
A Bargaining Game for Personalized, Energy
Efficient Split Learning over Wireless Networks

Minsu Kim, Alexander DeRieux, and Walid Saad
Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA.

Emails: {msukim, acd1797, walids}@vt.edu.

Abstract—Split learning (SL) is an emergent distributed learn-
ing framework which can mitigate the computation and wireless
communication overhead of federated learning. It splits a ma-
chine learning model into a device-side model and a server-side
model at a cut layer. Devices only train their allocated model and
transmit the activations of the cut layer to the server. However,
SL can lead to data leakage as the server can reconstruct
the input data using the correlation between the input and
intermediate activations. Although allocating more layers to a
device-side model can reduce the possibility of data leakage, this
will lead to more energy consumption for resource-constrained
devices and more training time for the server. Moreover, non-iid
datasets across devices will reduce the convergence rate leading
to increased training time. In this paper, a new personalized SL
framework is proposed. For this framework, a novel approach for
choosing the cut layer that can optimize the tradeoff between the
energy consumption for computation and wireless transmission,
training time, and data privacy is developed. In the considered
framework, each device personalizes its device-side model to
mitigate non-iid datasets while sharing the same server-side
model for generalization. To balance the energy consumption
for computation and wireless transmission, training time, and
data privacy, a multiplayer bargaining problem is formulated to
find the optimal cut layer between devices and the server. To
solve the problem, the Kalai-Smorodinsky bargaining solution
(KSBS) is obtained using the bisection method with the feasibility
test. Simulation results show that the proposed personalized
SL framework with the cut layer from the KSBS can achieve
the optimal sum utilities by balancing the energy consumption,
training time, and data privacy, and it is also robust to non-iid
datasets.

I. INTRODUCTION

Federated learning (FL) is a promising solution for dis-
tributed inference as it enables multiple devices and a server
to train a shared model without revealing private data [1].
Since each device trains a whole model and transmits it to
the server iteratively, significant wireless communication and
computation overhead can exist on devices. To mitigate this
challenge, split learning (SL) was proposed in [2], In SL the
model is split into two separate portions, which are a device-
side model and a server-side model, at the cut layer. The
devices and the server communicate over a wireless channel. A
device only needs to train its allocated model and transmit the
activations of the cut layer to the server. Then, the server with
more computing resources trains the remaining model based
on the received information. However, the server can still
reconstruct the private data of the devices from the received
activations due to the high correlation between the activations

This work was supported by the U.S. National Science Foundation under
Grant CNS-2114267.

and the input when the allocated device-side model is too
shallow [3], [4]. Although one can reduce the possibility
of data leakage by increasing the device-side model, the
training will become computationally intensive for resource-
constrained devices. In addition, this will increase the training
time as the server should wait until devices finish processing
their models. Moreover, non-iid datasets across devices will
increase the training time by reducing the convergence rate.
Thus, it is important to find the optimal cut layer by balancing
the energy consumption related to computation and wireless
transmission, training time, and data privacy and to develop
an algorithm for robust performance over non-iid datasets.

Several prior works [3]–[6] studied the problems of data
privacy and non-iid datasets in SL scenarios over commu-
nication networks. In [5], the authors proposed SplitFed in
which device-side training was parallelized and differential
privacy was incorporated to improve data privacy. The work in
[3] demonstrated that data leakage can happen when training
convolutional neural networks in SL. In [4], the authors
proposed a novel SL algorithm to enhance data privacy by
minimizing the distance correlation between the intermediate
activations and the input data. Meanwhile, in [6], the authors
studied the use of SL at inference stage over wireless networks
and the impact of non-iid datasets on its performance.

However, these works [3]–[6] did not consider the impact
of the cut layer on energy consumption, training time, and
data privacy. Only few works such as [7] and [8] considered
the optimal cut layer in terms of training latency. The work in
[7] developed a local-loss-based training for SL and derived
the optimal cut layer to minimize the training latency. In [8],
cluster-based parallel SL was proposed along with a resource
management algorithm to minimize its training time by opti-
mizing the cut layer selection. To the best of our knowledge,
there are no prior works on SL that jointly consider energy
consumption for computation and communication, training
time, and data privacy to obtain the optimal cut layer for
devices and the server.

