Multi-Authority ABE from Lattices without Random Oracles

Brent Waters Hoeteck Wee David J. Wu
UT Austin and NTT Research NTT Research and ENS, Paris UT Austin
bwaters@cs.utexas.edu wee@di.ens.fr dwud@cs.utexas.edu
Abstract

Attribute-based encryption (ABE) extends public-key encryption to enable fine-grained control to encrypted data.
However, this comes at the cost of needing a central trusted authority to issue decryption keys. A multi-authority
ABE (MA-ABE) scheme decentralizes ABE and allows anyone to serve as an authority. Existing constructions of
MA-ABE only achieve security in the random oracle model.

In this work, we develop new techniques for constructing MA-ABE for the class of subset policies (which captures
policies such as conjunctions and DNF formulas) whose security can be based in the plain model without random
oracles. We achieve this by relying on the recently-proposed “evasive” learning with errors (LWE) assumption by
Wee (EUROCRYPT 2022) and Tsabury (CRYPTO 2022).

Along the way, we also provide a modular view of the MA-ABE scheme for DNF formulas by Datta et al. (EU-
ROCRYPT 2021) in the random oracle model. We formalize this via a general version of a related-trapdoor LWE
assumption by Brakerski and Vaikuntanathan (ITCS 2022), which can in turn be reduced to the plain LWE assumption.
As a corollary, we also obtain an MA-ABE scheme for subset policies from plain LWE with a polynomial modulus-to-
noise ratio in the random oracle model. This improves upon the Datta et al. construction which relied on LWE with
a sub-exponential modulus-to-noise ratio. Moreover, we are optimistic that the generalized related-trapdoor LWE
assumption will also be useful for analyzing the security of other lattice-based constructions.

1 Introduction

Attribute-based encryption (ABE) [SW05, GPSW06] extends classic public-key encryption to support fine-grained
access control on encrypted data. For instance, in a ciphertext-policy ABE (CP-ABE) scheme, each ciphertext ct is
associated with a policy f together with a message p while decryption keys sk are associated with an attribute x.
Decryption successfully recovers the message y when x satisfies f. Security requires that an adversary who only
possesses secret keys for a collection of attributes xy, . . ., x, that do not satisfy f does not learn anything about the
message. In this work, we are interested in systems that are secure against unbounded collusions: that is, security
holds against an adversary that has any arbitrary (polynomial) number of non-satisfying attributes.

Multi-authority ABE. In a traditional ABE scheme, there exists a central trusted authority that generates and
issues decryption keys. The central authority has the ability to decrypt all ciphertexts encrypted using the system.
To mitigate the reliance on a single central trusted authority, a line of works [Cha07, LCLS08, MKE08, CC09] have
introduced and studied the notion of a “multi-authority” ABE (MA-ABE) scheme where anyone can become an
authority. In an MA-ABE scheme, each authority controls different attributes and can independently issue secret keys
corresponding to the set of attributes under their control. Policies in an MA-ABE system are formulated with respect
to the attributes of one or more authorities. To decrypt, a user combines the secret keys for attributes from a set of
authorities that satisfy the policy. Security is still required to hold against users who possess an arbitrary number
of unauthorized secret keys, with an additional challenge that some subset of the authorities (associated with the
ciphertext policy) could now be corrupted and colluding with the adversary.

Earlier constructions of MA-ABE had various limitations in terms of functionality or security (or both). The
first construction that achieved the first fully decentralized MA-ABE scheme was by Lewko and Waters [LW11].
Unlike previous schemes, the Lewko-Waters scheme allows any user to become an authority, and moreover, the

only coordination needed among users and authorities is a one-time sampling of a set of global parameters. The
Lewko-Waters construction supports any access policy computable by an NC' circuit (i.e., a Boolean formula) and
security relies on assumptions on groups with bilinear maps and in the random oracle model. Subsequently, a number
of works have realized new constructions for NC' policies based on bilinear maps [RW15, DKW21b], and recently,
Datta et al. [DKW21a] showed how to construct an MA-ABE scheme for access policies computable by DNF formulas
(of a priori bounded size) from the learning with errors (LWE) assumption [DKW21a]. All of these constructions rely
on the random oracle model. This motivates the following question:

Can we construct a multi-authority ABE scheme without random oracles?

1.1 Our Contributions

In this work, we show how to leverage the recently-introduced evasive LWE assumption [Wee22, Tsa22] to obtain an
MA-ABE scheme for subset policies without random oracles. Subset policies capture DNF policies as in [DKW21a].!
Moreover, our MA-ABE construction supports subset policies and DNFs of arbitrary polynomial size which improves
upon the previous lattice-based construction in the random oracle model [DKW21a]. We summarize this result in the
following informal theorem and provide the full details in Section 6:

Theorem 1.1 (Informal). Assuming polynomial hardness of LWE and of evasive LWE (both with a sub-exponential
modulus-to-noise ratio), there exists a statically-secure multi-authority ABE for subset policies (of arbitrary polynomial
size).

Understanding the evasive LWE assumption. While the evasive LWE assumption is much less well-understood
compared to the plain LWE assumption, our construction provides a new avenue towards realizing MA-ABE without
random oracles. In particular, putting assumptions aside, our construction constitutes the first heuristic MA-ABE
without random oracles. In all previous constructions of multi-authority ABE, the random oracle was used to hash a
global user identifier (denoted gid) to obtain common randomness that is used to bind different keys to a single user.
For the particular case of [DKW21a], the random oracle was used to hash an identifier to obtain a discrete Gaussian
sample. Our candidate replaces the random oracle with a subset product of public low-norm matrices. To prove
security of the resulting scheme, we rely on the fact that under LWE, multiplying a secret key by a subset product of
(public) low-norm matrices yields a pseudorandom function [BLMR13] in addition to the evasive LWE assumption.

A modular approach in the random oracle model. The starting point of our construction is the MA-ABE
construction for (bounded-size) DNF policies by Datta et al. [DKW21a]. Along the way to our construction without
random oracles (Theorem 1.1), we provide a more modular description of the Datta et al. scheme. Specifically, we
extract a new trapdoor sampling lemma that is implicitly used in their construction. This lemma can be viewed as a
generalization of the related trapdoor LWE lemma from the recent work of Brakerski and Vaikuntanathan [BV22],
and may prove useful for constructing other primitives from the standard LWE assumption. We provide an overview
of our generalized related-trapdoor lemma in Section 2 and provide the full details in Section 4.

Using our generalized related-trapdoor LWE lemma, we in turn provide a more modular description of the MA-
ABE scheme of Datta et al. [DKW21a], and moreover, base hardness on the plain LWE assumption with a polynomial
modulus-to-noise ratio in the random oracle model. Previously, Datta et al. relied on noise smudging for trapdoor
sampling in their security analysis?, and consequently, could only reduce security to LWE with a sub-exponential
modulus-to-noise ratio. We summarize these results in the following (informal) theorem and provide the full details
in Section 5:

Theorem 1.2 (Informal). Let A be a security parameter. Assuming polynomial hardness of LWE with a polynomial
modulus-to-noise ratio, there exists a statically-secure multi-authority ABE scheme for subset policies of a priori bounded
length L = L(A) in the random oracle model. The size of the ciphertext is quasi-linear in the bound L.

1 As noted in [DKW21a, Remark 6.1], the MA-ABE scheme therein requires a monotone secret-sharing scheme where reconstruction has small
coefficients and the joint distribution of the unauthorized shares are uniformly random; such a scheme is only known for subset policies and
DNFs.

2See the descriptions of Hybrid 5 and the analysis of Lemmas 5.5 and 6.5 in [DKW21a], where noise smuging is used for simulating secret keys.

Like previous lattice-based MA-ABE constructions in the random oracle model [DKW21a], the global public
parameters in Theorem 1.2 imposes an a priori bound L on the size of the policies that can be associated with
ciphertexts, and moreover, the ciphertext size increases as a function of L. We note that our construction based on
the stronger evasive LWE assumption (Theorem 1.1) supports policies of arbitrary polynomial size in the plain model.

1.2 Additional Related Work

Kim [Kim19] and Wang et al. [WFL19] also studied constructions of multi-authority ABE (for bounded-depth circuits
and Boolean formulas, respectively) from lattice-based assumptions. However, both schemes operate in a a model
where there is a single central authority that generates the public keys and secret keys for each of the authorities
in the system. Relying on a central trusted party runs against the original goal of decentralizing trust. Moreover,
these constructions only ensure security against bounded collusions. In this work, we focus exclusively on the fully
decentralized setting introduced by Lewko and Waters [LW11] that neither requires a centralized setup nor assumes
an a priori bound on the number of authorities or corruptions.

Recently, Tsabury [Tsa22] and Vaikuntanathan et al. [VWW22] showed how to build witness encryption from
a stronger variant of the evasive LWE assumption with private-coin auxiliary input and sub-exponential hardness.
In contrast, our multi-authority ABE construction in the standard model relies on evasive LWE with public-coin
auxiliary input and polynomial hardness with a sub-exponential modulus-to-noise ratio; this was also the case for the
optimal broadcast encryption scheme by Wee [Wee22]. While vanilla witness encryption implies single-authority
ABE [GGSW13], we currently do not know how to construct multi-authority ABE from vanilla witness encryption.

2 Technical Overview

In this section, we provide a technical overview of our lattice-based MA-ABE constructions. Throughout this work,
we focus exclusively on subset policies (which suffices for supporting DNF formulas). In an ABE scheme for subset
policies, ciphertexts are associated with a set A and secret keys are associated with a set B. Decryption succeeds if
ACB.

Lattice preliminaries. The learning with errors (LWE) assumption [Reg05] says that the distribution (A, s'A +e")
is computationally indistinguishable from (A, u") where A & ngm, s & Z;’, e — D’ZZ,I)(’ andu & Z;", where n,m, q, y
are lattice parameters and Dz, is the discrete Gaussian distribution with parameter y. To simplify the presentation
in the technical overview, we will use curly underlines in place of (small) noise terms. Namely, instead of writing
s'A + e, we simply write sTA.

For a matrix A € ngm and a target vector y € Zg, we write A)‘(1 (y) to denote a random variable x € Z7' whose
distribution is a discrete Gaussian distribution D7’ conditioned on Ax =y. For ease of notation, we will drop the
subscript y in this technical overview. A sequence of works [Ajt96, GPV08, ABB10b, ABB10a, CHKP10, MP12] (see
also Section 3.2) have shown how to sample a matrix A € Z7*™ together with a trapdoor tda to enable efficient
sampling from the distribution A~ (y) for any target y € Zg.

In the following description, we write I, € ZZX" to denote the n-by-n identity matrix and G = I, ® g' € Zg*"™,
where g' = [1] 2] --- | 2l1°89]] to denote the standard gadget matrix [MP12].

2.1 Starting Point: Single-Authority CP-ABE for Subset Policies

We start by describing a simple CP-ABE for subset policies that lies at the core of our MA-ABE scheme. In the
following, let [L] be the universe of attributes. Each ciphertext is associated with a subset A C [L] and each secret
key is associated with a subset B C [L]; decryption succeeds as long as A C B.

« The master public key consists of (Ay, By, p1),..., (AL, Br,pr) & Zpm x ngm(u—l) X Zj.

+ The master secret key consist of the trapdoors tdya,,...,tda, for Ay, ..., Ay, respectively.

« An encryption of a message bit u € {0, 1} with respect to a set X C [L] is a tuple

ct=[{s'A}b e, 8T D Biu ST Y pitpla/21),

ieX ieX

where s & zy.

«+ A secret key for a set Y C [L] consists of a tuple

sk = ({Ai_l(Pi +Bin)},, r),

m(2L-1)

where r « D,
X

is sampled from a discrete Gaussian distribution.

Decryption uses the fact that

—(STZB,-) T+ ZSJVVAI A7 (pi +Bir) —STZBir+sTZ(p,~ +B;r) = sTZpi,

ieX ieX ieX ieX ieX

since r and A™1(+) are small. Looking ahead to our multi-authority construction, observe that key generation can be
carried out in a decentralized manner: given a “public” Gaussian vector r, computing the secret-key components
A;'(p; + B;r) associated with index i only requires knowledge of B;, p; and the trapdoor for A;, which are all specific
to attribute i (and could be independently generated by the i authority).

3

Selective security. To argue that this CP-ABE scheme is selectively secure”’, we proceed as follows:

n|Y|xm(2L-1)

1. First, we show how to sample a secret key for a set Y C [L] given a trapdoor for By, where By € Z;

is the matrix formed by vertically concatenating B; for alli € Y.

2. Next, we show that under the LWE assumption, s' };cx B; is pseudorandom even given an oracle for By ()

for arbitrary Y C [L] of the adversary’s choosing, provided that for each Y, it is the case that X ¢ Y. Here,
X C [L] is the set associated with the challenge ciphertext. Technically, we additionally require that s'A; and

s X;ex Pi are also pseudorandom, but these components are easily handled by the standard LWE assumption.

For ease of exposition, we do not focus on these additional components in this overview and refer instead to
Sections 4 and 5 for the full description.

For the second step, we prove a more general statement which generalizes the related-trapdoor LWE lemma previously
introduced by Brakerski and Vaikuntanathan [BV22] in the context of constructing compact CP-ABE for circuits.
Generalized related-trapdoor LWE. Our generalized related-trapdoor LWE assumption asserts that for any

non-zero vector u € {0, 1}, the vector s"(u’ ® I,,)B is pseudorandom given an oracle for the function (M,t)

((M®1,)B)7(t), as long as the matrix M = [3‘%] € ZékH)XL is full rank (and k < L).* To show that the standard

LWE assumption implies the generalized related-trapdoor LWE assumption, we take an LWE matrix A and the vector
u € {0,1}F, and we set the matrix B to be

B=[A|AR+U" ®G]|

3In the selective security game, the adversary starts by committing to the set X associated with the challenge ciphertext. The reduction algorithm
is then allowed to program X into the public parameters of the scheme.
4Some restriction on M is also necessary. For instance, it is easy to distinguish s (u ® I,)B if M = u', or more generally, if ujM = u for some

ug € {0, 1}k,

where R is a (random) low-norm matrix and Ut € {0, 1}2X(~1 js a full-rank basis for the kernel of u'. By design,
(uel,)B=[(u®],)A | (u®]I,)AR] which means we do not know a trapdoor for (u ® I,)B. On the other hand,

M®1,)B [R } =(M®L,)(U'®G) =MU* ®G.
Livz-1)

| —

R

When M = [11:4] is full rank, then MU™ is also full rank. Since R is low-norm, it is a trapdoor for (M®]I,,)B (see [MP12]

and Corollary 3.12).
Returning to the proof of selective security for the above CP-ABE scheme, observe that showing s™ ;cx B; given

an oracle for B} (-) directly maps to an instance of the related-trapdoor LWE assumption:
« LetB € ZZLX'"(ZL_D be the matrix obtained by vertically stacking By,...,B € ngm(u—l).

« The vector u € {0, 1}L is the indicator vector for the challenge set X. Namely, u; = 1if i € X and 0 otherwise.
Then, (u®1,)B = X;cx B:.

+ The oracle B}'(-) can be simulated by querying the related-trapdoor oracle on matrix My € ZLYlXL formed
by taking the rows of I} corresponding to the indices in Y. In this case (M ® I,)B = By defined previously.
Moreover, by construction of My, whenever X ¢ Y, we have that u' is not in the row-span of My.

Finally, we remark here that the original version of the related-trapdoor LWE assumption formulated by Brakerski
and Vaikuntanathan [BV22] considered the special case where the matrix M is a row vector with a specific structure.’
Our formulation considers a general matrix M which is useful for constructing an ABE scheme with a distributed setup.
We also note that this type of trapdoor sampling was also implicit in the CP-ABE construction of Datta et al. [DKW21a];
however, they critically relied on noise flooding to simulate the analog of the (M ® I,)B)~!(-) oracle. As a result, the
security of their scheme relied on LWE with a super-polynomial modulus-to-noise ratio in the random oracle model.
In this work, we both provide a modular description of the core trapdoor sampling lemma (Section 4) and then show
how to leverage it to obtain a multi-authority ABE for subset policies using LWE with a polynomial modulus-to-noise
ratio in the random oracle model (Section 5). We are optimistic that our generalized version of the related trapdoor
LWE assumption will also be useful for analyzing the security of other lattice-based constructions.

2.2 MA-ABE for Subset Policies in the Random Oracle Model

First, we observe that our core CP-ABE scheme naturally extends to yield a MA-ABE scheme for subset policies in the
random oracle model. We make the following modifications to the base scheme:

« The authority associated with attribute i samples A;, B;, p; along with a trapdoor tda, for A;.
« To generate a key for a user with identifier gid, we derive r deterministically from H(gid) and output A~ (p;+B;r).

Security of the core CP-ABE implies that the ensuing MA-ABE scheme remains secure as long as no authority is
corrupted. On the other hand, it is easy to see that the scheme is insecure if we allow authority corruptions, since we
can use an authority’s trapdoor to recover the LWE secret s from s'A;.

A~

Security with authority corruptions. To defend against corrupted authorities, we modify the ciphertext structure.
Instead of having a single LWE secret s that is shared across authorities, we instead sample a fresh s; for each attribute
i € X. That is, the ciphertext is now given by:

ct=|{s]Ai}, x> D siBi,) sipi+p- q/2]

ieX ieX

S5Concretely, u” = [1 | x"] and M = [1 | y] for some x,y € {0,1}L~'. The adversary is restricted to queries y # x, which is implied by our
requirement that M has full rank.

Key generation proceeds as before. Decryption still follows from a similar relation as before:

_(Z S;Bi) 4 Z SJ;WAI' A7 (pi +Bir) = Zs{pi.

ieX ieX ieX

Static security with authority corruptions. We now argue that the resulting MA-ABE scheme is statically
secure.’ Let C denote the set of authorities that are corrupted. The adversary gets to choose the public keys and
secret keys for authorities in C. In the multi-authority setting, a secret-key query consists of a pair (Y, gid) where Y
is a set of honest authorities (i.e., Y N C = @) and gid is the user identifier. Let X be the set of authorities associated
with the challenge ciphertext. The admissibility criterion is that X ¢ Y U C.

