid experiments:

• Hyb0: �is is the real experiment with bit 1 = 0.

• Hyb1: Same as Hyb0 except the challenger changes how it constructs B in the challenge:

– First, since u ≠ 0, its kernel has dimension ! − 1. Let U⊥ ∈ Z!×(!−1)@ be a full-rank matrix where uTU⊥ = 0

(i.e., the columns of U⊥ form a basis for the kernel of uT). In the description here and in the proof,
we assume that U⊥ is computed from uT using an efficient and deterministic algorithm (e.g., Gaussian
elimination).

– �e challenger samples Â r← Z=!×<̂!
@ and R

r← {−1, 1}<̂!×<̂ (!−1) , and sets B ← [Â | ÂR + U⊥ ⊗ G] ∈
Z
=!×<̂ (2!−1)
@ .

Note that the challenger uses the same inefficient procedure for answering oracle queries (M, t) as in Hyb0.
Namely, when [MT | u] is full rank and t is in the image of ((M ⊗ I=)B), it samples y ← ((M ⊗ I=)B)−1j (t),
which only depends onM, B, and t.

• Hyb2: Same as Hyb1, except the challenger changes how it samples Â ∈ Z=!×<̂!
@ and how it responds to oracle

queries:

– Since u ∈ {0, 1}! and u ≠ 0, let 8 ∈ [!] be the smallest index where D8 = 1. For all 9 ≠ 8 , the challenger
samples Â9

r← Z=×<̂!
@ . Next, it samples D r← Z=×<̂!

@ and sets Â8 = D −∑
9≠8 D 9 Â9 . It sets

Â =


Â1

...

Â!


∈ Z=!×<̂!

@ .

In this experiment, (uT ⊗ I=)Â = D and since uTU⊥ = 0,

(uT ⊗ I=)B = (uT ⊗ I=) [Â | ÂR + U⊥ ⊗ G] = [D | DR + uTU⊥ ⊗ G] = [D | DR] . (4.1)

�e challenge in this experiments can thus be wri�en as
(
A,B, sTA+eT, (sTD+ êT0) [I<̂! | R]

)
, where s r← Z=@

and ê0 ← �<̂!
Z,j

.

– When answering oracle queries (M, t) where M̄ =
[
M
uT

]
is full rank and t is in the image of (M ⊗ I=)B, the

challenger computes

td =

[
−R

I<̂ (!−1)

]
∈ Z<̂ (2!−1)×<̂ (!−1)@ (4.2)

and samples y← SamplePre((M ⊗ I=)B, td, t, j) (cf. �eorem 3.10 and Corollary 3.12).

• Hyb3: Same asHyb2 except the challenger sets the challenge as (A,B, vT, v̂T) where v r← Z<@ and v̂← ẑT [I<̂! | R]
where ẑ r← Z<̂!

@ .

• Hyb4: Same as Hyb3 except the challenge reverts to sampling Â
r← Z=!×<̂!

@ . When answering oracle queries

(M, t) where M̄ =
[
M
uT

]
is full rank and t is in the image of (M ⊗ I=)B, the challenger reverts to sampling

y ← ((M ⊗ I=)B)−1j (t) inefficiently. In particular, y here can be sampled given only M, B, and t (without
knowledge of R).

• Hyb5: Same as Hyb4 except the challenger samples B r← Z=!×<̂ (2!−1)@ and v̂ r← Z<̂ (2!−1)@ when constructing the
challenger ciphertext. �is is the real experiment with bit 1 = 1.

For an adversary A, we write Hyb8 (A) to denote the output of Hyb8 with adversary A. We now show that each
adjacent pair of hybrid experiments is computationally indistinguishable.
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Lemma 4.3. �ere exists a fixed polynomial<0 (=, @) = $ (= log@) such that for all <̂ > <0 (=, @) and all adversaries
A, Hyb0 (A)

B≈ Hyb1 (A).

Proof. Suppose there exists an adversaryA that distinguishes betweenHyb0 andHyb1 with non-negligible probability
Y. We use A to construct an adversary B that can distinguish between the distributions in Eq. (3.1):

• Algorithm B samples êT0
r← Z<̂!

@ and gives the dimension : = <̂(! − 1) and error vector ê0 to its challenger.

• Algorithm B receives a challenge (D0,D1, u) where D0 ∈ Z=!×<̂!
@ , D1 ∈ Z=!×<̂ (2!−1)@ , and u ∈ Z<̂!

@ , algorithm
B computes B← [D0 | D1 + U⊥ ⊗ G] and êT ← [êT0 | u].

• Algorithm B constructs the remaining elements in the challenge exactly as in Hyb0 and Hyb1. Likewise, it
responds to the oracle queries using the same procedure as in Hyb0 and Hyb1. In particular, all of the other
components are independent of R.

• At the end of the experiment, algorithm B outputs whatever A outputs.

We take<0 to be the polynomial from Lemma 3.14. �en, ifD0,D1 are uniform and u = êT0R for R r← {−1, 1}<̂!×<̂ (!−1) ,
then B perfectly simulates the first distribution in Eq. (3.1) for A. Alternatively, if D1 = D0R and u = êT0R, then B
perfectly simulates the second distribution in Eq. (3.1). �e claim holds. �

Lemma 4.4. Suppose j ≥ 2<̂2!2 · l (
√
log=). �en, for all adversaries A, Hyb1 (A)

B≈ Hyb2 (A).

Proof. First, the distribution of Â is uniform over Z=!×<̂!
@ in both experiments (in Hyb2, all of the blocks Â9 for 9 ≠ 8

and D are independent and uniform over Z=×<̂!
@ ). Consider now the response to an oracle query (M, t). If [MT | u]

is not full rank or if t is not in the image of (M ⊗ I=)B, then the challenger’s response in both experiments is ⊥.
Otherwise, the following holds:

• Suppose M ∈ Z:×!@ . Since : + 1 ≤ !, there exists [V | v] ∈ Z!×(:+1)@ where V ∈ Z!×:@ and v ∈ Z!@ such that[
M
uT

]
[V | v] = I:+1, and in particular, that MV = I: and uTV = 0. �us, V ∈ span(U⊥) and so, there exists

V′ ∈ Z(!−1)×:@ such thatMU⊥V′ = I: . Equivalently, the matrixMU⊥ ∈ Z:×(!−1)@ is full rank. �en

(M ⊗ I=)B
[
−R

I<̂ (!−1)

]
︸        ︷︷        ︸

R̄

= (M ⊗ I=) [Â | ÂR + U⊥ ⊗ G]
[
−R

I<̂ (!−1)

]
= MU⊥ ⊗ G. (4.3)

By construction, R̄ ∈ {−1, 1}<̂ (2!−1)×<̂ (!−1) .

• SinceMU⊥ is full rank and (M⊗ I=)BR̄ = MU⊥ ⊗G, we appeal to Corollary 3.12 to conclude that td = (R̄,MU⊥)
is a g-trapdoor for (M ⊗ I=)B with g ≤

√
:<̂2 (2! − 1)<̂(! − 1) < 2<̂2!2 since : < !.

• Since j > 2<̂2!2 · l (
√
log=) > g · l (

√
log=), the distributions

{y← SamplePre((M ⊗ I=)B, td, t, j)} 0=3 {y← ((M ⊗ I=)B)−1j (t)}.

are statistically close by �eorem 3.10.

�e claim now follows by a standard hybrid argument over the number of queries the adversary makes. �

Lemma 4.5. Under the LWE=,<!,@,j assumption, for all efficient adversaries A, it follows that Hyb2 (A)
2≈ Hyb3 (A).

Proof. Suppose there exists an efficient adversary A that is able to distinguish Hyb2 from Hyb3 with non-negligible
advantage Y. We use A to construct an adversary B for the LWE=,<!,@,j assumption:

1. Algorithm B receives an LWE challenge
(
[A | D], [zT | ẑT]

)
where A ∈ Z=×<@ , D ∈ Z=×<̂!

@ , z ∈ Z<@ , and ẑ ∈ Z<̂!
@ .
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2. Algorithm B starts runningA. AlgorithmA starts by choosing a non-zero vector u ∈ {0, 1}! . Let 8 ∈ [!] be the
smallest index where D8 = 1. For 9 ≠ 8 , algorithmA samples Â9

r← Z=×<̂!
@ and it computes Â8 ← D−∑

9≠8 D 9 Â9 .

Finally, set Â← [ÂT

1 | · · · | ÂT

!
]T.

3. Algorithm B samples R r← {−1, 1}<̂!×<̂ (!−1) and sets B = [Â | ÂR + U⊥ ⊗ G]. It gives (A,B, zT, ẑT [I<̂! | R]) to
A.

4. Whenever A makes an oracle query on input (M, t), algorithm B checks if
[
M
uT

]
is full rank and that t is in the

column span of (M ⊗ I=)B . If not, then algorithm B replies with ⊥. Otherwise, algorithm B constructs the

trapdoor td =

[
−R

I<̂ (!−1)

]
as in Eq. (4.2) and replies with y← SamplePre((M ⊗ I=)B, td, t, j).

5. At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1}, which algorithm B outputs as the output of the
experiment.

Algorithm B constructs Â exactly as prescribed in Hyb2 and Hyb3 and answers the oracle queries using the same
procedure in Hyb2 and Hyb3. From Eq. (4.1), in Hyb2 and Hyb3, we have that (uT ⊗ I=)B = [D | DR]. It suffices to
consider the distribution of the challenge ciphertext:

• Suppose zT = sTA + eT and ẑT = sTD + êT0 for some e← �<
Z,j

and ê0 ← �<̂!
Z,j

. �en,

ẑT [I<̂! | R] = (sTD + êT0) [I<̂! | R] = sT [D | DR] + êT0 [I<̂! | R] = sT (uT ⊗ I=)B + êT0 [I<̂! | R],

which coincides with the challenge distribution in Hyb2.

• Suppose z r← Z<@ and ẑ
r← Z<̂!

@ . �is is precisely the challenge distribution in Hyb3.

�us, depending on whether the LWE challenge is pseudorandom or uniform, algorithm B perfectly simulates either
Hyb2 or Hyb3 for A, and the claim follows. �

Lemma 4.6. Suppose j ≥ 2<̂2!2 · l (
√
log=). �en, for all adversaries A, Hyb3 (A)

B≈ Hyb4 (A).

Proof. Follows by an identical argument as in the proof of Lemma 4.4. �

Lemma 4.7. �ere exists a fixed polynomial<0 (=, @) = $ (= log@) such that for all <̂ > <0 and all adversaries A,

Hyb4 (A)
B≈ Hyb5 (A).

Proof. �e only difference between Hyb4 and Hyb5 is the distribution of B and v̂. Notably, in both experiments, the
responses to the oracle queries depend only on M and B and not R (i.e., the challenger in both experiments samples
y← ((M ⊗ I=)B)−1j (t) inefficiently). Consider the distribution of the challenge in the two experiments:

• In Hyb4, B = [Â | ÂR] + [0=!×<̂! | U⊥ ⊗ G] and v̂ = [ẑT | ẑTR], with R
r← {−1, 1}<̂!×<̂ (2!−1) .

• In Hyb5, B and v̂ are both uniform.

In both cases, Â and ẑ are uniform. �e claim now follows by applying Lemma 3.14 and considering the se�ing

A = [ÂT | ẑ]T ∈ Z(=!+1)×<̂!
@ . Note that here, we can set e arbitrarily (i.e., the claim follows by the vanilla le�over hash

lemma without leakage). �

Combining Lemmas 4.3 to 4.7, the claim holds. �
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5 Multi-Authority ABE from LWE in the Random Oracle Model

In this section, we describe our construction of multi-authority ABE for the family of subset policies in the random
oracle model. Our construction follows a similar structure as the multi-authority ABE scheme of Da�a et al. [DKW21a]
except we provide a direct reduction to the (generalized) related trapdoor LWE problem (Section 4). Notably, this
allows us to base security on polynomial hardness of the plain LWE assumption with a polynomial modulus. �e
previous construction of Da�a et al. relied on LWE with a super-polynomial modulus-to-noise ratio.

Construction 5.1 (Multi-Authority ABE in the Random Oracle Model). Let _ be a security parameter, and = = =(_),
< = <(_), @ = @(_), and j = j (_) be la�ice parameters. Let ! = !(_) be a bound on the number of a�ributes
associated with a ciphertext. Let GID = {0, 1}_ be the set of user identifiers andAU = {0, 1}_ be the set of authority
identifiers. �e construction will rely on a hash function H : GID → Z< (2!−1)@ , which will be modeled as a random
oracle as follows:

• For ease of exposition in the following description, we will start by assuming that the outputs of the random
oracle H are distributed according to a discrete Gaussian distribution. Specifically, on every input gid ∈ GID,

the output H(gid) is a sample from the distribution �
< (2!−1)
Z,j

. In Section 5.1 and Remark 5.9, we show that

using inversion sampling, we can implement H using a standard random oracle H′ : GID → {0, 1}_< (2!−1) ,
where the outputs of H′(gid) are distributed uniformly over {0, 1}_< (2!−1) as usual.

We construct a multi-authority ABE scheme for subset policies with message spaceM = {0, 1} as follows:
• GlobalSetup(1_): Output the global parameters gp = (_, =,<, @, j, !,H).

• AuthSetup(gp, aid): On input the global parameters gp and an authority identifier aid ∈ AU, sample

(Aaid, tdaid) ← TrapGen(1=, @,<), paid r← Z=@ , and Baid
r← Z

=×< (2!−1)
@ . Output the authority public key

pkaid ← (Aaid,Baid, paid) and the authority secret key mskaid = tdaid.

• KeyGen(gp,msk, pk, gid): On input the global parameters gp = (_, =,<, @, j, !,H), the master secret key
msk = td, the public key pk = (A,B, p), and the user identifier gid, the key-generation algorithm computes

r← H(gid) ∈ Z< (2!−1)@ and uses td to sample u← A−1j (p + Br). It outputs skaid,gid = u.

