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Abstract

While there has been extensive research on race-
detection algorithms for task parallel programs, most
of this research has focused on optimizing a particular
component — namely reachability analysis, which
checks whether two instructions are logically in par-
allel. Little attention has been paid to the other im-
portant component, namely the access history, which
stores all memory locations previous instructions have
accessed. In theory, the access history component adds
no asymptotic overhead; however, in practice, it is of-
ten the most expensive component of race detection
since it is queried and (possibly) updated at each mem-
ory access. We optimize this component based on the
observation that, typically, strands within parallel pro-
grams access contiguous blocks of memory. Therefore,
instead of maintaining the access history at the gran-
ularity of individual memory locations, we maintain it
at the granularity of these (varying size) intervals. To
enable this access history, we propose (1) compiler and
runtime mechanisms that allow us to efficiently collect
these intervals and (2) a tree-based access history data
structure that allows us to update and query it at this
interval granularity. The resulting tool can race de-
tect fork-join code with amortized constant overhead,
assuming the number of intervals is small compared to
the total work of the computation. Our evaluations in-
dicate that this technique improves the performance of
race detection on several benchmarks.

1 Introduction

A determinacy race [9] (or a general race [19]),
occurs when two or more logically parallel instructions
access the same memory location in a conflicting way,
i.e., at least one of the accesses is a write. In the
context of the ask-parallel programming, determinacy
races are often considered bugs since they can lead to
nondeterministic behaviors.
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Researchers have proposed several algorithms for
detecting determinacy races in task-parallel code [16,
9, 10, 24, 2, 11, 35, 33, 39, 1, 36, 40]. Most of this
work focuses on detecting races “on the fly” as program
executes for a particular input. These algorithms
provide the strong guarantee that the race detector has
no false positives and if the race detector does not find
a race, then the program has no races for that input.
Such on-the-fly race detectors consist of two important
components: (1) a reachability analysis component
that determines whether two strands — a sequence
of instructions containing no parallel control — are
logically in parallel with each other, and (2) an access
history (also called shadow memory) component that
records (possibly a subset of ) strands that have accessed
a given memory location in the past. When a strand
s accesses a particular memory location x, the race
detector first queries the access history to find prior
strands that have accessed x in a conflicting way. Next,
the race detector queries the reachability component to
determine if any of the strands with conflicting accesses
is logically in parallel with the current strand s. If so,
a race is reported. If not, the access history is updated
with this new strand s so future strands can detect races.

The prior work on race detection has primarily
focused on designing data structures and/or runtime
mechanisms for maintaining the reachability component
in a provably and practically efficient manner. In
contrast, the access history has received little attention.
Most prior race detectors maintain access history by
using an optimized hashmap to maintain the mapping
from each memory address to previous accesses, which
allows for (amortized) constant time insertions and
queries from the access history. In practice, however,
the management of access history often incurs much
higher overhead than the reachability component does.

To illustrate this fact, Figure 1 shows the overhead
of each component of a vanilla sequential race detector
for Cilk [3, 15], a C/C++-based task parallel platform.
This race detector implements SP-Order [2], a state-of-
the-art algorithm which incurs constant overhead for
managing reachability for fork-join parallel computa-
tions. SP-Order executes the computation sequentially;
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based on the parallel constructs observed during execu-
tion, it maintains a reachability data structure that can
answer the queries about whether two strands are logi-
cally in parallel. The vanilla race detector uses an opti-
mized two-level page-table-like hashmap to manage ac-
cess history. In Figure 1, the baseline column is the run-
ning time of the program without race detection. The
reachability column shows the execution times that ac-
count for the compiler instrumentation and data struc-
ture updates to maintain the reachability data struc-
ture. The full column shows the execution times with
both reachability and access history components', indi-
cating that access history is the most expensive compo-
nent of race detection.

In this paper, we propose mechanisms to speed up
sequential race detectors for task-parallel code, focus-
ing on optimizing the access history component. The
key observation is as follows: For many task-parallel
programs, a single strand typically performs many ac-
cesses to contiguous memory locations. We shall refer
to a range of contiguous memory accessed by the same
strand as an interval. Figure 1 shows the number of
distinct (four-byte) memory words read /written and the
number of intervals read/written for the tested bench-
marks. The number of intervals can be several mag-
nitudes smaller than the number of memory words. If
we manage access history at the granularity of intervals
instead of memory words, we can reduce both the time
overhead and memory footprint of the access history.

Given this observation, we propose two advances to
optimize the access history. First, instead of checking
races at every memory access, we wait until end of a
strand and check for races on all accesses performed by
the strand at this point. This allows us to perform tem-
poral and spatial coalescing. In temporal coalescing,
we remove duplicate accesses, referred to as the dedu-
plication — if the strand accesses the same memory
location again and again, we only check for races and
record this access once at the end of the strand, thereby
reducing the number of queries to the access history
and reachability data structures. In spatial coalescing,
we coalesce contiguous memory accesses within a strand
into intervals and invoke the access history and reacha-
bility data structures at the interval granularity.

Our race detector performs coalescing at both com-
pile time and runtime. Some spatial coalescing occurs
at compile time when the compiler can statically de-
tect that the memory accesses within a strand are con-
tiguous. Doing so allows the race detector to lower the
instrumentation overhead, since instrumentation (i.e.,

TThe access history part includes queries to the reachability

component, as the tool checks for races as it updates the access
history.

invocations to the race detector) occurs at the granular-
ity of intervals as opposed to at every memory access.
The compile-time coalescing is conservative, however,
and may miss coalescing opportunities. Our detector at
runtime checks for additional opportunities for coalesc-
ing. Collectively, compile-time and runtime coalescing
allow us to exploit spatial and temporal locality that
exist in the code to reduce overheads due to instrumen-
tation and calls to access history.

The second advance is in access history data struc-
ture. Instead of storing accesses at word granularity in
a hashmap, we store them as intervals. Doing so allows
the access history to be represented in a more compact
fashion, but we need a data structure that allows for
efficient updates and queries of intervals. Given an in-
terval to insert (or query), we must find all overlapping
intervals already in the data structure efficiently.

We use a balanced binary search tree data structure
to maintain the access history. (Our implementation
uses treaps [34, 30], but any balanced binary search
tree would work.) Our construction differs from normal
interval trees since it enforces that no two intervals
within the tree overlap and allows one to quickly identify
all overlapping intervals. In particular, the cost of
inserting and querying in our data structure for an
interval x is O(h + k) where h is the height of the
tree and k is the number of intervals that overlap with
2. By maintaining a balanced binary search tree such
as a treap, our insert and query cost is bounded by
O(lgn + k) (with high probability), where n is the
number of intervals in the treap when x is inserted.
This leads us to the overall computation time as follows:
Given a computation with 77 work — the time it takes
to execute the computation on one processor — our race
detector runs in O(Ty + nlgn) time, where n is the
number of intervals generated by the program. If n is
small compared to T7, which is typically the case, our
race detector can race detect the computation in O(17)
time, incurring amortized constant overhead.