The main contribution of this paper is a novel personalized
SL framework that can handle heterogeneous datasets and
that is equipped with a new approach to find the optimal cut
layer between devices and the server1. In our personalized
SL model, the learning model is divided into two separate
portions: a device-side model and a server-side model. Each
device personalizes its own device-side model while sharing

1The source code is publicly available on https://github.com/news-vt.

Fig. 1: An illustration of the personalized SL system over
wireless networks.

the same server-side model. At the beginning of the learning,
each device performs forward propagation on its allocated
model in parallel and transmits the activations of the cut
layer to the server. Then, the server completes the forward
propagation with each device’s activations and performs back
propagation on its model separately, in parallel. The server
transmits the gradients of its last layer to the corresponding
devices so that they can finish back propagation. Subsequently,
the server performs FedAvg on its updated models to generate
a new server-side model. We then formulate utility functions
for the devices and the server by capturing energy consumption
of computation and communication, training time, and data
privacy. In particular, devices can reduce energy consumption
by choosing a shallow cut layer. However, this can result in
data leakage due to the high correlation between the cut layer’s
activations and the input data. Meanwhile, the server may want
to choose the shallow cut layer so that it can leverage its
computing capability to minimize the training time. To capture
this conflict over the cut layer between devices and the server,
we formulate a multiplayer bargaining problem whose goal is
to maximize the utilities of devices and the server. To solve the
problem, we obtain the Kalai-Smorodinsky bargaining solution
(KSBS) using the bisection method with the feasibility test.
Simulation results show that personalized SL with the optimal
cut layer from the KSBS can achieve robust performance over
non-iid datasets with fast convergence while achieving the best
sum utilities by balancing the energy consumption, training
time, and data privacy.

The rest of this paper is organized as follows. Section II
presents the system model. In Section III, we formulate the
bargaining problem. Section IV provides simulation results.
Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a personalized SL system, in which one server
and a set of devices N with |N | = N (e.g. mobile or Inter-
net of Things (IoT) devices) collaboratively train a machine
learning (ML) model to execute a certain data analysis task.

All devices have their personalized layers while sharing the
same subsequent layers with the server as shown in Fig. 1. The
server generates an ML model w for an image classification
task. Let |w| be the number of model parameters in the
generated model. For device k, we define wd,k as the device-
side model, ∀k ∈ N and wS as the server-side model. We
use α such that 0 ≤ α ≤ 1 to allocate |wd,k| = α|w|,
∀k ∈ N , model parameters to a device-side model and
|wS | = (1−α)|w| model parameters to the server-side model.
Note that all device-side models share the same architecture
while they are personalized to each device. The main goal of
the personalized SL system is to solve the following problem:

min
wd,wS

1

D

∑
k∈N

∑
l∈Dk

ℓ(wd,k,wS ,xkl, ykl), (1)

where wd = (wd,1, . . . ,wd,N), Dk is the input dataset of
device k with |Dk| = Dk, D =

∑
k∈N Dk is the total number

of data samples across devices, and ℓ(·, ·, ·, ·) is a loss function
for a given sample. We assume that all devices use the same
loss function. xkl is an input vector l of device k, and ykl is
the corresponding output with l = {1, . . . , Dk}. Without loss
of generality, we consider unbalanced and non-iid dataset Dk

across devices.