• Encrypt(gp, {pkaid}aid∈�, `): On input the global parameters gp = (_, =,<, @, j, !,H), a set of of public keys
pkaid = (Aaid,Baid, paid) associated with a set of authorities �, and the message ` ∈ {0, 1}, the encryption
algorithm samples said

r← Z=@ , e1,aid ← �<
Z,j

, R r← {0, 1}<!×< (!−1) , ê2 ← �<!
Z,j

, and eT2 ← êT2 [I<! | R], and
43 ← �Z,j for each aid ∈ �. It outputs the ciphertext

ct =

({
sTaidAaid + eT1,aid

}
aid∈�

,
∑
aid∈�

sTaidBaid + eT2 ,
∑
aid∈�

sTaidpaid + 43 + ` · ⌊@/2⌉
)
.

• Decrypt(gp, {skaid,gid}aid∈�, ct, gid): On input the global parameters gp = (_, =,<, @, j, !,H), a set of secret
keys skaid,gid = uaid,gid associated with authorities aid ∈ � and user identifier gid, and a ciphertext ct =(
{cT

1,aid
}aid∈� , cT2 , 23

)
, the decryption algorithm computes r← H(gid) and outputs⌊

2

@
·
(
23 + cT2r −

∑
aid∈�

cT1,aiduaid,gid mod @

)⌉
.

�eorem5.2 (Correctness). Suppose the conditions of�eorem 3.10 and Lemma 3.13 hold (i.e.,< ≥ <0 (=, @) = $ (= log@)
and j > j0 (=, @) =

√
= log@ · l (

√
log=)). �en, there exists a polynomial @0 = $ (_j2<2!2) such that for all @ > @0,

Construction 5.1 is correct.

Proof. Take any message ` ∈ {0, 1}, an identifier gid ∈ GID, and set of authorities � ⊆ AU. Sample the
global parameters gp ← GlobalSetup(1_), the authority keys (pkaid,mskaid) ← AuthSetup(gp, aid), the secret
keys skaid,gid ← KeyGen(gp,mskaid, gid), and the ciphertext ct← Encrypt(gp, {pkaid}aid∈�, `). We now expand the
various components appearing in the computation of Decrypt(gp, {skaid,gid}aid∈�, ct, gid):
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• �e global parameters gp = (_, =,<, @, j, !,H) consists of the la�ice parameter and the description of a hash

function H : GID → Z< (2!−1)@ .

• �e ciphertext ct =
({
cT
1,aid

}
aid∈�, c

T

2, 23
)
where

cT1,aid = sTaidAaid + eT1,aid , cT2 =
∑
aid∈�

sTaidBaid + eT2 , 23 =
∑
aid∈�

sTaidpaid + 43 + ` · ⌊@/2⌉ ,

and (Aaid,Baid, paid) is the public key associated with authority aid.

• �e secret key skaid,gid = uaid,gid ← (Aaid)−1j (paid + Baidr) and r ← H(gid). Since paid is uniform over Z=@
and independent of Baidr, the marginal distribution of uaid,gid is statistically close to �<

Z,j
by Lemma 3.13. By

construction, r is sampled from �
< (2!−1)
Z,j

. �en, by Fact 3.8, with overwhelming probability, ‖uaid,gid‖ ≤ � and

‖r‖ ≤ � where � =
√
_j .

• �en
cT1,aiduaid,gid = sTaidAaiduaid,gid + eT1,aiduaid,gid = sTaidpaid + s

T

aidBaidr + eT1,aiduaid,gid.
�en, the main decryption relation becomes

23 + cT2r −
∑
aid∈�

cT1,aiduaid,gid = ` · ⌊@/2⌉ + 43 + eT2r −
∑
aid∈�

eT1,aiduaid,gid.

Decryption succeeds if the total error 4̃ = 43 + eT2r −
∑

aid∈� eT
1,aid

uaid,gid satisfies |4̃ | < (@ − 1)/4.

• To bound the error 4̃ , we bound each of its components. By definition, eT2 = êT2 [I<! | R] where ê2 ← �<!
Z,j

and

‖R‖ = 1. By Fact 3.8, ‖ê2‖ ≤ � =
√
_j with overwhelming probability; in this case, ‖eT2‖ ≤ �<!. �us, with

overwhelming probability,

|43 | ≤ �

‖eT2r‖ ≤ �2<2!(2! − 1)
‖eT1,aiduaid,gid‖ ≤ �2<

Finally, we have that |�| ≤ !, so we can now bound

|4̃ | < � + �2<2!(2! − 1) + �2<! = $ (�2<2!2) = $ (_j2<2!2). �

�eorem 5.3 (Static Security). Suppose the conditions of �eorem 3.10 and Lemma 3.13 hold (i.e., < ≥ <0 (=, @) =
$ (= log@) and j > j0 (=, @) =

√
= log@ · l (

√
log=)). �en, under the RTLWE=,!<+1,<,@,j,! assumption and modeling

H : GID → Z< (2!−1)@ as a random oracle (with outputs distributed according to �
< (2!−1)
Z,j

), Construction 5.1 is statically

secure.

Proof. We begin by defining a sequence of hybrid experiments:

• Hyb
(1)
0 : �is is the static security experiment where the challenger encrypts message `1 (where 1 ∈ {0, 1}).

Specifically, at the beginning of the game, the adversary outputs the following components:

– A set of corrupted authorities C ⊂ AU and their public keys pkaid = (Aaid,Baid, paid) for each aid ∈ C.
– A list of non-corrupted authorities N ⊆ AU.

– A list of secret-key queries Q = {(gid, �)} where each � ⊂ N .

– A pair of challenge messages `0, `1 ∈ {0, 1} and a set of authorities �∗ ⊆ C ∪ N where |�∗ | ≤ !.

�e challenger initializes an empty table T : GID → {0, 1}_< (2!−1) that it will use for answering random oracle
queries. �e challenger then constructs the public keys, secret keys and the challenge ciphertext as follows:
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– Public keys for non-corrupted authorities: For each aid ∈ N , the challenger samples (Aaid, tdaid) ←
TrapGen(1=, @,<), paid r← Z=@ , andBaid

r← Z=×< (2!−1)@ and sets the public key to be pkaid = (Aaid,Baid, paid).
– Secret key queries: For each secret key query (gid, �) where � ⊂ N , the challenger computes rgid ←

H(gid) and samples uaid,gid ← (Agid)−1j (paid + Baidrgid). It sets the secret key to skaid,gid = uaid,gid.

– Challenge ciphertext: �e challenger samples said
r← Z=@ and e1,aid ← �<

Z,j
for each aid ∈ �∗. It also

samples R r← {0, 1}<!×< (!−1) , ê2 ← �<!
Z,j

, and eT2 ← êT2 [I<! | R], and 43 ← �Z,j . Finally, it outputs the

challenge ciphertext

ct =

({
sTaidAaid + eT1,aid

}
aid∈�∗

,
∑

aid∈�∗
sTaidBaid + eT2 ,

∑
aid∈�∗

sTaidpaid + 43 + `1 · ⌊@/2⌉
)
.

– Random oracle queries: On input gid ∈ GID (either from the adversary or when processing a secret-
key query), the challenger checks whether there exists a mapping (gid ↦→ rgid) in T. If so, it replies with

rgid. Otherwise, it samples rgid ← �
< (2!−1)
Z,j

, adds the mapping (gid ↦→ rgid) to T, and replies with rgid.

At the end of the game, the adversary outputs a bit 1 ′ ∈ {0, 1} which is the output of the experiment.

• Hyb
(1)
1 : Same asHyb

(1)
0 except the challenger changes how it constructs the secret keys. First, let�∗ ⊆ C∪N be

the set of authorities associated with the challenge ciphertext and let �∗ ∩N = {aid∗1, . . . , aid∗ℓ }. �e challenger
defines the matrix

B =



Baid∗1
...

Baid∗ℓ
Brest


∈ Z=!×< (2!−1)@ ,

where Baid∗8
r← Z=×< (2!−1)@ is the matrix associated with part of the public key for authority aid∗8 and Brest

r←
Z
= (!−ℓ)×< (2!−1)
@ consist of additional unused components. �e challenger responds to the secret key queries as

follows:

– Public keys for non-corrupted authorities: For each aid∗8 ∈ �∗
chal

, the challenger samples Aaid∗8
r←

Z=×<@ and paid∗8
r← Z=@ , and sets the public key to be pkaid∗8 = (Aaid∗8

,Baid∗8
, paid∗8 ). In particular, the challenger

does not sample a trapdoor for aid∗8 anymore. For aid ∈ N ∉ �∗, the challenger samples the public keys as

in Hyb
(1)
0 .

– Secret key queries: For each secret key query (gid, �) where � ⊂ N , the challenger first partitions
� = �chal ∪ �̄chal ⊂ N where �chal ⊂ �∗ consists of the authorities appearing in the challenge ciphertext
and �̄chal = � \ �chal consists of the authorities which do not appear in the challenge ciphertext. If
�chal ≠ ∅, then the challenger proceeds as follows:

∗ Let �chal = {aid∗91 , . . . , aid
∗
9:
} where 91, . . . , 9: ∈ [ℓ]. For each aid∗8 ∈ �chal, it samples uaid∗8 ,gid ← �<

Z,j
.

∗ Let I! ∈ Z!×!@ be the identity matrix. For each 8 ∈ [ℓ], associate authority aid∗8 with the 8th row of I! .

Define the matrix M� ∈ {0, 1} |�chal |×! to be the matrix formed by taking the rows of I! associated
with the identities in �chal.

∗ �e challenger samples

rgid ←



Baid∗91
...

Baid∗9:



−1

j

©­­­«



Aaid∗91
uaid∗91 ,gid

− paid∗91
...

Aaid∗9:
uaid∗9: ,gid

− paid∗9:


ª®®®¬
∈ Z< (2!−1)@ , (5.1)
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or more compactly, rgid ← ((M� ⊗ I=)B)−1j (t�,gid), where

t�,gid =



Aaid∗91
uaid∗91 ,gid

− paid∗91
...

Aaid∗9:
uaid∗9: ,gid

− paid∗9:


.

If t�,gid is not in the image of (M� ⊗ I=)B, then the challenger aborts the experiment with output 0.

∗ �e challenger adds (gid ↦→ rgid) to T.

If �chal = ∅, then B samples rgid ← �
< (2!−1)
Z,j

and adds the mapping (gid ↦→ rgid) to the table T.

Finally, the challenger constructs the secret keys for each authority aid ∈ � as follows:

∗ If aid ∈ �chal, then aid = aid∗8 for some 8 ∈ [ℓ]. Algorithm B sets the secret key as skaid∗8 ,gid = uaid∗8 ,gid.

∗ If aid ∈ �̄chal, the challenger computes rgid ← T[gid]. It then sets skaid,gid = uaid,gid ← (Aaid)−1j (paid+
Baidrgid) exactly as in Hyb

(1)
0 .

• Hyb
(1)
2 : Same as Hyb

(1)
1 , except the challenger constructs the challenge ciphertext as follows:

– Challenge ciphertext: �e challenger samples said
r← Z=@ and e1,aid ← �<

Z,j
for each corrupted authority

aid ∈ �∗∩C (same as inHyb
(1)
1 ) and sets cT

1,aid
← sT

aid
Aaid+eT1,aid. For the honest authorities aid

∗
8 ∈ �∗∩N ,

it samples c1,aid∗8
r← Z<@ . Next, it samples c2

r← Z< (2!−1)@ and 23
r← Z@ . Finally, it outputs the challenge

ciphertext
ct =

({
cT1,aid

}
aid∈�, c2, 23

)
.

In particular, the challenge ciphertext is independent of `1 .

For an adversary A, we write Hyb
(1)
8 (A) to denote the output distribution of Hyb

(1)
8 with adversary A. We now

show that each pair of adjacent distributions are computationally indistinguishable:

Lemma 5.4. Suppose @ is prime and let<0 (=, @) = $ (= log@) and j0 (=, @) =
√
= log@ · l (

√
log=) be the polynomials

from Lemma 3.13. If< ≥ <0 and j ≥ j0, then for all adversaries A and 1 ∈ {0, 1}, Hyb(1)0 (A)
B≈ Hyb

(1)
1 (A).

Proof. Consider a secret key query (gid, �). Certainly if � ⊆ N \ �∗ (i.e., �chal = ∅), the distribution of the

secret keys is identical in Hyb
(1)
0 and Hyb

(1)
1 . Consider the case where �chal ≠ ∅. We consider the distribution of(

rgid, {uaid,gid}aid∈�chal

)
in Hyb

(1)
0 and Hyb

(1)
1 . In both experiments, these components are sampled so as to satisfy the

linear system:



Aaid∗91
−Baid∗91

. . .
...

Aaid∗9:
−Baid∗9:


·



uaid∗91 ,gid
...

uaid∗9: ,gid

rgid


=



paid∗91
...

paid∗9:


. (5.2)

Consider the joint distribution of rgid and the {uaid,gid}aid∈�chal
in Hyb

(1)
0 . We start by characterizing the marginal

distribution of each uaid,gid in Hyb
(1)
0 :

• In Hyb
(1)
0 , the challenger samples rgid ← �

< (2!−1)
Z,j

. Define the matrix B∗ ∈ Z=:×< (2!−1)@ where

B∗ =



Baid∗91
...

Baid∗9:


∈ Z=:×< (2!−1)@ .
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In Hyb
(1)
0 , the distribution of B∗ is uniform over Z

=:×< (2!−1)
@ . Since : < !, and < ≥ <0 (=, @) = $ (= log@),

we have that<(2! − 1) ≥ <0 (=:, @). Moreover, since j ≥
√
= log@ · l (

√
log=), we conclude by Lemma 3.13

that the distribution of B∗rgid is statistically close to uniform over Z=:@ . �is means that for all aid ∈ �chal, the
distribution of paid − Baidrgid is independent and uniform over Z=@ .

• �en, for each aid ∈ �chal, the challenger samples uaid,gid ← (Aaid)−1j (paid −Baidrgid). From above, the marginal

distribution of each paid − Baidrgid is uniform and independent over Z=@ . Finally, since Aaid∗98

r← Z=×<@ in Hyb
(1)
0 ,

we again appeal to Lemma 3.13 to conclude that the marginal distribution of each uaid,gid is statistically close to
�<
Z,j

. Moreover, each of the uaid,gid’s are independent.