We have developed a race detector for task-parallel
code based on this design, called STINT (Sequential
Treap-based INTerval race detector).? Experiments
suggest that our optimizations are beneficial. Compared
to the vanilla system, which has an average overhead
(geometric means) of 78.13x, STINT incurs an average
overhead (geometric means) of 18.61x, which is a 4x
improvement. We also analyzed the treap operation
overhead in detail, and found that a treap operation
overhead tends to be dominated by the tree height
as the number of overlap intervals tends to be really

ZCode can be obtained at https://github.com/wustl-pctg/

STINT.

118 Copyright © 2022 by SIAM

Unauthorized reproduction of this article is prohibited



Downloaded 12/19/22 to 24.107.2.41 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

base reach.

vanilla vanilla

# accesses x100 | # intervals x10°8

full detection read write read write

chol | 0.61| 0.61 (1.00x)| 84.66 (139.78x)
(1.00x) | 488.19  (36.03x)
(1.00x) | 367.24 (84.23%)
mmul | 8.07 | 8.12 (1.00x) | 355.66 (44.07x) | 17712.5  536.9 | 33.6 8.4
( )
( )
)

fft 13.55 | 13.59
heat 4.36 | 4.34

sort 3.39 | 3.41
stra 1.49 1.50

1.00x) 72.27 (21.32x
1.00x) | 423.43 (284.18x
straz | 1.54 | 1.54 (1.00x) | 244.54 (158.79%

1466.0 671.2 2.1 0.7
2013.9 1400.9 | 325.4 16.3
5274.3 1053.8 2.2 1.0

693.7 535.1 1.3 0.2
3173.5 342.0 2.1 0.8
3814.0 216.4 4.5 1.7

Figure 1: Overheads of a vanilla race detector. Time shown in seconds. The first four columns from left to right
show the benchmark name, its running time without race detection, that with only the reachability component,
and that with the full race detection. The numbers in parenthesis show the overhead comparing to the baseline.
The last four columns show the number of memory locations and intervals accessed, on the order of millions.

small. Moreover, since the treap overhead is small
compared to other operations performed by STINT, the
race detector overhead remains stable as the number of
intervals increases.

2 Preliminaries

This paper focuses on fork-join parallelism, which cre-
ates a particular class of computation, called series-
parallel DAG [37]. STINT utilizes SP-Order [2], a
sequential race detection algorithm for fork-join parallel
programs to perform reachability. This section briefly
explain these concepts.

Fork-Join Parallelism. Languages and libraries
that enable fork-join parallelism typically provide two
main keywords for expressing logical parallelism: spawn
and sync. The spawn keyword precedes a subroutine
call and denotes that the spawned subroutine is allowed
to execute in parallel with the continuation of the
parent. The sync keyword ensures that all previously
spawned subroutines must return before the control can
pass the sync statement.?

The DAG Model. Parallel computations can be
modeled as directed-acyclic graphs (or DAG for
short), where nodes represent strands, a sequence of
instructions containing no parallel control (i.e., spawn
or sync), and edges represent dependences. For a pair
of nodes in a DAG, they are in series if there is a path
from one to the other, and are in parallel otherwise.
Fork-join computations generate a special class of DAGs
called series-parallel DAGs [37] (or SP DAGs for
short) that can be constructed by repeatedly using series
and parallel compositions.

The DAG unfolds dynamically as the program
executes. When the execution encounters a spawn,
a spawn mnode is created with two children. By
convention, the left child is the first node of the spawned
subroutine and the right child is the node representing

SLanguages differ in exact semantics and keywords, but most

task parallel languages support such fork-join parallelism.

the continuation of the parent. When the execution
successfully passes a sync, it creates a sync node with
multiple incoming edges. Thus, sequential execution
of the computation corresponds to a depth-first left-
to-right (i.e., spawned subroutine first) traversal of the
DAG, henceforth referred to as the sequential order.
Based on this convention, we say that a node a is to the
left-of node b if either 1) a is in parallel with b and
precedes b in the sequential order, or 2) a is in series
with b and follows b in the sequential order.

Race Detecting SP DAGs. We utilize the SP-
Order algorithm [2] which maintains the reachability by
remembering executed strands in two total orders: the
English order that follows the sequential order and
the Hebrew order that mirrors it (i.e., depth-first and
right-to-left). Given an SP DAG, maintaining two such
orders suffices to perform reachability analysis. In prior
work, Feng and Leiserson [9] showed that to race detect
fork-join code sequentially, it suffices to store the left-
most reader and the last writer (in sequential order) for
each memory location. SP-Order enables us to check
for whether a new reader is left-of the previous reader
in constant time.

3 Compile-Time and Runtime Coalescing

This section describes the proposed compile-time and
runtime coalescing. The compile-time coalescing can
decrease instrumentation overhead, and the runtime
coalescing reduces the number of intervals and provides
the additional benefit of deduplication.

3.1 Compile-Time Coalescing To perform
compile-time coalescing, STINT uses the Tapir com-
piler [29] and leverages its representation of task
parallelism. Although the details of how the compiler
performs coalescing are beyond the scope of this paper,
we examine at a high level what coalescing the compiler
can and cannot do.

Algorithm 1 presents a pseudocode example of
compile-time coalescing for the base case of the matrix-
multiplication code (mmul) from the Cilk-5 distribu-
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Algorithm 1: Base case of matmul

Data: Submatrices A, B, and C, of size m X n, n X p,
and m X p respectively, where each submatrix
lies inside a larger N X N matrix that is stored
in row-major order.

Result: C+ C+ A-B

for ¢ < 0 to m do

__coalesced_load_hook(C[i - N|, p);

__coalesced_store_hook(C[i - N|, p);

for j < 0 to p do

t < load(C[i- N + j];

__coalesced_load_hook(A[i - N|, n);

for k < 0 to n do

a < load(Afi- N + k]D;
__load_hook(B[k- N + j]);
b < load(B[k- N + j];
t<t+axb;

store(C[i- N + j], t);
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tion [14]. The mmul benchmark performs dense matrix-
matrix multiplication on matrices stored in row-major
order using a parallel recursive divide-and-conquer algo-
rithm. This algorithm divides the input matrices along
the longest dimension and recursively multiplies the re-
sulting rectangular submatrices. The base case of this
recursion multiplies small rectangular submatrices seri-
ally, using the pseudocode in Algorithm 1, where the
load and store functions denote hardware operations
to load and store memory, respectively.

To enable race detection, the compiler inserts calls
to the __load_hook, __coalesced_load_hook, and
__coalesced_store_hook hook functions to identify
memory accessed. In the __coalesced_load_hook
and __coalesced_store_hook functions, the first argu-
ment identifies the starting memory address loaded or
stored, and the second argument specifies the amount
of memory accessed. The __coalesced_load_hook and
__coalesced_store_hook functions in particular iden-
tify coalesced instrumentation that the compiler in-
serted. For didactic simplicity, this pseudocode assumes
that a single element of the matrix has size one.