A. Proposed Personalized SL algorithm

We now describe the proposed algorithm to solve problem
(1). The server uses FedAvg [1] to train wS while each device
updates its personalized layers using a gradient based algo-
rithm. For a given α, each device k ∈ N receives its device-
side model wd,k from the server and initializes it. The server
also generates wS,k,∀k ∈ N . Motivated by [5] and [9], we
assume that each device k ∈ N performs forward propagation
in parallel on wd,k at each local step using mini-batch ξk.
Then, device k ∈ N transmits the intermediate outputs, i.e.,
activations, ad,k and the corresponding labels Yk ∈ ξk to
the server. Based on the received information, the server can
finish forward propagation and perform back propagation on
wS,k(t). Subsequently, it transmits the gradients of its last
layer to the corresponding device. Then, device k can update
wd,k(t) using the received gradients. After I local steps, the
server perform FedAvg on wS,k(t),∀k ∈ N , to generate
wS(t+1) =

∑
k∈N

Dk∑
k∈N Dk

wS,k(t). Then, at the next global
round t+1, the server sets wS,k(t+1) = wS(t+1), ∀k ∈ N .
We summarize the aforementioned algorithm in Algorithm 1.

B. Wireless Transmission and Computing Model

1) Wireless transmission model: After device k finishes
forward propagation on wd,k, it transmits activations ad,k
and the corresponding labels Yk to the server using orthog-
onal frequency domain multiple access (OFDMA). Then, the
achievable rate of device k can be given by

Rk = W log2

(
1 +

Pkhk

N0W

)
, (2)

where W is the bandwidth allocated to device k, hk is the
channel gain between device k and the server, Pk is the

Algorithm 1: Proposed Personalized SL Algorithm
1 while global round t ̸= R do
2 if t = 0 then
3 Initialize wd,k(0) and wS,k(0) ∀k ∈ N ;

4 Sample a set of devices N ;
5 for device k ∈ N do
6 while local step i ̸= I do

/* Forward Propagation */
7 Device k samples mini-batch ξk

ad,k ← forward(wd,k(t), ξk);
8 Device k transmits ad,k and label Yk to server;
9 ŷk ← forward(wS,k(t), ad,k);

/* Backward Propagation */
10 ℓk(t)← loss(Yk, ŷk);
11 Server computes ∇ℓk(wS,k(t));
12 wS,k(t)← wS,k(t)− η∇ℓk(wS,k(t));
13 Server transmits gradient of its last layer dad,k(t) to device

k ;
14 Using dad,k(t), device k updates

wd,k(t)← wd,k(t)− η∇ℓk(wd,k(t))

/* FedAvg */

15 wS(t + 1)←
∑

k∈N
Dk∑

k∈N Dk
wS,k(t);

16 Set wS,k(t + 1) = wS(t + 1), ∀k ∈ N ;

transmission power, N0 is the power spectral density of white
Gaussian noise. Then, the transmission time to upload ad,k
and Yk will be

τk =
|ad,k|+ |Yk|

Rk
. (3)

Then, the energy consumption to transmit ad,k and Yk to the
server is EU

k = τkPk. Since the server usually has a high
transmission power and large bandwidth for the downlink, we
neglect the energy and the time to transmit the gradients of
its last layer [10].

2) Computing model: Let fk be the CPU frequency of
device k. Then the energy consumption to train wd,k for one
global round using Dk will be given by [7]

EC
k (α) = καDkLkf

2
k , (4)

where κ is the effective capacitance coefficient of CPU [11],
Lk is the number of required CPU cycles to process one data
sample. Note that EC

k (α) is a function of α since device k
processes wd,k, which has α|w| number of model parameters.
The computation time will be

Tk(α) =
αLkDk

fk
. (5)

Similarly, we can define the energy consumption of the server
for one global round t as ES(α) =

∑
k∈N Dk(1−α)κLSf

2
S ,

where LS is the number of requires CPU cycles to pro-
cess one data sample for the server and fS is its CPU
frequency. Then, the computation time of the server will
be TS(α) = maxk∈N Dk(1 − α)LS/fS . Since the server
processes wS,k,∀k ∈ N in parallel, TS(α) will be determined
by the largest computation time.