�us, in Hyb
(1)
0 , the distribution of each uaid,gid is statistically close to the discrete Gaussian distribution �<

Z,j
. We

now characterize the conditional distribution of rgid given {uaid,gid}aid∈�chal
in Hyb

(1)
0 . By Eq. (5.2), this is a discrete

Gaussian �
< (2!−1)
Z,j

conditioned on

B∗rgid =



Aaid∗91
uaid∗91 ,gid

− paid∗91
...

Aaid∗9:
uaid∗9: ,gid

− paid∗9:


.

By definition, the conditional distribution of rgid given {uaid,gid}aid∈�chal
is precisely

(B∗)−1j
©­­­«



Aaid∗91
uaid∗91 ,gid

− paid∗91
...

Aaid∗9:
uaid∗9: ,gid

− paid∗9:


ª®®®¬
.

�is coincides precisely with the distribution in Hyb
(1)
1 and the claim follows. �

Lemma 5.5. Under the RTLWE=,!<+1,<,@,j,! assumption and modeling H as a random oracle, for all efficient adversaries

A, Hyb
(1)
1 (A)

2≈ Hyb
(1)
2 (A).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb
(1)
1 from Hyb

(1)
2 with advantage Y > 0.

We use A to construct an adversary B for the RTLWE assumption:

1. Algorithm B starts running algorithm A. In the static security model, algorithm A outputs the following:

• A set of corrupted authorities C ⊂ AU and their public keys pkaid = (Aaid,Baid, paid) for each aid ∈ C.
• A list of non-corrupted authorities N ⊆ AU.

• A list of secret-key queries Q = {(gid, �)} where each � ⊂ N .

• A pair of challenge messages `0, `1 ∈ {0, 1} and a set of authorities �∗ ⊆ C ∪ N .

2. Let ℓ = |�∗ ∩ N |, and let�∗∩N = {aid∗1, . . . , aid∗ℓ }. Algorithm B constructs the vector u ∈ {0, 1}! where D8 = 1
for 8 ∈ [ℓ] and D8 = 0 for 8 > ℓ . In the reduction, the first ℓ entries of u are associated with the ℓ non-corrupt
authorities that appear in the challenge ciphertext. �e remaining ! − ℓ entries are unused.

3. In response, algorithm B receives a challenge (A,B, zT, ẑT) where A ∈ Z=×(!<+1)@ , B ∈ Z=!×< (2!−1)@ , z ∈ Z!<+1@ ,

and ẑ ∈ Z< (2!−1)@ . Algorithm B parses

A =
[
Aaid∗1

| · · · | Aaid∗ℓ | Arest | p
]

zT =
[
zT
aid∗1
| · · · | zT

aid∗ℓ
| zTrest | C

]
,
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whereAaid∗8
∈ Z=×<@ , p ∈ Z=@ , zaid∗8 ∈ Z

<
@ , C ∈ Z@ ; the remaining componentsArest ∈ Z=×(!−ℓ)<@ and zrest ∈ Z(!−ℓ)<@

denote unused elements. It also parses B as

B =



Baid∗1
...

Baid∗ℓ
Brest


∈ Z=!×< (2!−1)@ ,

where each Baid∗8
∈ Z=×< (2!−1)@ ; the remaining block Brest ∈ Z= (!−ℓ)×< (2!−1)@ is unused in the reduction.

4. Algorithm B initializes an empty table T : GID → Z< (2!−1)@ that it will use for responding to random oracle
queries. Algorithm B computes responses to the adversary’s queries as follows:

• Public keys for non-corrupted authorities: Algorithm B constructs the public keys for authorities in
N ∩�∗ and N \�∗ as follows:
– For each 8 ∈ [ℓ], the challenger samples vectors paid∗8

r← Z=@ such that
∑

8∈[ℓ ] paid∗8 = p. �en, for each
aid∗8 ∈ �∗ ∩ N , algorithm B constructs the public key as pkaid∗8 = (Aaid∗8

,Baid∗8
, paid∗8 ).

– For authorities aid ∈ N \ �∗, the challenger samples (Aaid, tdaid) ← TrapGen(1=, @,<), paid r← Z=@
and Baid

r← Z=×< (2!−1)@ as in the real scheme. It sets the public key to pkaid = (Aaid,Baid, paid).
• Secret keys: Let (gid, �) be a secret-key query. �e challenger partitions � = �chal ∪ �̄chal ⊂ N exactly

as prescribed in Hyb
(1)
1 and Hyb

(1)
2 .

– If �chal ≠ ∅, then algorithm B samples uaid∗8 ,gid ← �<
Z,j

for each aid∗8 ∈ �chal and constructs the

matrix M� and t�,gid as defined in Hyb
(1)
1 and Hyb

(1)
2 . It makes an oracle query on (M�, t�,gid) to

obtain a vector rgid ∈ Z<@ . �e challenger adds the mapping (gid ↦→ rgid) to the table T.

– If �chal = ∅, then B samples rgid ← �
< (2!−1)
Z,j

and adds the mapping (gid ↦→ rgid) to the table T.

Algorithm B then constructs the secret keys for each authority aid ∈ � as follows:

– If aid ∈ �chal, then aid = aid∗8 for some 8 ∈ [ℓ]. Algorithm B sets the secret key as skaid∗8 ,gid = uaid∗8 ,gid.

– If aid ∈ �̄chal, then algorithm B knows the associated trapdoor tdaid. �en, it computes rgid ← T[gid].
It samples skaid,gid = uaid,gid ← A−1

aid
(paid + Baidrgid) using the trapdoor tdaid.

• Challenge ciphertext: To construct the challenge ciphertext, algorithm B proceeds as follows:

– For each aid ∈ �∗, algorithm B first samples said
r← Z=@ .

∗ For each aid ∈ �∗ ∩ C, algorithm B samples e1,aid ← �<
Z,j

and computes cT
1,aid

= sT
aid
Aaid + eT1,aid.

∗ For each aid∗8 ∈ �∗ ∩ N , algorithm B computes cT
1,aid∗8

← sT
aid∗8

Aaid∗8
+ zaid∗8 .

– For the remaining ciphertext components c2 and 23, algorithm B computes

cT2 =
∑

aid∈�∗∩C
sTaidBaid +

∑
aid∗8 ∈�∗∩N

sT
aid∗8

Baid∗8
+ ẑT

23 =
∑

aid∈�∗∩C
sTaidpaid +

∑
aid∗8 ∈�∗∩N

sT
aid∗8

paid∗8 + `1 · ⌊@/2⌉ + C .

�e challenger constructs the challenge ciphertext as ct =
({
c1,aid

}
aid∈�∗ , c2, 23

)
.

5. Whenever A makes a random oracle query on an input gid, algorithm B checks if there exists a mapping

(gid ↦→ rgid) in T. If so, it replies with rgid. Otherwise, it samples rgid ← �
< (2!−1)
Z,j

, adds the mapping

(gid ↦→ rgid) to T, and replies with rgid.

6. At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1}, which B also outputs.
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To complete the proof, we argue that B simulates either Hyb
(1)
1 or Hyb

(1)
2 forA. We first consider the distribution of

the public keys and the secret keys:

• Public keys for non-corrupted authorities: �e public keys for authorities aid ∈ N \ �∗ that are not in
the challenge ciphertext are generated exactly as in the real scheme (same as Hyb

(1)
0 and Hyb

(1)
1 ). For an

authority aid∗8 ∈ �∗ ∩ N , the matrices Aaid∗8
and Baid∗8

are from the RTLWE assumption, so they are uniformly
and independently random. Finally, since p ∈ Z=@ is uniform, so is paid∗8 for all 8 ∈ [ℓ]. �us, the public keys
pkaid∗8

are all correctly distributed.

• Secret keys: Consider a secret key query (gid, �). If � ⊆ N \�∗ (i.e., �chal = ∅), then algorithm B constructs

skaid,gid using the same procedure as in Hyb
(1)
1 and Hyb

(1)
2 (since it knows the trapdoor for all authorities not

present in the challenge ciphertext). Consider the case where �chal ≠ ∅. Let �chal = {aid∗91 , . . . , aid
∗
9:
}. Consider

the query (M�, t�,gid) algorithm B makes to its oracle. Since M� is constructed by taking a subset of the rows
of I! (identified by the indices 91, . . . , 9: ∈ [ℓ]), the matrix M� is full rank. Moreover, since A is admissible

�chal ( [ℓ], which means that uT is not in the row-span of M�. �is means the matrix
[
M�

uT

]
is full rank and

represents a valid query to the RTLWE oracle. By construction of the RTLWE oracle, algorithm B perfectly

simulates the distribution of secret keys in Hyb
(1)
1 and Hyb

(1)
2 .

Next, we consider the distribution of the challenge ciphertext. Here, we consider two possibilities depending on the
challenge distribution:

• Suppose zT = sTA + eT and ẑT = sT (uT ⊗ I=)B + êT, where s r← Z=@ , e← �!<+1
Z,j

, êT ← êT0 [I<! | R], êT0 ← �<!
Z,j

, and

R
r← {−1, 1}<!×< (!−1) . Parse eT =

[
ẽT
aid∗1
| · · · | ẽT

aid∗!
| 4̃

]
where each ẽaid∗8 ∈ Z

<
@ . In particular, this means that

zT
aid∗8

= sTAaid∗8
+ ẽT

aid∗8
. Consider each component of the ciphertext:

– Consider the first ciphertext component. For aid ∈ �∗∩C, let s̃aid = said and ẽaid = e1,aid. For aid
∗
8 ∈ �∗∩N ,

let s̃aid∗8 = s+ said∗8 By construction each s̃aid is uniform and independent over Z=@ . For corrupted authorities
aid ∈ �∗ ∩ C, algorithm B computes

sTaidAaid + eT1,aid = s̃TaidAaid + ẽTaid .

For the honest authorities aid∗8 ∈ �∗ ∩ N , algorithm B computes

sT
aid∗8

Aaid∗8
+ zT

aid∗8
= (said∗8 + s)

TAaid∗8
+ ẽT

aid∗8
= s̃T

aid∗8
Aaid∗8

+ ẽT
aid∗8

,

�us, we have that{
sTaidAaid + ẽT1,aid

}
aid∈�∗∩C

∪
{
sT
aid∗8

Aaid∗8
+ zT

aid∗8

}
aid∗8 ∈�∗∩N

=
{
s̃TaidAaid + ẽTaid

}
aid∈�∗ ,

which matches the distribution in Hyb
(1)
1 .

– Consider the second ciphertext component c2. Recall that u = [1ℓ | 0!−ℓ ] and that�∗∩N = {aid∗1, . . . , aid∗ℓ }.
�us,

sT (uT ⊗ I=)B =

∑
8∈[ℓ ]

sTBaid∗8
=

∑
aid∗8 ∈�∗∩N

sTBaid∗8
.

�en, we have

cT2 =
∑

aid∈�∗∩C
sTaidBaid +

∑
aid∗8 ∈�∗∩N

sT
aid∗8

Baid∗8
+ sT (uT ⊗ I=)B + êT

=

∑
aid∈�∗∩C

s̃TaidBaid +
∑

aid∗8 ∈�∗∩N
s̃T
aid∗8

Baid∗8
+ êT0 [I<! | R]

=

∑
aid∈�∗

s̃TaidBaid + êT0 [I<! | R],

which is precisely the distribution of c2 in Hyb
(1)
1 .
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– Consider the final ciphertext component 23. Recall that p =
∑

8∈[ℓ ] p8 . �us,

sTp =

∑
8∈[ℓ ]

sTpaid∗8 =
∑

aid∗8 ∈�∗∩N
sTpaid∗8 .

�en, we have

23 =
∑

aid∈�∗∩C
sTaidpaid +

∑
aid∗8 ∈�∗∩N

sT
aid∗8

paid∗8 + `1 · ⌊@/2⌉ + s
Tp + 4̃

=

∑
aid∈�∗∩C

s̃Taidpaid +
∑

aid∗8 ∈�∗∩N
s̃aid∗8 paid

∗
8
+ 4̃ + `1 · ⌊@/2⌉

=

∑
aid∈�∗

s̃Taidpaid + 4̃ + `1 · ⌊@/2⌉ ,

which again coincides with the distribution in Hyb
(1)
1 .

In this case, the challenge ciphertext is distributed exactly as in Hyb
(1)
1 .

• Suppose z r← Z!<+1@ and ẑ
r← Z< (2!−1)@ . Similar to before, we consider each component of the ciphertext:

– Consider the first ciphertext component. Since z is uniform and sampled independently of said∗ and A,
the distribution of sT

aid∗8
Aaid∗8

+ zaid∗8 is independently uniform for all aid∗8 ∈ �∗ ∩ N . Finally, algorithm

B constructs the components sT
aid
Aaid + eT1,aid for aid ∈ �

∗ ∩ C exactly as in the real scheme. �us, the

distribution of the first ciphertext component matches that in Hyb
(1)
2 .

– �e remaining ciphertext components c2 and 23 are independent and uniform over Z
< (2!−1)
@ and Z@ ,

respectively (since ẑ r← Z< (2!−1)@ and C
r← Z@ are uniform and independent of all other components).

Once more, this coincides with the distribution in Hyb
(1)
2 .

In this case, the challenge ciphertext is distributed as in Hyb
(1)
2 .

�us, if the RTLWE challenge is pseudorandom, then algorithm B simulates Hyb
(1)
1 forA. Conversely, if the RTLWE

challenge is random, then algorithm B simulates Hyb
(1)
2 for A. �

Since the distribution of Hyb
(1)
2 is independent of the bit 1, for all adversaries A, Hyb

(0)
2 (A) ≡ Hyb

(1)
2 (A). �en,

combining Lemmas 5.4 and 5.5, for all efficient adversariesA, Hyb
(0)
0 (A)

2≈ Hyb
(1)
0 (A) and Construction 5.1 satisfies

static security. �

Parameter setting. Let _ be a security parameter. We can now instantiate Construction 5.1 as follows:

• We set the la�ice dimension = = _.

• To rely on �eorem 5.3, we rely on the RTLWE=,!<+1,<,@,j,! assumption. By �eorem 4.2, this reduces to
LWE=,2!<+1,@,j if we set< = $ (= log@), @ > 2 to a prime, and j = $ (<2!2 log=).

• For correctness (�eorem 5.2), we additionally require @ = $ (_j2<2!2).