As Algorithm 1 shows, the compiler is able to
insert coalesced instrumentation for accesses to the C
and A submatrices. The compiler justifies representing
accesses to C' using coalesced loads and stores on lines
2 and 3 as follows. Each iteration of the j loop (lines 4—
12) loads and stores memory location C[i - N + j].
Hence, one invocation of the j loop loads and stores
all of memory from C[i - N] up to, but not including,
Cli - N 4+ p]. In addition, because this base case is
serial, these loads and stores cannot race with any loads
or stores within the same invocation of the base case.
Hence, it is equivalent to represent accesses in the j loop
to individual elements of C' as coalesced accesses before

the j loop to the memory from C[i - N] to C[i - N + p].
In other words, a determinacy race will exist with a
coalesced access to this range of memory addresses if
and only if a determinacy race exists with a load or store
to an individual element of C in the j loop. A similar
analysis allows the compiler to represent the accesses to
A with a coalesced-load on line 6.

Algorithm 1 also shows an existing limitation of
the compiler’s ability to coalesce instrumentation. In
particular, line 9 shows that the compiler does not
coalesce instrumentation for loads from the B matrix
(line 10). In this code, the k loop (lines 7-11) reads the
B submatrix in column-major order. But because the
B matrix is stored in row-major order, the reads from B
in the k loop do not cover contiguous memory locations.
Hence, the compiler’s analysis of the 1oad operation on
line 10 in the context of the k loop does not allow it to
generate coalesced instrumentation for these loads. As
a result, the compiler simply instruments the load on
line 10 directly, using a call to __load_hook on line 9.

Algorithm 2: Insertion-sort base case of
cilksort
Data: Pointers [ and h into an array A of n integers
Result: Integers between [ and h are sorted

1 g+ 1+1;

2 while ¢ < h do

3 a < load(q); p+q—1;

4 while p > [ do

5 b+ load(p);

6 if b > a then store(p+ 1, b) ;
7 else break ;

8 p+—p—1

9 store(p+1, a);

3.2 Runtime Coalescing While more sophisticated
compiler analysis can reveal additional opportunities
to coalesce, the inherent limitations of compile-time
coalescing motivate runtime coalescing. Not only can
the runtime coalesce accesses to matrix B shown in
Algorithm 1 but it can also coalesce intervals that
depend on the input, such as the insertion sort for the
base case of the sort benchmark, which may repeatedly
store to the same range of memory locations between
two pointers, as shown in Algorithm 2. In this base case,
multiple executions of the inner loop (lines 4-8) may
repeatedly store to the same range of memory locations
between the pointers [ and h. But because the store on
line 6 is predicated on the comparison of input values
on line 6, the compiler cannot statically determine the
range of memory locations that this base case will store
to. In contrast, runtime coalescing can identify these
overlapping ranges and coalesce them.

To perform runtime coalescing, we use a bit
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hashmap to keep track of which memory locations are
accessed during a strand’s execution. The bit hashmap
is a compact version of the access history hashmap used
by vanilla described in Section 1. Specifically, we use
two separate two-level page-table like hashmaps to per-
form runtime coalescing: one for read accesses and one
for write accesses. When an access is made, the pre-
fix and suffix of its address are used to index into the
first- and second-level tables, respectively. Tables at the
second level are initialized lazily on first access. Each
second-level table contains an array of 64-bit integers,
where each bit represents a four-byte range. A bit is set
if the corresponding word is accessed within the current
strand and unset otherwise.

Runtime coalescing exploits the fact that the com-
piler performs some coalescing. When a coalesced load
or store hook executes, the setting of the correspond-
ing bits are done using bit tricks that employ bit-level
parallelism. As the hashmap tends to be sparsely popu-
lated, vectors are used to remember indices correspond-
ing to the first and second-level table entries set within
the strand. After the strand finishes, we iterate through
the stored indices to compute the intervals accessed and
clear out the table entries for the next strand.

Runtime coalescing provides multiple benefits.
First, runtime coalescing directly observes the program
execution and can discover opportunities due to input-
dependent or pointer-based operations that the com-
piler struggles to analyze. Second, overlapping intervals
generated at two different points in the same strand are
merged into a single interval. Finally, runtime coalesc-
ing provides deduplication: multiple accesses to the
same memory location within a strand are coalesced
into one, which incurs a single update / query to the
access history as opposed to multiple. In contrast, the
vanilla race detector checks for races at each access.
Even though the repeated memory accesses will gen-
erate repeated updates to the runtime coalescing bit
hashmaps, updates on the bit hashmaps are significantly
cheaper than those on the hashmap access history used
in vanilla, because the hashmap access history keeps
track of much more data in order to perform race de-
tection. As we shall see in Section 5, both compile-time
and runtime coalescing provide benefit, but the runtime
coalescing provides greater benefit due to these reasons.

4 Interval-Based Access History

We now describe the access history data structure that
efficiently supports (1) query to find all intervals that
potentially conflict with a given interval; and (2) update
to the data structure to insert the new interval. We also
analyze its theoretical performance.

Recall that in a sequential race detector for fork-join

parallelism, it suffices for each memory location to store
its last writer and left-most reader [9]. In a traditional
access history data structure, when a strand s writes
to this memory location ¢, we check if s is in parallel
with the left-most reader of ¢ or with the last writer
and declare a race if so. The strand s is now stored as
the last writer of this location. Similarly, if s reads this
memory location, we check if s is in parallel with the
last writer and declare a race if so. We then check if s
is left-of the existing left-most reader and store s as the
left-most reader if so.

We want to store intervals instead of individual
memory locations in the access history. We keep
separate data structures for read intervals and write
intervals. Each of these will store interval objects,
say = with three fields: x.start and z.end denote
the beginning (inclusive) and end (exclusive) of the
interval and z.accessor stores the strand we want to
store — the last writer for the write data structure
and the left-most reader for the read data structure.
When convenient, we denote an interval as three-tuple:
[start, end,accessor]. The intervals stored within
each data structure must be disjoint from each other
since each memory location can have at most one last
writer and one left-most reader.

When a new strand s generates an interval, it
is represented as an interval object o with the ap-
propriate start and end values and accessor s. We
must check if any access within o races with any
pre-existing access in the access history (if so, report
a race) and then update the access history. How-
ever, this is not straightforward. Consider the follow-
ing example. Say we had the following read inter-
vals: [8,16,al, [24, 32, ], [40, 52, ], [52,60,d]. We get a
new read interval [12,56,¢]. The tree after the up-
date depends on the relationship of e with all other
intervals. Say e is left of a and ¢, but not b and
d. After the update, the data structure must store
[8,12,a],[12,24, €], [24, 32,b], [32, 52, €], [52, 60, d]. Thus,
a new interval may overlap with many previous intervals
and some previous overlapping intervals may remain en-
tirely, and some may be removed or trimmed.

