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Abstract—In this paper, a communication-efficient federated
learning (FL) framework is proposed, which leverages ideas
from vector quantized compressed sensing, for the first time,
to compress the local model updates at wireless devices in FL.
For the compression, each local model update is projected onto a
lower dimensional space; then, the projected local model update
is quantized by using a vector quantizer. The global model update
at a parameter server is reconstructed by using a sparse signal
recovery algorithm on the aggregation of the compressed local
model updates. A key feature of our compression strategy is that
the local model update after the projection is effectively modeled
as a Gaussian random vector by the central limit theorem.
Inspired by this feature, the optimal vector quantizer is derived
for minimizing the compression error of the local model update.
Simulation results on the MNIST dataset demonstrate that the
proposed framework that uses 0.5 bit to represent each local
model update entry shows less than a 1% decrease in classification
accuracy compared to FL without local update compression.

I. INTRODUCTION

Federated learning (FL) is a distributed machine learning
technique that trains a global learning model on a parameter
server (PS) by enabling distributed wireless devices to collab-
orate and leverage their own local training datasets [1], [2].
Typically, in FL, each device updates its local model based on
the local training dataset and then sends a local model update
to the PS [1]. After the transmission from the devices, the
PS updates its global model by aggregating the local model
updates sent by the devices and then distributes the updated
global model to the devices. This two-step training process
continues until the global model at the PS converges. The
above FL framework can help preserve the privacy of the data
generated by the devices, but also faces several challenges in
real-world applications. One of the major challenges is the
significant communication overhead required for transmitting
the local model updates from the wireless devices to the
PS because the wireless links connecting them have limited
capacity in practical communication systems. This challenge
becomes critical when the dimensionality of the local model
updates is much higher than the capacity of the wireless links.

To address the above challenge, communication-efficient
FL via local model update compression has been extensively
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studied in [3]–[10]. The common idea in these prior works
is to apply lossy compression to the local model updates,
in order to reduce the communication overhead required for
transmitting these updates. A representative approach in this
direction is the quantization approach in which the entries of
the local model update are quantized by a scalar quantizer [3]
or by a vector quantizer [4], [5]. A more recent approach is
the quantized compressed sensing (QCS) approach motivated
by the sparsity of the local model update, obtained either
naturally or by applying sparsification [6]. The basic idea
of the QCS-based compression is to project the local model
updates onto a lower dimensional space as in compressed
sensing (CS), before they are quantized [8]–[10]. Because of
the ensuing dimensionality reduction, this approach provides
a better reduction in the communication overhead compared
with the quantization-only approach. The existing QCS-based
methods, however, only consider scalar quantization which is
generally inferior to vector quantization in terms of quantization
error; thereby, the compression error of these methods becomes
problematic as the level of the compression increases. To our
best knowledge, a vector QCS approach for communication-
efficient FL has never been studied before, despite its potential
for not only improving the communication efficiency of FL
but also mitigating the compression error of the local model
updates.

In this paper, we propose a novel communication-efficient
FL framework that leverages, for the first time, both vector
quantization and CS-based dimensionality reduction to com-
press local model updates at the wireless devices. In this
framework, we compress each local model update by reducing
its dimensionality based on CS and, then, quantizing a projected
local model update by using a vector quantizer. For accurate but
efficient reconstruction of the global model update at the PS,
we aggregate a group of the compressed local model updates
and estimate the aggregated model update by applying a sparse
signal recovery algorithm. Our key observation is that the local
model update after the projection is modeled as an independent
and identically distributed (IID) Gaussian random vector by the
central limit theorem. Motivated by this observation, we employ
a shape-gain quantizer in [11] and design the optimal shape and
gain quantizers for minimizing the compression error of the
local model update. derive the optimal bit allocation between



the shape and gain quantizers by characterizing the mean-
squared-error (MSE) performance of these quantizers. Using
simulations, we demonstrate the superiority of the proposed
FL framework over the existing FL frameworks for an image
classification task using the MNIST dataset.