The proof of security proceeds similarly to that of our core CP-ABE, except we replace the challenge set X with
the set X \ C. Since Y N C = @, the MA-ABE admissibility criterion X ¢ Y U C is equivalent to X \ C ¢ Y, which
coincides with the criterion from our CP-ABE analysis. In particular, the security reduction can basically ignore the
ciphertext components associated with corrupted authorities (since the ciphertext component of each authority is
associated with independent LWE secrets s;) and just focus on the attributes controlled by the honest authorities. The
general argument again relies on our (generalized) related-trapdoor LWE assumption:

1. First, we show how to sample a secret key for Y given a trapdoor for By (where By € ZZ‘Y‘Xm(ZL_l)

matrix formed by vertically stacking the matrices B; associated with the authorities i € Y.

is again the

2. Asin the analysis of the CP-ABE scheme, we use the oracle in the related-trapdoor LWE assumption to compute
B} () in the proof. Arguing the correctness of this step additionally requires the ability to “program” the
random oracle. This is because in the real scheme, the secret keys are sampled by computing r « H(gid) and
then sampling u; « A;(p; + B;r) for each i € X. The reduction algorithm will instead sample u; « Dg‘){ itself

and then obtainr € Z;"(ZL_D using its oracle By'(+). In the random oracle model, the reduction then programs

H(gid) to r. We refer to Section 5 for more details.

3. Finally, to simulate the challenge ciphertext, the reduction algorithm samples a random s; <- Zg for each
corrupted authority i € C. For the honest authorities i € X \ C, the reduction sets the secret key to be §; and
programs s; := s + §;, where s is the secret in the related-trapdoor

We provide the formal analysis in Section 5. This construction yields a MA-ABE scheme for subset policies from the
related-trapdoor LWE assumption in the random oracle model. The related-trapdoor LWE assumption we rely on
here reduces to the standard LWE assumption with a polynomial modulus-to-noise ratio. This yields Theorem 1.2.

2.3 Removing Random Oracles via Evasive LWE

To obtain an MA-ABE construction without random oracles, we describe a way to concretely implement the hash
function H in our basic construction above. Our specific instantiation relies on computing a subset product of
low-norm matrices. Specifically, let Dg, D € Zg"™™ be low-norm matrices. These are fixed public matrices that
will be included as part of the global parameters. For an input x € {0, 1}¥, we define H(x) := ([Tici Dy,)n € Z7,
where n € Zg is the first canonical basis vector. Previously, Boneh et al. [BLMR13] showed that for any sequence of

X1, ..., Xk € {0,1}¢ the values {sTH(xi)}l. are pseudorandom. While we do not know how to prove security of

€[k]
the MA-ABE construction instantiated with this subset-product hash function using the plain learning with errors

assumption, we show how to do so using the recently-introduced evasive LWE assumption by Wee [Wee22] and
Tsabury [Tsa22].

%In the static security model [RW15], we require the adversary to commit to the set of corrupted authorities, the secret-key queries, and the
challenge ciphertext query at the beginning of the security game. Previous lattice-based MA-ABE constructions were also analyzed in the static
security model [DKW21a].

Evasive LWE. We start by describing a variant of the evasive LWE assumption introduced by Wee [Wee22] and
refer to Section 3.2 for the formal description. Let Py, . .., P, be drawn from some efficiently-sampleable distribution of
matrices. Roughly speaking, the evasive LWE assumption says that if the distribution {A;, s"P;};c[¢] is pseudorandom,

then the distributions

{Ai, s'A;, A7'(P)Yiery and {A;, u, A7 (P)}icr
are computationally indistinguishable. Intuitively, the evasive LWE assumption says that the presence of A;*(P;)
does not help break LWE so long as s'P; is pseudorandom. Indeed, if the distinguisher multiplied s’ A with A™!(P),

then it roughly obtains s'P, which is pseudorandom by assumption.

In the context of our MA-ABE scheme, the matrices Ay, ..., A, will be associated with the public keys for the
honest authorities, and the columns of P; will consists of p; + B;rgjq for the user identifiers gid that appear in the
adversary’s secret-key queries. By setting P; properly (see Section 6), the reduction algorithm can in turn answer
the secret-key queries without switching to using a trapdoor for By to answer key queries. We highlight the key
differences in reduction strategies here:

« Previously (Section 2.2), the reduction sampled u; itself and used the trapdoor for By to sample r = H(gid).
This was necessary because the reduction did not (and cannot) possess a trapdoor for each A; to sample u;
as in the real scheme. If the reduction did possess such a trapdoor for every i that appears in the challenge
ciphertext, then it could trivially break security itself. Then, to ensure consistency of the sampled key with
respect to the outputs of H, this requires the reduction to program the outputs of H. Hence, we model H as a
random oracle in this case.

« In contrast, when we use evasive LWE, the reduction computes r = H(gid) normally and then directly constructs
u; using the terms provided in the evasive LWE challenge. These terms can be simulated without knowledge
of a trapdoor for A;. Observe that this strategy only relies on the ability to compute H(-), not the ability to
program its outputs. In general, the evasive LWE assumptions allows us to reduce the task of proving security
to that of reasoning about the pseudorandomness of LWE samples with respect to correlated public matrices. In
the latter distribution, there are no Gaussian samples, and no need to implement any kind of trapdoor sampling.

When we use evasive LWE, the computation of s'P essentially translates to computing s"H(gid), which is pseudoran-

dom by the Boneh et al. [BLMR13] analysis. We refer to Section 6 for the formal description.

While the evasive LWE assumption is much less well understood compared to the classic LWE assumption,
proving security under evasive LWE at the minimum indicates that replacing the random oracle with a subset-product
hash function is a sound heuristic for constructing an MA-ABE scheme in the plain model. It is an interesting challenge
to try and prove the security of our construction from the plain LWE assumption; such a proof would provide the
first construction of MA-ABE from standard assumptions in the plain model. Alternatively, it is also interesting to
further cryptanalyze the evasive LWE assumption.

3 Preliminaries

We write A to denote the security parameter. For a positive integer n € N, we write [n] to denote the set {1,...,n}.
For a positive integer g € N, we write Z,; to denote the integers modulo q. We use bold uppercase letters to denote
matrices (e.g., A, B) and bold lowercase letters to denote vectors (e.g., u, v). We use non-boldface letters to refer to
their components: v = (vy,...,0,). For matrices Ay,..., A, € ZZX’”, we write diag(A;,...,Ay) € dexm to denote
the block diagonal matrix with blocks Ay, ..., A, along the main diagonal (and 0s elsewhere).

We write poly(1) to denote a function that is O(A°) for some ¢ € N and negl(A) to denote a function that is 0(17¢)
for all ¢ € N. An algorithm is efficient if it runs in probabilistic polynomial time in its input length. We say that two
families of distributions D; = {D; 1} 1en and Dy = {Dy 1} 1enw are computationally indistinguishable if no efficient

algorithm can distinguish them with non-negligible probability. We denote this by writing D; ~ D,. We say they are
statistically indistinguishable if the statistical distance A(D;, D) is bounded by a negligible function in A and denote

this by writing D; ~ D,. We say a distribution D is B-bounded if Pr[|x| < B: x « D] = 1.

3.1 Multi-Authority Attribute-Based Encryption

In this section, we introduce the syntax of a multi-authority ABE scheme [LW11]. We start with the definition of a
monotone access structure [Bei%6].

Definition 3.1 (Access Structure [Bei%]). Let S be a set and let 25 denote the power set of S (i.e., the set of all subsets
of S). An access structure on S is a set A C 2% \ @ of non-empty subsets of S. We refer to the elements of A as the
authorized sets and those not in A as the unauthorized sets. We say an access structure is monotone if for all sets
B,Ce 2% if Be Aand BC C, thenC € A.

Definition 3.2 (Multi-Authority ABE [LW11, RW15, adapted]). Let A be a security parameter, M be a message
space, AU = { AU })cn be the universe of authority identifiers, and GI D = {GI D, })en be the universe of global
identifiers for users. To simplify the exposition, we follow the convention in [RW15, DKW21a] and assume that each
authority controls a single attribute; this definition generalizes naturally to the setting where each authority controls
an arbitrary polynomial number of attributes (see [RW15]). A multi-authority attribute-based encryption scheme
for a class of policies P = {#)}1en (each described by a monotone access structure on a subset of AU consists of
a tuple of efficient algorithms IIma-ape = (GlobalSetup, AuthSetup, KeyGen, Encrypt, Decrypt) with the following
properties:

« GlobalSetup(1*) — gp: On input the security parameter A, the global setup algorithm outputs the global
parameters gp.

+ AuthSetup(gp, aid) — (pk,;4, mskaiq): On input the global parameters gp and an authority identifier aid € AU,
the authority setup algorithm outputs a public key pk,;4; and a master secret key msky;g.

« KeyGen(gp, msk, gid) — sk: On input the global parameters gp, the authority’s master secret key msk, and
the user identifier gid € GI D, the key-generation algorithm outputs a decryption key sk.

+ Encrypt(gp, A, {pk,i4taidea, ##) — ct: On input the global parameters gp, an access structure A € $ on a set of
authorities A € AU, the set of public keys pk,;4 associated with each authority aid € A, and a message ;1 € M,
the encryption algorithm outputs a ciphertext ct.

« Decrypt(gp, {skaid }aidea, ct) — p: On input the global parameters gp, a collection of secret keys sk,;q issued
by a set of authorities aid € A, and a ciphertext ct, the decryption algorithm outputs a message p € MU {L}.

Moreover, ITya-ape should satisfy the following properties:

« Correctness: The exists a negligible function negl(-) such that for every A € N, every message p € M, every
identifier gid € GID,, every set of authorities A C AU, every access structure A € P, on A, and every
subset of authorized authorities B € A,

gp « GlobalSetup(1%);
Vaid € A : (pk,;4, mskaiq) < AuthSetup(gp, aid);
Pr|y’ =p: Vaid € B : skgiqaid < KeyGen(gp, mskaiq, gid); | =1 — negl(A).
ct < Encrypt(gp, A, {pk,iq}aideas 1);
{’ « Decrypt(gp, {skgid,aid }aidess ct)

« Static security: For a security parameter A € N, an adversary A, and a bit b € {0, 1}, we define the static
security game for an multi-authority ABE scheme as follows:
— Setup: The challenger starts by sampling gp < GlobalSetup(1%) and gives gp to A.
— Attacker queries. The adversary A now specifies the following:

« A set C C AU, of corrupt authorities together with a public key pk,;4 for each corrupt authority
aid € C.

» A set N € AU, of non-corrupt authorities, where N N C = 2.

» AsetQ = {(gid, A)} of secret key queries where each query consists of a global identifier gid € GI D,
and a subset of non-corrupt authorities A ¢ N.

» A pair of challenge messages i, pi1 € M, a set of authorities A* € C U N, and an access structure
AePyonA.

- Challenge. The challenger then samples (pk,;4, msk,iq) <= AuthSetup(gp, aid) for each authority aid €
N. It responds to the adversary with the following:

« The public keys pk,;4 for the non-corrupted authority aid € N.

= For each secret-key query (gid, A), the secret keys skgigaia < KeyGen(gp, mskyig, gid) for each
aid € A.

« The challenge ciphertext ct, « Encrypt(gp, A, {pk,}aideas, tp)-
— Output phase: Finally, algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say an adversary A is admissible for the above security game if A* N C ¢ A and moreover, for every
secret key query (gid, A), it holds that (AU C) N A* ¢ A. Finally, we say IIma-age satisfies static security if
for all efficient and admissible adversaries A, there exists a negligible function negl(-) such that for all A € N,
[Pr[b” = 1|b = 0] — Pr[b’ = 1|b = 1]| = negl(A) in the above security game.

Remark 3.3 (Static Security in the Random Oracle Model). Following [RW15, DKW21a], we also extend Definition 3.2
to the random oracle model [BR93]. In this setting, we assume that a global hash function H (modeled as a random
oracle) is published as part of the global public parameters and accessible to all of the parties in the system. When
extending static security to the random oracle model, we require that the adversary submits its random oracle queries
as part of its initial query in the static security game. The challenger then includes the responses to the random oracle
queries as part of the challenge. We also allow the adversary to further query the random oracle during the challenge
phase of the game.

Remark 3.4 (Security Notions). The static security requirement in Definition 3.2 requires that the adversary commits
to all of its queries upfront. A stronger notion of security is adaptive security under static corruptions [LW11] which
requires the adversary pre-commit to the set of corrupted authorities, but thereafter, the adversary can adaptively make
secret-key queries both before and after making its challenge ciphertext query. We can also consider intermediate
notions where the adversary needs to commit to the policy associated with the challenge ciphertext, but can then
issue secret key queries adaptively (i.e., the analog of “selective security” in single-authority ABE). Achieving stronger
notions of security (beyond static security) for multi-authority ABE from lattice-based assumptions is an interesting
open problem.

Multi-authority ABE for subset policies. Our focus in this work is on constructing multi-authority ABE for
the class of subset policies. Here, the ciphertext is associated with a set of authorities A and decryption succeeds
whenever a user possesses keys from a set of authorities B where A C B. We define this more formally below.

Definition 3.5 (Multi-Authority ABE for Subset Policies). Let A be a security parameter and AU = { AU} en be
the universe of authority identifiers. We define the class of subset policies £ = {#)}1cn to be the set

Pr={A:A={B:AC B} where AC AU,}.

Notably, an access structure A for a subset policy is fully determined by the set A € AU,. Thus, when describing an
MA-ABE scheme ITya-ase = (GlobalSetup, AuthSetup, KeyGen, Encrypt, Decrypt) for the class of subset policies, we
omit the specification of A in the encryption algorithm and have the encryption algorithm only take as input the
public keys associated with the authorities in A. More precisely, we modify the syntax of the encryption algorithm as
follows:

+ Encrypt(gp, {pk,iqtaidea, ##) — ct: On input the global parameters gp, the set of public keys pk,,, associated
with each authority aid € A, and a message p € M, the encryption algorithm outputs a ciphertext ct.

Remark 3.6 (Multi-Authority ABE for DNFs). A multi-authority ABE scheme for subset policies directly implies a
multi-authority ABE scheme for access structures that can be decided by a polynomial-size conjunction or a DNF
formula. First, we define the notion of an access structure decidable by a Boolean formula. Let A be an access structure
onasetA = {ai,...,a,}. Forasubset B C A, we define indicator bits by, . .., b, where b; = 1 if a; € B and 0 otherwise.
We say that A can be computed by a Boolean formula ¢ if there exists a Boolean formula ¢: {0,1}* — {0, 1} such
that B € A if and only if ¢(by,...,b,) = 1. It is straightforward to use an MA-ABE scheme for subset policies to
construct MA-ABE schemes for policies computable by either a conjunction or a DNF:

+ Conjunction: Let A be an access structure on A that is computable by a conjunction on variables b;,, ..., b;,.
This is equivalent to a subset policy for the set {a;,, ..., a;,}.

« DNF formulas: Let A be an access structure on A that is computable by a DNF ¢: {0,1}" — {0,1}. By
construction, we can write ¢(xi,...,x,) = \/ie[t] @i(x1,...,x,), where each ¢; is a conjunction. In this case,
decryption succeeds as long as at least one of the ¢; is satisfied. In this case, we simply concatenate t ciphertexts
together, where the it ciphertext is an encryption to the i conjunction ¢;. Correctness follows by construction
while security follows by a standard hybrid argument.

Remark 3.7 (Multi-Authority ABE for k-CNFs). In the single-authority setting, ABE for subset policies implies
an ABE scheme for k-CNF formulas for constant k € N [Tsa19, GLW21]. However, this generic approach does
not easily translate to the multi-authority setting. Here, a k-CNF formula ¢: {0,1}" — {0, 1} can be written as
O(x1,...,Xp) = /\ie[z] @i(x1,...,x,), where each clause ¢;(x1, . .., Xp) is a disjunction on up to k variables. To support
k-CNF formulas ¢: {0,1}" — {0,1} on a set A = {ay, ..., a,}, the approach is to first define a universe U of size
|U| = O(kn¥), where each element u € U is associated with a distinct subset of S, C A of size |S,| < k. A secret key
for a; consists of secret keys for all u € U where a; € S,. A k-CNF policy ¢(x1,...,xn) = Ajefs) @i(x1, - . ., Xn) Where
each clause ¢; depends on a set T; C A of at most k variables corresponds to a subset policy for the set {ur,,...,ur,}.
In the multi-authority setting, different authorities own the different attributes ay, . . ., a,. To implement k-CNF
policies as subset policies via the above transformation, we require a multi-authority ABE scheme that supports subset
policies where the basic attributes are combinations of attributes from different authorities. This conflicts with the
requirement that authorities be independent in the multi-authority setting. It is an interesting question to construct a
multi-authority ABE scheme capable of supporting k-CNF formulas from one that supports subset policies.

3.2 Lattice Preliminaries

Throughout this work, we always use the £, norm for vectors and matrices. Specifically, for a vector u, we write
lul| := max; |x;|, and for a matrix A, we write ||A|| = max; ; |Al-,j|. For a dimension k € N, we write I € Z(’;Xk to
denote the k-by-k identity matrix.

Discrete Gaussians. We write Dz, to denote the (centered) discrete Gaussian distribution over Z with parameter
x € R*. For a matrix A € Zg” ,and a vector v € ZZ, we write A)_(1 (v) to denote a random variable x « D%‘X

conditioned on Ax = v mod q. We extend A;! to matrices by applying A;! to each column of the input. Throughout
this work, we will use the following standard tail bound on Gaussian distributions:

Fact 3.8 (Gaussian Tail Bound). Let A be a security parameter and s = s(A) be a Gaussian width parameter. Then, for
all polynomials n = n(4), there exists a negligible function negl(1) such that for all 1 € N,

Pr [[Iv]l > Vs : v « D2] = negl(2).

Assumption 3.9 (Learning with Errors [Reg05]). Let A be a security parameter and let n = n(1), m = m(4), g = q(1),
X = x(2) be integers. Then, the decisional learning with errors assumption LWE,, . , states that for A - zgm,
s € Zy, e« D andu & Z7,

(A,sTA+e") ~ (A u).