C. Utility Functions

Now, we define the utility functions of each device and
the server. Since the server usually has a strong computing

capability, it may want to set α small so as to reduce the
elapsed time during training. For devices, the optimal α should
neither be too small because of the possibility of data leakage
nor too large because of the energy consumption for training.
Specifically, there exists high probability of data leakage
when device-side models are shallow. As α decreases, the
correlation between the input data and an intermediate layer
output, i.e., activations ad,k, increases. Hence, it is possible
to reconstruct input data from activations as shown in [3] and
[4]. In other words, an honest-but-curious server can do model
inversion attack during training to restore private input data
[12]. However, training a large device-side model would be
also infeasible for resource-constrained devices since training
a deep neural network consumes significant energy.

To capture this tradeoff between privacy and energy con-
sumption for devices, we define the utility function of each
device k ∈ N for one global round as follows

Ud,k(α) = ckfk︸︷︷︸
(a)

−(EC
k (α) + IEU

k︸ ︷︷ ︸
(b)

) + λk log2(1 + α)︸ ︷︷ ︸
(c)

, (6)

where (a) is the received reward from the server for the
allocated computing resources with payoff ck, (b) is the
energy consumption for training wd,k and transmitting the
intermediate outputs to the server, and (c) is a function to
measure privacy protection with coefficient λk to capture
the preference of data privacy. Note that as α increases the
correlation between input data and the intermediate outputs
become decreased [4]. We then define the utility function of
the server for one global round as below

US(α) = B −
[∑
k∈N

ckfk︸ ︷︷ ︸
(a)

+γ ES(α)︸ ︷︷ ︸
(b)

+ (1− γ)

{
TS(α) + max

k∈N
Tk(α) + IE[τk]

}
︸ ︷︷ ︸

(c)

]
, (7)

where B is the available budget of the server, (a) is the
amount of payoff for devices, (b) is the energy consumption
for training wS,k,∀k ∈ N , (c) is the elapsed time to compute
wS,k,∀k and the elapsed time to wait for the slowest device
to finish computing its model, E(·) is with respect to hk and
γ is a parameter to balance the interests between the energy
consumption and the training time. We assume that the server
can control ck so that US(α) and Ud,k(α),∀k can be larger
than zero.

From the above utility functions, we can see that devices
and the server have conflicting interests over α. If the server
prioritizes minimizing training time, then it will try to set α
as a low value so as to leverage its high computing power.
However, when α is low, there exists high probability of data
leakage for the devices. Hence, they need to reach a certain
agreement for α to initiate personalized SL. This situation can
be modeled as a bargaining game between devices and the
server as they can mutually benefit from reaching the optimal
α∗ while conflict exists on the terms of the agreement [13].

In the following section, we obtain the KSBS to find the
optimal split.

III. PERSONALIZED SL AS A BARGAINING GAME

We formulate a bargaining game to reach an agreement over
α. We first define the set of all feasible utility functions as:

U = {Ud,1(α), . . . , Ud,N (α), US(α) | 0≤ α≤ 1} . (8)

Let ϕ = {ϕd,1, . . . , ϕd,N , ϕS} be the disagreement point,
which is a set of utilities when devices and the server fail
to come to an agreement. Then, our bargaining game can be
defined as the pair (U ,ϕ), and the bargaining solution is a
function f that maps (U ,ϕ) to a unique outcome f(U ,ϕ) ∈
U . Our bargaining solution should prioritize a device with
important or private-sensitive dataset so that it can achieve
a higher utility than devices with less important datasets.
Therefore, while there are many bargaining approaches (e.g.,
Nash bargaining, etc.), we choose the KSBS [13]. This is
because the monotonicty axiom of the KSBS can capture the
aforementioned benefit since a device with a stronger privacy
preference λk will be able to get a larger achievable maximum
utility and a larger utility set. Thus, it can have stronger
bargaining power than others leading to a better output α∗.