In particular, this means we can choose <,@, j to be polynomials in _, and thus, base hardness on LWE with a
polynomial modulus-to-noise ratio. We summarize the instantiation below:

Corollary 5.6 (Multi-Authority ABE for Subset Policies in the Random Oracle Model). Let _ be a security parameter.

Assuming polynomial hardness of LWE with a polynomial modulus-to-noise ratio, there exists a statically-secure multi-

authority ABE scheme for subset policies of a priori bounded length ! = !(_) in the random oracle model. �e size of the

ciphertext scales quasi-linearly with the bound !.
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5.1 Instantiating using a Random Oracle with Uniform Outputs

As described, Construction 5.1 and Corollary 5.6 relies on a random oracle H : GID → Z< (2!−1)@ whose output

distribution is the discrete Gaussian distribution �
< (2!−1)
Z,j

. Since j = poly(_) in our se�ing, we describe a simple

way to instantiate H using a random oracle H′ : GID → {0, 1}_< (2!−1) whose output distribution is the uniform
distribution via inversion sampling. �e function H′ coincides with the usual way we model the output distribution
of a random oracle [BR93].

Previously, Brakerski et al. [BCTW16] sketched an alternative approach for instantiating a random oracle
outpu�ing samples from a discrete Gaussian distribution by adapting the rejection sampler of Lyubashevsky and
Wichs [LW15]. Da�a et al. [DKW21a] rely on noise smudging in their se�ing (which would in turn necessitate
using a super-polynomial modulus-to-noise ratio). In our se�ing where we have a distribution with polynomial-size
support, we describe a simple alternative based on inversion sampling. �is is a simple approach used in concrete
implementations of la�ice-based cryptography [BCD+16].

Lemma 5.7 (Inversion Sampling). Let _ be a security parameter, C = C (_) be an input length, and � be a discrete

�-bounded distribution with an efficiently-computable cumulative distribution function. �en, there exists a pair of

efficient algorithms (Project, SampleR) with the following properties:

• Project(G) → ~: On input an input G ∈ {0, 1}C , the projection algorithm outputs a sample ~ ∈ [−�, �]. �e

projection algorithm is deterministic.

• SampleR(~) → G : On input a value ~ ∈ [−�, �], the reverse sampling algorithm outputs an G ∈ {0, 1}C .

In addition, the following properties hold:

• Correctness: For all ~ ∈ [−�, �], Pr[Project(SampleR(~)) = ~] = 1.

• Reverse-sampleability: For all C > log� + l (log _), the following two distributions are statistically indistin-

guishable:

{(G, Project(G)) : G r← ({0, 1}C )} and {(SampleR(~), ~) : ~ ← �}.

Proof. We take (Project, SampleR) to be the standard inversion sampling algorithm. Let 5 : [−� − 1, �] → [0, 1] be
the cumulative distribution function for � , and let ) = 2C − 1. We construct the two algorithms as follows:

• Project(G): On input G ∈ {0, 1}C , let - ∈ [0,) ] be the integer whose binary representation is G . Output
~ ∈ [−�, �] where ) · 5 (~ − 1) < - ≤ ) · 5 (~).

• SampleR(~): On input ~ ∈ [−�, �], let G0 ← ) · 5 (~ − 1) and G1 ← ) · 5 (~). Output the binary representation
of the element G r← (G0, G1] ∩ Z.

Since the cumulative distribution function 5 is efficiently-computable and the Project algorithm can be computed
with polylog(�) calls to 5 (e.g., using binary search), the Project algorithm is efficiently-computable. �e SampleR

algorithm only requires making two calls to 5 and is likewise efficient. Next, correctness of the algorithm follows by
construction. Finally, for the reverse-sampleability property, take any . ∈ [−�, �]. �en,

Pr[Project(G) = . : G r← {0, 1}C ] = ⌊) · 5 (. )⌋ − ⌈) · 5 (. − 1)⌉
)

= 5 (. ) − 5 (. − 1) + 4

= Pr[~ = . : ~ ← �] + 4

where |4 | ≤ 2/) . �us, the statistical distance between {Project(G) : G r← {0, 1}C } and � is at most 2(2� + 1)/) =

negl(_). Finally, on input ~ ∈ [−�, �], SampleR(~) outputs a uniform G
r← {0, 1}C conditioned on Project(G) = ~. �

Remark 5.8 (Extending to Product Distributions). We can extend (Project, SampleR) to sample from a product
distribution �= in the natural way. �e projection algorithm takes as input a vector of bit-strings x ∈ ({0, 1}C )= and
applies the projection operator component-wise. �e reverse sampling algorithm is defined analogously. Correctness
and reverse-sampleability then follow via a standard hybrid argument.
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Remark 5.9 (Implementing the Random Oracle in Corollary 5.6). We can now implement the random oracle

H : GID → Z< (2!−1)@ in Corollary 5.6 (whose outputs are distributed according to �
< (2!−1)
Z,j

) with a random oracle

H′ : GID → {0, 1}_< (2!−1) whose outputs are uniform as follows:

• Let �̃Z,j be the discrete Gaussian distribution �Z,j truncated to the interval [−
√
_j,
√
_j]. Namely, to sample

G̃ ← �̃Z,j , we first sample G ← �Z,j and output G if G ∈ [−
√
_j,
√
_j] and output 0 otherwise. By Fact 3.8,

�̃Z,j is statistically indistinguishable from �Z,j . In addition, �̃Z,j is �-bounded for � =
√
_j .

• Let (Project, SampleR) be the inversion sampling algorithm from Lemma 5.7 and Remark 5.8 for the product

distribution �̃
< (2!−1)
Z,j

. We now define

H(gid) ≔ Project(H′(gid)) .

Since j = j (_) is polynomially-bounded, the cumulative distribution function of �̃Z,j is efficiently-computable.
�en, by Lemma 5.7 and Remark 5.8, for all polynomial-size collections of distinct inputs gid1, . . . , gidℓ ∈ GID,
the joint distributions of {

H(gid8 )
}
8∈[ℓ ] and

{
r8 ← �

< (2!−1)
Z,j

}
8∈[ℓ ]

are statistically indistinguishable.

• Finally, the proof of �eorem 5.3 critically relies on the ability to program the outputs of the random oracle in

the reduction. Here, we rely on the SampleR algorithm. Namely, to programH(gid) to a vector rgid ← �
< (2!−1)
Z,j

,

the reduction algorithm would sample Ggid ← SampleR(rgid) and program H′(gid) to Ggid. �is induces the
correct distribution by Lemma 5.7 and Remark 5.8.

6 Multi-Authority ABE without Random Oracles

Wenow give our construction of a multi-authority ABE schemewithout random oracles. Specifically, we instantiate the
hash function from Construction 5.1 with a subset-product construction (i.e., the la�ice-based PRF from �eorem 6.1)
and then prove security under the evasive LWE assumption (Assumption 3.16) and la�ice-based PRFs [BPR12,
BLMR13].

Lattice-based PRFs. Our analysis will rely on an unrounded la�ice-based PRF. We state the theorem and provide a
proof sketch below, and refer readers to [BPR12, �eorem 5.2] for a more formal exposition. Our presentation here is
adapted from the work of Chen et al. [CVW18, Lemma 7.4] who use a similar theorem for analyzing the security of
their private constrained PRF construction.

�eorem 6.1 (La�ice-Based PRFs [BPR12, BLMR13]). Let _ be a security parameter and let = = =(_), @ = @(_),
j = j (_), : = : (_) be integers. Let jsmudge = jsmudge (_) be a noise parameter that will used for noise smudging. Let

( ∈ Z:@ be the first elementary basis vector (i.e., [1 = 1 and [8 = 0 for all 8 ≠ 1). For a bit 1 ∈ {0, 1}, an input length

g = g (_), and an adversary A, define the following pseudorandomness game between a challenger and A:

1. �e challenger begins by sampling (D0,D1) r← �:×:
Z,j

and a secret key s
r← Z:@ . It gives D0 and D1 to A.

2. Algorithm A can now adaptively submit queries G ∈ {0, 1}g to the challenger. If 1 = 0, the challenger samples

4G
r← �Z,jsmudge

and outputs

5D0,D1,s (G) := sT
©­«
∏
8∈[g ]

DG8
ª®¬
( + 4G ∈ Z@ . (6.1)

Otherwise, if 1 = 1, the challenger replies with ~ r← Z@ .

3. A�er A is done making queries, it outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.
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An adversary A is admissible if all of the queries it submits are distinct. �en, for all polynomials g = g (_), @ = @(_),
parameters : ≥ 6= log@, j = Ω(

√
= log@), jsmudge > _g+l (1) · (:j)g , and assuming the LWE=,<,@,j assumption for some

< = poly(:, g,&), for all efficient and admissible adversariesA making up to& queries, there exists a negligible function

negl(·) such that for all _ ∈ N, |Pr[1 ′ = 1 : 1 = 0] − Pr[1 ′ = 1 : 1 = 1] | = negl(_).

Proof (Sketch). Our proof follows the same structure as [CVW18, Lemma 7.4] and [BPR12, Lemma 5.5]. Specifically,
we start by defining the “expanded” evaluation function 5̃D0,D1,s (G):

5̃D0,D1,s (G) :=
( (
· · ·

(
(sTDG1 + eT1)DG2 + eT2

)
DG3 + · · · + eTg−1

)
DGg + eTg

)
( + 4G , (6.2)

where e1, . . . , eg ← �:
/,j

and 4G ← �Z,jsmudge
. �en,

5̃D0,D1,s (G) = 5D0,D1,s (G) +
∑
8∈[g ]

eT8

(
g∏

9=8+1
DG 9

)
(

︸                   ︷︷                   ︸
4∗G

.

Since D0,D1 ← �:×:
Z,j

, we appeal to Fact 3.8 to conclude that with overwhelming probability, ‖D0‖, ‖D1‖ ≤
√
_j .

Similarly, with overwhelming probability, ‖e8 ‖ ≤
√
_j . �is means that |4∗G | ≤ g · (:

√
_j)g . When jsmudge >

_g+l (1) (:j)g , we can appeal to Lemma 3.15 to conclude that the distribution of 4G and 4G + 4∗G are statistically close.

Correspondingly, the distributions of 5D0,D1,s (G) and 5̃D0,D1,s (G) are statistically close.
Finally, we use a standard hybrid argument (combining [BPR12, �eorem 5.2] and [BLMR13, Corollary 4.6]) to

argue that the distribution of 5̃D0,D1,s (G) is computationally indistinguishable from the uniform distribution over Z@
under the LWE=,<,@,j assumption for some< = poly(:, g,&). �is step relies on the distribution of (D, sTD+ eT) being
computationally indistinguishable from (D, uT) when D← �:×:

Z,j
, s r← Z:@ , e← �:

Z,j
, and u

r← Z:@ . �is is implied by

the LWE=,<,@,j assumption when : ≥ 6= log@, j = Ω(
√
= log@), and< = poly(:) [BLMR13, Corollary 4.6]. �

MA-ABE for subset policies without random oracles. We now give the full construction of our MA-ABE
scheme without random oracles. As described in Section 2, our construction essentially instantiates the random oracle
in Construction 5.1 with a subset-product of low-norm matrices (which can be used as the basis for constructing a
PRF according to �eorem 6.1). Arguing security in turn relies on the evasive LWE assumption (Assumption 3.16).
Using the evasive LWE assumption to argue security has the extra benefit of allowing support for policies of
arbitrary (polynomial) length (recall that Construction 5.1 as well as the previous la�ice-based construction of
Da�a et al. [DKW21a] required imposing an a priori bound on the policy length, and the size of the ciphertext in turn
grew with the maximum length).

Construction 6.2 (Multi-Authority ABE without Random Oracles). Let _ be a security parameter, and = = =(_),
< =<(_), @ = @(_), and j = j (_) be la�ice parameters. Let jPRF = jPRF (_) be a Gaussian width parameter used to
define the hash function. Let g = g (_) be the bit-length of identities and let GID = {0, 1}g be the set of user identifiers.
Let AU = {0, 1}_ be the set of authorities. We construct an MA-ABE scheme for subset policies (Definition 3.5) with
message spaceM = {0, 1} as follows:

• GlobalSetup(1_): Sample D0,D1 ← �<×<
Z,jPRF

. Define the hash function H : {0, 1}g → Z<@ by the function

H(G) :=
(∏

8∈[g ] DG8

)
( where ( ∈ Z<@ is the first canonical basis vector (i.e., [1 = 1 and [8 = 0 for all 8 ≠ 1).

Output
gp = (_, =,<, @, j, jPRF, g,D0,D1).

For ease of exposition, whenever we write H(·) in the following, we refer to the hash function defined by the
matrices D0,D1 in the global parameters.

• AuthSetup(gp, aid): On input the global parameters gp = (_, =,<, @, j, jPRF, g,D0,D1) and an authority identi-
fier aid ∈ AU, sample (Aaid, tdaid) ← TrapGen(1=, @,<), paid r← Z=@ , and Baid

r← Z=×<@ . Output the authority
public key pkaid ← (Aaid,Baid, paid) and the authority secret key mskaid = tdaid.
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• KeyGen(gp,msk, pk, gid): On input the global parameters gp = (_, =,<, @, j, jPRF, g,D0,D1), the master secret
key msk = td, the public key pk = (A,B, p), the user identifier gid ∈ {0, 1}g , the key-generation algorithm
computes r← H(gid) ∈ Z<@ and uses td to sample u← A−1j (p + Br). It outputs skaid,gid = u.

• Encrypt(gp, {pkaid}aid∈�, `): On input the global parameters gp = (_, =,<, @, j, jPRF, g,D0,D1), a set of of public
keys pkaid = (Aaid,Baid, paid) associated with a set of authorities �, and the message ` ∈ {0, 1}, the encryption
algorithm samples said

r← Z=@ , e1,aid ← �<
Z,j

, e2 ← �<
Z,j

, and 43 ← �Z,j for each aid ∈ �. It outputs the

ciphertext

ct =

({
sTaidAaid + eT1,aid

}
aid∈�

,
∑
aid∈�

sTaidBaid + eT2 ,
∑
aid∈�

sTaidpaid + 43 + ` · ⌊@/2⌉
)
.