Intervals are stored in two binary search trees (one
each for read and write intervals) keyed by the start field
of the interval. The data structure is similar to interval
trees [6][Chp.14.3]; however, we enforce the additional
non-overlapping property that all intervals in the
tree must be disjoint. The two trees behave a little
differently since the accessor for each interval must be
the last writer in the write tree and the left-most reader
in the read tree.

Say we are processing strand x with accessor s.
Since the strands are processed by the race detector
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in sequential order, all previous intervals already in the
tree are “before” s in sequential order. Therefore, if
x overlaps any pre-existing interval in the write tree,
then x is kept since s is always the last writer and the
old interval is trimmed or removed. As we saw in the
example above, this is not true in the read tree since s
may not be the left-most reader for all memory locations
in x. Therefore, when we see an overlap, we must check
whether the old reader or the new reader is the left-
most reader. We will first describe how we insert an
interval in the write tree and then the read tree. We
then describe how we do queries.

4.1 Updating the Write Tree Given a tree T (as
a pointer to the root) and a write interval z, we
will use a recursive procedure to update the tree to
reflect the accesses represented by interval z. We
will remove/trim all intervals that overlap with z to
maintain the invariant that no intervals overlap with
each other in the tree.

The procedure is illustrated in Figure 2. There
are two main procedures, INSERTWRITEINTERVAL and
REMOVEOVERLAP. The INSERTWRITEINTERVAL is the
main procedure that is called at the root of the tree.
The procedure is called recursively as we walk down the
tree. When we are at a particular tree node, say y in
the tree and trying to insert node x, we can be in the
following 4 cases.

A. No overlap: As shown in Figure 2(A), when y
and z don’t overlap, we simply recurse down to one
of its children. In particular, if x is completely to
the right of y (y.end < x.start), no intervals in y’s
left subtree can overlap with x since they all end
before y.start. However, some intervals in g’s right
subtree may overlap with x, so we recurse by calling
INSERTWRITEINTERVAL (y.right, ). If y.right is
empty, we simply insert this interval at this leaf.

B. Partial overlap: Figure 2(B) illustrates the oper-
ations when z partially overlaps with y and is to
the right of y (y.start < w.start, x.start < y.end <
z.end). In this case, y.accessor is the last writer for
part of the old interval (from y.start to x.start), but
x.accessor is the last writer for memory locations af-
ter it. Therefore, we set y.end = x.start. Again, no
intervals in the left subtree of y can intersect with
x, and we recurse on the right subtree of y by call-
ing INSERTWRITEINTERVAL(x, y.left). A symmetric
procedure is used when zx is to the left of y for both
this case and the previous case.

C. Full overlap; old interval y bigger: Figure 2(C)
illustrates the operation when y fully encompasses x
(y.start < z.start and y.end > xz.end). We have up
to three intervals [y.start, z.start, y.accessor],
[x.start, x.end, x.accessor],

[z.end, y.end, y.accessor].*  We keep any one of

these intervals at this location in the tree (replacing
the old y) and recurse down the tree to insert the
other two intervals. In Figure 2 we keep the middle
interval and insert the left and right intervals. Note
that none of these intervals overlap with any other
interval in the tree since they collectively made up
y which was already in the tree before and didn’t
overlap with anything. Therefore, we will fall into
case A from now on out — we just walk down the
tree and insert in the appropriate leaf.

D. Full overlap; new interval z bigger: Figure 2(D)
illustrates case where x fully encompasses y. Now y
can be removed from the tree entirely and replaced
with z. However, there may be more intervals in
both the left and right subtrees of y which also over-
lap with x. Therefore, we use a function called RE-
MOVEOVERLAP to find and remove/trim these inter-
vals. There are two versions of this function: RE-
MOVEOVERLAPLEFT(y, z) which is called on the left
subtree and REMOVEOVERLAPRIGHT(y, «) which is
called on the right subtree. This function is illus-
trated separately in Figure 3 and explained below.?

We now describe  REMOVEOVERLAPLEFT(T), ).
(REMOVEOVERLAPRIGHT(T, x) is symmetric.) Recall
that REMOVEOVERLAPLEFT(z, z) is first called when a
newly inserted interval x replaced an interval y which
was fully within  and z was the left child of y. The
general invariant is that REMOVEOVERLAPLEFT(z, )
is called on a node z when x has been inserted into some
ancestor of z to z’s right (therefore, x.end > z.end) and
the purpose is to find and remove/trim intervals that
overlap with x. This is also a recursive function and
a subset of its cases are illustrated in Figure 3. Note
that there are fewer cases since z cannot fully encom-
pass x due to the invariant of this function. We also
show parent(z) (the old y in the example used in IN-
SERTWRITEINTERVAL) in these figures for two reasons.
First, as we will see soon, we need it for one of the
cases. More importantly, we wanted to point out that
even though REMOVEOVERLAPLEFT is initially called
on the left child, as we make recursive calls, it can be
eventually called on a right child — the function remains
unchanged regardless.

A. No overlap: If x and z don’t overlap with x to the
right of z (z.end < z.start; x cannot be to the left of
z for REMOVEOVERLAPLEFT due to the invariant

TThere may be fewer than 3 intervals if one or both end points
are equal for x and y; this is easily handled as a special case.

5We can (optionally) trim x so that it ends at y.start when
calling REMOVEOVERLAP. The explanation is easier without,

however.
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A.No Overlap 9 x §

B. Partial Overlap x x
1013 3 2 10 20 1015
¥ 10! 0y 0 5 D
Y to remove overlap
35
/ \ / \I 5 < 35 / \ / Ch\}xrtd:)nstart / \5
X
— . .
_> _> Recurse on right child
INSERTWRITEINTERVAL(y.right, x
Recurse on right child (vright, )
INSERTWRITEINTERVAL(y.right, x)
. 15 35 15 35
C. x inside y x 3 " s 15 35 D.yinside x x 35
40 40 X 15
10 10 20 30 %
y Y Replace y with x y
Replace y with x
/ \ / \ 104 15/ \5y240 / \ 15 35 \15
X x
; Recurse on both sides >

Cut y to remove overlap

INSERTWRITEINTERVAL(y left, y1)
INSERTWRITEINTERVAL(y right, y2)

Remove Overlaps on both subtrees
REMOVEOVERLAPLEFI(y left, x)
REMOVEOVERLAPRIGHT(y right, x)

Figure 2: All cases illustrating INSERTWRITEINTERVAL(y, ) — assumes and maintains the no-overlap invariant.

C.zinside x

parent(z) 15 35 parent(z)

\ 20 30
z
z overlaps with x;
/ \ splice it out.
15 35
— x
All nodes in

Recurse on left subtree
REMOVEOVERLAPLEFT(z left, x)

right subtree overlap x.
Remove it entirely.