10

The gadget matrix. We recall the definition of the gadget matrix [MP12]. For positive integers n,q € N, let
G, =1, ®g' € Zg™ be the gadget matrix where g' = [1,2,..., 212971 and m = n [logq]. The inverse function
G, Z;Xf — ZZ‘“ expands each entry x € Z, into a column of size [log q] consisting of the bits in the binary
representation of x. By construction, for every matrix A € Zg” , it follows that G,, - G,,'(A) = A mod q. When the
lattice dimension n is clear, we will omit the subscript and simply write G and G™!(+) to denote G, and G;!(-).

Lattice trapdoors. In this work, we use the gadget trapdoors introduced by Micciancio and Peikert [MP12]. Our
description below follows many of the notational conventions from [BTVW17].

Theorem 3.10 (Lattice Trapdoors [Ajt96, GPV08, ABB10b, ABB10a, CHKP10, MP12]). Let n, m, q be lattice parameters.
Then there exist efficient algorithms (TrapGen, SamplePre) with the following syntax:

« TrapGen(1?,q,m) — (A, tda): On input the lattice dimension n, the modulus q, the number of samples m, the
trapdoor-generation algorithm outputs a matrix A € ZZX’" together with a trapdoor tda.

« SamplePre(A, tda,v,s) — u: On input a matrix A, a trapdoor tda, a target vector v, and a Gaussian width
parameter s, the preimage-sampling algorithm outputs a vector u.

Moreover, there exists a polynomial mg = my(n, q) = O(nlog q) such that for all m > my, the above algorithms satisfy
the following properties:

« Trapdoor distribution: The matrix A output by TrapGen (1", g, m) is statistically close to uniform. Specifically,
if (A, tda) « TrapGen(1",q,m) and A’ & Z*™, then A(A,A’) < 27"

- Trapdoor quality: The trapdoor tda output by TrapGen(1", g, m) is a t-trapdoor where T = O(+/nlog qlogn).
We refer to the parameter T as the quality of the trapdoor.

« Preimage sampling: Suppose tda is a t-trapdoor for A. Then, for all s > t - w(~/logn) and all target vectors
Vv € Zg, the statistical distance between the following distributions is at most 27"

{u « SamplePre(A,tda,v,s)} and {u« A;'(v)}.

Gadget trapdoors. In this work, we will work with the gadget trapdoors introduced by Micciancio and Peik-
ert [MP12]. We recall the key properties of gadget trapdoors from [MP12] and then state a direct corollary that we
will use in this work (Corollary 3.12).

Theorem 3.11 (Gadget Trapdoors [MP12]). The gadget matrix G € Z;*™ has a public t-trapdoor tdg where 7 = O(1).
In addition, if AR = HG where A € ngm/, R € Zg“/x’", m =n{logql, andH € Z;’X" is invertible, then tda = (R, H)
can be used as a t-trapdoor (by extending SamplePre from Theorem 3.10 accordingly) for A where T = s1(R) and
s1(R) < Vmm'||R|| denotes the largest singular value of R.

Corollary 3.12 (Gadget Trapdoors). LetH € Z’;Xt be a full rank matrix where k < t (i.e., H has full row rank). Suppose
AR=H®G. LetA € Z’;"X"’, andR € Z;”'X’"t with m = n [log q]. Then, tds = (R,H) can be used as a t-trapdoor for A
where T < Vkmm’ - mt||R||.

Proof. Wecanwrite H® G = (H®1,)(I; ® G) = (H®I,,)Gy;. Since H is full rank (with k < t), there exists a matrix
H* € ZL** such that HH* = I\ Correspondingly, (H®I,)(H* ® I,) = Ix,. Let R = RG/ ((H* ® I,)Ggy) € ZI ¥k,
Now, we can write

AR = ARG;,; (H* ®1,)Gp) = (H®1,)GG;,; (H* ® 1,)Gip) = G,

and so R is a trapdoor for A (Theorem 3.11). Moreover, ||R|| < mt||R||, and the claim follows. O

11

Preimage sampling. We will also use the following property of discrete Gaussian distributions which follows
from [GPV08]:

Lemma 3.13 (Preimage Sampling [GPV08, adapted]). Let n,m, q be lattice parameters. There exists polynomials
mo(n, q) = O(nlogq) and yo(n,q) = \/nlog q-w(+/logn) such that for allm > my(n,q) and y > yo(n, q), the statistical

distance between the following distributions is negl(n):
{(AxAx): A & ZP x ngX} and {(A,xy) : A & 20"y & 70 x — A} ()}

Lemma 3.14 (Leftover Hash Lemma [ABB10a]). Let n, m, q be lattice parameters where q > 2 is prime. There exists a
polynomial mo(n, q) = O(nlogq) such that for allm > mg(n, q), all vectors e € Z]', and all polynomials k = k(n), the
statistical distance between the following distributions is negl(n):

{(A,AR eR) : A & Z" R & {-1,1}™} and {(A,B,e'R): A & ZP™ B & ZF R & (-1,1)™%} (3.1)

Smudging lemma. We will also use the following standard smudging lemma (see [BDE*18] for a proof):

Lemma 3.15 (Smudging Lemma). Let A be a security parameter. Take any e € Z where |e| < B. Suppose y > B - 1*().
Then, the statistical distance between the distributions {z 12— DZ,X} and {z +e:z DZ,){} is negl(A).

The evasive LWE assumption. We now state a variant of the evasive LWE assumption introduced by Wee [Wee22]
and Tsabury [Tsa22]. We compare our formulation with the original version by Wee in Remark 3.18.

Assumption 3.16 (Evasive LWE). Let A be a security parameter, and let n = n(1),m = m(1),q = q(4), y = x(4),
s = s(A) with s > O(y/mlogq). Let Samp be an algorithm that takes the security parameter 1% as input and outputs

a matrix B € Z"*™ 3 set of £ target matrices P; € ZZXN‘, ..., P € ZZXN”, and auxiliary information aux € {0, 1}*.
Then, for adversaries Ay and A, we define advantage functions

Advg:E) 1) = |Pr [ﬂo({(Ai, siA;+ej] ;) }iere], B,s'B + e, {s;P; + e} }ic[e], aux) = 1]
= Pr [As({(Ai u) biepe), Boug, {u]; Ficpe) aux) = 1”
AdVGP D (1) = | Pr [A ({(As STA; + €]) }iefe), B.S'B + €}, {Ki}ie[e], aux) = 1]
—Pr [ﬂl({(Ah uL‘)}ie[[J, Ba u;» {Ki}iE[[J’ aUX) = 1] |9

where
(B,Py,..., P aux) « Samp(1%),
Ay A & 2P
S1,...,8¢ <LZn’sT «— [SI | |S}] GZZ[,
uy; S Z ey Dz Vie [¢],
up & Z;",,ez — Dm’ s
us; & Zjfles; < DY Vie [,
K; « (A;);1(P;) Vi € [¢£].

We say that the evasive LWE assumption holds if for every efficient sampler Samp and every efficient adversary Aj,
there exists an efficient algorithm Ay, polynomial poly(-), and negligible function negl(-) such that for all A € N,

Adv™ (1) 2 Adv3™ (1) /poly (1) — negl(2).

Remark 3.17 (Auxiliary Input Distribution). As in [Wee22], we only require that the assumption holds for samplers
where aux additionally contains all of the coin tosses used by Samp (i.e., public-coin samplers). This avoids obfuscation-
based counter-examples where aux contains an obfuscation of a program related to a trapdoor for matrix B or P;.
This is a weaker assumption compared to the evasive LWE assumptions needed to realize witness encryption (which
rely on security of evasive LWE to hold for private-coin samplers) [Tsa22, VWW22].

12

Remark 3.18 (Comparison with [Wee22]). The original formulation of the evasive LWE assumption by Wee [Wee22]
corresponds to the special case where £ = 1 (i.e., there is just a single matrix A; and single target P;). When
constructing multi-authority ABE, we rely on multiple independent matrices Ay, ..., A, (one associated with each
authority). It is an interesting question to reduce Assumption 3.16 to the simpler setting of £ = 1. We note that the
justification given in [Wee22] for evasive LWE are equally applicable to this setting.

4 Generalized Related-Trapdoor LWE Assumption

In this section, we introduce a generalized variant of the related-trapdoor robust LWE assumption of Brakerski and
Vaikuntanathan [BV22] and then show that its hardness can be based on the standard LWE assumption (Theorem 4.2).
As described in Section 2, the generalized related-trapdoor LWE assumption essentially asserts that given a vector
u € {0,1}*, an LWE sample with respect to (u ® I,,)B is pseudorandom (where B € ZZX’“L) given an oracle that takes

as input (M, t) and outputs (M ® I,,)B)~!(t) whenever M = [3’%] € Z,(Ikﬂ) *L is full rank. The original formulation
of the related trapdoor assumption in [BV22] (for the setting of single-authority ciphertext-policy ABE) considered
the special case where the matrix M € Z}IXL is a row vector. Here, we consider the case where M can be an arbitrary
matrix. This generalization will be useful for distributing the setup in an ABE scheme to obtain a multi-authority
ABE (see Section 5).

A similar approach is also implicit in the ciphertext-policy ABE scheme by Datta et al. [DKW21a]. Their approach
relied on noise smudging to simulate the preimage-sampling oracle, and as such, security relied on a super-polynomial
modulus. In this work, we abstract out the core technique through the related-trapdoor LWE assumption and then
show a direct reduction to LWE without relying on noise smudging. This allows us to base security on LWE with a
polynomial modulus.

Assumption 4.1 (Generalized Related-Trapdoor LWE). Let A € N be a security parameter, and n = n(1), m = m(1),
m = m(A), and y = y(A) be lattice parameters. Let ¢ = g(A) be a prime modulus. Let L = L(4) be a length parameter.
For a bit b € {0, 1}, we define the related-trapdoor LWE game between a challenger and an adversary A:

1. The adversary A starts by choosing a non-zero vector u € {0, 1}£.

2. The challenger samples matrices A <- Zg™ and B & Z;LXM(ZLA) and constructs the challenge as follows:

« If b = 0, the challenger samples s & 7zn RE (-1, 1}’;’Lx’h(L_1), e — D%X, &y — DZ?)L(, &' — ¢&)[Inr |R] €
Z;"(ZL_I), and gives (A, B, s’TA+¢€", s"(u" ® I,)B + &) to A.

« If b = 1, the challenger samples v & Z™, ¥ & ZZ’(ZL_U and gives (A, B,v',V") to A.
3. Adversary A can now make queries of the form (M, t) where M € Z’;XL where k < Landt € Z’;”.

« Define the matrix M = [‘1:4[] If M is not full rank (over Z;), the challenger replies with L.

« If tis not in the column span of (M ® I,,)B, then the challenger also replies with L.

m(2L-1)

« Otherwise, it samples and replies with y « (M ® I,,)B);l(t). Namely, y € Z,

distribution Dgl)((ZL_I) conditioned on (M ® I,,)By = t.

is sampled from the

4. At the end of the game, algorithm A outputs a bit " € {0, 1}, which is also the output of the experiment.

We say that the RTLWE,, 1, 1iq,,L assumption holds if for all efficient adversaries A, there exists a negligible function
negl(-) such thatforallA e N, |[Pr[b’ =1 | b =0] —Pr[b’ =1 | b = 1]| = negl(A) in the above security game.

Theorem 4.2 (Generalized Related-Trapdoor LWE). Let A be a security parameter, and let n = n(A), ¢ = q(A),
m = m(A), m = m(A), and y = y(1) be lattice parameters. Suppose that q > 2 is a prime and y > 2m*L? - w(4/logn).
Then, there exists a fixed polynomial my(n, q) = O(nlog q) such that for all h > my(n, q) and under the LWE,, 4 pip g,y
assumption, the RTLWEy 1 13,9, v, assumption holds.

13

Proof. Throughout the analysis, we use the fact that since q is prime, Z, is a field and Zé is a vector space (where
notions like “rank” are well-defined). We start by defining a sequence of hybrid experiments:

+ Hyb,: This is the real experiment with bit b = 0.

+ Hyb,: Same as Hyb, except the challenger changes how it constructs B in the challenge:

— First, since u # 0, its kernel has dimension L — 1. Let U+ € ZgX(L_l) be a full-rank matrix where u'U* = 0
(i.e., the columns of Ut form a basis for the kernel of u"). In the description here and in the proof,
we assume that U is computed from u' using an efficient and deterministic algorithm (e.g., Gaussian
elimination).

— The challenger samples A & Zng'hL and R & {—1, 1}Lxm(L-1) "and sets B «— [A | AR+ UL ® G] €

ZnL><r?z(2L—1)

q .

Note that the challenger uses the same inefficient procedure for answering oracle queries (M, t) as in Hyb,,.

Namely, when [M" | u] is full rank and t is in the image of ((M ® I,)B), it samples y « (M ® In)B));l(t),

which only depends on M, B, and t.

+ Hyb,: Same as Hyb,, except the challenger changes how it samples Ac ZZLX';’L and how it responds to oracle
queries:

- Since u € {0, 1}L and u # 0, let i € [L] be the smallest index where u; = 1. For all j # i, the challenger

samples A; & Z”X"’L Next, it samples D < Z”X'"L and sets A; = D — 2y ujA;. It sets
A,
A= il zpmL,
Ar
In this experiment, (u” ® I,)A = D and since u'U* = 0,
(u"®IL,)B=(u"®I,)[A|AR+U*®G] =[D|DR+u'U* ® G] = [D | DR]. (4.1)

The challenge in this experiments can thus be written as (A, B, s"A+e, (s'D+&)) [L;. | R]), where s < Zg
and é, «— D%ff(.
- When answering oracle queries (M, t) where M = [3’%] is full rank and t is in the image of (M ® I,,)B, the
challenger computes
td = [-R] ¢ 7ML=1)xr(L-1) (4.2)
L1 K

and samples y « SamplePre((M ® I,,)B, td, t, y) (cf. Theorem 3.10 and Corollary 3.12).

« Hyb,: Same as Hyb, except the challenger sets the challenge as (A, B, v',¥") where v & Zg and ¥ « 2'[Lur | R]
where 2 & Z7'E.

+ Hyb,: Same as Hyb, except the challenge reverts to sampling A& ZZLX'ﬁL. When answering oracle queries

(M, t) where M = | 11:” is full rank and t is in the image of (M ® I,,)B, the challenger reverts to sampling
y — (M® In)B));l(t) inefficiently. In particular, y here can be sampled given only M, B, and t (without
knowledge of R).

nLxr(2L-1) m(2L-1)

« Hyb,: Same as Hyb, except the challenger samples B < Zg and ¥ & Zg when constructing the

challenger ciphertext. This is the real experiment with bit b =1

For an adversary A, we write Hyb,(A) to denote the output of Hyb, with adversary A. We now show that each
adjacent pair of hybrid experiments is computationally indistinguishable.

14

Lemma 4.3. There exists a fixed polynomial my(n, q) = O(nlog q) such that for all i > my(n, q) and all adversaries
A, Hyby(A) % Hyb, (A).

Proof. Suppose there exists an adversary A that distinguishes between Hyb, and Hyb, with non-negligible probability
e. We use A to construct an adversary 8 that can distinguish between the distributions in Eq. (3.1):

« Algorithm B samples &) < Z,’;’L and gives the dimension k = (L — 1) and error vector & to its challenger.

« Algorithm B receives a challenge (Do, D1, u) where Dy € ZZLX';’L, D, € ZZLX'MZL_I), andu € Z:;’L, algorithm
B computes B «— [Dy | D; + U ® G] and &" « [&] | u].

+ Algorithm B constructs the remaining elements in the challenge exactly as in Hyb, and Hyb,. Likewise, it
responds to the oracle queries using the same procedure as in Hyb, and Hyb,. In particular, all of the other
components are independent of R.

« At the end of the experiment, algorithm 8 outputs whatever A outputs.

We take my to be the polynomial from Lemma 3.14. Then, if Dy, D; are uniform and u = &R for R & {1, l}ﬁ‘Lx’ﬁ(L_l),
then B perfectly simulates the first distribution in Eq. (3.1) for A. Alternatively, if D; = DyR and u = &[R, then 8
perfectly simulates the second distribution in Eq. (3.1). The claim holds. O

Lemma 4.4. Suppose y > 2m*L? - w(+/logn). Then, for all adversaries A, Hyb, (A) N Hyb, (A).

Proof. First, the distribution of A is uniform over Z;’Lx’ﬁL in both experiments (in Hyb,, all of the blocks A jforj#i

and D are independent and uniform over ZZX'M). Consider now the response to an oracle query (M, t). If [M" | u]
is not full rank or if t is not in the image of (M ® I,)B, then the challenger’s response in both experiments is L.
Otherwise, the following holds:

. Suppose M € Z¥<L_ Since k + 1 < L, there exists [V | v] € 72X Ghere V e ZL%* and v € ZE such that
9% q q q q
[ﬁﬂ [V | v] = Ixy1, and in particular, that MV = I; and u'V = 0. Thus, V € span(U*) and so, there exists
V' e Z((]L_I)Xk such that MUV’ = I . Equivalently, the matrix MU* € ZSX(L_I) is full rank. Then

(M®1,)B [R] — (M&1,)[A|AR+U" ©G] [R] - MU' 8 G. (43)
Li-1) La-y
~—
R

By construction, R € {-1, 1}RL-D)xm(l-1)

« Since MU* is full rank and (M®I,,)BR = MU* ® G, we appeal to Corollary 3.12 to conclude that td = (R, MU*)
is a r-trapdoor for (M ® I,)B with 7 < \km2(2L — 1)m(L — 1) < 2M2L? since k < L.

. Since y > 2m?L? - w(;flogn) > - w(+flogn), the distributions
{y « SamplePre((M®I,)B,td,t,)} and {y — ((M® In)B);l(t)}.
are statistically close by Theorem 3.10.
The claim now follows by a standard hybrid argument over the number of queries the adversary makes. O

Lemma 4.5. Under the LWE,, p,1 o, assumption, for all efficient adversaries A, it follows that Hyb, (A) ~ Hyb,(A).

Proof. Suppose there exists an efficient adversary A that is able to distinguish Hyb, from Hyb, with non-negligible
advantage £. We use A to construct an adversary 8 for the LWE,; p1 4, assumption:

1. Algorithm B receives an LWE challenge ([A | D], [2' | 2]) where A € Z7*™, D € ng’ﬁL, z€Zy andz € ZZ’L.

15

2. Algorithm 8 starts running A. Algorithm A starts by choosing a non-zero vector u € {0, 1}%. Leti € [L] be the
smallest index where u; = 1. For j # i, algorithm A samples A; < ZZX’"L and it computes A; « D -2, u;A;.
Finally, set A [AI [-] AE]T.