• Decrypt(gp, {skaid,gid}aid∈�, ct, gid): On input the global parameters gp = (_, =,<, @, j, jPRF, g,D0,D1), a set
of secret keys skaid,gid = uaid,gid associated with authorities aid ∈ � and user identifier gid, a ciphertext
ct =

(
{cT

1,aid
}aid∈� , c2 , 23

)
, the decryption algorithm computes r← H(gid) and outputs⌊

2

@
·
(
23 + cT2r −

∑
aid∈�

cT1,aiduaid,gid mod @

)⌉
.

�eorem6.3 (Correctness). Let ! = !(_) be a bound on the number of a�ributes associated with a ciphertext. Suppose the

conditions of�eorem 3.10 and Lemma 3.13 hold (i.e.,< ≥ <0 (=, @) = $ (= log@) and j > j0 (=, @) =
√
= log@·l (

√
log=)).

�en, there exists @0 = $
(
!<_j2 + (

√
_<jPRF)g+1j

)
such that for all< > <0, @ > @0, and j > j0, Construction 6.2 is

correct.

Proof. �is follows by a similar argument as the proof of �eorem 5.2. Specifically, take any message ` ∈ {0, 1}, an
identifier gid ∈ {0, 1}g , and set of authorities � ⊆ AU. Sample the global parameters gp← GlobalSetup(1_), the
authority keys (pkaid,mskaid) ← AuthSetup(gp, aid), the secret keys skgid,aid ← KeyGen(gp,mskaid, gid), and the
ciphertext ct← Encrypt(gp, {pkaid}aid∈�, `). We now expand the various components appearing in the computation
of Decrypt(gp, {skaid,gid}aid∈�, ct, gid):

• First, gp = (_, =,<, @, j, jPRF, g,D0,D1), where D0,D1 are sampled from �<×<
Z,jPRF

. By Fact 3.8, with overwhelming

probability, ‖D0‖, ‖D1‖ ≤
√
_jPRF.

• �e ciphertext ct is given by ct =
({
cT
1,aid

}
aid∈�, c

T

2, 23
)
where

cT1,aid = sTaidAaid + eT1,aid , cT2 =
∑
aid∈�

sTaidBaid + eT2 , 23 =
∑
aid∈�

sTaidpaid + 43 + ` · ⌊@/2⌉ ,

and (Aaid,Baid, paid) is the public key associated with authority aid.

• Each secret key skaid,gid = uaid,gid ← (Aaid)−1j (paid + Baidr). Since paid is uniform over Z=@ and independent of
Baidr, the marginal distribution of uaid,gid is statistically close to �<

Z,j
by Lemma 3.13. �en, by Fact 3.8, with

overwhelming probability, ‖uaid,gid‖ ≤
√
_j .

• Since r =
(∏

8∈[g ] Dgid8

)
(, by Fact 3.8, ‖r‖ ≤ (

√
_<jPRF)g with overwhelming probability.

• By construction,
cT1,aiduaid = sTaidAaiduaid + eT1,aiduaid = sTaidpaid + s

T

aidBaidr + eT1,aiduaid .
�e main decryption relation then becomes

23 + 2T2r −
∑
aid∈�

cT1,aiduaid = ` · ⌊@/2⌉ + 43 + eT2r −
∑
aid∈�

eT1,aiduaid.

Decryption succeeds if the total error 4̃ = 43 + eT2r −
∑

aid∈� eT
1,aid

uaid satisfies |4̃ | < (@ − 1)/4.
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• To bound the error 4̃ , we bound each of its components. Since the components of e1, e2, and 43 are all independent
samples from a discrete Gaussian distribution with width j , we can appeal to Fact 3.8 to conclude that with
overwhelming probability, they are bounded by

√
_j . �us, with overwhelming probability,

|43 | ≤
√
_j

‖eT2r‖ ≤
(√

_<
)g+1

jgPRFj

‖eT1,aiduaid‖ ≤ <_j2

Combining these relations, we obtain the desired bound

|4̃ | <
√
_j +

(√
_<

)g+1
jgPRFj + |�| ·<_j2 = $ (!<_j2 + (

√
_<jPRF)g+1j).

Note that there is a significant amount of slack in the above bound. �

�eorem 6.4 (Static Security). �ere exists a polynomial<0 (=, @) = $ (= log@) such that under the following conditions
and assumptions, Construction 6.2 is statically secure:

• �e number of samples< satisfies< ≥ <0.

• Let jsmudge = jsmudge (_) be a smudging parameter where jsmudge > _g+l (1) (<jPRF)g+1.
• �e noise parameter j satisfies j > _l (1) ℓ jsmudge.

• �e LWE=,<′,@,jPRF assumption holds where <′ = poly(<,g,&) and & is a bound on the number of secret-key

queries the adversary makes.

• �e evasive LWE assumption with parameters =,<,@, j, B = j holds (in particular, the preimages K← A−1 (P) are
distributed according to a discrete Gaussian with parameter B = j).

Proof. We start by defining a sequence of hybrid experiments:

• Hyb
(main)
0 : �is is the static security experiment where the challenger encrypts message `0. At the end of the

game, the adversary outputs a bit 1 ∈ {0, 1} which is the output of the experiment.

• Hyb
(main)
1 : Same as Hyb

(main)
0 , except the challenger uses the following modified procedure to construct the

challenge ciphertext:

– Challenge ciphertext: �e challenger samples said
r← Z=@ and e1,aid ← �<

Z,j
for each corrupted authority

aid ∈ �∗∩C (same as inHyb1) and sets c
T

1,aid
← sT

aid
Aaid+eT1,aid. For the honest authorities aid

∗
8 ∈ �∗∩N , it

samples c1,aid∗8
r← Z<@ . Next, it samples c2

r← Z<@ and 23
r← Z@ . Finally, it outputs the challenge ciphertext

ct =
({
cT1,aid

}
aid∈�, c2, 23

)
.

In particular, the challenge ciphertext is independent of the message.

• Hyb
(main)
2 : �is is the static security experiment where the challenger encrypts message `1.

For an adversary A, we write Hyb
(main)
8 (A) to denote the output distribution of Hyb

(main)
8 with adversary A. Next,

we note that for this se�ing of parameters, the conditions in �eorem 3.10 hold. �us, in the following analysis,
we implicitly assume that using a trapdoor output by (A, tdA) ← TrapGen(1=, @,<), it is possible to sample from a
distribution that is statistically close to A−1j (t) for any target t. We now show that each pair of adjacent distributions
is computationally indistinguishable.

Lemma 6.5. Under the same conditions as �eorem 6.4, for every efficient adversaryA, Hyb
(main)
0 (A) 2≈ Hyb

(main)
1 (A).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb
(main)
0 from Hyb

(main)
1 with advantage

Y > 0. First, we useA to construct a sampling algorithm SampA (that depends onA) for the evasive LWE assumption:
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Algorithm SampA (1_)

On input the security parameter _, the sampling algorithm proceeds as follows:

1. Let ^ = ^ (_) be a bound on the number of bits of randomness algorithm A uses. Sample A r← {0, 1}^ and
run algorithm A(1_ ; A ).

2. Algorithm A outputs a set of corrupted authorities C ⊂ AU along with their public keys, a list of non-
corrupted authorities N ⊆ AU, a set of secret key queries Q, a pair of challenge messages `0, `1 ∈ {0, 1},
and a challenge identity set �∗ ⊆ C ∪ N .

3. Let ℓ = |�∗ ∩ N | and write �∗ ∩ N = {aid∗1, . . . , aid∗ℓ }.

4. Sample B r← Z=ℓ×(<+1)@ and parse

B =


Baid∗1

paid∗1
...

...

Baid∗ℓ paid∗ℓ


∈ Z=ℓ×(<+1)@ ,

where each Baid∗8
∈ Z=×<@ and paid∗8 ∈ Z

=
@ .

5. Sample matrices D0,D1 ← �<×<
Z,jPRF

.

6. Let (gid1, �1), . . . , (gid& , �& ) be the secret-key queries algorithm A makes. For each 8 ∈ [ℓ], let #8 ∈ [&]
be the number of indices 9 ∈ [&] where aid∗8 ∈ � 9 (i.e., #8 is the number of secret-key queries that involve

authority aid∗8 ∈ �∗ ∩ N ). �e sampling algorithm constructs matrices P8 ∈ Z=×#8
@ for 8 ∈ [ℓ] as follows:

• Suppose authority aid∗8 is contained in the sets � 91 , . . . , � 9#8
for indices 91, . . . , 9#8

∈ [&]. �ese are
the sets associated with the identifiers gid91

, . . . , gid9#8
.

• Define the matrix P8 as follows:

P8 =
[
paid∗8 + Baid∗8

· H
(
gid91

)
| · · · | paid∗8 + Baid∗8

· H
(
gid9#8

) ]
.

7. Output B, P1, . . . , Pℓ , and aux = (A,D0,D1). In this case, observe that aux can also just be the set of random
coins used by the sampling algorithm (Remark 3.17).

To invoke the evasive LWE assumption, we now show that for all efficient distinguishers D, Adv
(pre)
D (_) is negligible.

Claim 6.6. Suppose the la�ice parameters satisfy the following conditions:

• �e number of samples< satisfy< > 6= log@.
• Let jsmudge = jsmudge (_) be a smudging parameter where jsmudge > _g+l (1) · (<jPRF)g .
• �e noise parameter j satisfies j > _l (1) · jsmudge and j > _l (1) · (

√
_<jPRF)g+1ℓ .

Suppose the LWE=,<′,@,jPRF assumption holds where<′ = poly(<,g,&) and & is a bound on the number of secret-key

queries adversaryA makes. �en, for all efficient distinguishersD, there exists a negligible function negl(·) such that for

all _ ∈ N, we have that Adv(pre)D (_) = negl(_), where Adv(pre)D is the advantage of distinguisher D in the evasive LWE

assumption (Assumption 3.16).

Proof. We start by defining a sequence of hybrid experiments:

• Hyb0: �is is the pseudorandom distribution in the definition of Adv
(pre)
D . Without loss of generality, assume

that A makes exactly & secret-key queries (an adversary that makes fewer than & queries can be padded to
make exactly & queries). In this experiment, the challenger constructs the components as follows:
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– Sample (B, P1, . . . , Pℓ , aux) ← SampA (1_). By construction, B r← Z=ℓ×(<+1)@ where

B =


B1 p1
...

...

Bℓ pℓ


,

B8 ∈ Z=×<@ , p8 ∈ Z=@ . In addition, for each 8 ∈ [ℓ], P8 ∈ Z=×#8
@ , where #8 ∈ [&]. Finally, sample

A1, . . . ,Aℓ
r← Z=×<@ .

– Let (�1, gid1), . . . , (�& , gid& ) be the secret-key queries made by A in SampA . For each 8 ∈ [ℓ], let
#8 ∈ [&] be the number of indices 9 ∈ [&] where aid∗8 ∈ � 9 . Suppose authority aid∗8 is contained in the
sets � 91 , . . . , � 9#8

for (sorted) indices 91, . . . , 9#8
∈ [&]. Define the mapping d8 : [#8 ] → [&] that maps

ℓ ∈ [#8 ] ↦→ 9ℓ ∈ [&]. In particular, for each 8 ∈ [ℓ], we can now write

P8 =
[
p8 + B8 · H

(
gidd8 (1)

)
| · · · | p8 + B8 · H

(
gidd8 (#8 )

) ]
.

– Sample s1, . . . , sℓ
r← Z=@ and let sT = [sT1 | · · · | sTℓ ] ∈ Z=ℓ@ . Sample e1,8 ← �<

Z,j
, e3,8 ← �#8

Z,j
for each 8 ∈ [ℓ].

�en sample e2 ← �<+1
Z,j

.

– Compute uT

1,8 ← sT8A8 + eT1,8 ∈ Z<@ , uT

2 ← sTB + eT2 ∈ Z<+1@ , and uT

3,8 ← sT8P8 + eT3,8 ∈ Z
#8
@ for each 8 ∈ [ℓ].

Equivalently, if we define t8, 9 = p8 + B8 · H
(
gidd8 ( 9)

)
and E8, 9 = sT8 t8, 9 , then we can rewrite the above

quantities more compactly as

uT

1,8 = sT8A8 + eT1,8

uT

2 = sTB + eT2 =

∑
8∈[ℓ ]

sT8B8

���� ∑
8∈[ℓ ]

sT8p8


+ eT2

uT

3,8 = sTP8 + eT3,8 =
[
sT8 t8,1

��� · · · �� sT8 t8,#8

]
+ eT3,8 =

[
E8,1 | · · · | E8,#8

]
+ eT3,8 .

– �e challenger gives the challenge ({(A8 , u
T

1,8 )}8∈[ℓ ],B, uT

2, {uT

3,8 }8∈[ℓ ], aux) to the distinguisher who then
outputs a bit 1 ∈ {0, 1}. �is is the output of the experiment.

• Hyb1: Same as Hyb0, except the challenger changes the distribution from which u1,8 , u2, u3,8 are sampled:

– For each 8 ∈ [ℓ], sample êT1,8 ← �<
Z,jPRF

and set uT

1,8 ← (sT8A8 + êT1,8 ) + eT1,8 .
– For each 8 ∈ [ℓ], sample ê2,8 ← �<

Z,jPRF
and 4̂ ′2,8 ← �Z,jPRF and let û2,8 = sT8B8 + êT2,8 and D̂ ′2,8 = sT8p8 + ê′2,8 .

�en, set

uT

2 ←

∑
8∈[ℓ ]

û2,8

���� ∑
8∈[ℓ ]

D̂ ′2,8


=


∑
8∈[ℓ ]
(sT8B8 + êT2,8 )

���� ∑
8∈[ℓ ]
(sT8p8 + 4̂ ′2,8 )


+ eT2,

– For each 8 ∈ [ℓ] and 9 ∈ [#8 ], compute

E8, 9 =
(
sT8p8 + 4̂ ′2,8

)
+

(
sT8B8 + êT2,8

)
· H

(
gidd8 ( 9)

)
= D̂ ′2,8 + ûT

2,8H
(
gidd8 ( 9)

)
, (6.3)

and let
uT

3,8 =
[
E8,1 | · · · | E8,#8

]
+ eT3,8 , (6.4)

where e3,8 ← �#8

Z,j
as in Hyb0.