Figure 3: Case C of REMOVEOVERLAPLEFT(z,z). =
was inserted at an ancestor to the right of z.

stated above), there can be no overlap in the left
subtree of z. Therefore, we recurse on the right sub-
tree by calling REMOVEOVERLAPLEFT(z.7ight, x).

B. Partial overlap: If z and 2z partially overlap
(z.start < m.start < z.end), we trim the interval
z by setting z.end = x.start. Again, the left subtree
of z cannot overlap with x. Since z is some ancestor
of z to the right, the entire right subtree of z must
now overlap with z and can be removed, thereby
terminating the recursion.

C. Full overlap Figure 3(C) illustrates the case where
x fully encompasses z. Again, the entire right
subtree of z must overlap with x and is removed.
In addition z itself is spliced out and replaced
with its left subtree by changing the child pointer
for parent(z) and the parent pointer of z.left. In
addition, we recurse on the left subtree of z by
calling REMOVEOVERLAPLEFT(z.left, ) to find any
additional intervals that may intersect with x.

4.2 Inserting an Interval in the Read Tree
Maintaining the read tree is more complicated. In a
read tree, when the new interval x overlaps with some
old interval y, we may keep the y if it is left-of x. As
seen in the example at the beginning of the section, this
can lead to some intervals being removed and trimmed

D.y inside x Case 1: x.accessor is left-of y.accessor
20

X
Replace y with x

(change accessor to x.accessor)
15 35 1520 \SU 35
X 1 x2

x
20 30
y Recurse on both sides

INSERTREADINTERVAL(x.left, x1)
/Qut/x to rhwe overlap INSERTREADINTERVAL(x.left, x2)
——

Case 2: y.accessor is left;gfx.ac(‘essor 0

leave y
15 20/ yo 35
Xl )

Recurse on both sides
INSERTREADINTERVAL(Y left, x1)
INSERTREADINTERVAL(Y left, x2)

Figure 4: Case D of INSERTREADINTERVAL(y, x).

while the new interval may also be trimmed in many
pieces. We have similar cases as the write tree, but the
cases are handled differently. As with the write tree, we
only show one direction — where x is to the right of y
— the other case is symmetric.

A. No overlap: This case is identical to the write tree
— we simply recurse to the appropriate subtree.

B. Partial overlap: The case of partial overlap is
slightly more complicated. We have two cases. If
the new accessor x.accessor is left-of the old acces-
sor y.accessor, then the accessor for [y.start, x.start]
is old y.accessor but the accessor for x.start on-
wards is the new x.accessor.  Therefore, this
case is handled like the write tree — we cut
the old interval y down by setting y.end =
x.start and recurse to the right subtree by calling
INSERTREADINTERVAL(y.right, ). If, on the other
hand, the old interval’s accessor y.accessor is left-
of x.accessor, then we must keep the entire inter-
val y intact. In this case, we trim z by setting
x.start = y.end and use this modified interval x to
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recurse to the right subtree.

C. Full overlap; old interval y bigger: This is the
easiest case. If the new interval is left of the old
interval, then the read tree behaves like the write
tree — the old interval is cut into three portions,
one of the portions is kept at this location, and the
other two are inserted with guaranteed no further
overlap. If the old interval is left of the new interval,
we just keep the old interval; nothing changes and
we are done.

D. Full overlap; new interval x bigger: As illus-
trated in Figure 4, the case where z fully encom-
passes y is the most different from the write tree
since we cannot simply remove y. First, y might
be left of z and therefore must be kept. Even more
importantly, there may be other intervals within y’s
subtrees that overlap with  and have accessors left
of z. Therefore, we cut x into three pieces. The mid-
dle portion stays here and is labeled with x.accessor,
if x.accessor is left-of y.accessor, or y.accessor oth-
erwise. The other two portions are inserted into the
left and right subtrees by recursing.

4.3 Queries to Check for Races In order to
check for races with interval z, we must find inter-
vals that overlap with x. Note that the procedure
INSERTWRITEINTERVALS already finds all overlapping
intervals as it walks down the tree. ¢ The main wrinkle
is that when we are in case B or C of REMOVEOVERLAP
and remove entire subtrees, we must walk through those
subtrees to check for races with all intervals in that sub-
tree. In summary, the race detection procedure works
as follows. For a write interval x, first check for races
in the read tree by using a procedure similar to INSER-
TWRITEINTERVAL, but making no modifications to the
tree itself. Then insert into the write tree while checking
for races as we go. For a read interval x, first check for
races in the write tree by using a procedure similar to
INSERTWRITEINTERVAL, but making no modifications
to the tree. Then insert into the read tree by using
INSERTREADINTERVAL.

4.4 Performance Analysis We have described the
algorithm with a generic binary search tree. In order
to keep the height low, we use a balanced binary search
tree such as a treap which has height O(lgm) with high
probability if there are m nodes in the treap.

We first bound the number of intervals that can be
in the data structure at any given time. For the write
tree, one can easily see that INSERTWRITEINTERVAL
increases the number of intervals by at most 2 since it
doesn’t create splits. For the read tree, in principle, the

6In fact, INSERTWRITEINTERVAL also finds all overlaps —
INSERTWRITEINTERVAL is more efficient, however.

number of intervals in the tree can double with a single
insertion. We use an amortization argument to argue
that it cannot happen all the time.

LEMMA 4.1. When INSERTWRITEINTERVAL  (resp.
INSERTREADINTERVAL) has been called on the root of
the write tree (resp. read tree) m times, then the total
number of intervals in the respective tree is O(m).

Proof. We first look at the easier case of the write
tree. First, note that REMOVEOVERLAP doesn’t add
any new intervals, only removes or trims existing ones
and neither does case A for INSERTWRITEINTERVAL.
Cases B and D also just trim intervals, but do not add
new ones. The only way a new interval is added is (a)
x reaches a leaf node in case A and gets added (adding
only one interval); or (b) in case C, we split an existing
interval y and insert y; and y». In this case y; and yo
are guaranteed to have no overlaps and get added at the
leaves, causing an additional two intervals. Therefore,
every time we insert a new interval, we add at most two
additional intervals to the tree.

Now consider the more complicated case of the
read tree. Again, just like the write tree, cases A-C
do not add intervals to the tree. However, case D is
interesting, because we call INSERTREADINTERVAL on
both subtrees. There is no guarantee that these new
x1 and x5 won’t also overlap with additional intervals
further down the tree and subdivide further. In the
worst case, if we had i intervals before a particular
interval was added, we can have 27 + 1 intervals after it
was added. Consider the following example: say we had
[1,2,a], [3,4,b], and [5,6, | in the tree. If we read an
interval [0, 7, d] where a, b, c are all left-of d, our tree will
contain [0,1,d)], [1,2,al], [2.3.d], [3,4,b], [4,5,d], [5,6,],
and [6,7,d].