It is known that the KSBS is the largest element in U that
is on the line connecting ϕ and U ideal, where U ideal is the
vector of individually maximized utilities. The KSBS point is
essentially the solution to the following optimization problem:

max β (9)

s.t. ϕ+ β(U ideal − ϕ) ∈ U . (10)

For the disagreement point ϕ, we can set ϕ = 0 because the
server cannot initiate the learning if devices and the server fail
to negotiate on α. Then, we can simplify the problem as

max β (11)

s.t. βU ideal ∈ U . (12)

Now, the KSBS will lie on the line connecting the origin point
and U ideal. To solve problem (11), we use the bisection method
with a feasibility test to tackle constraint (12). Firstly, we
characterize U ideal = (U ideal

d,1 , U ideal
d,2 , . . . , U ideal

d,N , U ideal
S). From

(6), it is straightforward to see that Ud,k(α) is concave with
respect to α as ∂2Ud,k(α)

∂α2 = −λk log 2
(1+α)2 < 0. Hence, we can

obtain U ideal
d,k from the first derivative test as below

∂Ud,k(α)

∂α
=

λk

log 2× (1 + α)
− κDkLkf

2
k = 0. (13)

Then, the solution of the above equation can be given by

α̂k =
λk

log 2× κLkDkf2
k

− 1. (14)

From (14), we can see that the optimal split ratio α̂k for device
k increases as the preference of data protection λk increases.
For the US(α), its first derivative can be given by

∂US(α)

∂α
=γ

∑
k∈N

κDkLSf
2
S+(1−γ)max

k∈N

[
DkLS

fS
− DkLk

fk

]
,

(15)

Fig. 2: An illustration of the Algorithm 2 for the two player
case.

Algorithm 2: Algorithm for the KSBS
1 Set βmin = 0 and βmax = 1 ;
2 while |βmax − βmin| < ϵ do
3 β ← βmax+βmin

2 ;
4 Solve the feasibility problem (16) ;
5 if β is feasible then
6 βmin ← β ;

7 else
8 βmax ← β ;

where the first term is the energy consumption for training wS

and the second term is related to the elapsed time during one
global epoch. Hence, depending on the balancing parameter
γ, the optimal fraction α̂S will be either zero or one. From
(14) and (15), we can obtain U ideal. Then, for a given β, we
can formulate the feasibility problem as follows

Find α (16)

s.t. βU ideal = (Ud,1(α), . . . , Ud,N (α), US(α)). (17)

Since Ud,k(α) and US(α) are a concave and a linear function
with respect to α, respectively, it is straightforward to find α
such that Ud,k(α) = βU ideal

d,k ,∀k and US(α) = βU ideal
S using a

software solver.
We now obtain the KSBS by using the bisection method

with the feasibility problem (16) as shown in Fig. 2 [14]. We
first set βmax = 1, βmin = 0, and β = βmin+βmax

2 . Then, at
iteration n, we solve the feasibility problem (16) for β(n). If
it is feasible, we set βmin = β(n). Otherwise, we set βmax =
β(n). We repeat this iteration until a certain stopping criteria
becomes satisfied. The summary of our approach is provided
in Algorithm 2. The key complexity of Algorithm 2 stems
from solving the feasibility problem (16). Since we should
solve N equations in (16), the complexity of Algorithm 2 will
be proportional to the total number of devices N .

In practice, we can assume that the devices send their chan-
nel information, hardware information, size of dataset, and
preference toward privacy to the server through the designated
interface. Then, the server can perform Algorithm 2.

IV. SIMULATION RESULTS

For our simulations, we distribute N = 10 devices uni-
formly over a 50 m × 50 m square area and locate the server

Fig. 3: MLP model architecture with one input layer, 11 fully
connected layers, and one output layer.