3. Algorithm B samples R & {—1,1}>"(=1) and sets B = [A | AR + U ® G]. It gives (A, B,z", 2" [L;; | R]) to
A.

4. Whenever A makes an oracle query on input (M, t), algorithm B checks if [IIIV%] is full rank and that t is in the
column span of (M ® I,;)B . If not, then algorithm B replies with L. Otherwise, algorithm 8 constructs the

] as in Eq. (4.2) and replies with y « SamplePre((M ® I,,)B, td, t, y).

trapdoor td = [Im::)

5. At the end of the game, algorithm A outputs a bit b € {0, 1}, which algorithm B outputs as the output of the
experiment.

Algorithm B constructs A exactly as prescribed in Hyb, and Hyb, and answers the oracle queries using the same
procedure in Hyb, and Hyb,. From Eq. (4.1), in Hyb, and Hyb,, we have that (u" ® I,)B = [D | DR]. It suffices to
consider the distribution of the challenge ciphertext:

+ Suppose z' = sTA +e” and 2" = s'D + &] for some e «<— D]’ and &, « D%lf(. Then,

m
Zx

Z'[Lie | R] = (s'D + &) [Lr | R] = s"[D | DR] + & [Ly | R] = s"(u’ ® I,)B + & [Ly | R],
which coincides with the challenge distribution in Hyb,.

« Suppose z < Zg and z & Z(’;’L. This is precisely the challenge distribution in Hyb.

Thus, depending on whether the LWE challenge is pseudorandom or uniform, algorithm 8 perfectly simulates either
Hyb, or Hyb, for A, and the claim follows. O

Lemma 4.6. Suppose y > 2m*L? - w(+/logn). Then, for all adversaries A, Hyb, (A) N Hyb,(A).
Proof. Follows by an identical argument as in the proof of Lemma 4.4. O

Lemma 4.7. There exists a fixed polynomial my(n,q) = O(nloggq) such that for all h > mq and all adversaries A,
Hyb, (A) ~ Hybs (A).

Proof. The only difference between Hyb, and Hyb; is the distribution of B and V. Notably, in both experiments, the
responses to the oracle queries depend only on M and B and not R (i.e., the challenger in both experiments samples
y—(M® I,.,)B));l (t) inefficiently). Consider the distribution of the challenge in the two experiments:

« In Hyb,, B = [A | AR] + [0"1¥"L | U ® G] and ¥ = [#' | 2'R], with R & {—1, 1}xmCL-1),
+ In Hyb., B and ¥ are both uniform.

In both cases, A and z are uniform. The claim now follows by applying Lemma 3.14 and considering the setting
A=[AT|z]" € Z;”LH)XmL. Note that here, we can set e arbitrarily (i.e., the claim follows by the vanilla leftover hash
lemma without leakage). O

Combining Lemmas 4.3 to 4.7, the claim holds. O

16

5 Multi-Authority ABE from LWE in the Random Oracle Model

In this section, we describe our construction of multi-authority ABE for the family of subset policies in the random
oracle model. Our construction follows a similar structure as the multi-authority ABE scheme of Datta et al. [DKW21a]
except we provide a direct reduction to the (generalized) related trapdoor LWE problem (Section 4). Notably, this
allows us to base security on polynomial hardness of the plain LWE assumption with a polynomial modulus. The
previous construction of Datta et al. relied on LWE with a super-polynomial modulus-to-noise ratio.

Construction 5.1 (Multi-Authority ABE in the Random Oracle Model). Let A be a security parameter, and n = n(1),
m = m(4), ¢ = q(4), and y = y(A) be lattice parameters. Let L = L(A) be a bound on the number of attributes
associated with a ciphertext. Let G D = {0, 1} be the set of user identifiers and AU = {0, 1}* be the set of authority
identifiers. The construction will rely on a hash function H: GI'D — Z;"(ZL_D, which will be modeled as a random
oracle as follows:

« For ease of exposition in the following description, we will start by assuming that the outputs of the random
oracle H are distributed according to a discrete Gaussian distribution. Specifically, on every input gid € GI D,
the output H(gid) is a sample from the distribution DZ;ZL_D. In Section 5.1 and Remark 5.9, we show that
using inversion sampling, we can implement H using a standard random oracle H': GI D — {0, 1}/mZL~1,
where the outputs of H’(gid) are distributed uniformly over {0, 1}*"~1 as usual.

We construct a multi-authority ABE scheme for subset policies with message space M = {0, 1} as follows:

« GlobalSetup(1%): Output the global parameters gp = (A, n,m, ¢, x, L, H).

« AuthSetup(gp, aid): On input the global parameters gp and an authority identifier aid € AU, sample
(Asig: tdaia) — TrapGen(1™,q,m), paig € Zl}, and Byg & Zg" 0

pkaig < (Aaid, Baid Paid) and the authority secret key mskaig = td,ig.

. Output the authority public key

« KeyGen(gp, msk, pk, gid): On input the global parameters gp = (A,n,m,q, y, L, H), the master secret key
msk = td, the public key pk = (A, B, p), and the user identifier gid, the key-generation algorithm computes
r < H(gid) € Zgl(ZL_l) and uses td to sample u « A)_(l(p + Br). It outputs skaiggiq = u.

+ Encrypt(gp, {pk,iqtaidea, #£): On input the global parameters gp = (A, n,m, g, x, L, H), a set of of public keys
pk,iq = (Aaid, Baids Paid) associated with a set of authorities A, and the message p € {0, 1}, the encryption
algorithm samples s,;q < 77, eraid Dgf)(’ R & {o0,1}mlxm(l-1) & Dm)L(and e} « &}[L,,; | R], and
e3 < Dz, for each aid € A. It outputs the ciphertext

ct=

{S;idAaid + el,aid}aideA ; Z SyiaBaid + €5 , Z SyidPaid + €3+ /1 L‘J/z]) :

aideA aideA

+ Decrypt(gp, {skaidgid }aideas ct, gid): On input the global parameters gp = (4,n,m,q, x, L, H), a set of secret
keys skaiqgid = Uaidgid associated with authorities aid € A and user identifier gid, and a ciphertext ct =
({c] ,igJaidea » €}, c3), the decryption algorithm computes r < H(gid) and outputs

2
lg . (03 +cyr — Z CI,aid“aid,gid mod qﬂ)

aideA

Theorem 5.2 (Correctness). Suppose the conditions of Theorem 3.10 and Lemma 3.13 hold (i.e., m > my(n, q) = O(nlogq)
and y > yo(n,q) = \/nlogq - w({/logn)). Then, there exists a polynomial qo = O(Ay*m2L?) such that for all ¢ > qo,

Construction 5.1 is correct.

Proof. Take any message p € {0,1}, an identifier gid € GI D, and set of authorities A € AU. Sample the
global parameters gp « GlobalSetup(1%), the authority keys (pk,;, mskaiq) < AuthSetup(gp,aid), the secret
keys skaidqgida < KeyGen(gp, msk,iq, gid), and the ciphertext ct «— Encrypt(gp, {pk,iq}aidea, #1). We now expand the
various components appearing in the computation of Decrypt(gp, {skaidgid }aidea, ct, gid):

17

« The global parameters gp = (4, n,m, g, x, L, H) consists of the lattice parameter and the description of a hash
function H: GTD — ZZ“ZL_I).

« The ciphertext ct = ({cI’aid}aideA, ¢}, c3) where

T —_ ol T T _ T T — T
Claid = SaigAaid T €154 > € = Z SaiqBaid t € . 3= Z SyigPaid + €5+ Lq/2],
aideA aideA

and (A,id, Baid, Paid) is the public key associated with authority aid.

+ The secret key skaidgid = Waidgid < (Aaid));l(paid + B,iqr) and r « H(gid). Since p,iq is uniform over Zy
and independent of B,jgr, the marginal distribution of u,qjq is statistically close to Dgl)(by Lemma 3.13. By
construction, r is sampled from Dg)((ZL_I). Then, by Fact 3.8, with overwhelming probability, ||u,iggadll < B and
||r|| < B where B = \ﬁ)(.

« Then

T =T AL i g I T B.. T o
€y ,aidYaid,gid = Sy;42aidVaid,gid + € aidYaid,gid = S;i¢Paid + 8, ;yDaidr + €,,aid Yaid,gid-
Then, the main decryption relation becomes

T T T T
€3 +cyr — Z C)aiqUaidgid = K+ [q/2] + €3+ e;r — Z €1,aidUaid.gid-
aideA aideA

Decryption succeeds if the total error é = es + e,r — 3 iqea e;,aiduaid:gid satisfies || < (¢ —1)/4.

+ To bound the error €, we bound each of its components. By definition, e} = & [I,,; | R] where &; D?Z")L(and
IR|| = 1. By Fact 3.8, ||&,|| < B = VAy with overwhelming probability; in this case, ||e}|| < BmL. Thus, with
overwhelming probability,

les| < B
llesr|l < B*m*L(2L — 1)

”elaiduaid,gid” < B’m
Finally, we have that |A| < L, so we can now bound

|é| < B+ B*m*L(2L — 1) + B*mL = O(B*m*L?) = O(Ay*m*L?). o

Theorem 5.3 (Static Security). Suppose the conditions of Theorem 3.10 and Lemma 3.13 hold (i.e., m = my(n,q) =
O(nlogq) and x > xo(n,q) = y/nlogq - w(+/logn)). Then, under the RTLWE,, 1ms1,m,q,y,L assumption and modeling

H: GID — Z;n(ZL_l) as a random oracle (with outputs distributed according to DZ)((ZL_I)), Construction 5.1 is statically
secure.

Proof. We begin by defining a sequence of hybrid experiments:

. Hyb(()b): This is the static security experiment where the challenger encrypts message i, (where b € {0, 1}).
Specifically, at the beginning of the game, the adversary outputs the following components:
- A set of corrupted authorities C ¢ AU and their public keys pk,,qy = (Aaid, Baid, Paid) for each aid € C.
A list of non-corrupted authorities N' € AU.
A list of secret-key queries Q = {(gid, A)} where each A c N.
— A pair of challenge messages p, p11 € {0, 1} and a set of authorities A* € C U N where |A*| < L.

The challenger initializes an empty table T: GT D — {0, 1}*"L=1 that it will use for answering random oracle
queries. The challenger then constructs the public keys, secret keys and the challenge ciphertext as follows:

18

— Public keys for non-corrupted authorities: For each aid € N, the challenger samples (Agiqg, tdaiq) <
TrapGen(17, g, m), paiq < Z", and B,jq & ZZXHI(ZL_I) and sets the public key to be pk,.y = (Aaid, Baid, Paid)-

- Secret key queries: For each secret key query (gid, A) where A C N, the challenger computes rgjq
H(gid) and samples uiggiq < (Agid))?l(paid + BaigTgid). It sets the secret key to skaid gid = Uaid gid-

- Challenge ciphertext: The challenger samples s,jq < Zg and ey ,iq — DZ’"’X for each aid € A*. It also
samples R & {0, 1}mbxm(I-1) &) D’")L(and €}, < &)[I,; | R], and e5 « Dz,,. Finally, it outputs the
challenge ciphertext

ct =

u T u T u
{SaidAaid + el’aid}aidGA* > Z SaiqBaid + €, Z S,iqPaid + €3 + [ip - lg/21|.
aideA* aideA*

- Random oracle queries: On input gid € GI D (either from the adversary or when processing a secret-
key query), the challenger checks whether there exists a mapping (gid + rgjq) in T. If so, it replies with

rgid. Otherwise, it samples rgjq < pmeL=

7.y »adds the mapping (gid - 1gi¢) to T, and replies with rgq.

At the end of the game, the adversary outputs a bit " € {0, 1} which is the output of the experiment.

. Hybib): Same as Hyb(()b) except the challenger changes how it constructs the secret keys. First, let A* € CUN be
the set of authorities associated with the challenge ciphertext and let A* N N = {aid], ..., aid;}. The challenger
defines the matrix

Baidf
_ nLxm(2L-1)
B= €Zg ,
Baid";
Brest
where Ba,»d; & ngm(u—l) is the matrix associated with part of the public key for authority aid; and Byest &

ZZ(L_[)X'"(ZL_I) consist of additional unused components. The challenger responds to the secret key queries as

follows:

*

- Public keys for non-corrupted authorities: For each aid; € A, , the challenger samples A,q: &
Z(’I’X’" and p,jg: & Z", and sets the public key to be pkaidlf = (Aqig» Baid2s paid;). In particular, the challenger
does not sample a trapdoor for aid; anymore. For aid € N ¢ A*, the challenger samples the public keys as
in Hyb{"

yby -

— Secret key queries: For each secret key query (gid, A) where A C N, the challenger first partitions
A = Achal U Achal C N where Aca C A* consists of the authorities appearing in the challenge ciphertext
and Achal = A \ Achal consists of the authorities which do not appear in the challenge ciphertext. If
Achal # 9, then the challenger proceeds as follows:

« Let Achal = {aidj.l, e aidjk} where ji, ..., jx € [£]. For each aid} € Acpal, it samples Waid: gid D%){'

« LetI € Z{;XL be the identity matrix. For each i € [£], associate authority aid} with the i row of I;.

Define the matrix My € {0, 1}/4a*L to be the matrix formed by taking the rows of I; associated
with the identities in Acpg-

» The challenger samples

B... | A Woigs oig — Daids
aldj1 aldj1 a[dh,gld peudj1
. . m(2L—-1
Tgid ¢ : : S Zq), (51)

Baidj-k Aaid}k uaid;k,gid - paidj*.k

19

or more compactly, rgig < (Mg ® In)B);l(tA,gid), where

Aaid;-l uaidj-l,gid - paid}1
tagid = :

Aaid;, Vaid;, gid ~ Paid;,

If t 4iq is not in the image of (M4 ® I,)B, then the challenger aborts the experiment with output 0.
= The challenger adds (gid > rgqg) to T.

m(2L-1)

If Achal = @, then B samples rgiq «— D7/

and adds the mapping (gid + rgg) to the table T.

Finally, the challenger constructs the secret keys for each authority aid € A as follows:
» If aid € Acpay, then aid = aid; for some i € [£]. Algorithm B sets the secret key as skyiq: gid = Waid: gid-
« Ifaid € Acpal, the challenger computes Tgig < T[gid]. It then sets skajd gid = Uaid,gid < (Aaid);l(paid +
Baiqrgid) exactly as in Hyb(()b).

. Hybéb) : Same as Hybib) , except the challenger constructs the challenge ciphertext as follows:

- Challenge ciphertext: The challenger samples s,iq <~ Zg and eqiq < D%”X for each corrupted authority

aid € A*"NC (same as in Hybib)) and sets c{ a < sT.dAaid +e! .. For the honest authorities aid; € A*NN,
Jai ai 1,aid i
it samples ¢ 4i; <~ 277" Next, it samples ¢, &~ Zg CL) and ¢5 & Zq. Finally, it outputs the challenge
ciphertext
_ T
ct= ({Cl,aid}aidEA’ €2, ¢3).

In particular, the challenge ciphertext is independent of py.

For an adversary A, we write Hybgb) (A) to denote the output distribution of Hybgb) with adversary A. We now
show that each pair of adjacent distributions are computationally indistinguishable:

Lemma 5.4. Suppose q is prime and let my(n, q) = O(nlog q) and yxo(n, q) = \/nlogq - w(;/logn) be the polynomials
from Lemma 3.13. If m > my and y > yo, then for all adversaries A and b € {0, 1}, Hyb(()b) (A) N Hybgb)(.?{).

Proof. Consider a secret key query (gid, A). Certainly if A € N \ A* (i.e.,, Achal = @), the distribution of the
secret keys is identical in Hybéb) and Hybib). Consider the case where A, # @. We consider the distribution of

(rgid> {Waidgid FaideAay) IR Hyb(()b) and Hybib). In both experiments, these components are sampled so as to satisfy the
linear system:

Waid*, ,gid
Aaid;-l _Baid;1 {1 & paid;l
- (5.2)
: Wit id :
A | —B.. aid gi .
aldjk aldjk I‘gid paldjk

Consider the joint distribution of rgjq and the {u,idgid aideA, N Hybéb). We start by characterizing the marginal

chal
distribution of each ugiggiq in Hyb(()b):

« In Hyb(()b), the challenger samples rgjq < Dg)((ZL_I). Define the matrix B* € ngxm(u_l) where

Baid}l
* _ . nkxm(2L-1)
B = : €Zq .

B,
aldjk

20

In Hyb(()b), the distribution of B* is uniform over Z;kxm(ZL_l). Since k < L, and m > my(n,q) = O(nlogq),

we have that m(2L — 1) > my(nk, q). Moreover, since y > y/nloggq - w(+/logn), we conclude by Lemma 3.13
that the distribution of B*rg;q is statistically close to uniform over Z;’k. This means that for all aid € A, the
distribution of p,jq — Biidrgid is independent and uniform over ZZ.

« Then, for each aid € Achal, the challenger samples uiggiq < (Aaid);l (Paid — BaidTgid). From above, the marginal
distribution of each p,jq — BaiqTgid is uniform and independent over Zg. Finally, since Aaidji & ngm in Hyb(()b)’
we again appeal to Lemma 3.13 to conclude that the marginal distribution of each u,;qgq4 is statistically close to
ngx. Moreover, each of the u,iq,gjq’s are independent.

Thus, in Hyb(()b), the distribution of each ;4 giq is statistically close to the discrete Gaussian distribution D’Z”X. We

now characterize the conditional distribution of rgjq given {Uaidgid faideAy, in Hybéb). By Eq. (5.2), this is a discrete
m(2L-1)

Zy

chal
Gaussian D conditioned on

Aaidj«1 uaid;l,gid - paid}1

B*rgid =

Aaidjk uaid}*-k,gid - paid;-k

By definition, the conditional distribution of rgiq given {Uaidgid }aidea,,, is precisely

chal
Aaid;1 uaid}l,gid - paid;1
(B!

Aqid;, Vaid;, gid ~ Paid;,

This coincides precisely with the distribution in Hybib) and the claim follows. O

Lemma 5.5. Under the RTLWE, 141,m,q, 5, assumption and modeling H as a random oracle, for all efficient adversaries
b c b
A, Hyb" (A) = Hyb'" (A).