However, it turns out that the total number of
intervals cannot double with every insertion. We will
see this by counting not just intervals, but also gaps.
Gaps are memory ranges between consecutive intervals
— in our example before d is inserted, [0,1], [2,3],
[4,5], [5,—] are gaps. When we insert an interval that
doesn’t overlap with any existing interval, we increase
the number of intervals by exactly one and we increase
the number of gaps by at most one, for a collective
increase of at most 2 (we may not increase the number
of gaps if the new interval is right next to another
or decrease the number of gaps by one if we fill in
the gap between two intervals). When we insert an
interval that overlaps other intervals, we may increase
the number of intervals by a lot, but only by filling in
gaps. Therefore, the collective increase in the number
of gaps and intervals is at most two in all cases. An
empty tree has one gap. Since each insert increases the
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number of gaps and intervals (collectively) by at most
2, the total number of intervals is at most 2m—+1. O

Now we can bound the total insert and query time.
Again, it is relatively straightforward to see that queries
take O(h+k) time for write intervals since the procedure
involves walking down the tree and checking every
overlapping interval. For the read tree, we must again
do an amortization argument based on the overlapping
intervals.

LEMMA 4.2. Inserting an interval and querying into the
access history takes O(h+ k) time where h is the height
of the larger tree (read or write) and k is the number of
intervals that overlap with x across both trees.

Proof. We first look at the easier case of the write
tree. First, note that REMOVEOVERLAP doesn’t add
any new intervals, only removes or trims existing ones
and neither does case A for INSERTWRITEINTERVAL.
Cases B and D also just trim intervals, but do not add
new ones. The only way a new interval is added is (a)
x reaches a leaf node in case A and gets added (adding
only one interval); or (b) in case C, we split an existing
interval y and insert y; and yo. In this case y; and ys
are guaranteed to have no overlaps and get added at the
leaves, causing an additional two intervals. Therefore,
every time we insert a new interval, we add at most two
additional intervals to the tree.

Now consider the more complicated case of the
read tree. Again, just like the write tree, cases A—C
do not add intervals to the tree. However, case D is
interesting, because we call INSERTREADINTERVAL on
both subtrees. There is no guarantee that these new
r1 and xo won’t also overlap with additional intervals
further down the tree and subdivide further. In the
worst case, if we had ¢ intervals before a particular
interval was added, we can have 27 + 1 intervals after it
was added. Consider the following example: say we had
[1,2,a], [3,4,b], and [5,6,¢| in the tree. If we read an
interval [0, 7, d] where a, b, ¢ are all left-of d, our tree will
contain [0,1,d], [1,2,al, [2.3.d], [3,4,b], [4,5,d], [5,6,],
and [6,7,d].

However, it turns out that the total number of
intervals cannot double with every insertion. We will
see this by counting not just intervals, but also gaps.
Gaps are memory ranges between consecutive intervals
— in our example before d is inserted, [0,1], [2,3],
[4,5], [6,—] are gaps. When we insert an interval that
doesn’t overlap with any existing interval, we increase
the number of intervals by exactly one and we increase
the number of gaps by at most one, for a collective
increase of at most 2 (we may not increase the number
of gaps if the new interval is right next to another

or decrease the number of gaps by one if we fill in
the gap between two intervals). When we insert an
interval that overlaps other intervals, we may increase
the number of intervals by a lot, but only by filling in
gaps. Therefore, the collective increase in the number
of gaps and intervals is at most two in all cases. An
empty tree has one gap. Since each insert increases the
number of gaps and intervals (collectively) by at most
2, the total number of intervals is at most 2m+1. 0

THEOREM 4.1. Across the entire computation, the total
cost of checking for races is O(nlgn + T1) where n is
the total number of intervals generated by the program
and Ty is the work.

Proof. The total number of intervals in either tree
never exceeds O(n) from Lemma 4.1. Therefore, from
Lemma 4.2, the cost of each individual interval is
O(lgn + k) if we use a balanced tree. If an interval
overlaps k other intervals, then it must have size at
least k and therefore, the program must do k£ work to
generate this interval. Therefore, over all intervals, the
total cost of race detection is O(nlgn+T;) where nlgn
term comes from adding the lgn cost over n intervals
and T; comes from adding k over all intervals. 0

5 Empirical Evaluation

In this section, we empirically evaluate STINT, the race
detector that incorporates the optimizations described
in Sections 3 and 4 and their impact on performance.
Experiments suggest that our optimizations are bene-
ficial. Compared to the vanilla system, which has an
average overhead (geometric means) of 78.13x, STINT
incurs an average overhead (geometric mean) of 18.61x.
Detailed analysis indicates that the overhead of a sin-
gle treap operation is dominated by the tree traversal
as the number of overlapping intervals tend to be small.
Moreover, since the treap overhead is small compared to
other operations performed by STINT, STINT overhead
stays constant as the number of intervals increases.

Experimental Setup. We used seven standard task-
parallel benchmarks (where b indicates base-case size
and other parameters describe the input size): Cholesky
decomposition (chol, n = 2000,z = 20000,b = 16);
parallel mergesort (sort, n = 2.5¢7,b = 2048); fast-
Fourier transform (fft, n = 226 b = 128); heat diffu-
sion simulation on a 2D grid (heat, nx = 2048, ny =
2048,b = 10); matrix multiplication (mmul, n =
2048,b = 64), and two versions of Strassen’s algorithm
for matrix multiplication, stra and straz, which use
row-major order layout and Morton Z layout, respec-
tively (n = 2048,b = 64).

All experiments were run on a machine with two
20-core Intel Xeon Gold 6148 processors, clocked at
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2.40 GHz, with hyperthreading disabled. Each core
has separate private 32 KB L1 data and 32 KB L1
instruction caches, and a 1 MB private L2 cache. Each
socket has a 27.5 MB shared L3 cache. The machine
has 768 GB of main memory. All software is compiled
with the OpenCilk [28] compiler, based on Tapir [29],
with -03 optimizations and run on Linux kernel version
4.15. We modified the compiler to perform compile-time
coalescing as discussed in Section 3. Each data point is
the average of 5 runs with standard deviation < 4%
unless stated otherwise.

Overview of Results. We ran the benchmarks with
the following four versions of the race detector to tease
out the impact of each optimization.

e vanilla employs an optimized two-level page-table
like hashmap to manage access history and uses
a compiler that generates instrumentation for each
mMemory access.

e compiler introduces the compile-time coalescing dis-
cussed in Section 3.1, with the same hashmap to man-
age access history as in vanilla.

e comp+rts includes both compile-time and runtime
coalescing discussed in Section 3 but still uses the
same hashmap to manage access history.

e STINT includes both compile-time and runtime
coalescing and uses the treap construction in Section 4
to manage access history.

All race detectors utilize the same implementation based

on the SP-Order algorithm [2] to maintain reachability.

These different race detectors allow us to gauge the
impact of each optimization. By comparing vanilla and
compiler, we gauge how much instrumentation overhead
is reduced. By comparing compiler and comp+rts, we
gauge how much overhead the full coalescing reduces.