Algorithms MNIST FMNIST
Proposed 93.52% 92.01%
SplitFed 92.90% 79.65%

TABLE I: Performance of different algorithms on test dataset

at the center. We adopt a Rayleigh fading channel model
with a path loss exponent of 4 between the devices and the
server. For a default setting, we use Pk = 100 mW, W = 10
MHz, N0 = −174 dBm, and κ = 2 × 10−28. fk follows
uniform distribution between (1.5, 2.4) GHz, λk is uniformly
distributed between (25, 30), and ck follows uniform distribu-
tion between (10−8, 10−7). We also set Lk = LS = 103, ∀k,
B = 1215, γ = 0.01, and fS = 4 GHz [11] [10]. We use
multi-layer perceptron (MLP) model to classify 10 digits and
clothes in the MNIST and FMNIST datasets, respectively. The
model consists of one input layer, 11 fully-connected layers
blocks, C0, C1, . . . , C10, and one classification layer as shown
in Fig. 3. Each block Ck consists of one dense layer and
ReLU activation. The total number of model parameters is
|w| = 287955. We split both the MNIST/FMNIST dataset into
55000 samples for training, 5000 samples for validation, and
10000 samples for testing. We distribute the training dataset
over devices in non-iid fashion. We choose two major and
eight minor labels for each device. Then, we allocate 40% of
each major label and 5% of each minor label to a device. We
also distribute the validation/test datasets over devices using
the same method as the training dataset [15]. We use Adam
optimizer with learning rate 0.01 and mini-batch size is 256.
For each global round, each device runs I = 25 local steps.

From the given setting, our KSBS is α∗ = 0.379 and this
corresponds to C3, which becomes the cut layer. Hence, the
input layer up to the cut layer C3 will be assigned to the
device-side model wd,k,∀k with |wd,k| = 117135, and all
subsequent layers are assigned to the server-side model wS

with |wS | = 170820. All statistical results are averaged over
a large number of independent runs.

To benchmark our proposed learning algorithm, we use
SplitFed [5] as a baseline. In SplitFed, FedAvg is performed
on both device-side models and server-side models for every
global round while our proposed algorithm only averages
the server-side models. Specifically, after the server performs
FedAvg on wS,k(t),∀k, each device k transmits its device-

2 4 6 8 10 12 14 16 18 20

Global rounds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

SplitFed

Proposed

Fig. 4: Validation accuracy of the proposed algorithm and
SplitFed on non-iid MNIST dataset

5 10 15 20 25 30 35 40 45 50

Global rounds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

SplitFed

Proposed

Fig. 5: Validation accuracy of the proposed algorithm and
SplitFed on non-iid FMNIST dataset

side model wd,k(t) to an edge server for averaging. Note
that the edge server only does FedAvg on wd,k(t) and does
not perform forward/back propagation. Subsequently, the Fed
server generates wd(t+1) = 1

N

∑
k∈N wd,k(t) and broadcasts

it to devices. Then, devices set wd,k(t + 1) = wd(t + 1) for
the next global round.

Figures 4 and 5 show the accuracy on the MNIST/FMNIST
validation datasets as a function of global rounds for our
algorithm and SplitFed. In Figs. 4 and 5, we can see that
the proposed algorithm converges faster than the baseline
on both datasets. From Table I, we observe that, although
the baseline achieves similar performance with the proposed
algorithm on the MNIST test dataset, it does not perform
well on more difficult dataset, which is FMNIST. Meanwhile,
our algorithm shows more robust accuracy on both non-iid
datasets. This is because the proposed algorithm can mitigate
discrepancies among the individual device optimum via per-
sonalization. Unlike the baseline, our algorithm only averages
the server-side models while keeping the device-side models
personalized. Then, each device-side model can move toward
its local optimum during training. Therefore, it can achieve
fast convergence as well as generalization through the server-
side models. Meanwhile, SplitFed averages all layers and then
moves toward the average of all individual optimum points

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Cut layer

1150

1160

1170

1180

1190

1200

1210

1220

1230

S
u

m
 o

f
u

ti
lit

ie
s

(a) λ ∼ U(25, 30)

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Cut layer

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

S
u

m
 o

f
u

ti
lit

ie
s

(b) λ ∼ U(30, 35)

Fig. 6: Sum of utilities with different privacy parameter
distributions

resulting in slow convergence [16].
Figure 6 presents the sum of utilities for each cut layer with

different distribution of privacy parameters λ = {λ1, . . . , λN}.
From Fig. 6a, we can clearly see that our cut layer C3, which is
obtained from the KSBS, can achieve the best sum of utilities.
Moreover, as the number of required CPU cycles to process
one data sample Lk increases, we can see that the optimal
cut layer decreases. This is because devices have to spend
more energy for training, so having a large device-side model
is not beneficial. This also corroborates (14), which shows
that the optimal cut layer for each device is a decreasing
function of Lk. In Fig. 6b, λk,∀k follows uniform distribution
between [30, 35] resulting in a stronger privacy preference for
all devices than Fig. 6a. From the given setting, the KSBS is
found to be 0.506, and this corresponds to C4 for the cut layer.
We can see that the optimal cut layer increased to C4 from
C3. This is because devices now have a stronger preference
for data protection and have more bargaining power due to the
monotonicity axiom of the KSBS.