Proof. Suppose there exists an efficient adversary A that distinguishes Hybib) from Hybgb) with advantage ¢ > 0.
We use A to construct an adversary 8B for the RTLWE assumption:

1. Algorithm B starts running algorithm A. In the static security model, algorithm A outputs the following:

+ A set of corrupted authorities C ¢ AU and their public keys pk,;y = (Aaid Baid Paid) for each aid € C.
« A list of non-corrupted authorities N € AU.

« A list of secret-key queries Q = {(gid, A)} where each A c N.

« A pair of challenge messages g, 1 € {0, 1} and a set of authorities A* C C U N.

2. Lett = |A* N N|,and let A*N N = {aid], ..., aid;}. Algorithm B constructs the vector u € {0, 1}- where u; = 1
fori € [¢] and u; = 0 for i > ¢. In the reduction, the first £ entries of u are associated with the £ non-corrupt
authorities that appear in the challenge ciphertext. The remaining L — £ entries are unused.

3. In response, algorithm B receives a challenge (A, B, z',2") where A € Z;’X<Lm+l), Be Zngm(ZL_l), z€ Z(LI’"”,

and z € ZZ’(ZEI) . Algorithm 8 parses

A= [AaidT e Aaid’; | Avest | P]

z' = I:Z;d;ﬁ | e | Z;id; | ZIest | t] >

21

where Ajig; € ZZX’", pE ZZ, Zyg: € Zg' t € Lg; the remaining components Ayest € ZZX(L_[)'" and Zest €

denote unused elements. It also parses B as

(L-t)m
Zq

Baid]‘
B= : c Z;Lxm(ZLfl)’
Baidj
Brest

where each Baid’i‘ € ngm(ufl); the remaining block Byest € Z;(Lff)xm(n*l) is unused in the reduction.

4. Algorithm 8 initializes an empty table T: GI D — Z;"(ZL_I) that it will use for responding to random oracle

queries. Algorithm B computes responses to the adversary’s queries as follows:
« Public keys for non-corrupted authorities: Algorithm 8 constructs the public keys for authorities in
N NA*and N\ A" as follows:

— For each i € [¢], the challenger samples vectors p,;g: & Zg such that };c(,) Paia; = P- Then, for each
aid; € A* N N, algorithm B constructs the public key as Pkaidj = (Aaid;» Baid:s Paid;)-
- For authorities aid € N\ A*, the challenger samples (A4, tdaiq) < TrapGen(1", ¢, m), Paid < Zg
and B,q & ngm(yfl) as in the real scheme. It sets the public key to pk_,y = (Aaid, Baid, Paid)-
. Secret keys: Let (gid, A) be a secret-key query. The challenger partitions A = Acpa U Achal C N exactly
as prescribed in Hybib) and Hybgb).
— If Achal # @, then algorithm B samples Usid: gid < D%X for each aid} € Acpal and constructs the

matrix My and ts g4 as defined in Hybib) and Hybgh). It makes an oracle query on (M, tagiq) to
obtain a vector rgi¢ € Zg'. The challenger adds the mapping (gid — rgiq) to the table T.
= If Achal = @, then B samples rgjq DZWJ((ZL_I)
Algorithm 8B then constructs the secret keys for each authority aid € A as follows:

and adds the mapping (gid + rgq) to the table T.

- If aid € Achal, then aid = aid; for some i € [¢]. Algorithm B sets the secret key as skyig: gid = Uaid: gid-

- Ifaid € A, then algorithm B knows the associated trapdoor td,iq. Then, it computes Igid < T[gid].
It samples skaid,gid = Waid,gid < A;ild (Paid + BaidTgid) using the trapdoor tdyq.

« Challenge ciphertext: To construct the challenge ciphertext, algorithm 8 proceeds as follows:

— For each aid € A*, algorithm B first samples s, < ZZ.

T

= For each aid € A* N C, algorithm B samples ey »ig D%X and computes ¢ Laid"

T — T .

1,aid — SaidAz”d te

« For each aid] € A" N N, algorithm B computesc! ... « s’ .
1,aid; aid;

- For the remaining ciphertext components c; and cs, algorithm 8 computes

T _ T . T st
c, = Z S,igBaid + Z Said;‘Baldi"'Z

Aaidlf + Zaid;-

aideA*NC aid;eA*NN
— T T

€3 = Z SaidPaid + Z Syid: Paid; + Hp - 1q/2] + 1.
aideA*NC aid; eA* NN

The challenger constructs the challenge ciphertext as ct = ({Cl,aid}ai deas €2 c3).

5. Whenever A makes a random oracle query on an input gid, algorithm B checks if there exists a mapping
(gid = r1gqg) in T. If so, it replies with rgjq. Otherwise, it samples rggq < D%")((ZL_I)

(gid > 1g¢) to T, and replies with rgq.

, adds the mapping

6. At the end of the game, algorithm A outputs a bit b € {0, 1}, which 8 also outputs.

22

To complete the proof, we argue that B simulates either Hybib) or Hybgb) for A. We first consider the distribution of
the public keys and the secret keys:

« Public keys for non-corrupted authorities: The public keys for authorities aid € N\ A* that are not in
the challenge ciphertext are generated exactly as in the real scheme (same as Hybéh) and Hybib)). For an
authority aid; € A* N N, the matrices A,iq; and B are from the RTLWE assumption, so they are uniformly
and independently random. Finally, since p € Zg is uniform, so is p,;g: for all i € [¢]. Thus, the public keys
pkaig: are all correctly distributed.

« Secret keys: Consider a secret key query (gid, A). If A € N\ A" (i.e., Achal = @), then algorithm B constructs

skaid,gid using the same procedure as in Hybib) and Hybgb) (since it knows the trapdoor for all authorities not
present in the challenge ciphertext). Consider the case where Acha # @. Let Achal = {aidj—l, ey aidj—k}. Consider
the query (Mg, ta iq) algorithm B makes to its oracle. Since M4 is constructed by taking a subset of the rows

of Iy, (identified by the indices jy, ..., jx € [£]), the matrix My is full rank. Moreover, since A is admissible
Achal © [£], which means that u' is not in the row-span of M4. This means the matrix [h:?] is full rank and
represents a valid query to the RTLWE oracle. By construction of the RTLWE oracle, algorithm B perfectly

simulates the distribution of secret keys in Hybib) and Hybéb).

Next, we consider the distribution of the challenge ciphertext. Here, we consider two possibilities depending on the
challenge distribution:

+ Supposez' =s"A+e"and 2" = s"(u" ®I,)B + &', where s & Z%, e « D%"{“, &' —¢&)[Ln |R], &) « D%‘(, and

R & {—1,1}mbxm(L-1) parge e = [é;d*

1

=s'A,ig; + €., ,.. Consider each component of the ciphertext:

| oo lel . | é] where each &,;4: € Z7. In particular, this means that
L 1

T
zaidlf
— Consider the first ciphertext component. For aid € A*NC, let §,4iq = Saiq and €,iq = €1,4i4. For aid} € A*NN,
let 8,i4; = s+5,i4; By construction each 8,4 is uniform and independent over Z. For corrupted authorities

aid € A* N C, algorithm B computes

T T _ T ~T
saidlﬁaid + el,aid - saidlﬁaid + eaid'
For the honest authorities aid; € A* N N, algorithm B computes

T T = * T INES al = o7 T3 al
said;anidyiF + Zaidlf - (saidi + S) Aa‘di + eaidf said;Aa'di + eaid;f’

Thus, we have that

T

. U {ST, . i
l’a'd}aideA*ﬂC aid;

. .
s, Ajig+e€) }
{a'd al aid; | aidz earn N

=T . ~T
Aqid: +2 = {8hiAaid + € yaens»

which matches the distribution in Hybgb).
— Consider the second ciphertext component c,. Recall thatu = [1¢ | 017¢] and that A*NN = {aid}, ..., aid}}.

Thus,
s'(u" ®1,)B = Z s'Buig: = Z s"Byi:-
iele] aid} €A* NN
Then, we have

T T T T T AT
Z ST Baid + Z Stig; Baig; +5' (0 @ 1,)B+ ¢
aideA*nC aid €A*'NN

“T ~T AT
Z SaidBaiCI + Z sajd;fBaid;f +¢&y[Lnr | R]
aideA* nC aid; €A*NN

D $LaBaia + &) [Tns | R],
aideA*

o
&)
Il

which is precisely the distribution of ¢, in Hybib).

23

— Consider the final ciphertext component c;. Recall that p = >;c(,) pi- Thus,
STp = Z sTpaid;f = Z STpaid’{~
iefe] aid} A" N
Then, we have
cs = Z SyidPaid + Z Syig: Paid; + b - Lq/2] +s'p+é
aideA*NC aid; eA*NN

DT SPaidt D SadPad; + €+ Lq/2]

aideA*NC aid; eA* NN

D Shapaa+E+ - Lg/2],
aideA*

which again coincides with the distribution in Hybib).
In this case, the challenge ciphertext is distributed exactly as in Hybib).

« Suppose z ¢~ ZL™ and 2 & Z;n(ZL_l). Similar to before, we consider each component of the ciphertext:
— Consider the first ciphertext component. Since z is uniform and sampled independently of s,;4+ and A,
the distribution of s; d;Aaid;‘ + Z,q; is independently uniform for all aid; € A* N N. Finally, algorithm
B constructs the components s”. | A,iq + €] ., for aid € A" N C exactly as in the real scheme. Thus, the

distribution of the first ciphertext component matches that in Hybgb).

. . . . 2L-1
— The remaining ciphertext components ¢, and c; are independent and uniform over Z;"() and Zg,

respectively (since 7z & Z;"(ZL_I) and t ¢ Z4 are uniform and independent of all other components).

Once more, this coincides with the distribution in Hybéb).
In this case, the challenge ciphertext is distributed as in Hyb;w .

Thus, if the RTLWE challenge is pseudorandom, then algorithm $ simulates Hybib) for A. Conversely, if the RTLWE
challenge is random, then algorithm 8B simulates Hybgb) for A. O

Since the distribution of Hybgb) is independent of the bit b, for all adversaries A, Hybéo) (A) = Hybél) (A). Then,
combining Lemmas 5.4 and 5.5, for all efficient adversaries A, Hybéo) (A) ~ Hyb(()l) (A) and Construction 5.1 satisfies

static security. m]
Parameter setting. Let A be a security parameter. We can now instantiate Construction 5.1 as follows:

« We set the lattice dimension n = A.

+ To rely on Theorem 5.3, we rely on the RTLWE,, m4+1,m,q,y,. assumption. By Theorem 4.2, this reduces to
LWEy 20m+1,q,y if we set m = O(nlogq), q > 2 to a prime, and y = O(m*L? logn).

« For correctness (Theorem 5.2), we additionally require ¢ = O(Ay?m?L?).

In particular, this means we can choose m, g, y to be polynomials in A, and thus, base hardness on LWE with a
polynomial modulus-to-noise ratio. We summarize the instantiation below:

Corollary 5.6 (Multi-Authority ABE for Subset Policies in the Random Oracle Model). Let A be a security parameter.
Assuming polynomial hardness of LWE with a polynomial modulus-to-noise ratio, there exists a statically-secure multi-
authority ABE scheme for subset policies of a priori bounded length L = L(A) in the random oracle model. The size of the
ciphertext scales quasi-linearly with the bound L.

24

5.1 Instantiating using a Random Oracle with Uniform Outputs

m(2L-1)

q

distribution is the discrete Gaussian distribution D™**~" . Since x = poly(2) in our setting, we describe a simple
Zx

}Am(ZL—l)

As described, Construction 5.1 and Corollary 5.6 relies on a random oracle H: GID — Z whose output

way to instantiate H using a random oracle H: GI'D — {0,1 whose output distribution is the uniform
distribution via inversion sampling. The function H’ coincides with the usual way we model the output distribution
of a random oracle [BR93].

Previously, Brakerski et al. [BCTW16] sketched an alternative approach for instantiating a random oracle
outputting samples from a discrete Gaussian distribution by adapting the rejection sampler of Lyubashevsky and
Wichs [LW15]. Datta et al. [DKW21a] rely on noise smudging in their setting (which would in turn necessitate
using a super-polynomial modulus-to-noise ratio). In our setting where we have a distribution with polynomial-size
support, we describe a simple alternative based on inversion sampling. This is a simple approach used in concrete
implementations of lattice-based cryptography [BCD*16].

Lemma 5.7 (Inversion Sampling). Let A be a security parameter, t = t(A) be an input length, and D be a discrete
B-bounded distribution with an efficiently-computable cumulative distribution function. Then, there exists a pair of
efficient algorithms (Project, SampleR) with the following properties:

« Project(x) — y: On input an input x € {0,1}, the projection algorithm outputs a sample y € [-B, B]. The
projection algorithm is deterministic.

« SampleR(y) — x: On input a valuey € [—B, B], the reverse sampling algorithm outputs an x € {0, 1}.
In addition, the following properties hold:
« Correctness: For all y € [-B, B], Pr[Project(SampleR(y)) = y] = 1.

« Reverse-sampleability: For all t > log B + w(log A), the following two distributions are statistically indistin-
guishable:
{(x, Project(x)) : x & ({0,1})} and {(SampleR(y),y) : y < D}.

Proof. We take (Project, SampleR) to be the standard inversion sampling algorithm. Let f: [-B — 1, B] — [0,1] be
the cumulative distribution function for D, and let T = 2! — 1. We construct the two algorithms as follows:

« Project(x): On input x € {0,1}, let X € [0,T] be the integer whose binary representation is x. Output
ye [-B,BlwhereT-f(y—1) <X <T- f(y).

« SampleR(y): Oninputy € [-B,B],letxy «— T - f(y — 1) and x; < T - f(y). Output the binary representation
of the element x & (xg, x1] N Z.

Since the cumulative distribution function f is efficiently-computable and the Project algorithm can be computed
with polylog(B) calls to f (e.g., using binary search), the Project algorithm is efficiently-computable. The SampleR
algorithm only requires making two calls to f and is likewise efficient. Next, correctness of the algorithm follows by
construction. Finally, for the reverse-sampleability property, take any Y € [—B, B]. Then,

[T-f(N]-IT-f(Y -1)]
T
=Pr[y=Y:y < D]+e

Pr[Project(x) = Y : x & {0,1}/] = =f(Y)-f(Y-1)+e

where |e| < 2/T. Thus, the statistical distance between {Project(x) : x ¢ {0,1}'} and D is at most 2(2B + 1)/T =
negl(A). Finally, on input y € [—B, B], SampleR(y) outputs a uniform x < {0, 1}’ conditioned on Project(x) =y. O

Remark 5.8 (Extending to Product Distributions). We can extend (Project, SampleR) to sample from a product
distribution D" in the natural way. The projection algorithm takes as input a vector of bit-strings x € ({0, 1})" and
applies the projection operator component-wise. The reverse sampling algorithm is defined analogously. Correctness
and reverse-sampleability then follow via a standard hybrid argument.

25

Remark 5.9 (Implementing the Random Oracle in Corollary 5.6). We can now implement the random oracle
H: GID — Z;"<2L_1) in Corollary 5.6 (whose outputs are distributed according to D *:™!

7.1) with a random oracle
H': GID — {0,1}*"(L~D whose outputs are uniform as follows:

o Let ﬁz, » be the discrete Gaussian distribution Dz, truncated to the interval [-VAx, VAx]. Namely, to sample
X DZ,)(a we first sample x < Dz , and output x if x € [-VAx, VAx] and output 0 otherwise. By Fact 3.8,
Dg, y is statistically indistinguishable from Dz, ,. In addition, Dy, y is B-bounded for B = Vay.

« Let (Project, SampleR) be the inversion sampling algorithm from Lemma 5.7 and Remark 5.8 for the product
distribution Dg)((ZLfl). We now define

H(gid) := Project(H’(gid)).

Since y = y(A) is polynomially-bounded, the cumulative distribution function of Dz, , is efficiently-computable.
Then, by Lemma 5.7 and Remark 5.8, for all polynomial-size collections of distinct inputs gid,, ..., gid, € GI D,
the joint distributions of

' (2L-1)
{H(g‘di)}ie[f] and {ri(_DZX }ie[t’]

are statistically indistinguishable.

« Finally, the proof of Theorem 5.3 critically relies on the ability to program the outputs of the random oracle in
the reduction. Here, we rely on the SampleR algorithm. Namely, to program H(gid) to a vector rgjq < DZm)((ZL_I),
the reduction algorithm would sample x,jq < SampleR(rgq) and program H’(gid) to xgq. This induces the

correct distribution by Lemma 5.7 and Remark 5.8.

6 Multi-Authority ABE without Random Oracles

We now give our construction of a multi-authority ABE scheme without random oracles. Specifically, we instantiate the
hash function from Construction 5.1 with a subset-product construction (i.e., the lattice-based PRF from Theorem 6.1)
and then prove security under the evasive LWE assumption (Assumption 3.16) and lattice-based PRFs [BPR12,
BLMR13].

Lattice-based PRFs. Our analysis will rely on an unrounded lattice-based PRF. We state the theorem and provide a
proof sketch below, and refer readers to [BPR12, Theorem 5.2] for a more formal exposition. Our presentation here is
adapted from the work of Chen et al. [CVW18, Lemma 7.4] who use a similar theorem for analyzing the security of
their private constrained PRF construction.

Theorem 6.1 (Lattice-Based PRFs [BPR12, BLMR13]). Let A be a security parameter and let n = n(1), ¢ = q(A),
X = x(4), k = k(A) be integers. Let Ysmudge = Xsmudge(A) be a noise parameter that will used for noise smudging. Let
ne Z’; be the first elementary basis vector (i.e, 51 = 1 andn; = 0 foralli # 1). For a bitb € {0, 1}, an input length
7 = 7(A), and an adversary A, define the following pseudorandomness game between a challenger and A:

1. The challenger begins by sampling (D, D) < D%{k and a secret key s < ZS. It gives Dy and Dy to A.

2. Algorithm A can now adaptively submit queries x € {0,1}" to the challenger. If b = 0, the challenger samples
ex € Dz,y,4pe and outputs

JDoDys(x) = l_[Dy, |n+ex €Z. (6.1)

ie[r]
Otherwise, if b = 1, the challenger replies with y < Zg.