By comparing comp+rts and STINT, we measure the

impact of using a treap instead of a hashmap, which

incurs higher overhead per operation but reaps the full
benefit of coalescing.

‘ vanilla compiler comp+rts STINT
chol | 84.66 (138.79x) 82.87 (135.85x) 26.73 (43.82x) 19.22 (31.73x)

)
£ft  |488.19 (36.03x) 368.76 (27.21x) 304.92 (22.50x) 489.71 (36.14x)
heat [367.24 (84.23x) 326.03 (74.78x) 144.43 (33.13x) 23.24 (5.32x)
mmul [355.66 (44.07x) 345.08 (42.76x) 219.25 (27.16x) 220.82 (27.36x)
sort | 72.27 (21.32x) 69.39 (20.47x) 40.63 (11.98x) 15.81 (4.66x)
stra |423.43 (284.18x) 414.52 (278.20x) 96.30 (64.63x) 38.33 (25.74x)
straz|244.54 (158.79x) 244.36 (158.68x) 100.15 (65.03x) 51.66 (33.62x)

Figure 5: Execution times (in seconds) and overheads
of different versions of the race detector compared to
the baseline (i.e., no race detection), whose values are
shown in Figure 1.

Figure 5 shows the race-detection overhead com-
pared to the baseline execution time, i.e., no race de-
tection, running each version of the detector. For most

benchmarks, each additional optimization brings some
benefit to the overhead reduction, leading to the fi-
nal result, where STINT incurs an average (geomet-
ric mean) of 18.61x overhead, much less than that of
vanilla, 78.13x. The only exception is £ft, whose over-
head increased from comp-+rts to STINT; we explain
the reason later in the section.

Compile-Time vs. Runtime Coalescing. Now we
analyze in more detail the benefit of compile-time versus
runtime coalescing. The overhead decreased between
vanilla and compiler but not as substantially as between
vanilla and comp-rts for the following reasons. First,
comp-rts is able to coalesce more. Although the access
history in both comp-+rts and compiler handles a given
interval at four-byte granularity, the number of intervals
generated is correlated with the number of top-level
calls into the access history. Thus, comp-rts incurs
less function-call overhead to query and update the
access history. Second, comp-+rts takes advantage of the
runtime deduplication, which results in fewer updates to
the hashmap.

To get a better sense of how much the compile-
time versus runtime coalescing can do, we separately
collected various memory access pattern generated by
running vanilla, compiler (compile-time coalescing) and
by comp+rts (both compile-time and runtime), shown
in Figure 6. First, we shall examine the numbers shown
on the left side of the table: the numbers of accesses
/ intervals generated by all three version. In some
benchmarks, such as mmul and heat, the compiler was
able to coalesce in a non-negligible way, but in most
benchmarks, the compiler cannot coalesce as much. The
runtime coalescing other the other hand, seems much
more effective in coalescing and deduplicating, leading
to two or three order of magnitude of decrease in the
number of intervals. Moreover, the average sizes of
intervals (avg.) tend to be a lot larger with runtime
coalescing.

Another question is, how much impact does the
runtime deduplication have in reducing the overhead.
We can gauge the answer to this question by looking
at the total bytes that made into the access history
(sum), also shown in the table. If the runtime performs
coalescing only but not deduplication, the total bytes
accessed should not change from compiler to comp-rts.
Thus, by comparing the total bytes accessed generated
by compiler versus comp-rts, we can tell that most
benchmarks benefit from deduplication.

This data, combining with the data in Figure 5,
indicate that while both compile-time and runtime
coalescing can be beneficial, the benefit from runtime
is more significant.
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vanilla compiler both
ace. (r) acc. (w)|int. (r) int. (w)|int. (v) int. (w)|| avg.

compiler both

compiler both
(r) avg. (w)|avg. (r) avg. (w)| sum (r) sum (w)|sum (r) sum (w)

chol 1466.0 671.2| 1430.3 100.6 2.1 0.7 8.44 105.3 977.2 873.6 || 11510.2 10103.6 | 1914.5 641.9
fft 2013.9  1400.9| 2013.8 1007.6| 325.4 16.3 4.9 7.5 29.28  462.45| 94743 7168.0| 9084.6  7168.0
heat 5274.3  1053.8 43.2  1053.8 2.2 1.0]] 1946.4 15.95| 9635.3 16375.9 || 80137.7 16032.0 | 20004.9 16032.0
mmul | 17712.5 536.9 |17196.5 16.8 33.6 8.4 4.1 128.0 128.0 128.0 (| 67568.0  2048.0| 4096.0  1024.0
sort 692.7 535.1| 2978 535.1 1.3 0.2 18.6 8.0 2256.7 13042.0|| 5286.1 4083.4| 2870.4 2861.0
stra 3173.5 342.0| 2665.7 342.0 2.1 0.8 16.7 12.2] 1886.8  2926.6 | 43244.5 3967.1| 3824.4  2312.7
straz| 3814.0 216.4| 3814.0 216.4 4.5 1.7 14.5 16.0| 2048.0 2048.0| 52708.5 3302.0| 8804.5 3302.0

Figure 6: Execution statistics on memory accesses generated when running wvanilla, with comiler coalescing
(compiler), and with both compiler and runtime coalescing (both). The acc. and int. indicate the number of

accesses / intervals that made into the access history,

shown in millions. The avg. shows the average size per

interval accessed and the sum shows the total size (in Mbytes) accessed. The () / (w) indicate read or write.

hashmap treap
chol 893 141 Figure 7: The total time
fft 207.72 39250 (in seconds) each bench-
heat 123.63 243 mark spent updating its ac-
mmul 15.94 - 17.51  ooq history using hashmap
sort 2636 1.54 (measured with comp-+rts)
stra 59.60 1.62
straz|  52.00 3.50 VOrSUS treap.

Hashmap vs. Treap. Now we analyze the overhead of
the treap construction in more detail and also explain
why fft sees an overhead increase from comp-rts to
STINT. We measured the time that comp+rts and
STINT spent updating their respective access histories,
shown in Figure 7. Indeed, the treap overhead is much
larger than that of the hashmap in fft.

There are multiple factors at play here. Given an
interval of size x, the hashmap needs to perform 2z
operations (insert and query). On the other hand, while
the STINT can reap the benefit of coalescing fully, an
update to the treap incurs O(h+k) time, where h is the
height of the treap and k is the number of overlaps.

It turns out that while coalescing reduces the num-
ber of intervals, the reduction for fft, compared to
other benchmarks, is less significant, and the resulting
interval size is smaller as well (data shown in Figure 6).
Thus, the trade-offs made by using a treap do not work
well for benchmarks with characteristics like £fft (i.e.,
less reduction in the number of intervals and smaller
interval size).