II. SYSTEM MODEL

We consider a wireless FL system in which a PS trains a
global model by collaborating with a set K of K wireless
devices over wireless links with limited capacity. The data
samples for training the global model are assumed to be
distributed over the wireless devices only, while the PS does
not have direct access to them. Let Dk be the local training
dataset available at device k ∈ K. The global model at the PS
is assumed to be represented by a parameter vector w ∈ RN̄ ,
where N̄ is the number of global model parameters. The goal
of FL is to find the best parameter vector that minimizes the
global loss function, defined as

F (w) =
1

|D|
∑
u∈D

f(w;u), (1)

where f(w;u) is a loss function that measures how well the
global model with the parameter vector w fits one particular
data sample u ∈ Dk, and D = ∪kDk. The global loss function
in (1) can be rewritten as

F (w) =
1∑K

j=1 |Dj |

K∑
k=1

|Dk|Fk(w), (2)

where Fk(w) = 1
|Dk|

∑
u∈Dk

f(w;u) is a local loss function
at device k. A typical FL framework for minimizing the global
loss function in (2) involves alternating between local model
update at wireless devices and global model update at the PS
in each communication round, as explained in [1].

1) Local model update at wireless devices: In the local
model update process, each wireless device updates a local
parameter vector based on its own local training dataset. Then
each device sends a local model update (i.e., the difference
between the parameter vectors before and after the local update)
to the PS. Let w(t) ∈ RN̄ be the parameter vector shared by
the devices at communication round t ∈ {1, . . . , T}, where
T is the total number of communication rounds. Assume that
every device employs a mini-batch stochastic gradient descent
(SGD) algorithm with E ≥ 1 local iterations for updating the
parameter vector w(t). Then the updated parameter vector at
device k after E ≥ 1 local iterations is given by

w
(t,e+1)
k = w

(t,e)
k − η(t)∇F

(t,e)
k

(
w

(t,e)
k

)
, ∀e ∈ {1, . . . , E},

(3)

where w
(t,1)
k = w(t), η(t) is a local learning rate,

∇F
(t,e)
k

(
w

(t,e)
k

)
=

1

|D(t,e)
k |

∑
u∈D(t,e)

k

∇f(w
(t,e)
k ;u), (4)

and D(t,e)
k is a mini-batch randomly drawn from Dk at the e-th

local iteration of round t. As a result, the local model update
sent by device k in round t is determined as

g
(t)
k =

1

η(t)E
(w(t) −w

(t,E+1)
k ) ∈ RN̄ . (5)

2) Global model update at the PS: In the global model
update process, the PS updates a global parameter vector
by aggregating the local model updates sent by K devices.
Then the PS broadcasts the updated parameter vector to these
devices. Under the assumption of perfect reception of K local
model updates, the PS can reconstruct the global model update,
defined as

g
(t)
K =

K∑
k=1

ρkg
(t)
k , (6)

where ρk ≜
∑E

e=1 |D(t,e)
k |∑K

j=1

∑E
e=1 |D(t,e)

j |
is invariant in each communica-

tion round. If the PS employs the SGD algorithm for updating
the parameter vector w(t), then the updated parameter vector
in round t will be given by w(t+1) = w(t) − γ(t)g

(t)
K , where

γ(t) is a global learning rate. Then the PS broadcasts w(t+1) to
the wireless devices, which triggers the start of the local model
update process in round t+ 1.

A major challenge in realizing the FL framework discussed
above is the significant communication overhead required for
transmitting the local model updates from the wireless devices
to the PS because the wireless links connecting them may
have limited capacity in practical communication systems. This
challenge can be mitigated by applying lossy compression to
the local model updates, but such a compression approach leads
to an inevitable error in the global model update reconstructed
at the PS. Moreover, in general, the higher the level of com-
pression at the wireless devices, the larger the reconstruction
error at the PS. Therefore, it is essential to develop a proper
compression strategy for local model updates that not only pro-
vides a considerable reduction in the communication overhead,
but also minimizes the reconstruction error at the PS.

III. PROPOSED FEDERATED LEARNING FRAMEWORK

In this section, we present a communication-efficient FL
framework that can reduce the communication overhead for
transmitting local model updates at the wireless devices while
also enabling an accurate reconstruction of the global model
update at the PS.

A. Compression of Local Model Updates

In the proposed FL framework, each device compresses
its local model update by sequentially performing (i) block
sparsification, (ii) dimensionality reduction, and (iii) vector
quantization. The details of each step performed by the device
k for the block b in round t are elaborated below.