V. CONCLUSION

In this paper, we have studied the problem of finding the
optimal split on a neural network in a personalized SL over
wireless networks. We have presented the training algorithm

for the proposed personalized SL to tackle non-iid datasets.
We also have introduced utility functions by considering
energy consumption, training time, and data privacy during
training. Then, we have formulated a multiplayer bargaining
problem to find the optimal cut layer between devices and
the server to maximize their utilities. To solve the problem,
we have obtained the KSBS using the bisection method and
the feasibility test. Our simulation results have shown that
the proposed learning algorithm can converge faster than the
baseline and the KSBS can provide the best sum utilities.
Moreover, we have shown that the proposed algorithm can
achieve significantly higher accuracy in non-iid datasets.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2017.

[2] A. Singh, P. Vepakomma, O. Gupta, and R. Raskar, “Detailed com-
parison of communication efficiency of split learning and federated
learning,” arXiv preprint arXiv:1909.09145, 2019.

[3] S. Abuadbba, K. Kim, M. Kim, C. Thapa, S. A. Camtepe, Y. Gao,
H. Kim, and S. Nepal, “Can we use split learning on 1d cnn models for
privacy preserving training?” in Proc. of the ACM Asia Conference on
Computer and Communications Security, Taipei, Taiwan, Oct.

[4] P. Vepakomma, O. Gupta, A. Dubey, and R. Raskar, “Reducing leakage
in distributed deep learning for sensitive health data,” arXiv preprint
arXiv:1812.00564, 2019.

[5] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed: When
federated learning meets split learning,” in Proc. of Association for the
Advancement of Artificial Intelligence (AAAI), vol. 36, no. 8, Mar. 2022.

[6] M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and
H. V. Poor, “Distributed learning in wireless networks: Recent progress
and future challenges,” IEEE J. Sel. Areas Commun., vol. 39, no. 12,
pp. 3579–3605, Dec. 2021.

[7] D.-J. Han, H. I. Bhatti, J. Lee, and J. Moon, “Accelerating federated
learning with split learning on locally generated losses,” in Proc. of
International Conference on Machine Learning (ICML), Workshop on
Federated Learning for User Privacy and Data Confidentiality, Virtual,
Jul. 2021.

[8] W. Wu, M. Li, K. Qu, C. Zhou, W. Zhuang, X. Li, W. Shi et al.,
“Split learning over wireless networks: Parallel design and resource
management,” arXiv preprint arXiv:2204.08119, 2022.

[9] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choud-
hary, “Federated learning with personalization layers,” arXiv preprint
arXiv:1912.00818, 2019.

[10] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949, Mar.
2021.

[11] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in Proc. of IEEE Conf. on Computer Commun., Paris,
France, May 2019.

[12] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against
collaborative inference,” in Proc. of the Annual Computer Security
Applications Conference, NY, USA, Dec. 2019.

[13] Z. Han, D. Niyato, W. Saad, T. Başar, and A. Hjørungnes, ”Game
Theory in Wireless and Communication Networks: Theory, Models, and
Applications”. Cambridge University Press, 2011.

[14] M. Nokleby and A. L. Swindlehurst, “Bargaining and the miso interfer-
ence channel,” EURASIP J. Appl. Signal Process, vol. 2009, pp. 1–13,
Apr. 2009.

[15] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning: A meta-learning approach,” arXiv preprint arXiv:2002.07948,
2020.

[16] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in Proc. of International Conference on Machine Learning (ICML),
Virtual, Jul. 2020.