3. After A is done making queries, it outputs a bit b’ € {0, 1}, which is the output of the experiment.

26

An adversary A is admissible if all of the queries it submits are distinct. Then, for all polynomials t = t(1), ¢ = q(4),
parametersk > 6nlogq, y = Q(+/nlogq), Ysmudge > A7 . (ky)7, and assuming the LWE,; ;m,q,y assumption for some
m = poly(k, 7, Q), for all efficient and admissible adversaries A making up to Q queries, there exists a negligible function
negl(-) such that forall A € N, |Pr[b’ =1:b=0] —Pr[b’ =1: b = 1]| = negl(1).

Proof (Sketch). Our proof follows the same structure as [CVW18, Lemma 7.4] and [BPR12, Lemma 5.5]. Specifically,
we start by defining the “expanded” evaluation function fp, p,s(x):

fD0>D1>S(x) = ((o ((STDxl + eDsz + e;)st +ooot 6;1) Dxr + e;) n+ex, (6~2)

k
where ey, ...,e; « DZ’X and e, « DZ,)(smudge- Then,

ouDus(X) = fo,p,s (%) + Z €

ie(r]

ex

Since Dy, D; « D%{k , we appeal to Fact 3.8 to conclude that with overwhelming probability, ||D]|, ||D:|| < Vi X-

Similarly, with overwhelming probability, |le;|| < VAy. This means that lex| < - (kVAx)". When Xsmudge >
A7 (kx)7, we can appeal to Lemma 3.15 to conclude that the distribution of e, and e, + e are statistically close.
Correspondingly, the distributions of fp, p,s(x) and fp, b, s(x) are statistically close.

Finally, we use a standard hybrid argument (combining [BPR12, Theorem 5.2] and [BLMR13, Corollary 4.6]) to
argue that the distribution of fp,p,s(x) is computationally indistinguishable from the uniform distribution over Z,
under the LWE,, ,;, 4., assumption for some m = poly(k, 7, Q). This step relies on the distribution of (D, s'D +e") being
computationally indistinguishable from (D, u") when D « D%{k s & ZS, e — Dg}(, andu & Z";. This is implied by

the LWE,, 1, ¢, assumption when k > 6nloggq, y = Q(4/nlogq), and m = poly(k) [BLMR13, Corollary 4.6]. O

MA-ABE for subset policies without random oracles. We now give the full construction of our MA-ABE
scheme without random oracles. As described in Section 2, our construction essentially instantiates the random oracle
in Construction 5.1 with a subset-product of low-norm matrices (which can be used as the basis for constructing a
PRF according to Theorem 6.1). Arguing security in turn relies on the evasive LWE assumption (Assumption 3.16).
Using the evasive LWE assumption to argue security has the extra benefit of allowing support for policies of
arbitrary (polynomial) length (recall that Construction 5.1 as well as the previous lattice-based construction of
Datta et al. [DKW21a] required imposing an a priori bound on the policy length, and the size of the ciphertext in turn
grew with the maximum length).

Construction 6.2 (Multi-Authority ABE without Random Oracles). Let A be a security parameter, and n = n(4),
m =m(A), q = q(A),and y = y(A) be lattice parameters. Let yprr = yprr(A) be a Gaussian width parameter used to
define the hash function. Let 7 = (1) be the bit-length of identities and let GI D = {0, 1}* be the set of user identifiers.
Let AU = {0,1}" be the set of authorities. We construct an MA-ABE scheme for subset policies (Definition 3.5) with
message space M = {0, 1} as follows:

« GlobalSetup(1*): Sample Dy, D; « DZ’"!)X(::F. Define the hash function H: {0,1}* — Z7 by the function
H(x) = (I—[ie[,] D,,) n where 5 € Zg is the first canonical basis vector (i.e., 71 = 1 and n; = 0 for all i # 1).
Output

gp = (A, n,m,q, x, xerr, 7, Do, D1).
For ease of exposition, whenever we write H(+) in the following, we refer to the hash function defined by the
matrices Dy, D; in the global parameters.

« AuthSetup(gp, aid): On input the global parameters gp = (A, n,m, g, x, xerr, 7, Do, D1) and an authority identi-
fier aid € AU, sample (Aqig, tdaia) < TrapGen (1", g, m), paid ¢~ Z], and B,ig ¢~ Z;*™. Output the authority
public key pk,,4 < (Aaid, Baid, Paid) and the authority secret key msk,iq = tdaiq.

27

KeyGen(gp, msk, pk, gid): On input the global parameters gp = (A, n,m, g, x, xprr 7, Do, D1), the master secret
key msk = td, the public key pk = (A, B, p), the user identifier gid € {0, 1}7, the key-generation algorithm
computes 1 «— H(gid) € Zg' and uses td to sample u « A)_(l(p + Br). It outputs skaiggiq = u.

Encrypt(gp, {pk,iq taidea, #£): On input the global parameters gp = (A, n,m, q, y, yerr, 7, Do, D1), a set of of public
keys pk,;q = (Aaid, Baids Paid) associated with a set of authorities A, and the message p € {0, 1}, the encryption
algorithm samples s,;q & ZZ, €1aid — Dgf)(’ ey — Dgf%, and e; < Dz, for each aid € A. It outputs the
ciphertext

ct=

T T T T T
{SaidAaid+e1’aid}aid6A , Z S,i¢Baid t €5, Z S,iqPaid T €3 + [Lq/z]) .
aideA aideA

Decrypt(gp, {Skaid,gid}aideAa ct, gid): On input the global parameters gp = (A,n,m, q, x, xerr, 7, Do, D1), a set
of secret keys skaidgid = Uaidgid associated with authorities aid € A and user identifier gid, a ciphertext
ct= ({c} aid faideA s €2, 03), the decryption algorithm computes r « H(gid) and outputs

2
la . (c3 +cyr — Z c},aiduaid,gid mod qﬂ)

aideA

Theorem 6.3 (Correctness). Let L = L(A) be a bound on the number of attributes associated with a ciphertext. Suppose the
conditions of Theorem 3.10 and Lemma 3.13 hold (i.e, m > my(n,q) = O(nlogq) and y > yo(n,q) = \/nlogq-w(4/logn)).

Then,

there exists o = O (Lm)t)(z + (\ﬁm)(pRF)”l)() such that for allm > mg, q > qo, and y > Yo, Construction 6.2 is

correct.

Proof. This follows by a similar argument as the proof of Theorem 5.2. Specifically, take any message p € {0,1}, an
identifier gid € {0,1}7, and set of authorities A C AU. Sample the global parameters gp < GlobalSetup(1%), the
authority keys (pk,;q, mskaiq) < AuthSetup(gp, aid), the secret keys skgigaia < KeyGen(gp, msk,ig, gid), and the
ciphertext ct <= Encrypt(gp, {pk,iq}aidea, #). We now expand the various components appearing in the computation
of Decrypt(gp, {skaidgid }aidea, ct, gid):

First, gp = (A, n,m, q, x, xpre T, Do, D1), where Dy, D; are sampled from D%)X(;;’F. By Fact 3.8, with overwhelming
probability, [Doll. [[D1]| < VAxerr.

The ciphertext ct is given by ct = ({ ¢}, c3) where

:
cl,aid}aideA’
T . T T _ T T — T

Claid = SaiqAaid T €44 » €= Z S,gBadte, , 3= Z SyigPaid tes + - [q/2],
aideA aideA

and (A,id, Baid> Paid) is the public key associated with authority aid.

Each secret key skaid gid = Waidgid < (Aaid))zl (Paid + Baidr). Since paiq is uniform over ZZ and independent of
Baiqr, the marginal distribution of u,jqgj4 is statistically close to D%X by Lemma 3.13. Then, by Fact 3.8, with

overwhelming probability, [|u,ig giall < Vi X-
Since r = ([1;¢(,] Dgid,) 7, by Fact 3.8, [|r|| < (VAmypre)” with overwhelming probability.

By construction,
¢l Uaid = 8L AgiqUaid + €] Uaid = . Paid + S, BaidT + €] . uy;
1,aid aid aid4 vaid Yaid 1,aid aid aidpald 2id Paid 1,aid aid-
The main decryption relation then becomes
T T T T
c3+cyr — Z C) aiqUaid = A - Lg/2] + es + eyr — Z € 4iqUaid-
aideA aideA

Decryption succeeds if the total error € = e3 +eJr — X,i4ea elaiduaid satisfies |é] < (¢ —1)/4.

28

« To bound the error é, we bound each of its components. Since the components of ey, €,, and e; are all independent
samples from a discrete Gaussian distribution with width y, we can appeal to Fact 3.8 to conclude that with
overwhelming probability, they are bounded by VA y. Thus, with overwhelming probability,

les| < \/I)(
lleprll < (VAm)™ yigex

1 duaid“ < m/l)(z

”el,ai

Combining these relations, we obtain the desired bound
1] < Viy + (\ﬁm)”l)(;RF)(+]A] - mAy? = 0(LmAy* + (NAmypre) ™).
Note that there is a significant amount of slack in the above bound. O

Theorem 6.4 (Static Security). There exists a polynomial mo(n, q) = O(nlog q) such that under the following conditions
and assumptions, Construction 6.2 is statically secure:

o The number of samples m satisfies m > my.

* Let Ysmudge = Xsmudge(A) be a smudging parameter where ysmudge > A7 (mypre) ™.

« The noise parameter y satisfies y > A”(l)fxsmudge.

+ The LWE,nv g, yore Gssumption holds where m’ = poly(m,1,Q) and Q is a bound on the number of secret-key
queries the adversary makes.

« The evasive LWE assumption with parameters n,m, q, x, s = x holds (in particular, the preimages K «— A~1(P) are
distributed according to a discrete Gaussian with parameter s = y).

Proof. We start by defining a sequence of hybrid experiments:

. Hyb(()mai”): This is the static security experiment where the challenger encrypts message p. At the end of the
game, the adversary outputs a bit b € {0, 1} which is the output of the experiment.

. Hybimain): Same as Hyb(()main), except the challenger uses the following modified procedure to construct the
challenge ciphertext:

— Challenge ciphertext: The challenger samples s,iq <~ Zg and eqaiq < D%’X for each corrupted authority

aid € A*"NC (same asin Hyb,) and sets ¢] ., < s..,Aaid+e] .. For the honest authorities aid] € A"NN, it

samples ¢y 4ig: <~ Zi'. Next, it samples ¢, ¢ ZJ' and ¢ <~ Z,. Finally, it outputs the challenge ciphertext

ct= ({Cl,aid }aideA’ ¢z, ¢3).

In particular, the challenge ciphertext is independent of the message.
. Hyb;mam): This is the static security experiment where the challenger encrypts message p;.

For an adversary A, we write Hybgmain) (A) to denote the output distribution of Hybgmain) with adversary A. Next,
we note that for this setting of parameters, the conditions in Theorem 3.10 hold. Thus, in the following analysis,
we implicitly assume that using a trapdoor output by (A, tda) < TrapGen(1", g, m), it is possible to sample from a
distribution that is statistically close to A)’(1 (t) for any target t. We now show that each pair of adjacent distributions
is computationally indistinguishable.

Lemma 6.5. Under the same conditions as Theorem 6.4, for every efficient adversary A, Hyb((]main) (A) ~ Hybimain) (A).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb(()main) from Hybimain) with advantage
& > 0. First, we use A to construct a sampling algorithm Samp 4 (that depends on A) for the evasive LWE assumption:

29

Algorithm Samp 4 (1%

On input the security parameter A, the sampling algorithm proceeds as follows:

1. Let k = k(1) be a bound on the number of bits of randomness algorithm A uses. Sample r < {0, 1}* and
run algorithm A(1%4; 7).

2. Algorithm A outputs a set of corrupted authorities C ¢ AU along with their public keys, a list of non-
corrupted authorities N' € AU, a set of secret key queries @, a pair of challenge messages po, 11 € {0, 1},
and a challenge identity set A* € C U N.

3. Let £ = |A* N N| and write A* N N = {aid], ..., aid}}.

4. Sample B & Z;’[X(mﬂ) and parse

Baidf Paid;

B = . . c th’x(m+l),
Baid; Paid;

where each B,: € Zg™™ and paig: € Z§.

s mxXm
5. Sample matrices Dy, Dy « DZ,){PRF'

6. Let (gidj, A1), ..., (gidy, Ap) be the secret-key queries algorithm A makes. For each i € [¢], let N; € [Q]
be the number of indices j € [Q] where aid] € A; (i.e., N; is the number of secret-key queries that involve
authority aid; € A* N). The sampling algorithm constructs matrices P; € ZZXNi for i € [£] as follows:

« Suppose authority aid; is contained in the sets A;,, .. ., Ajy, for indices ji, ..., jn; € [Q]. These are
the sets associated with the identifiers gid; , ..., gid; .

« Define the matrix P; as follows:
P; = |paig: + Baia: - H(gid;) | -+ | Paia; + Baia; - H(gidjNi)] .

7. Output B, Py, ..., P,, and aux = (r, Dy, D1). In this case, observe that aux can also just be the set of random
coins used by the sampling algorithm (Remark 3.17).

To invoke the evasive LWE assumption, we now show that for all efficient distinguishers D, AdngE) (4) is negligible.
Claim 6.6. Suppose the lattice parameters satisfy the following conditions:

+ The number of samples m satisfy m > 6nloggq.

+ Let Ysmudge = Xsmudge (A) be a smudging parameter where Ysmudge > A7 - (moypre)?.

« The noise parameter y satisfies y > A°Y - yonudge and y > A . (VAmypre) e
Suppose the LWE,, 1y g, yore @Ssumption holds where m’ = poly(m, 7, Q) and Q is a bound on the number of secret-key
queries adversary A makes. Then, for all efficient distinguishers D, there exists a negligible function negl(-) such that for

all A € N, we have that Adv(DPRE) (1) = negl(1), where AdngE) is the advantage of distinguisher D in the evasive LWE
assumption (Assumption 3.16).

Proof. We start by defining a sequence of hybrid experiments:

» Hyb,: This is the pseudorandom distribution in the definition of AdngE). Without loss of generality, assume
that A makes exactly Q secret-key queries (an adversary that makes fewer than Q queries can be padded to
make exactly Q queries). In this experiment, the challenger constructs the components as follows:

30

- Sample (B,Py,...,Psaux) « Sampﬂ(ll). By construction, B & Z;[X(mH) where
B: | p:
B=| |1
B, | pe

B; € ZZX"’, pi € Zg. In addition, for each i € [f], P; € Z;XNi, where N; € [Q]. Finally, sample
Ay, A& zym.

- Let (A, gid,), ..., (A, gidp) be the secret-key queries made by A in Samp 4. For each i € [¢], let
N; € [Q] be the number of indices j € [Q] where aid} € A;. Suppose authority aid; is contained in the
sets Aj,, ..., Ajy, for (sorted) indices ji,..., jn; € [Q]. Define the mapping p;: [N;] — [Q] that maps
t € [N;] — j, € [Q]. In particular, for each i € [£], we can now write

P; = [Pi +B; - H(gid,, ;) | -+ | pi+B; - H(gid/’i(Ni))] '

T

- Sample sy, ...,s; < Zgandlets'=[s]| --- |s;] € ng. Sample e ; « DTZ?)(, e3; — Dg} for each i € [£].

m+1
Then sample e; « DZ,X .
_ T TA. T m .7 T T m+1 T ™. T Ni ;
Compute uj; « sjA; +e}; € Zg, uy « s'B+e, € Z7, and uy; « s;P; +e;; € Z,' foreach i € [¢].

Equivalently, if we define t;; = p; + B; - H(gidpl_(j)) and v;; = sit;;, then we can rewrite the above
quantities more compactly as

T _ JA. T
u ;= s;A; + €

T _ T T _ T
u,=sB+e, = ZsiBi
ielt]

T T
Z s;pi| +e;

ie[t]

T _ Jp. T _ |<Tt.
u;; =Ss P,+e3)i = [sitl,l

| s}ti,Ni] +ey; = [oi | - loin | +el
— The challenger gives the challenge ({(A;, u];) }ie[e), B, uy, {0} ; }ie[e), aux) to the distinguisher who then
outputs a bit b € {0, 1}. This is the output of the experiment.
+ Hyb,: Same as Hyb,, except the challenger changes the distribution from which u; ;, uz, us; are sampled:
- Foreachi € [¢], sample &] ; « D’Z’TXPRF and set uj; < (sjA; +¢&;,) +e] .

_ : A m A7 A TR 4 AT A QT oA
For each i € [¢], sample é;; < D and €y; < Dz yore and let G,; = s[B; + € and Uy; = s;pi + €.

Z,XpRF
Then, set
wp e |) i

Dlagl =] (siBi+&))
iele] ie[¢]

ie[f]

Z (sipi+é;5,)| +ey,

ielf]

— For each i € [¢] and j € [N;], compute
vij = (sipi + éér) + (siB; + é;,i) : H(gidp,(j))
=1, + ﬁg.iH(gidp[(,i))’ (6.3)

and let
uj; = [oig | - |oin, | + € (6.4)

N; .
where e;; «— Dy, asin Hyb,.

+ Hyb,: Same as Hyb,, except the challenger changes the distribution from which u; ;, uy, us; are sampled:

31

~ For each i € [¢], sample u;; < Z].

- For each i € [¢], sample 1i,; < 77 and it} ; & Zq. Set

- Computev; ; « ﬁé’i+ﬁ;’iH (gidpi(j)) asinEq. (6.3). Then sample e;; « Dg} and set u;,l. =[via | - |oin,]+
e;; as in Eq. (6.4).

« Hyb,: Same as Hyb, except the challenger samples us; <- ZZXN‘. For all i > 1, the components u;; are
constructed as in Hyb,.

Notably, this hybrid “breaks the correlation” between the components of u, and the us;’s. The transition from
Hyb, to Hyb, (Lemma 6.9) critically relies on admissibility of the MA-ABE adversary (i.e., for every key query
(A, gid) the adversary makes, it must be the case that A € A*, where A* is the set of authorities associated with
the challenger ciphertext.

« Hyb,: Same as Hyb, except the challenger samples u, <~ Z7""' and us; < ZZXN" for all i € [¢]. This is the
random distribution in the definition of Advg“).

For a distinguisher O, we write Hyb,(9) to denote the output distribution of Hyb, () with distinguisher . We

now show that each pair of adjacent distributions are indistinguishable.