1) Block sparsification: In the block sparsification step, each
device divides its local model update into B blocks, each of
which has a length of N = N̄

B . Let g
(t,b)
k ∈ RN be the b-

th block of g
(t)
k , and we refer to this vector as the b-th local

block update of device k in round t. Then, each local block
update is sparsified by nullifying all but the most significant
S entries in terms of their magnitudes, where S < N is a
sparsity level. To compensate for the information loss during
the sparsification, the nullified entries are added to the local
block update in the next communication round, as done in [6].
With this compensation strategy, the local block update that
needs to be sparsified at device k is expressed as

ḡ
(t,b)
k = g

(t,b)
k +∆

(t−1,b)
k , (7)

where ∆
(t,b)
k ∈ RN is a residual vector stored by device k for

block b in round t. As a result, the local block update after the
sparsification is obtained as g̃

(t,b)
k = Sparse(ḡ

(t,b)
k ) which has

only Sk nonzero entries. Then, the residual vector is updated
as

∆
(t,b)
k = ḡ

(t,b)
k − Sparse(ḡ

(t,b)
k ). (8)

2) Dimensionality Reduction: In the dimensionality reduc-
tion step, each local block update after the sparsification is
projected onto a lower dimensional space as in CS [12]. Let
Rk = N

Mk
≥ 1 be a dimensionality reduction ratio chosen by

device k, where Mk ≤ N is the dimension after projection.
Then, the compressed local block update x

(t,b)
k ∈ RMk is

obtained as

x
(t,b)
k = α

(t,b)
k ARk

g̃
(t,b)
k , (9)

where α
(t,b)
k ∈ R is a scaling factor, and ARk

∈ RMk×N

is a projection matrix. We set the scaling factor as α
(t,b)
k =

1/∥g̃(t,b)
k ∥ and the projection matrix as an IID Gaussian random

matrix with zero mean and unit variance, i.e., (ARk
)m,n ∼

N (0, 1), ∀m,n.
3) Vector quantization: In the vector quantization step, each

compressed local block update is quantized using a QkMk-
bit vector quantizer, where Qk is the number of quantization
bits per entry chosen by device k. To avoid the computa-
tional complexity for quantizing a high-dimensional vector,
the compressed local block update x

(t,b)
k is first partitioned

into Pk subvectors of dimension L = Mk

Pk
, i.e., x

(t,b)
k =[

(v
(t,b)
k,1 )T, . . . , (v

(t,b)
k,Pk

)T
]T

, as in [5]. Then, these subvectors
are quantized in parallel using a QkL-bit vector quantizer. The
resulting quantized subvector is given by

v̂
(t,b)
k,p = QC(v

(t,b)
k,p ), p ∈ {1, . . . , Pk}, (10)

where QC : RL → C is a vector quantizer with a codebook C
such that |C| ≤ 2QkL. After vector quantization, the quantized
subvectors {v̂(t,b)

k,p }Pp=1 and the scaling factor α(t,b)
k are encoded

into digital bits, denoted by Ω
(t)
k,b, for digital communications.

Remark (Communication overhead of the proposed FL
framework): In the proposed FL framework, each device k

transmits the digital bits representing the quantized subvec-
tors {v̂(t,b)

k,p }Pk
p=1 and the scaling factor α

(t,b)
k for every block

b ∈ {1, . . . , B} in round t. Because every quantized subvector
is represented by QkL bits, the total number of digital bits
required for transmitting the local model update at each device
is given by (QkLPk+32)B = (QkMk+32)B for every round.
If QkMk ≫ 32, the communication overhead for device k is
QkMkB

NB = Qk

Rk
bits per local model entry. Owing to this feature,

the proposed framework allows each device to not only reduce
the communication overhead for transmitting its local model
update but also control this overhead by adjusting the values
of Qk and Rk based on the capacity of the wireless link.

B. Reconstruction Strategy

In the proposed FL framework, the PS reconstructs a global
model update from the compressed local model updates by
sequentially performing (i) group-wise aggregation and (ii)
sparse signal recovery. The details of each step performed by
the PS for block b in round t are elaborated below.