Analysis of Treap Overhead. To better understand
the treap operation overhead, we collected more data
using three representative benchmarks, fft, mmul, and
sort, where the STINT performs worse, comparable,
and better than the comp+rts version (that utilizes a
hashmap), respectively. Figure 8 shows the execution
times and other stats of these benchmarks running
baseline (no race detection), comp+rts, and STINT on
different input sizes. The execution times shown here
are the average of three runs.

1

As the input size increases, the number of intervals
n should increase as well, and we would like to under-
stand how the overhead in STINT may grow. Given a
treap operation, its overhead is O(h + k) where h is the
height and k is the number of overlapping intervals. In
the worst case, k can be large. The data in the two right-
most columns, however, shows that £ is typically small,
and the overhead per treap operation is dominated by
the nodes visited (bounded by O(h)).

Given that the treap operation is dominated by the
tree height, one would expect the operation overhead
grows with O(lgm) with high probability, where m is
the number of nodes in the tree. As such, in the worst
case, the execution time of a benchmark can increase
and grow with O(nlgn), where n is the number of in-
tervals generated during execution. Fortunately, as the
numbers on the left indicate, the STINT overhead com-
pared to the baseline (base) remains fairly stable across
different input sizes. This may seem counterintuitive,
but the numbers shown in treap oh offer a clue: the
overhead incurred by the treap data structures is rel-
atively small compared to the rest of the race-detector
overhead such that even if the treap overhead grows, the
race-detector overhead is still dominated by other oper-
ations. Consequently, the treap overhead is too small
to have much impact on the final execution time. The
only exception to this is £ft, which does not work well
with using treap as its access history due its execution
characteristics as explained earlier.

6 Related Work

Many tools employ some form of shadow memory
to store shadow values of memory locations in the
program-under-test; examples include memory check-
ers [18, 4, 31] and race detectors [27, 32, 12, 10, 2, 7,
25, 35]. Researchers have explored ways to optimize
shadow memory data structures,. Some schemes en-
code the shadow values to reduce the space used for
each memory location [17, 27, 32, 31, 5, 23], but they
tend to be tool specific and can affect the precision
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input  base comp—+rts STINT

hash oh  treap oh  hash ops treap ops # modes # overlaps

fft 221 233 58.65 (25.17x) 80.21 (34.42x) 41.45 63.01 2.60e3 1.42¢8 29.29 0.97
225 536  125.66 (23.44x)  180.03 (33.59x) 88.44 142.81 5.21e8 2.85¢8 28.54 0.97

226 13.55  304.92 (22.50x)  489.71 (36.14x)  207.72 392.50 1.22¢ 6.83¢8 29.56 0.98

mmul | 1024  1.01 27.20 (26.93x) 27.03 (26.76x) 1.82 1.65 4.19¢7 1.05€7 16.50 0.69
2048  8.07  219.25 (27.16x)  220.82 (27.36x%) 15.94 17.51 3.36€8 8.39¢7 19.31 0.69

4096 65.98 1763.03 (26.72x) 1793.49 (27.18x)  122.05 152.51 2.68¢ 6.71e8 21.54 0.70

sort | 5.0  7.17 88.68 (12.37x) 34.32 (4.79%) 57.99 3.63 8.53¢8 7.02e8 36.53 1.88
1.0e® 1499  179.12 (11.95%) 70.80 (4.72x)  115.72 7.40 1.71€° 1.45€7 38.67 1.90

2.0e8  31.57  389.38 (12.33x) 152.76 (4.84x)  254.27 17.65 3.81e? 3.21e7 40.42 1.90

Figure 8: Execution times of fft, mmul, and sort running on baseline (base, i.e., no race detection), comp+rts,
and STINT on different input sizes, with overhead compared to base shown in parenthesis. On the right of the
execution times, we also show various stats for comp+rts (using a hashmap) and STINT, where the oh indicates
time spent on access history only, the ops indicates the number of hashmap / treap operations, the # nodes
shows the average number of nodes visited per treap operation, and the # overlaps shows the average number of

overlaps encountered per treap operation.

of the analysis. There are various versions of direct-
mapped tables [5, 23, 21, 31] or multi-level transla-
tion schemes [41, 17] which provide various trade-offs in
terms of access time and space. Researchers have also
explored optimizations, such as vectorization, for ac-
cessing and updating the ranges of entries in the shadow
memory table [17].

Coalescing of accesses into intervals has been ex-
plored as an optimization in the context of data race
detectors for pthreaded code RedCard [13] and Slim-
Fast [22] use compile-time coalescing only and use a
hashtable with one location per interval. Therefore,
they can coalesce together a set of variables only when
the compiler can statically prove that they are accessed
together in all strands (synchronization-free regions or
SFRs in their terminology) so that a single key can be
used to represent the set in the hashtable. In contrast,
we employ runtime coalescing and our tool dynamically
splits intervals as needed during runtime.

SlimState [38] and BigFoot [26] employ dynamic
coalescing for (only) arrays. These tools convert an
array into an object with multiple partitions with
predefined access patterns (either contiguous or strided)
and these partitions and their accessors are stored in
shadow memory. These papers do not detail what data
structures are used to store such partitions and how
much overhead such an operation incurs, as execution
time bound is not their primary focus. Our work focuses
on coalescing memory accesses that span contiguous
memory locations (i.e., intervals); it is not limited to
arrays with particular access patterns. Moreover, we
show that our treap construction allows for provably
efficient insertion or updating of a new interval.

Work by Park et al. [20] is perhaps the most closely
related to our work. Their data-race detector employs
a skiplist to manage shadow memory. However, a

key difference is that their detector does not remove
redundant intervals. If a new interval = overlaps
existing intervals y and z, after insertion of z, all three
intervals co-exist in the skiplist. Our work replaces
the existing intervals upon insertion of z (though =z is
checked against y and z). Doing so allows the insertion,
update, or query of a given interval z to be done in
time O(lgn + k), where k is the number of intervals
in the data structure that overlap with z (in our data
structure, none of these k intervals overlap with each
other). Park et al.’s bound for insertion, update, and
query is O(lgn + k') time, where &/, the number of
intervals in their data structure that overlap with z;
however, this k¥’ may be much larger than the k in our
bound since many of these k' intervals may overlap or
even be duplicates of each other.

7 Conclusion and Future Work

We have presented an optimization of access history
to speed up race detectors for task parallel programs.
While we focus on series-parallel programs in this paper,
our design would work out of the box in other instances,
such as race detector for pipelines or 2D grids [39, 8]
since it is still sufficient to store one reader and one
writer for each memory location. There are several di-
rections of future work: First, for programming con-
structs such as futures, it is not sufficient to store one
reader per memory location [36, 1] and generalizing our
shadow memory to such programs would be interesting.
Second, designing a parallel race detector with our op-
timized access history raises some interesting challenges
— primarily, how to handle concurrent accesses to the
binary search tree data structure while still maintaining
efficiency, both theoretically and in practice. Finally, we
would like to investigate the use of our shadow memory
in tools other than race detection.
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