Lemma 6.7. Suppose y > A*(V) . (\/Im)(pRF)Hlf. Then, for all distinguishers D, Hyby (D) ~ Hyb, (D).

Proof. The only difference in the two distribution is the distribution of the errors e, ;, ez, es; associated with vectors
Uy, Uy, us;. The claim follows by the smudging lemma (Lemma 3.15). Formally, we consider each term separately:
m

Z, xpRe"
By Fact 3.8, ||&1]| < VAyprr with overwhelming probability. Since y > A“() ypge, the distributions of e; and
e; + €, are statistically close by Lemma 3.15.

« In Hyb,, the error term associated with each u;; ise;; «— DI’ and in Hyb,, itis e;; + &;; where é;; < D
0 . , Zx 1 . , ,

+ In Hyb,, the error term associated with uy is e; < D%;l andin Hyb,, itis e;+€ where & = [Ziem & | Ziern éz,i]T,

&y — DZm,xPRr and é;; < Dz, y... By Fact 3.8, |[é]] < ¢ - \/IXPRF with overwhelming probability. Since

x> Aoy xprr, the distributions of e; and e, + €; are statistically close by Lemma 3.15.
+ In Hyb,, the error associated with us; is e5; < Dg} and in Hyb,, it is e3; + €; where
~ A AT . Y AT
€ij=¢€,;+ eZ,iH(gldpi(j)) =6 t€y; l_[Dgid,,i(j)'k n.
kelr]

Now, Dy, D; are both sampled from D’Z")X(:’;F and n € {0,1}™. By Fact 3.8, with overwhelming probability
IDo |1, D11l < VAxpge- Similarly, since é;; « D’Z”XPRF, we also have that [|éy;]| < VA xpre. Thus, we conclude

that with overwhelming probability, ||&;]| < VAypre(1 + (mVAypre)?). Since y > A2 . (m\/Z)(pRF)Hl, the
distributions of es; and es; + €; are statistically close by Lemma 3.15.]

Lemma 6.8. Under the LWE,; 51511, yore assumption, for all efficient distinguishers D, Hyb, (D) = Hyb, (D).
Proof. For each d € [£], we define a sequence of intermediate hybrids:

« Hyb, ;: Same as Hyb, except the challenger changes the distribution of u; ;, uz, us;:

32

. R m . oo ~ m m
- Ifi < d, sample uy; < Zq. Otherwise, if i > d, sample &;; « DZ,XPRF and e;; « DZ’X and set
T T AT T
uy; — (sjA;+€7,) +e ;.

m

Z, xprF
nT TR. o AT " Th. 5/ : m+1

0y; < s;B; + &, and 4;; < s;p; + ¢é; ;. Finally, sample e; — D7y and compute

T E AT § N T
u, 11231- uz,l— + €.

ie[f] ie[f]

- Ifi < d, sample 1y; < Zg and 4y, & Zg. If i > d, sample &; «— D. and é;; < Dz, and set

- For each i € [f] and j € [N;], compute v;; « @3, + 10}, - H(gidpl_(j)). Sample e;; « DIZ\{;(and set

u;,i — [Ui,l | e | Z)i,N,-] +eg’i-
We define Hyb, ; = Hyb,, and by construction, Hyb, , = Hyb,. We now show that for all d € [f], under the
LWE; 2m+1,q.ypre @ssumption, hybrids Hyb, ; ; (D) and Hyb, ;(D) are computationally indistinguishable. Suppose

there exists a distinguisher D such that |Pr[Hyb1’d71(D) = 1] = Pr[Hyb, 4(D) = 1]‘ = ¢. We use D to construct an
adversary B for the LWE assumption:

1. At the beginning of the game, algorithm 8 receives an LWE challenge (D, z) where D € ZZX(Z"H']) andz € Z(ZI’”H.
Algorithm 8B parses D = [A; | By | pg] where Ay, By € ZZX’" and pg € Zg.

2. Algorithm B starts simulating an execution of Samp 4(1%) as follows:
« It starts running algorithm A with randomness r ¢~ {0,1}*. Let ¢ be the number of non-corrupted
authorities associated with the challenge ciphertext.

« Algorithm B constructs the matrix B in Samp by first sampling B; < Zg*™ and p; & Zg for each i # d.
The matrix B, and vector py is taken from the LWE challenge. It then sets

B, P1
B=| : |:
B, | pe
« Algorithm 8B constructs the remaining components Dy, Dy, Py, ..., Py, and aux exactly as described in the

specification of Samp 4.
3. Algorithm B samples A; < Zg*™ for alli # d. Similar to above, the matrix A is taken from the LWE challenge.

4. For each i > d, algorithm B samples a secret key s; < Zy. 1t also parses the challenge as z" = [z; | z; | z}]
where z,z, € Zg and z; € Z,. It now constructs the components (u;, uz, u3) as follows:

« Component u;;: For each i < d, algorithm B samples u;; < Zg. Fori=d, it samples ;4 < D’Z}’X and
m

setsuy g < z; + ey 4. Fori > d, it samples &, ; « D7 onr

and e; < D7’ and sets uj; — s;A; +&y,;.

« Component uy: For each i < d, algorithm B samples 1,; < Zg and 4y & Zg. For i > d, it samples
AL m Py AT TR. AT ~r T Py . .
€y — DZ,XPRF and €y, < Dz yppe- It then sets Uy, s;B; + € and and Uy, < s;pi+€,. For i = d, it sets
. . P . et
0y 4 < Zp and Uy 4 2, Finally, it samples e; « Dz and computes

T 2 AT 2 ~r T
u2<— 112’1- uz,l- +e2.

ielf] ie[t]

+ Component u;;: It computes us; for each i € [¢] using the same procedure described in Hyb, ; and
Hyb, 4,,- Namely algorithm B samples e;; < Dgi and computes computes v; j < #;; + 10, ,-H(gidp,.(j))
asinEq. (6.3)and us; = [051 | -~ |vyN,] +€3; as in Eq. (6.4).

33

5. Algorithm B gives ({(As, uj ;) }ie[e], B, g, {u3; }ic[s), aux) to D and outputs whatever D outputs.

By definition, Ay, By < Zg™ and py & Zg so algorithm B perfectly simulates the distribution of ({A;};e[¢], B, aux)
for D. It suffices to consider the remaining components uy ;, Uz, us;. First, observe that the distribution of u; ;, uy;
and i, ; for all i # d are distributed exactly as required in Hyb, ; ; and Hyb, ;, so consider the distribution of u, 4,
2.4, and ﬁZ,d:
« Suppose z] = sTAg +e], z) = s'Bg + e}, and z;, = s"py + e, for some s & Zg, e, ey «— D%xw and e < Dz yppe-
Then, u; 4, uz 4 and i, 4 are distributed exactly as in Hyb, ; ;.

« Suppose z1,2z; < Zg and z, & Zg. Then uy g, up g and il 4 are distributed exactly as in Hyb, 4. In particular, in
this case, z1, z2, zé are uniform and entirely independent of all other scheme parameters (e.g., e, ez).

Thus, we conclude that the components uy;, uz;, 4 ; are simulated exactly as in either Hyb, ;_; or Hyb, ;. Since these
components fully determine the distribution of u, and us; in Hyb, ;_; and Hyb, ; (and via identical relations), we
conclude that if z is sampled from the LWE distribution, then algorithm 8 successfully simulated Hyb, , , and if z is
uniformly random, then 8 successfully simulated Hyb, ;. The claim now follows by a hybrid argument. O

Lemma 6.9. Let Xsmudge = Xsmudge(A) be a smudging parameter where Ysmudge > ArtoD) . (myprr)®, and suppose
moreover that y > A*() . Xsmudge- Suppose m > 6nloggq. Then, under the LWEy, v g ypre assumption for some m’ =
poly(m, r, Q) where Q is a bound on the number of secret-key queries adversary A makes, it holds that for all efficient

distinguishers D, Hyb, (D) ~ Hyb, (D).

Proof. Let N; < Q be the number of secret-key queries algorithm A makes that contains the first authority aid}. For
each d € [N; + 1], we define a sequence of intermediate hybrids:

+ Hyb, ;: Same as Hyb, except the challenger changes the distribution of v; ;:

- If j < d, then the challenger samples v ; <~ Z,.

— Otherwise, the challenge samples v ; as in Hyb,. Namely, v, ; = 45, + ﬁ;)lH(gidp1 (j)).
. Hybg,l‘;: Same as Hyb, ; except the challenger changes the distribution of v; ;. We start by defining a few useful
quantities:

- Let y = p;(d). Namely, y is the index of the d'" secret-key query that contains authority aid;.

- Let (gid,, Ay) be the y'M secret-key query that algorithm A makes. Since A is admissible, it must be the
case that A* ¢ A,, where A" is the set of authorities associated with the challenge ciphertext, so there
exists some other index 1 < i* < ¢ such that aid}. ¢ A,. Let i* € [¢] be the smallest such index where
aidj. ¢ A,.

— In particular, this means that p; (d) = y and moreover, that p;-(j) # y for all j € [N;-]. Recall that p;-(+)
ranges over the secret-key query indices that contain aid}., and by construction aid}. ¢ A,.

N/ N/

Then, sample s < Z;", 0y, 1y . & Z;”, and set 01y ; < 1), +sand Gy ;+ < 1) ,. — s. Specifically, the challenger
constructs components v; ; as follows:

- Ifi=1andj <d, thenoy; &Zq.

~ Otherwise, v; ; = il ; + ﬁ;’iH(gidpi (j)). In particular, this means that if i = 1 and j > d, then
015 = ﬁ§,1 + ﬁ;‘lH(gidpl(/“)) =1y, + (ﬁ§.1)TH(gidm(;‘)) + STH(gidm(;’))’
and if i = i*, then

v j = Uy o + 10y H(gidpi‘ (j)) =y, + (ﬁ;)in)TH(gidpl,m) — sTH(gid/)l (j)).

34

. Hyb;’?: Same as Hyb;l; except the challenger samples é; «<— Dz, ... for each i € [Q] and modifies v; ; as
follows: ’

- Ifi=1and j > d, the challenger sets
01,j = ﬁé,l + (ﬁé,l)TH(gidpl(J’)) + (SI‘H(gidpl(j)) + é/n (J’))'
- If i =i, the challenger sets
Oprj = ﬁéz + (ﬁ;,i*)TH(gidpi* (j)) - (STH(gidp,ﬂ (j)) +ép,. (j))~
The vectors us; is still computed according to Eq. (6.4): u;l. = [vi,l | -] vi,Ni] + eg’i, where e;; « Dg}.

. Hybg: Same as Hybézi except the challenger replaces s"H(gid;) + é; with r; < Z, for each i € [Q]. Specifically,
the challenger constructs v;, ; as follows:

- Ifi=1and j > d, the challenger sets
vy =ty + (ﬁé,l)TH(gidpl(j)) T ()
- If i =i, the challenger sets
vie j =ty e+ (8) H(gid, L () =75 (1)
. Hybggz Same as Hybg except the challenger samples v; 4 <~ Z,.

. Hybg: Same as Hybét). except the challenger replaces r; with s"H(gid;) + é; where é; « Dz, . 4 toT all
i€[0]:
- Ifi = 1and j = d the challenge samples v; 4 < Z,.
- Ifi=1and j > d, the challenger sets
01,j = ﬁé@ + (ﬁé,l)TH(gidpl(j)) + (STH(gilel(f)) + ém(j))-
- If i =i, the challenger sets
Vpej = Uy e + (ﬁé,i*)TH(gidpi* (j)) - (STH(gidpi* (j)) +€p,()))-

(6),

5
. Hybz’d. (5)

Same as Hyb, ",

except the challenger modifies v; ; as follows:
- Ifi=1and j > d, the challenger sets
vy =ty + (45,)"H(gid, ;) +s"H(gid

1) ()

- If i =i, the challenger sets
vij =g + (ﬁ;}i*)TH(gidpi* 7)) — s"H(gid, . ()-

By construction, Hyb,, = Hyb, and Hyb,,,, = Hyb;. We now show that each adjacent pair of hybrids are
indistinguishable.

Claim 6.10. For all distinguishers D, we have that Hyb, ;,(D) = Hybgl(; (D).

Proof. This transition is syntactic. In both experiments, the distribution of iz ; and G, ;- is uniform over Z;”.]

35

Claim 6.11. Suppose that y > 1“1 . Xsmudge- 1hen, for all distinguishers D, Hybg (D) R Hybézcg (D).

Proof. The only difference between Hybél{z and Hyb;iz is the extra é; components in some of the v; ; terms. By
construction, the challenger samples é; < Dz, ... 50 [é;] < V2 Xsmudge With overwhelming probability (Fact 3.8).
For i € [f] and j € [N;], let 9;; € Z4 denote the value of v; ; computed according to the specification of Hybgg. Let

es ik to denote the kth component of es ;. Consider the distribution of each component us; ; of us;:

e In Hyb;lt;, we have Usjj = Z),'J +es3;-
« In Hybé?, we have us; j = 0;; +e3;; + ¢ €;, where ¢ € {-1,0,1}. Then, by Lemma 3.15, the distribution of

c-é +es;and e3; where e3; < Dz, is statistically close when y > ysmudge - yEION
The claim now follows by a hybrid argument. O

Claim 6.12. Suppose m > 6nlogq and Ysmudge > A7 W . (mypre)7. Then, under the LWEp g, yore @ssumption for
somem’ = poly(m, r, Q) where Q is a bound on the number of secret-key queries adversary A makes, it holds that for all

efficient distinguishers D, Hybgzg (D) = Hybg (D).

Proof. The only difference between these two distributions is that we replace each output s"H(gid;) + ¢é; of the
lattice-based PRF with truly random strings r,,(j) ¢~ Z4. This follows by pseudorandomness; specifically, under

the given hypothesis, Theorem 6.1 holds. Formally, suppose there exists an efficient D such that |Pr[Hyb§2; (D) =

1] - Pr[Hybg (D) = l]i = ¢. We use D to construct an efficient adversary B that breaks the lattice-based PRF from
Theorem 6.1:

1. At the beginning of the game, algorithm B receives matrices Do, D; € Z7™™ from the challenger.

2. Algorithm B runs (B, Py, ..., Py, aux) < Samp 4 (1’1), except it uses the matrices Dy, Dy it received from the chal-
lenger instead of sampling them itself. It also samples A4, ..., A, & ngm. Let Q = {(gid;, A1), ..., (gidQ,AQ)}
be the set of secret key queries algorithm A makes (in the execution of Samp). For each i € [¢], define the
mapping p;: [N;] — [Q] exactly as in the specification of Hyb,,.

3. Algorithm 8 makes queries on inputs gid,, ..., gidy. Let y1, ..., yo € Zg be the responses.

4. Let (gid,, Ag) be the d'™ secret-key query chosen by A. Algorithm B samples &; & Z7, &/ < Z,, and

1
e3; «— DY foreachi e [£]. It constructs the components v; ; as follows:
> Z,x >J

« Ifi=1and j < d, algorithm B samples v; ; ¢ Z,.
« Ifi=1and j 2 d, algorithm B sets v;; « @ +a{H(gid, ;) + Y, (j)-
o If i = i*, algorithm B sets v; j; « ;. + ﬁlﬂH(gidpi* (j)) —Ypi (j)-

« If i ¢ {1,i*}, algorithm B sets v;; « 4] +4jH(gid ,, ;).

5. Finally, algorithm 8B samples u, ; & Z;” and e;; «— Dg;{ for each i € [£], and constructs vectors

e | Y| Y
ie(f] ie(f]

anduj; = [0;1 | -+ | vN,] +€]; according to the specification of Hybgzs and Hybg.

6. Algorithm B gives the challenge ({(As uj ;) }ie[e], B, uj, {u};}ie[s), aux) to D and outputs whatever D outputs.

36

By construction, the components ({A;, uf ;) }ie[¢], B, {Pi}ic[s), aux) are distributed exactly as in Hybgz{g and Hybg.
Consider now the distributions of u; and us; that algorithm 8 induces: , ’
« Suppose y; = s"H(gid,) + é; where s &~ Zg and é; < Dz y, .- In this case, algorithm B perfectly simulates an

execution of Hybgzj with secret s, and components Gi;; = §; and d;, = 4; for all i € [£].

(3)

od with components ,; = ;

- Suppose y; < Z4. Then, algorithm B perfectly simulates an execution of Hyb
and 4, = 4 for all i € [¢].

Thus algorithm 8 breaks security of the lattice-based PRF in Theorem 6.1 with advantage ¢ and the claim follows. O
Claim 6.13. For all distinguishers D, we have that Hybg (D) = Hyb;‘tj) (D).

Proof. This is purely syntactic. The only difference between these two distributions is the distribution of v; 4. By
construction of i* (see the description of Hybgl{z), we have that p;-(j) # p1(d) for all j € [N;+]. Moreover, p;(+)
is an injective function so p1(j) # p1(d) for all j > d. This means the only component in hybrids Hybg (D) and

Hyb;‘g (D) that depends on r, (g) is v1,4. Finally, r4 is uniform over Z, and independent of all other quantities, so the

distribution of vy 4 in Hyb;?d) is also uniform. This is identical to the distribution in Hybgg. O
Claim 6.14. Under the conditions of Claim 6.12, for all efficient distinguishers D, Hyb;’g (D) = Hybgz (D).

Proof. Follows by a similar argument as in the proof of Claim 6.12. O
Claim 6.15. Under the conditions of Claim 6.11, for all distinguishers D, Hybg (D) % Hybé’(’; (D).

Proof. Follows by the same argument as the proof of Claim 6.11. O
Claim 6.16. For all distinguishers D, we have that Hyb;i; (D) = Hyb, 4,,(D).

Proof. Follows by the same argument as the proof of Claim 6.10. O

Combining Claims 6.10 to 6.16, the output distributions of Hyb, and Hyb, are computationally indistinguishable. O

Lemma 6.17. Suppose m > 6nlogq, Ysmudge > AW - (mypre)?, and x > 2°W - yonudge. Then, under the
LWE ;v g, yore GSSumption for some m’ = poly(m, 7, Q) where Q is a bound on the number of secret-key queries adversary

A makes, it holds that for all efficient distinguishers D, Hyb,(D) 2 Hyb, (D).