• Hyb2: Same as Hyb1, except the challenger changes the distribution from which u1,8 , u2, u3,8 are sampled:
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– For each 8 ∈ [ℓ], sample u1,8
r← Z<@ .

– For each 8 ∈ [ℓ], sample û2,8
r← Z<@ and D̂ ′2,8

r← Z@ . Set

uT

2 ←

∑
8∈[ℓ ]

û2,8

���� ∑
8∈[ℓ ]

D̂ ′2,8


.

– Compute E8, 9 ← D̂ ′2,8+ûT

2,8H
(
gidd8 ( 9)

)
as in Eq. (6.3). �en sample e3,8 ← �#8

Z,j
and set uT

3,8 = [E8,1 | · · · | E8,#8
]+

eT3,8 as in Eq. (6.4).

• Hyb3: Same as Hyb2 except the challenger samples u3,1
r← Z=×#1

@ . For all 8 > 1, the components u3,8 are
constructed as in Hyb2.

Notably, this hybrid “breaks the correlation” between the components of u2 and the u3,8 ’s. �e transition from
Hyb2 to Hyb3 (Lemma 6.9) critically relies on admissibility of the MA-ABE adversary (i.e., for every key query
(�, gid) the adversary makes, it must be the case that � * �∗, where �∗ is the set of authorities associated with
the challenger ciphertext.

• Hyb4: Same as Hyb3 except the challenger samples u2
r← Z<+1@ and u3,8

r← Z=×#8
@ for all 8 ∈ [ℓ]. �is is the

random distribution in the definition of Adv
(pre)
D .

For a distinguisher D, we write Hyb8 (D) to denote the output distribution of Hyb8 (D) with distinguisher D. We
now show that each pair of adjacent distributions are indistinguishable.

Lemma 6.7. Suppose j ≥ _l (1) ·
(√

_<jPRF
)g+1

ℓ . �en, for all distinguishers D, Hyb0 (D)
B≈ Hyb1 (D).

Proof. �e only difference in the two distribution is the distribution of the errors e1,8 , e2, e3,8 associated with vectors
u1,8 , u2, u3,8 . �e claim follows by the smudging lemma (Lemma 3.15). Formally, we consider each term separately:

• In Hyb0, the error term associated with each u1,8 is e1,8 ← �<
Z,j

and in Hyb1, it is e1,8 + ê1,8 where ê1,8 ← �<
Z,jPRF

.

By Fact 3.8, ‖ê1‖ ≤
√
_jPRF with overwhelming probability. Since j > _l (1) jPRF, the distributions of e1 and

e1 + ê1 are statistically close by Lemma 3.15.

• InHyb0, the error term associatedwith u2 is e2 ← �<+1
Z,j

and inHyb1, it is e2+ẽwhere ẽ =
[∑

8∈[ℓ ] ê
T

2,8 |
∑

8∈[ℓ ] 4̂2,8
] T
,

ê2,8 ← �<
Z,jPRF

and 4̂2,8 ← �Z,jPRF . By Fact 3.8, ‖ẽ‖ ≤ ℓ ·
√
_jPRF with overwhelming probability. Since

j > _l (1) ℓ jPRF, the distributions of e2 and e2 + ẽ2 are statistically close by Lemma 3.15.

• In Hyb0, the error associated with u3,8 is e3,8 ← �#8

Z,j
and in Hyb1, it is e3,8 + ẽ8 where

4̃8, 9 = 4̂ ′2,8 + êT2,8H
(
gidd8 ( 9)

)
= 4̂ ′2,8 + êT2,8

∏
:∈[g ]

Dgidd8 ( 9 ),:
(.

Now, D0,D1 are both sampled from �<×<
Z,jPRF

and ( ∈ {0, 1}< . By Fact 3.8, with overwhelming probability

‖D0‖, ‖D1‖ ≤
√
_jPRF. Similarly, since ê2,8 ← �<

Z,jPRF
, we also have that ‖ê2,8 ‖ ≤

√
_jPRF. �us, we conclude

that with overwhelming probability, ‖ẽ8 ‖ ≤
√
_jPRF (1 + (<

√
_jPRF)g ). Since j > _l (1) ·

(
<
√
_jPRF

)g+1
, the

distributions of e3,8 and e3,8 + ẽ8 are statistically close by Lemma 3.15. �

Lemma 6.8. Under the LWE=,2<+1,@,jPRF assumption, for all efficient distinguishers D, Hyb1 (D)
2≈ Hyb2 (D).

Proof. For each 3 ∈ [ℓ], we define a sequence of intermediate hybrids:

• Hyb1,3 : Same as Hyb1 except the challenger changes the distribution of u1,8 , u2, u3,8 :
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– If 8 ≤ 3 , sample u1,8
r← Z<@ . Otherwise, if 8 > 3 , sample ê1,8 ← �<

Z,jPRF
and e1,8 ← �<

Z,j
and set

uT

1,8 ← (sT8A8 + êT1,8 ) + eT1,8 .
– If 8 ≤ 3 , sample û2,8

r← Z<@ and D̂ ′2,8
r← Z@ . If 8 > 3 , sample ê2,8 ← �<

Z,jPRF
and 4̂ ′2,8 ← �Z,jPRF , and set

ûT

2,8 ← sT8B8 + êT2,8 and D̂ ′2,8 ← sT8p8 + 4̂ ′2,8 . Finally, sample e2 ← �<+1
Z,j

and compute

uT

2 ←

∑
8∈[ℓ ]

ûT

2,8

���� ∑
8∈[ℓ ]

D̂ ′2,8


+ eT2.

– For each 8 ∈ [ℓ] and 9 ∈ [#8 ], compute E8, 9 ← D̂ ′2,8 + ûT

2,8 · H
(
gidd8 ( 9)

)
. Sample e3,8 ← �#8

Z,j
and set

uT

3,8 ←
[
E8,1 | · · · | E8,#8

]
+ eT3,8 .

We define Hyb1,0 ≡ Hyb1, and by construction, Hyb1,ℓ ≡ Hyb2. We now show that for all 3 ∈ [ℓ], under the
LWE=,2<+1,@,jPRF assumption, hybrids Hyb1,3−1 (D) and Hyb1,3 (D) are computationally indistinguishable. Suppose

there exists a distinguisher D such that
��Pr[Hyb1,3−1 (D) = 1] − Pr[Hyb1,3 (D) = 1]

�� = Y. We use D to construct an
adversary B for the LWE assumption:

1. At the beginning of the game, algorithmB receives an LWE challenge (D, z) whereD ∈ Z=×(2<+1)@ and z ∈ Z2<+1@ .
Algorithm B parses D = [A3 | B3 | p3 ] where A3 ,B3 ∈ Z=×<@ and p3 ∈ Z=@ .

2. Algorithm B starts simulating an execution of SampA (1_) as follows:

• It starts running algorithm A with randomness A r← {0, 1}^ . Let ℓ be the number of non-corrupted
authorities associated with the challenge ciphertext.

• Algorithm B constructs the matrix B in Samp by first sampling B8
r← Z=×<@ and p8

r← Z=@ for each 8 ≠ 3 .
�e matrix B3 and vector p3 is taken from the LWE challenge. It then sets

B =


B1 p1
...

...

Bℓ pℓ


.

• Algorithm B constructs the remaining components D0, D1, P1, . . . , Pℓ , and aux exactly as described in the
specification of SampA .

3. Algorithm B samples A8
r← Z=×<@ for all 8 ≠ 3 . Similar to above, the matrix A3 is taken from the LWE challenge.

4. For each 8 > 3 , algorithm B samples a secret key s8
r← Z=@ . It also parses the challenge as zT = [zT1 | zT2 | I ′2]

where z1, z2 ∈ Z<@ and I ′2 ∈ Z@ . It now constructs the components (u1, u2, u3) as follows:

• Component u1,8 : For each 8 < 3 , algorithm B samples u1,8
r← Z<@ . For 8 = 3 , it samples e1,3 ← �<

Z,j
and

sets u1,3 ← z1 + e1,3 . For 8 > 3 , it samples ê1,8 ← �<
Z,jPRF

and e1,8 ← �<
Z,j

and sets uT

1,8 ← sT8A8 + ê1,8 .
• Component u2: For each 8 < 3 , algorithm B samples û2,8

r← Z<@ and D̂ ′2,8
r← Z@ . For 8 > 3 , it samples

ê2,8 ← �<
Z,jPRF

and 4̂ ′2,8 ← �Z,jPRF . It then sets ûT

2,8 ← sT8B8 + êT2,8 and and D̂ ′2,8 ← sT8p8 + 4̂ ′2,8 . For 8 = 3 , it sets

û2,3 ← z2 and D̂
′
2,3
← I ′2. Finally, it samples e2 ← �<+1

Z,j
and computes

uT

2 ←

∑
8∈[ℓ ]

ûT

2,8

���� ∑
8∈[ℓ ]

D̂ ′2,8


+ eT2.

• Component u3,8 : It computes u3,8 for each 8 ∈ [ℓ] using the same procedure described in Hyb2,3 and

Hyb2,3+1. Namely algorithm B samples e3,8 ← �#8

Z,j
and computes computes E8, 9 ← D̂ ′2,8 + ûT

2,8H
(
gidd8 ( 9)

)
as in Eq. (6.3) and u3,8 = [E8,1 | · · · | E8,#8

] + eT3,8 as in Eq. (6.4).
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5. Algorithm B gives ({(A8 , u
T

1,8 )}8∈[ℓ ],B, uT

2, {uT

3,8 }8∈[ℓ ], aux) to D and outputs whatever D outputs.

By definition, A3 ,B3
r← Z=×<@ and p3

r← Z=@ so algorithm B perfectly simulates the distribution of ({A8 }8∈[ℓ ],B, aux)
for D. It suffices to consider the remaining components u1,8 , u2, u3,8 . First, observe that the distribution of u1,8 , u2,8
and D̂2,8 for all 8 ≠ 3 are distributed exactly as required in Hyb2,3−1 and Hyb2,3 , so consider the distribution of u1,3 ,
u2,3 , and D̂2,3 :

• Suppose zT1 = sTA3 + eT1, zT2 = sTB3 + eT2, and I ′2 = sTp3 + 4 ′2 for some s r← Z=@ , e1, e2 ← �<
Z,jPRF

and 4 ′2 ← �Z,jPRF .

�en, u1,3 , u2,3 and D̂2,3 are distributed exactly as in Hyb1,3−1.

• Suppose z1, z2
r← Z<@ and I ′2

r← Z@ . �en u1,3 , u2,3 and D̂2,3 are distributed exactly as in Hyb1,3 . In particular, in
this case, z1, z2, I

′
2 are uniform and entirely independent of all other scheme parameters (e.g., e1, e2).

�us, we conclude that the components u1,8 , u2,8 , D̂
′
2,8 are simulated exactly as in either Hyb1,3−1 or Hyb1,3 . Since these

components fully determine the distribution of u2 and u3,8 in Hyb1,3−1 and Hyb1,3 (and via identical relations), we
conclude that if z is sampled from the LWE distribution, then algorithm B successfully simulated Hyb1,3−1 and if z is
uniformly random, then B successfully simulated Hyb1,3 . �e claim now follows by a hybrid argument. �

Lemma 6.9. Let jsmudge = jsmudge (_) be a smudging parameter where jsmudge > _g+l (1) · (<jPRF)g , and suppose

moreover that j > _l (1) · jsmudge. Suppose< > 6= log@. �en, under the LWE=,<′,@,jPRF assumption for some<′ =
poly(<,g,&) where & is a bound on the number of secret-key queries adversary A makes, it holds that for all efficient

distinguishers D, Hyb2 (D)
2≈ Hyb3 (D).

Proof. Let #1 ≤ & be the number of secret-key queries algorithm A makes that contains the first authority aid∗1. For
each 3 ∈ [#1 + 1], we define a sequence of intermediate hybrids:

• Hyb2,3 : Same as Hyb2 except the challenger changes the distribution of E1, 9 :

– If 9 < 3 , then the challenger samples E1, 9
r← Z@ .

– Otherwise, the challenge samples E1, 9 as in Hyb2. Namely, E1, 9 = D̂ ′2,1 + ûT

2,1H
(
gidd1 ( 9)

)
.

• Hyb
(1)
2,3

: Same as Hyb2,3 except the challenger changes the distribution of E8, 9 . We start by defining a few useful
quantities:

– Let W = d1 (3). Namely, W is the index of the 3 th secret-key query that contains authority aid∗1.

– Let (gidW , �W ) be the W th secret-key query that algorithm A makes. Since A is admissible, it must be the
case that �∗ * �W , where �

∗ is the set of authorities associated with the challenge ciphertext, so there
exists some other index 1 < 8∗ ≤ ℓ such that aid∗8∗ ∉ �W . Let 8

∗ ∈ [ℓ] be the smallest such index where
aid∗8∗ ∉ �W .

– In particular, this means that d1 (3) = W and moreover, that d8∗ ( 9) ≠ W for all 9 ∈ [#8∗ ]. Recall that d8∗ (·)
ranges over the secret-key query indices that contain aid∗8∗ , and by construction aid∗8∗ ∉ �W .

�en, sample s r← Z<@ , û′2,1, û′2,8∗
r← Z<@ , and set û2,1 ← û′2,1 + s and û2,8∗ ← û′2,8∗ − s. Specifically, the challenger

constructs components E8, 9 as follows:

– If 8 = 1 and 9 < 3 , then E1, 9
r← Z@ .

– Otherwise, E8, 9 = D̂ ′2,8 + ûT

2,8H
(
gidd8 ( 9)

)
. In particular, this means that if 8 = 1 and 9 ≥ 3 , then

E1, 9 = D̂ ′2,1 + ûT

2,1H
(
gidd1 ( 9)

)
= D̂ ′2,1 + (û′2,1)TH

(
gidd1 ( 9)

)
+ sTH

(
gidd1 ( 9)

)
,

and if 8 = 8∗, then

E8∗, 9 = D̂ ′2,8∗ + ûT

2,8∗H
(
gidd8∗ ( 9)

)
= D̂ ′2,8∗ + (û′2,8∗ )TH

(
gidd8∗ ( 9)

)
− sTH

(
gidd8∗ ( 9)

)
.
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• Hyb
(2)
2,3

: Same as Hyb
(1)
2,3

except the challenger samples 4̂8 ← �Z,jsmudge
for each 8 ∈ [&] and modifies E8, 9 as

follows:

– If 8 = 1 and 9 ≥ 3 , the challenger sets

E1, 9 = D̂ ′2,1 + (û′2,1)TH
(
gidd1 ( 9)

)
+

(
sTH

(
gidd1 ( 9)

)
+ 4̂d1 ( 9)

)
.