1) Group-wise aggregation: In the group-wise aggregation
step, the PS groups the compressed local block updates with
the same dimension and, then, aggregates only the compressed
updates in the same group. Meanwhile, to facilitate an accurate
reconstruction of the aggregated block update, the PS limits
the number of the compressed updates in each group to be
less than or equal to K ′. By adjusting K ′, the PS can control
the tradeoff between the complexity and accuracy of the global
update reconstruction.

Let Kg be the indices of the compressed local block updates
in group g ∈ {1, . . . , G}, where G is the number of groups,
and K1, . . . ,KG are mutually exclusive subsets of K such
that K =

⋃G
g=1 Kg . For ease of exposition, we assume that

|Kg| = K ′, ∀g. Under error-free reception of the transmitted
data {Ω(t,b)

k }k∈K, the PS obtains the quantized subvectors
{v̂(t,b)

k,p }Pk
p=1 and the scaling factor α

(t,b)
k by decoding Ω

(t,b)
k .

Let d(t,b)
k,p ≜ v̂

(t,b)
k,p −v

(t,b)
k,p be a quantization error vector. Then,

from v̂
(t,b)
k,p = v

(t,b)
k,p +d

(t,b)
k,p , the compressed local block update

x̂
(t,b)
k is expressed as

x̂
(t,b)
k =

[
(v̂

(t,b)
k,1 )T, . . . , (v̂

(t,b)
k,P )T

]T
= x

(t,b)
k + d

(t,b)
k

= α
(t,b)
k ARk

g̃
(t,b)
k + d

(t,b)
k , (11)

where d
(t,b)
k =

[
(d

(t,b)
k,1 )T, . . . , (d

(t,b)
k,P )T

]T
. Because Rk = Rg ,

∀k ∈ Kg , the PS can aggregate the compressed local block
updates in group g as

y
(t,b)
Kg

=
∑
k∈Kg

ρk

α
(t,b)
k

x̂
(t,b)
k = ARg

g̃
(t,b)
Kg

+ d
(t,b)
Kg

, (12)

where d
(t,b)
Kg

=
∑

k∈Kg
(ρk/α

(t,b)
k )d

(t,b)
k and g̃

(t,b)
Kg

=∑
k∈Kg

ρkg̃
(t,b)
k is the aggregated block update of group g for

block b in round t.



2) Sparse signal recovery: In the sparse signal recovery step,
the PS estimates the aggregated block update g̃

(t,b)
Kg

from its

noisy linear observation y
(t,b)
Kg

in (12) for every group g. As

can be seen in (12), the estimation of g̃
(t,b)
Kg

from y
(t,b)
Kg

is a
well-known sparse signal recovery problem [12]. Motivated by
this fact, the PS employs a sparse signal recovery algorithm
(e.g., [13]) to estimate g̃

(t,b)
Kg

from y
(t,b)
Kg

for every group g.

If the sparsity level of g̃
(t,b)
Kg

is sufficiently smaller than the

dimension of y(t,b)
Kg

, the PS is able to attain an accurate estimate

of g̃
(t,b)
Kg

. After the recovery of the aggregated block updates
for all groups, the PS reconstructs the global block update
as ĝ

(t,b)
K =

∑G
g=1 ĝ

(t,b)
Kg

. Finally, the PS obtains the global

model update ĝ
(t)
K by concatenating all the global block updates

{ĝ(t,b)
K }Bb=1.

IV. PARAMETER OPTIMIZATION OF VECTOR QUANTIZER

In the proposed FL framework, a proper design of the vector
quantizer in (10) is critical for reducing the reconstruction
error of the global model update at the PS. In this section,
we optimize the design of the vector quantizer for the local
update compression of the proposed FL framework.