Proof. First, we note that by construction, in Hyb; and Hyb,, the vector u; is independent of 0, and @, ;. The only
component in Hyb, and Hyb, that depends on 1,; and ﬁé’l is the vector u,. Since 1z & Z;" and ﬁé’l & Zg, this
means that the distribution of u; is uniform over ZZ‘“ and independent of all other components in Hyb, and Hyb,.
Thus, it suffices to reason about the distribution of the components of us; (for i > 1) in the two experiments (all other
components are identically distributed). To do so, we define a sequence of hybrid experiments indexed by d € [2, £]:

« Hyb; ;: Same as Hyb, except the challenger changes the distribution of v; ;:

- If i < d, the challenger samples v; ; <~ Z,.

- Ifi > d, the challenger sets 0;; < i, + ﬁ;,iH(gidpi(j)).
. Hybél} Same as Hyb, ; except the challenger changes the distribution of vg,;:

- If i < d, the challenger samples v; ; < Zg.

’

- If i = d, the challenger sets vg ; < ﬁzd

+ (ﬁz:,dH(gidpd(j}) + é/’u(])) where €pa(j) < Dz

45 Xsmudge *

— If i > d, the challenger sets v;j « 4, + @} ;H(gid .,)-

37

7’

R
2.d T Tpal) where r,,(j) < Zqg.

. Hybéiﬁ: Same as Hybég except the challenger sets 04 ; < 7

In all experiments, each vector us;; is still constructed from v; j and e3; < Dg ’X according to Eq. (6.4). By construction
Hyb, , = Hyb; and Hyb, , = Hyb,. We now show that each adjacent pair of hybrid experiments are indistinguishable.

Claim 6.18. Suppose y > 1°(V) . Xsmudge- Then, for all distinguishers D, Hyb, ;,(D) N Hybglg (D).

Proof. This follows via a similar argument as the proof of Claim 6.11. Specifically, the only difference between Hyb, ,
and Hybég is the extra €,, ;) term in the components 04 ;. By construction, the challenger samples €, (i) <= Dz y, 450>

50 |€,,(1)] < ﬁ){smudge with overwhelming probability (Fact 3.8). For j € [Ny], let 94; € Z, denote the value of
vg,j computed according to the specification of Hyb, ;. Let e3 4; denote the j™ component of es 4. Consider the
distribution of each component u3 4 ; of us 4:

e In Hyb3,d’ Usgdj = 6d,j + €34 j-
b(l)

3d’
e3q,;j < Dz, is statistically close when y > ysmudge * A0

« In Hy usq; = 0qj +esq; + €,,(j)- By Lemma 3.15, the distribution of é,,(;) + e34; and es4; where

The claim now follows by a hybrid argument. O

Claim 6.19. Suppose m > 6nlogq and ysmudge > Arre) (myprr)®. Then, under the LWEp ny g yore assumption for
somem’ = poly(m, r, Q) where Q is a bound on the number of secret-key queries adversary A makes, it holds that for all

efficient distinguishers D, Hybglj (D) = Hybgz(; (D).

Proof. The only difference between these two distributions is that we replace each output @, ;H(gid,) + é; of the

lattice-based PRF with a truly random string r; <~ Zg for each i € [Q] (technically, for only the subset of [Q] that is
in the image of p,). This follows by pseudorandomness; specifically, under the given hypothesis, Theorem 6.1 holds.
The argument is a simpler version of the proof of Claim 6.12. Formally, suppose there exists an efficient distinguisher

D such that |Pr[Hyb§2(D) =1] - Pr[Hyb;ZJ (D) = 1]| = ¢. We use D to construct an efficient adversary 8 that

breaks the lattice-based PRF from Theorem 6.1:

1. At the beginning of the game, algorithm B receives matrices Do, D; € Z7™™ from the challenger.

2. Algorithm B runs (B, Py, ..., Py, aux) < Samp 4 (1’1), except it uses the matrices Dy, Dy it received from the chal-
lenger instead of sampling them itself. It samples Ay, ..., A, < ZZX’". Next, let Q = {(gid;, A1), ..., (gidQ,AQ)}
be the set of secret key queries algorithm A makes (in the execution of Samp). For each i € [Q], define the
mapping p;: [N;] — [Q] exactly as in the specification of Hyb,,.

3. Algorithm 8 makes queries on inputs gid,, ..., gidy. Let yi, ..., yo € Zq be the responses.
4. Algorithm B samples u;; <~ 23y for each i € [¢] and u, & VAlS

5. For each i > d, algorithm B samples 1; <~ Z;”. For i > d, it also samples %] & Zg. Then, for each i € [£] and
Jj € [Ni], it constructs v; ; as follows:

« If i < d, it samplesv; ; - Zq.
o Ifi =d, it sets Vq,j < ﬁ;l + Ypa(j)-

« Ifi > d, itsets v;; « 4] +4jH(gid,, ;).

Finally, for each i € [¢], it samples e5; « DJZ\{; and sets uj; = [0;1 | -+ | vin,] + €] ;. It gives the challenge
({(Asuy) }iere), B uj, {ug ; }iefe), aux) to D. Algorithm B outputs whatever D outputs.

By construction, the components ({(A;, uf ;) }ie[e], B, w3, {Pi}ie[e), aux) are distributed exactly as in Hybéﬁ and Hybgztg.
Consider now the distribution of us; that algorithm $ induces: ’ ,

38

« Suppose y; = s"H(gid,) + é; where s &~ Zg and é; < Dz y, ... In this case, algorithm B perfectly simulates an

execution of Hybgg with 0,4 = s and 0; = 0; fori > d.
« Suppose y; ¢ Zg4. Then, algorithm B perfectly simulates an execution of Hybgig with 6,; = 4; fori > d.
Thus, algorithm B breaks security of the lattice-based PRF in Theorem 6.1 with advantage ¢ and the claim follows. O
Claim 6.20. For all distinguishers D, Hybgz (D) =Hyb; 4., (D).

Proof. This is a syntactic change and follows from the fact that py is an injective function. Since each r,, ;) is uniform

and independent of all other components, the distribution of 04 ; in Hybgzc; for all j € [Ny] is uniform over Zg, which
is precisely the distribution in Hyb; 4, ;. ’]

Combining Claims 6.18 to 6.20, the output distributions of Hyb, and Hyb, are computationally indistinguishable. O
The claim follows by combining Lemmas 6.7 to 6.9 and 6.17. O

To complete the proof, we show that if there exists an adversary A that can distinguish between the main hybrids
Hyb(()mam) and Hybimam) in the proof of Theorem 6.4 with non-negligible advantage ¢, then we can construct an

efficient algorithm 8 such that Advgom (A) = ¢ in the evasive LWE assumption (Assumption 3.16) and with respect
to the sampling algorithm Samp 4:

1. Atthe beginning of the game, algorithm B receives an evasive LWE challenge ({(A, 2] ;) }ie[e], B, 2}, {Ki}ie[¢], aux)
where A; € ngm, Z1; € Z;", Be Z;fx(mﬂ), Zy € Z;””, K; € ngXNi, and aux = (r, Dy, D).

2. Algorithm 8 starts running algorithm A with randomness r. Algorithm A outputs

« A set of corrupted authorities C ¢ AU and their public keys pk,;y = (Aaid, Baid, Paid) for each aid € C.
« A list of non-corrupted authorities N € AU.

+ A list of secret-key queries Q = {(gid;, A;) }ic[o] Where each A; C N.

« A pair of challenge messages po, p11 € {0, 1} and a set of authorities A* C C U N.

3. Let A* N N = {aidj, ..., aid;}. Algorithm B parses B as

Baid’{ Paid;
B= c th’x(mﬂ),
Baid: | Paid;
where Bj4: € Z;’X’" and p,iq: € Zg. In addition, for each i € [¢], it sets Ayjq: < Aj.
4. Let Q = {(Ay, gid)), ..., (Ap, gidQ)}. For each i € [Q], the challenger partitions A; = A;chal U Ajchal € N

where A; cha C A* consists of the authorities appearing in the challenge ciphertext and A;cpa = A \ Ajchal
consists of the authorities that do not appear in the challenge ciphertext.

5. Note that because 8 runs A with the same randomness as Samp 4, the queries A outputted in the invocation
of Samp 4 exactly coincide with those in 8’s execution. Algorithm B now responds as follows:

« Public keys for non-corrupted authorities: Algorithm 8 constructs the public keys for authorities in
N NA*and N \ A* as follows:

— For each aid] € N N A, algorithm B sets pk, 4« = (Aaid;, Baid;,paid;f).

- For authorities aid € N \ A%, the challenger samples (A4, tdaiq) < TrapGen(17, g, m), paid < Zyg
and B,y «— Z,’;X’”. It sets the public key to pk,;y = (Aaid, Baid; Paid)-

39

« Secret keys: We start by showing how to construct the secret keys corresponding to the honest authorities
appearing in the challenge ciphertext from the components in Ky, . .., K;:
- By construction, N; € [Q] is the number of indices j € [Q] where aid] € A;. Suppose authority
aid; is contained in the sets A;,, ..., A, for (sorted) indices ji, ..., jn; € [Q]. Define the mapping
pi: [Ni] — [Q] that maps ¢ € [N;] — j, € [Q]. This is the definition from the proof of Claim 6.6.
— Foreachi € [f] and j € [N;], let Skaid}‘,gidpim — k;; where k; ; € Z7 denotes the j™ column of K;.

Then, for each i € [¢] and authority aid € A;p,|, the challenger computes rgid, < H(gid;) and sam-
ples skaidgid, = Uaidgid, < (Aaid);l(paid + Baidrgid,) using the trapdoor td,q (which 8 sampled when
constructing the public key). The challenger responds to the secret-key query (gid;, A;) with the set
{skaidgid, }aidea,-

« Challenge ciphertext: Algorithm B starts by parsing z; = [, | z3] where 2; € Z7 and z3 € Z;. For each

T

B * i R n i m T — T)
aid € A* N C, the challenger samples s,ig < Zg and e 4ig — DZ,X and computes Claid = S1iqAaid + € i

For aid; € A* N N, it defines Ciaid: < Z1,i- It now constructs the challenge ciphertexts as

_ T T AT T
“ ({Cl’aid}aideA* C D SuBaatih,), sigpaatztpe-la/2]).
aideA* NC aideA*NC

6. At the end of the game, algorithm A outputs a bit b € {0, 1}. Algorithm B outputs the same bit.

By construction of 8 and Samp 4, the public keys for the non-corrupted authorities are distributed exactly as in

the real scheme (which corresponds to the distribution in Hyb(()main) and Hybimain)). The secret-key queries are also
distributed as in the real scheme. To verify this, consider again the i secret-key query (gid,, A;) and once more
partition A; = Aj chal U Ajchal Where A; cpai = A; N A™. Consider the secret-key components {skaiqgid, }aides, chosen by

the challenger:

« When aid € A ca, the secret key skaidgid, is sampled exactly as in the real scheme (which coincides with the
distribution in Hybémain) and Hybimain)).

« Foreachi € [f] and j € [N;], we have that skaid;gidp_(]_) « k; ;. By construction of k; ;, this is equal to

kij — (A7 (Paia: +Baig: - H(gid,, ;)

which is precisely the secret key distribution for the real scheme (which coincides with the distribution in
H (main) (main)
yby, and Hyb;)-

It suffices to consider the distribution of the challenge ciphertext:

« Suppose ZL. =s]A; +eL. and zj = s'B+e] wheres; & Z;, st [s]] -+ s}l ey < D%fx and ey «— D%f(l. We

can write e; = [&} | es] where &; € Z7" and e; € Z;. Then, by construction of algorithm B, the following hold:

AT — T —TA T s *
Claid: = 211 = s;Aqiq; + e, for each aid; € A" N N.

= 25 = Yic[e) 8;Baia; + €5
= 23 = Xic[¢] S;Paid; T+ €3
This corresponds to a valid ciphertext where the secret keys associated with authority aid] € A* N N is s;.

Moreover, the randomness ey ;, €;, and es are all distributed exactly as in the real scheme. The ciphertext
components associated with the corrupted authorities aid € A* N C are simulated exactly as in the real scheme.

This precisely coincides with the distribution in Hyb{™".

« Suppose z;; ¢~ Z7' for all i € [¢] and z; ¢ Z7*'. In this case ¢y 4q; is uniform and independent over Z}
for all aid} € A* N N. Moreover, since z; is uniform and independent of all other quantities, the second and
third ciphertexts components are also uniform over Zg' and Zg, respectively. This precisely coincides with the

distribution in Hybimam).

40

We conclude that AdngST) (A) = ¢ in the evasive LWE assumption (Assumption 3.16). o

By an identical argument, we can show that under the evasive LWE assumption, for all adversaries A, the output
distributions of Hybgmam)(ﬂ) and Hybémam) (A) are also computationally indistinguishable. Static security of

Construction 6.2 holds. O
Parameter setting. Let A be a security parameter. We now instantiate Construction 6.2 as follows:

« Let the lattice dimension be n = A1/¢ for some constant ¢ > 0.

« We can set the length of the identities gid to be 7 = A.

« For security (Theorem 6.4), we require that ysmudge > A4 (myprp)™*! and y > A“’(l)t’)(smudge. Each of
t = £(1),m = m(A), xerr = xprr(4) are polynomially-bounded. Thus, we can set y = 20("°) to satisfy these
requirements, where O(+) suppresses constant and logarithmic factors.

« To support arbitrary polynomial-size ciphertext policies, we set the bound L = 2% in Theorem 6.3. To ensure

correctness, we can set m = O(nlogq) and ¢ = O(2'mAy? + (Amypre)**!). Setting q = 20(n) suffices to
satisfy these requirements.

This yields the following corollary:

Corollary 6.21 (Multi-Authority ABE for Subset Policies from Evasive LWE). Assuming polynomial hardness of LWE
and of the evasive LWE assumption (both with a sub-exponential modulus-to-noise ratio), there exists a statically-secure
multi-authority ABE for subset policies (of arbitrary polynomial size).

Acknowledgments

We thanks the TCC reviewers for helpful suggestions. B. Waters is supported by NSF CNS-1908611, a Simons
Investigator award, and the Packard Foundation Fellowship. D. J. Wu is supported by NSF CNS-2151131, CNS-2140975,
a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In
EUROCRYPT, pages 553-572, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and shorter-
ciphertext hierarchical IBE. In CRYPTO, pages 98-115, 2010.

[Ajt96] Miklos Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC, pages 99-108,
1996.

[BCD*16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth
Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical, quantum-secure key exchange
from LWE. In ACM CCS, pages 1006-1018, 2016.

[BCTW16] Zvika Brakerski, David Cash, Rotem Tsabary, and Hoeteck Wee. Targeted homomorphic attribute-based
encryption. In TCC, pages 330-360, 2016.

[BDE*18] Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque, and Mehdi Tibouchi. LWE
without modular reduction and improved side-channel attacks against BLISS. In ASIACRYPT, pages
494-524, 2018.

[Bei96] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Technion, 1996.

41

[BLMR13]

[BPR12]

[BR93]

[BTVW17]

[BV22]

[CC09]

[Cha07]
[CHKP10]

[CVW18]

[DKW21a]

[DKW21b]

[GGSW13]

[GLW21]

[GPSW06]

[GPV08]

[Kim19]

[LCLS08]

[LW11]

[LW15]

[MKE08]

Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomorphic prfs
and their applications. In CRYPTO, pages 410-428, 2013.

Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In EUROCRYPT,
pages 719-737, 2012.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM CCS, pages 62-73, 1993.

Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained prfs (and
more) from LWE. In TCC, pages 264-302, 2017.

Zvika Brakerski and Vinod Vaikuntanathan. Lattice-inspired broadcast encryption and succinct ciphertext-
policy ABE. In ITCS, pages 28:1-28:20, 2022.

Melissa Chase and Sherman S. M. Chow. Improving privacy and security in multi-authority attribute-based
encryption. In ACM CCS, pages 121-130, 2009.

Melissa Chase. Multi-authority attribute based encryption. In TCC, pages 515-534, 2007.

David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice
basis. In EUROCRYPT, pages 523-552, 2010.

Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching programs:
Proofs, attacks, and candidates. In CRYPTO, pages 577-607, 2018.

Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority ABE for DNFs from
LWE. In EUROCRYPT, pages 177-209, 2021.

Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority ABE for nc"1 from
computational-bdh. IACR Cryptol. ePrint Arch., page 1325, 2021.

Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applications. In
STOC, pages 467-476, 2013.

Rishab Goyal, Jiahui Liu, and Brent Waters. Adaptive security via deletion in attribute-based encryption:
Solutions from search assumptions in bilinear groups. In ASIACRYPT, pages 311-341, 2021.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In ACM CCS, pages 89-98, 2006.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In STOC, pages 197-206, 2008.

Sam Kim. Multi-authority attribute-based encryption from LWE in the OT model. IACR Cryptol. ePrint
Arch., page 280, 2019.

Huang Lin, Zhenfu Cao, Xiaohui Liang, and Jun Shao. Secure threshold multi authority attribute based
encryption without a central authority. In INDOCRYPT, pages 426-436, 2008.

Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In EUROCRYPT, pages
568-588, 2011.

Vadim Lyubashevsky and Daniel Wichs. Simple lattice trapdoor sampling from a broad class of distribu-
tions. In PKC, pages 716-730, 2015.

Sascha Miiller, Stefan Katzenbeisser, and Claudia Eckert. Distributed attribute-based encryption. In ICISC,
pages 20-36, 2008.

42

[MP12]

[Reg05]

[RW15]

[SW05]

[Tsa19]

[Tsa22]

[VWW22]

[Wee22]

[WFL19]

Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EURO-
CRYPT, pages 700-718, 2012.

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages
84-93, 2005.

Yannis Rouselakis and Brent Waters. Efficient statically-secure large-universe multi-authority attribute-
based encryption. In Financial Cryptography and Data Security, pages 315-332, 2015.

Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457-473, 2005.

Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from LWE. In CRYPTO, pages 62-85,
2019.

Rotem Tsabary. Candidate witness encryption from lattice techniques. In CRYPTO, 2022.

Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-IO from evasive
LWE. In ASIACRYPT, 2022.

Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In EURO-
CRYPT, 2022.

Zhedong Wang, Xiong Fan, and Feng-Hao Liu. FE for inner products and its application to decentralized
ABE. In PKC, pages 97-127, 2019.

43