– If 8 = 8∗, the challenger sets

E8∗, 9 = D̂ ′2,8∗ + (û′2,8∗ )TH
(
gidd8∗ ( 9)

)
−

(
sTH

(
gidd8∗ ( 9)

)
+ 4̂d8∗ ( 9)

)
.

�e vectors u3,8 is still computed according to Eq. (6.4): uT

3,8 =
[
E8,1 | · · · | E8,#8

]
+ eT3,8 , where e3,8 ← �#8

Z,j
.

• Hyb
(3)
2,3

: Same as Hyb
(2)
2,3

except the challenger replaces sTH
(
gid8

)
+ 4̂8 with A8 r← Z@ for each 8 ∈ [&]. Specifically,

the challenger constructs E8, 9 as follows:

– If 8 = 1 and 9 ≥ 3 , the challenger sets

E1, 9 = D̂ ′2,1 + (û′2,1)TH
(
gidd1 ( 9)

)
+ Ad1 ( 9) .

– If 8 = 8∗, the challenger sets

E8∗, 9 = D̂ ′2,8∗ + (û′2,8∗ )TH
(
gidd8∗ ( 9)

)
− Ad8∗ ( 9) .

• Hyb
(4)
2,3

: Same as Hyb
(3)
2,3

except the challenger samples E1,3
r← Z@ .

• Hyb
(5)
2,3

: Same as Hyb
(4)
2,3

except the challenger replaces A8 with sTH
(
gid8

)
+ 4̂8 where 4̂8 ← �Z,jsmudge

for all
8 ∈ [&]:

– If 8 = 1 and 9 = 3 the challenge samples E1,3
r← Z@ .

– If 8 = 1 and 9 > 3 , the challenger sets

E1, 9 = D̂ ′2,1 + (û′2,1)TH
(
gidd1 ( 9)

)
+

(
sTH

(
gidd1 ( 9)

)
+ 4̂d1 ( 9)

)
.

– If 8 = 8∗, the challenger sets

E8∗, 9 = D̂ ′2,8∗ + (û′2,8∗ )TH
(
gidd8∗ ( 9)

)
−

(
sTH

(
gidd8∗ ( 9)

)
+ 4̂d8∗ ( 9)

)
.

• Hyb
(6)
2,3

: Same as Hyb
(5)
2,3

except the challenger modifies E8, 9 as follows:

– If 8 = 1 and 9 > 3 , the challenger sets

E1, 9 = D̂ ′2,1 + (û′2,1)TH
(
gidd1 ( 9)

)
+ sTH

(
gidd1 ( 9)

)
.

– If 8 = 8∗, the challenger sets

E8, 9 = D̂ ′2,8∗ + (û′2,8∗ )TH
(
gidd8∗ ( 9)

)
− sTH

(
gidd8∗ ( 9)

)
.

By construction, Hyb2,1 ≡ Hyb2 and Hyb2,&+1 ≡ Hyb3. We now show that each adjacent pair of hybrids are
indistinguishable.

Claim 6.10. For all distinguishers D, we have that Hyb2,3 (D) ≡ Hyb
(1)
2,3
(D).

Proof. �is transition is syntactic. In both experiments, the distribution of û2,1 and û2,8∗ is uniform over Z<@ . �
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Claim 6.11. Suppose that j ≥ _l (1) · jsmudge. �en, for all distinguishers D, Hyb
(1)
2,3
(D) B≈ Hyb

(2)
2,3
(D).

Proof. �e only difference between Hyb
(1)
2,3

and Hyb
(2)
2,3

is the extra 4̂ 9 components in some of the E8, 9 terms. By

construction, the challenger samples 4̂ 9 ← �Z,jsmudge
, so |4̂ 9 | ≤

√
_jsmudge with overwhelming probability (Fact 3.8).

For 8 ∈ [ℓ] and 9 ∈ [#8 ], let Ê8, 9 ∈ Z@ denote the value of E8, 9 computed according to the specification of Hyb
(1)
2,3

. Let

43,8,: to denote the : th component of e3,8 . Consider the distribution of each component D3,8, 9 of u3,8 :

• In Hyb
(1)
2,3

, we have D3,8, 9 = Ê8, 9 + 43,8, 9 .

• In Hyb
(2)
2,3

, we have D3,8, 9 = Ê8, 9 + 43,8, 9 + 2 · 4̂ 9 , where 2 ∈ {−1, 0, 1}. �en, by Lemma 3.15, the distribution of

2 · 4̂8 + 43,8 and 43,8 where 43,8 ← �Z,j is statistically close when j ≥ jsmudge · _l (1) .

�e claim now follows by a hybrid argument. �

Claim 6.12. Suppose< > 6= log@ and jsmudge > _g+l (1) · (<jPRF)g . �en, under the LWE=,<′,@,jPRF assumption for

some<′ = poly(<,g,&) where & is a bound on the number of secret-key queries adversaryA makes, it holds that for all

efficient distinguishers D, Hyb
(2)
2,3
(D) 2≈ Hyb

(3)
2,3
(D).

Proof. �e only difference between these two distributions is that we replace each output sTH(gid8 ) + 4̂8 of the
la�ice-based PRF with truly random strings Ad8 ( 9)

r← Z@ . �is follows by pseudorandomness; specifically, under

the given hypothesis, �eorem 6.1 holds. Formally, suppose there exists an efficient D such that
�� Pr[Hyb(2)

2,3
(D) =

1] − Pr[Hyb(3)
2,3
(D) = 1]

�� = Y. We use D to construct an efficient adversary B that breaks the la�ice-based PRF from
�eorem 6.1:

1. At the beginning of the game, algorithm B receives matrices D0,D1 ∈ Z<×<@ from the challenger.

2. AlgorithmB runs (B, P1, . . . , Pℓ , aux) ← SampA (1_), except it uses the matricesD0,D1 it received from the chal-
lenger instead of sampling them itself. It also samples A1, . . . ,Aℓ

r← Z=×<@ . Let Q = {(gid1, �1), . . . , (gid& , �& )}
be the set of secret key queries algorithm A makes (in the execution of SampA). For each 8 ∈ [ℓ], define the
mapping d8 : [#8 ] → [&] exactly as in the specification of Hyb0.

3. Algorithm B makes queries on inputs gid1, . . . , gid& . Let ~1, . . . , ~& ∈ Z@ be the responses.

4. Let (gid3 , �3 ) be the 3 th secret-key query chosen by A. Algorithm B samples û8
r← Z<@ , D̂

′
8

r← Z@ , and

e3,8 ← �#8

Z,j
for each 8 ∈ [ℓ]. It constructs the components E8, 9 as follows:

• If 8 = 1 and 9 < 3 , algorithm B samples E8, 9
r← Z@ .

• If 8 = 1 and 9 ≥ 3 , algorithm B sets E8, 9 ← D̂ ′1 + ûT

1H
(
gidd1 ( 9)

)
+ ~d1 ( 9) .

• If 8 = 8∗, algorithm B sets E8, 9 ← D̂ ′8∗ + ûT

8∗H
(
gidd8∗ ( 9)

)
− ~d8∗ ( 9) .

• If 8 ∉ {1, 8∗}, algorithm B sets E8, 9 ← D̂ ′8 + ûT

8H
(
gidd8 ( 9)

)
.

5. Finally, algorithm B samples u1,8
r← Z<@ and e3,8 ← �#8

Z,j
for each 8 ∈ [ℓ], and constructs vectors

uT

2 ←

∑
8∈[ℓ ]

û8

��� ∑
8∈[ℓ ]

D̂ ′8


and uT

3,8 = [E8,1 | · · · | E8,#8
] + eT3,8 according to the specification of Hyb

(2)
2,3

and Hyb
(3)
2,3

.

6. Algorithm B gives the challenge ({(A8 , u
T

1,8 )}8∈[ℓ ],B, uT

2, {uT

3,8 }8∈[ℓ ], aux) to D and outputs whatever D outputs.
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By construction, the components ({A8 , u
T

1,8 )}8∈[ℓ ],B, {P8 }8∈[ℓ ], aux) are distributed exactly as in Hyb
(2)
2,3

and Hyb
(3)
2,3

.
Consider now the distributions of u2 and u3,8 that algorithm B induces:

• Suppose ~8 = sTH(gid8 ) + 4̂8 where s
r← Z<@ and 4̂8 ← �Z,jsmudge

. In this case, algorithm B perfectly simulates an

execution of Hyb
(2)
2,3

with secret s, and components û2,8 = û8 and D̂
′
2,8 = D̂ ′8 for all 8 ∈ [ℓ].

• Suppose ~8
r← Z@ . �en, algorithm B perfectly simulates an execution of Hyb

(3)
2,3

with components û2,8 = û8
and D̂ ′2,8 = D̂ ′8 for all 8 ∈ [ℓ].

�us algorithm B breaks security of the la�ice-based PRF in �eorem 6.1 with advantage Y and the claim follows. �

Claim 6.13. For all distinguishers D, we have that Hyb
(3)
2,3
(D) ≡ Hyb

(4)
2,3
(D).

Proof. �is is purely syntactic. �e only difference between these two distributions is the distribution of E1,3 . By

construction of 8∗ (see the description of Hyb
(1)
2,3

), we have that d8∗ ( 9) ≠ d1 (3) for all 9 ∈ [#8∗ ]. Moreover, d1 (·)
is an injective function so d1 ( 9) ≠ d1 (3) for all 9 > 3 . �is means the only component in hybrids Hyb

(3)
2,3
(D) and

Hyb
(4)
2,3
(D) that depends on Ad1 (3) is E1,3 . Finally, A3 is uniform over Z@ and independent of all other quantities, so the

distribution of E1,3 in Hyb
(3)
2,3

is also uniform. �is is identical to the distribution in Hyb
(4)
2,3

. �

Claim 6.14. Under the conditions of Claim 6.12, for all efficient distinguishers D, Hyb
(4)
2,3
(D) 2≈ Hyb

(5)
2,3
(D).

Proof. Follows by a similar argument as in the proof of Claim 6.12. �

Claim 6.15. Under the conditions of Claim 6.11, for all distinguishers D, Hyb
(5)
2,3
(D) B≈ Hyb

(6)
2,3
(D).

Proof. Follows by the same argument as the proof of Claim 6.11. �

Claim 6.16. For all distinguishers D, we have that Hyb
(6)
2,3
(D) ≡ Hyb2,3+1 (D).

Proof. Follows by the same argument as the proof of Claim 6.10. �

Combining Claims 6.10 to 6.16, the output distributions of Hyb2 and Hyb3 are computationally indistinguishable. �

Lemma 6.17. Suppose < > 6= log@, jsmudge > _g+l (1) · (<jPRF)g , and j > _l (1) · jsmudge. �en, under the

LWE=,<′,@,jPRF assumption for some<′ = poly(<,g,&) where& is a bound on the number of secret-key queries adversary

A makes, it holds that for all efficient distinguishers D, Hyb3 (D)
2≈ Hyb4 (D).

Proof. First, we note that by construction, in Hyb3 and Hyb4, the vector u3 is independent of û2,1 and D̂
′
2,1. �e only

component in Hyb3 and Hyb4 that depends on û2,1 and D̂
′
2,1 is the vector u2. Since û2,1

r← Z<@ and D̂ ′2,1
r← Z@ , this

means that the distribution of u2 is uniform over Z<+1@ and independent of all other components in Hyb3 and Hyb4.
�us, it suffices to reason about the distribution of the components of u3,8 (for 8 > 1) in the two experiments (all other
components are identically distributed). To do so, we define a sequence of hybrid experiments indexed by 3 ∈ [2, ℓ]:

• Hyb3,3 : Same as Hyb3 except the challenger changes the distribution of E8, 9 :

– If 8 < 3 , the challenger samples E8, 9
r← Z@ .

– If 8 ≥ 3 , the challenger sets E8, 9 ← D̂ ′2,8 + ûT

2,8H
(
gidd8 ( 9)

)
.

• Hyb
(1)
3,3

: Same as Hyb3,3 except the challenger changes the distribution of E3,9 :

– If 8 < 3 , the challenger samples E8, 9
r← Z@ .

– If 8 = 3 , the challenger sets E3,9 ← D̂ ′
2,3
+

(
ûT

2,3
H

(
gidd3 ( 9)

)
+ 4̂d3 ( 9)

)
where 4̂d3 ( 9) ← �Z,jsmudge

.

– If 8 > 3 , the challenger sets E8, 9 ← D̂ ′2,8 + ûT

2,8H
(
gidd8 ( 9)

)
.
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• Hyb
(2)
3,3

: Same as Hyb
(1)
3,3

except the challenger sets E3,9 ← D̂ ′
2,3
+ Ad3 ( 9) where Ad3 ( 9)

r← Z@ .

In all experiments, each vector u3,8 is still constructed from E8, 9 and e3,8 ← �#8

Z,j
according to Eq. (6.4). By construction

Hyb3,2 ≡ Hyb3 and Hyb3,ℓ ≡ Hyb4. We now show that each adjacent pair of hybrid experiments are indistinguishable.

Claim 6.18. Suppose j ≥ _l (1) · jsmudge. �en, for all distinguishers D, Hyb3,3 (D)
B≈ Hyb

(1)
3,3
(D).

Proof. �is follows via a similar argument as the proof of Claim 6.11. Specifically, the only difference between Hyb3,3

and Hyb
(1)
3,3

is the extra 4̂d3 ( 9) term in the components E3,9 . By construction, the challenger samples 4̂d3 (8) ← �Z,jsmudge
,

so |4̂d3 (8) | ≤
√
_jsmudge with overwhelming probability (Fact 3.8). For 9 ∈ [#3 ], let Ê3,9 ∈ Z@ denote the value of

E3,9 computed according to the specification of Hyb3,3 . Let 43,3,9 denote the 9 th component of e3,3 . Consider the
distribution of each component D3,3,9 of u3,3 :

• In Hyb3,3 , D3,3, 9 = Ê3,9 + 43,3, 9 .

• In Hyb
(1)
3,3

, D3,3,9 = Ê3,9 + 43,3, 9 + 4̂d3 ( 9) . By Lemma 3.15, the distribution of 4̂d3 ( 9) + 43,3,9 and 43,3,9 where

43,3, 9 ← �Z,j is statistically close when j ≥ jsmudge · _l (1) .

�e claim now follows by a hybrid argument. �

Claim 6.19. Suppose< > 6= log@ and jsmudge > _g+l (1) · (<jPRF)g . �en, under the LWE=,<′,@,jPRF assumption for

some<′ = poly(<,g,&) where & is a bound on the number of secret-key queries adversaryA makes, it holds that for all

efficient distinguishers D, Hyb
(1)
3,3
(D) 2≈ Hyb

(2)
3,3
(D).

Proof. �e only difference between these two distributions is that we replace each output ûT

2,3
H(gid8 ) + 4̂8 of the

la�ice-based PRF with a truly random string A8
r← Z@ for each 8 ∈ [&] (technically, for only the subset of [&] that is

in the image of d3 ). �is follows by pseudorandomness; specifically, under the given hypothesis, �eorem 6.1 holds.
�e argument is a simpler version of the proof of Claim 6.12. Formally, suppose there exists an efficient distinguisher

D such that
�� Pr[Hyb(1)

3,3
(D) = 1] − Pr[Hyb(2)

3,3
(D) = 1]

�� = Y. We use D to construct an efficient adversary B that
breaks the la�ice-based PRF from �eorem 6.1:

1. At the beginning of the game, algorithm B receives matrices D0,D1 ∈ Z<×<@ from the challenger.

2. AlgorithmB runs (B, P1, . . . , Pℓ , aux) ← SampA (1_), except it uses the matricesD0,D1 it received from the chal-
lenger instead of sampling them itself. It samplesA1, . . . ,Aℓ

r← Z=×<@ . Next, let Q = {(gid1, �1), . . . , (gid& , �& )}
be the set of secret key queries algorithm A makes (in the execution of SampA ). For each 8 ∈ [&], define the
mapping d8 : [#8 ] → [&] exactly as in the specification of Hyb0.

3. Algorithm B makes queries on inputs gid1, . . . , gid& . Let ~1, . . . , ~& ∈ Z@ be the responses.

4. Algorithm B samples u1,8
r← Z<@ for each 8 ∈ [ℓ] and u2

r← Z<+1@ .

5. For each 8 > 3 , algorithm B samples û8
r← Z<@ . For 8 ≥ 3 , it also samples D̂ ′8

r← Z@ . �en, for each 8 ∈ [ℓ] and
9 ∈ [#8 ], it constructs E8, 9 as follows:

• If 8 < 3 , it samples E8, 9
r← Z@ .

• If 8 = 3 , it sets E3,9 ← D̂ ′
3
+ ~d3 ( 9) .

• If 8 > 3 , it sets E8, 9 ← D̂ ′8 + ûT

8H
(
gidd8 ( 9)

)
.

Finally, for each 8 ∈ [ℓ], it samples e3,8 ← �#8

Z,j
and sets uT

3,8 = [E8,1 | · · · | E8,#8
] + eT3,8 . It gives the challenge

({(A8 , u
T

1,8 )}8∈[ℓ ],B, uT

2, {uT

3,8 }8∈[ℓ ], aux) to D. Algorithm B outputs whatever D outputs.

By construction, the components ({(A8 , u
T

1,8 )}8∈[ℓ ],B, uT

2, {P8 }8∈[ℓ ], aux) are distributed exactly as inHyb
(1)
3,3

andHyb
(2)
3,3

.
Consider now the distribution of u3,8 that algorithm B induces:
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• Suppose ~8 = sTH(gid8 ) + 4̂8 where s
r← Z<@ and 4̂8 ← �Z,jsmudge

. In this case, algorithm B perfectly simulates an

execution of Hyb
(1)
3,3

with û2,3 = s and û2,8 = û8 for 8 > 3 .

• Suppose ~8
r← Z@ . �en, algorithm B perfectly simulates an execution of Hyb

(2)
3,3

with û2,8 = û8 for 8 > 3 .

�us, algorithm B breaks security of the la�ice-based PRF in �eorem 6.1 with advantage Y and the claim follows. �

Claim 6.20. For all distinguishers D, Hyb
(2)
3,3
(D) ≡ Hyb3,3+1 (D).

Proof. �is is a syntactic change and follows from the fact that d3 is an injective function. Since each Ad3 ( 9) is uniform

and independent of all other components, the distribution of E3,9 in Hyb
(2)
3,3

for all 9 ∈ [#3 ] is uniform over Z@ , which
is precisely the distribution in Hyb3,3+1. �

Combining Claims 6.18 to 6.20, the output distributions of Hyb3 and Hyb4 are computationally indistinguishable. �

�e claim follows by combining Lemmas 6.7 to 6.9 and 6.17. �

To complete the proof, we show that if there exists an adversary A that can distinguish between the main hybrids

Hyb
(main)
0 and Hyb

(main)
1 in the proof of �eorem 6.4 with non-negligible advantage Y, then we can construct an

efficient algorithm B such that Adv
(post)
B (_) = Y in the evasive LWE assumption (Assumption 3.16) and with respect

to the sampling algorithm SampA :

1. At the beginning of the game, algorithmB receives an evasive LWE challenge ({(A8 , z
T

1,8 )}8∈[ℓ ],B, zT2, {K8 }8∈[ℓ ], aux)
where A8 ∈ Z=×<@ , z1,8 ∈ Z<@ , B ∈ Z

=ℓ×(<+1)
@ , z2 ∈ Z<+1@ , K8 ∈ Z<ℓ×#8

@ , and aux = (A,D0,D1).

2. Algorithm B starts running algorithm A with randomness A . Algorithm A outputs

• A set of corrupted authorities C ⊂ AU and their public keys pkaid = (Aaid,Baid, paid) for each aid ∈ C.
• A list of non-corrupted authorities N ⊆ AU.

• A list of secret-key queries Q = {(gid8 , �8 )}8∈[& ] where each �8 ⊂ N .

• A pair of challenge messages `0, `1 ∈ {0, 1} and a set of authorities �∗ ⊆ C ∪ N .

3. Let �∗ ∩ N = {aid∗1, . . . , aid∗ℓ }. Algorithm B parses B as

B =


Baid∗1

paid∗1
...

...

Baid∗ℓ paid∗ℓ


∈ Z=ℓ×(<+1)@ ,

where Baid∗8
∈ Z=×<@ and paid∗8 ∈ Z

=
@ . In addition, for each 8 ∈ [ℓ], it sets Aaid∗8

← A8 .

4. Let Q = {(�1, gid1), . . . , (�& , gid& )}. For each 8 ∈ [&], the challenger partitions �8 = �8,chal ∪ �̄8,chal ⊂ N
where �8,chal ⊂ �∗ consists of the authorities appearing in the challenge ciphertext and �̄8,chal = � \ �8,chal

consists of the authorities that do not appear in the challenge ciphertext.

5. Note that because B runs A with the same randomness as SampA , the queries A outpu�ed in the invocation
of SampA exactly coincide with those in B’s execution. Algorithm B now responds as follows:

• Public keys for non-corrupted authorities: Algorithm B constructs the public keys for authorities in
N ∩�∗ and N \�∗ as follows:
– For each aid∗8 ∈ N ∩�∗, algorithm B sets pkaid∗8 = (Aaid∗8

,Baid∗8
, paid∗8 ).

– For authorities aid ∈ N \ �∗, the challenger samples (Aaid, tdaid) ← TrapGen(1=, @,<), paid r← Z=@
and Baid ← Z=×<@ . It sets the public key to pkaid = (Aaid,Baid, paid).
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• Secret keys: We start by showing how to construct the secret keys corresponding to the honest authorities
appearing in the challenge ciphertext from the components in K1, . . . ,Kℓ :

– By construction, #8 ∈ [&] is the number of indices 9 ∈ [&] where aid∗8 ∈ � 9 . Suppose authority
aid∗8 is contained in the sets � 91 , . . . , � 9#8

for (sorted) indices 91, . . . , 9#8
∈ [&]. Define the mapping

d8 : [#8 ] → [&] that maps ℓ ∈ [#8 ] ↦→ 9ℓ ∈ [&]. �is is the definition from the proof of Claim 6.6.

– For each 8 ∈ [ℓ] and 9 ∈ [#8 ], let skaid∗8 ,gidd8 ( 9 ) ← k8, 9 where k8, 9 ∈ Z<@ denotes the 9 th column of K8 .

�en, for each 8 ∈ [ℓ] and authority aid ∈ �̄8,chal, the challenger computes rgid8 ← H(gid8 ) and sam-
ples skaid,gid8 = uaid,gid8 ← (Aaid)−1j (paid + Baidrgid8 ) using the trapdoor tdaid (which B sampled when
constructing the public key). �e challenger responds to the secret-key query (gid8 , �8 ) with the set
{skaid,gid8 }aid∈�8

.

• Challenge ciphertext: Algorithm B starts by parsing zT2 = [ẑT2 | I3] where ẑ2 ∈ Z<@ and I3 ∈ Z@ . For each
aid ∈ �∗ ∩ C, the challenger samples said

r← Z=@ and e1,aid ← �<
Z,j

and computes cT
1,aid

= sT
aid
Aaid + eT1,aid.

For aid∗8 ∈ �∗ ∩ N , it defines c1,aid∗8 ← z1,8 . It now constructs the challenge ciphertexts as

ct =

({
cT1,aid

}
aid∈�∗

,
∑

aid∈�∗∩C
sTaidBaid + ẑT2 ,

∑
aid∈�∗∩C

sTaidpaid + I3 + `0 · ⌊@/2⌉
)
.

6. At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1}. Algorithm B outputs the same bit.

By construction of B and SampA , the public keys for the non-corrupted authorities are distributed exactly as in

the real scheme (which corresponds to the distribution in Hyb
(main)
0 and Hyb

(main)
1 ). �e secret-key queries are also

distributed as in the real scheme. To verify this, consider again the 8th secret-key query (gid8 , �8 ) and once more
partition �8 = �8,chal ∪ �̄8,chal where �8,chal = �8 ∩�∗. Consider the secret-key components {skaid,gid8 }aid∈�8

chosen by
the challenger:

• When aid ∈ �̄8,chal, the secret key skaid,gid8 is sampled exactly as in the real scheme (which coincides with the

distribution in Hyb
(main)
0 and Hyb

(main)
1 ).

• For each 8 ∈ [ℓ] and 9 ∈ [#8 ], we have that skaid∗8 ,gidd8 ( 9 ) ← k8, 9 . By construction of k8, 9 , this is equal to

k8, 9 ← (A8 )−1j (paid∗8 + Baid∗8
· H(gidd8 ( 9) )),

which is precisely the secret key distribution for the real scheme (which coincides with the distribution in

Hyb
(main)
0 and Hyb

(main)
1 ).

It suffices to consider the distribution of the challenge ciphertext:

• Suppose zT1,8 = sT8A8 + eT1,8 and zT2 = sTB+ eT2 where s8
r← Z=@ , sT ← [sT1 | · · · | sTℓ ], e1,8 ← �<

Z,j
and e2 ← �<+1

Z,j
. We

can write eT2 = [êT2 | 43] where ê2 ∈ Z<@ and 43 ∈ Z@ . �en, by construction of algorithm B, the following hold:

– cT
1,aid∗8

= zT1,8 = sT8Aaid∗8
+ eT1,8 for each aid∗8 ∈ �∗ ∩ N .

– ẑT2 =
∑

8∈[ℓ ] s
T

8Baid∗8
+ êT2.

– I3 =
∑

8∈[ℓ ] s
T

8paid∗8 + 43.

�is corresponds to a valid ciphertext where the secret keys associated with authority aid∗8 ∈ �∗ ∩ N is s8 .
Moreover, the randomness e1,8 , ê2, and 43 are all distributed exactly as in the real scheme. �e ciphertext
components associated with the corrupted authorities aid ∈ �∗ ∩ C are simulated exactly as in the real scheme.

�is precisely coincides with the distribution in Hyb
(main)
0 .

• Suppose z1,8
r← Z<@ for all 8 ∈ [ℓ] and z2

r← Z<+1@ . In this case c1,aid∗8 is uniform and independent over Z<@
for all aid∗8 ∈ �∗ ∩ N . Moreover, since z2 is uniform and independent of all other quantities, the second and
third ciphertexts components are also uniform over Z<@ and Z@ , respectively. �is precisely coincides with the

distribution in Hyb
(main)
1 .
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We conclude that Adv
(post)
B (_) = Y in the evasive LWE assumption (Assumption 3.16). �

By an identical argument, we can show that under the evasive LWE assumption, for all adversaries A, the output

distributions of Hyb
(main)
1 (A) and Hyb

(main)
2 (A) are also computationally indistinguishable. Static security of

Construction 6.2 holds. �

Parameter setting. Let _ be a security parameter. We now instantiate Construction 6.2 as follows:

• Let the la�ice dimension be = = _1/Y for some constant Y > 0.

• We can set the length of the identities gid to be g = _.

• For security (�eorem 6.4), we require that jsmudge > __+l (1) (<jPRF)_+1 and j > _l (1) ℓ jsmudge. Each of

ℓ = ℓ (_),< = <(_), jPRF = jPRF (_) are polynomially-bounded. �us, we can set j = 2$̃ (=
Y ) to satisfy these

requirements, where $̃ (·) suppresses constant and logarithmic factors.

• To support arbitrary polynomial-size ciphertext policies, we set the bound ! = 2_ in �eorem 6.3. To ensure

correctness, we can set < = $ (= log@) and @ = $ (2_<_j2 + (_<jPRF)_+1j). Se�ing @ = 2$̃ (=
Y ) suffices to

satisfy these requirements.

�is yields the following corollary:

Corollary 6.21 (Multi-Authority ABE for Subset Policies from Evasive LWE). Assuming polynomial hardness of LWE

and of the evasive LWE assumption (both with a sub-exponential modulus-to-noise ratio), there exists a statically-secure

multi-authority ABE for subset policies (of arbitrary polynomial size).
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