A. Quantizer design problem

The underlying challenge of the vector quantizer design is
that the exact distribution of the quantizer input depends on
many factors such as the global model choice, the local training
data distribution, and the loss function type. Moreover, the
optimal vector quantizer may differ across partitions, blocks,
devices, and communication rounds, which can lead to addi-
tional communication overhead for transmitting the information
of the quantizer between the PS and the devices. Fortunately,
the above challenges can be readily addressed in the proposed
framework. First of all, it is reported in [10] that a sparsified
local block update g̃

(t,b)
k can be modeled as an IID random

vector whose entry follows a Bernoulli Gaussian-mixture dis-
tribution. Hence, for a large N , the projected local model update
x
(t,b)
k = α

(t,b)
k ARk

g̃
(t,b)
k can be modeled as an Mk-dimensional

IID Gaussian random vector with zero mean and unit variance
by the central limit theorem, provided that ARk

is an IID
Gaussian random matrix with α

(t,b)
k = 1/∥g(t,b)

k ∥. This implies
that every subvector of x

(t,b)
k can also be modeled as an L-

dimensional IID Gaussian random vector whose distribution
is same for all partitions, blocks, devices, and communication
rounds, i.e., v

(t,b)
k,p ∼ N (0L, IL), ∀k, p, t, b. Motivated by

this observation, we use the vector quantizer optimized for
the distribution of v ∼ N (0L, IL) for a given number of
quantization bits. Owing to this feature, both the PS and devices
can utilize the same optimal quantizer by sharing the number
of quantization bits.

To determine the optimal vector quantizer for the distribution
of v ∼ N (0L, IL), we consider a shape-gain quantizer, which
is effective in quantizing an IID Gaussian random vector while
enabling the efficient construction of the optimal codebook

[11]. When employing this quantizer, the shape of v, defined
as s = v/∥v∥, and its gain defined as h = ∥v∥ are
independently quantized. Let QCs(s) = argmin

ŝ∈Cs

∥s − ŝ∥2 and

QCh
(h) = argmin

ĥ∈Ch

|h − ĥ|2 be the shape and gain quantizers

using the minimum Euclidean distance criterion, respectively.
Then the output of the shape-gain quantizer is given by v̂ = ĥŝ,
where ŝ = QCs

(s) and ĥ = QCh
(h). Given this fact, the MSE

of the shape-gain quantizer can be approximated by [11]

E
[
∥v − ĥŝ∥2

]
≈ L ·MSE(s; Cs) +MSE(h; Ch), (13)

where MSE(h; Ch) = E
[
|h − QCh

(h)|2
]

and MSE(s; Cs) =
E
[
∥s−QCs(s)∥2

]
. By utilizing this approximation, we formu-

late the shape-gain quantizer design problem for a given number
of quantization bits QL as follows:

argmin
Cs,Ch

L ·MSE(v/∥v∥; Cs) +MSE(∥v∥; Ch),

s.t. |Cs| ≤ 2Qs , |Ch| ≤ 2Qh , Qs +Qh ≤ QL, (14)

where v ∼ N (0L, IL).

B. Design of shape quantizer

To solve (14), as a first step, we determine the MSE-optimal
shape quantizer for a given number of shape quantization bits
Qs, by solving the following problem:

C⋆
s = argmin

|Cs|≤2Qs

MSE(s; Cs), (15)

where s = v/∥v∥ with v ∼ N (0L, IL). Unfortunately, it
is hard to characterize the exact solution of this problem;
thus, as an alternative, we consider an approximate solution
by replacing the Euclidean distance with the squared chordal
distance, as done in [5]. Then the approximate solution of (15)
is obtained as an even Grassmannian codebook C⋆

s which is
constructed using the following strategy [5]. First, solve the
Grassmannian line packing problem formulated as

max
C+
s

min
ŝ̸=ŝ′,ŝ,ŝ′∈C+

s

d(ŝ, ŝ′), s.t. |C+
s | = 2Qs−1, (16)

where d(ŝ, ŝ′) =
√

1− |ŝTŝ′|2. Next, construct the even
Grassmannian codebook as C⋆

s = C+
s

⋃
C−
s where C−

s = {s :
−s ∈ C+

s }. We determine the optimal shape quantizer by using
the even Grassmannian codebook C⋆

s constructed above. For
large L, the upper bound of the MSE of this quantizer is
characterized as [14]

MSE(s; C⋆
s ) ≤ E[2d2(s, ŝ)] ≤ 2−

2(Qs−1)
L−1 +1. (17)

C. Design of gain quantizer

As a next step, we characterize the MSE-optimal gain
quantizer for a given number of gain quantization bits Qh, by
solving the following problem:

C⋆
h = argmin

|Ch|≤2Qh

MSE(h; Ch), (18)

where h = ∥v∥. Because the distribution of h = ∥v∥
for v ∼ N (0L, IL) is strictly log-concave, the Lloyd–Max



algorithm converges to a globally optimal quantizer in terms
of minimizing the MSE [15]. Hence, when Qh > 0, we
determine the optimal gain quantizerby applying the Lloyd–
Max algorithm for the distribution of h = ∥v∥. When Qh = 0,
our strategy is to approximate the gain h = ∥v∥ as its
expected value E[h] =

√
2Γ((L+1)/2)

Γ(L/2) based on its distribution.
Considering these two cases, the MSE of the above gain
quantizer is approximately characterized as [16]

MSE(h; C⋆
h) ≈

{
χL2

−2(Qh+1), Qh > 0,

L− 2π

β2(L
2 , 12 )

, Qh = 0,
(19)

where χL =
3

L
2 Γ3(L+2

6 )

2Γ(L
2 )

.

D. Optimal bit allocation

Now, we derive the optimal bit allocation for the optimal
shape and gain quantizers based on the MSE characterizations
in (17) and (19). This result is given in the following theorem:

Theorem 1: If both the upper bound in (17) and the approx-
imation in (19) hold with equality, the optimal bit allocation(
Q⋆

s , Q
⋆
h

)
in (14) is given by

(
Q⋆

s , Q
⋆
h

)
=

{(
QL−HL,Q, HL,Q

)
, if FL,Q ≤ 0,(

QL, 0
)
, if FL,Q > 0,

(20)

where HL,Q = L−1
2L log2

(
L−1
2L χL

)
+Q− 1 and

FL,Q = L2−
2(QL−1)

L−1 +1
(
2

2HL,Q
L−1 +1 − 1

)
+ χL2

−2(HL,Q+1) − L+
2π

β2
(
L
2 ,

1
2

) .
Proof: From (17) and (19), the bit allocation problem with

Qh > 0 is formulated as

(P1) argmin
Qs,Qh

L2−
2(Qs−1)

L−1 +1 + χL2
−2(Qh+1),

s.t. Qs +Qh ≤ QL, Qh > 0. (21)

From the Karush-Kuhn-Tucker (KKT) conditions, the solution
of (P1) is given by

(
Qs, Qh

)
= (QL − HL,Q, HL,Q), where

HL,Q = L−1
2L log2

(
L−1
2L χL

)
+Q− 1. Similarly, the bit alloca-

tion problem with Qh = 0 is formulated as

(P2) argmin
Qs≤QL

L2−
2(Qs−1)

L−1 +1 + L− 2π

β2
(
L
2 ,

1
2

) . (22)

Because the objective function of (P2) is a decreasing function
of Qs, the solution is given by Qs = QL. The optimal bit
allocation in (20) can be obtained by comparing FL,1(QL −
HL,Q, HL,Q) and FL,2(QL, 0). This completes the proof.

V. SIMULATION RESULTS

In this section, we demonstrate the superiority of the pro-
posed FL framework over existing FL frameworks, using sim-
ulations. We assume that the communication overhead allowed
for transmitting the local model update at device k is given
by Ck bits per local model entry. Under this assumption,
we consider two communication scenarios: (i) homogeneous

and (ii) heterogeneous. In the homogeneous scenario, we set
Ck = C̄, ∀k ∈ K, to model the wireless links with the same
capacity; whereas, in the heterogeneous scenario, we uniformly
draw Ck from a pre-defined set C to model the wireless links
with different capacities.

In this simulation, an image classification task using the
publicly accessible MNIST dataset is considered with K = 75
and T = 50. A global model is set to be a fully-connected
neural network that consists of 784 input nodes, a single hidden
layer with 20 hidden nodes, and 10 output nodes. The activation
functions of the hidden layer and the output layer are set to
the rectified linear unit and the softmax function, respectively.
For the global model training at the PS, the ADAM optimizer
with an initial learning rate 0.01 is adopted. Each local training
dataset is determined by randomly selecting 500 training data
samples from two classes. For the local model training at each
device, the mini-batch SGD algorithm with a learning rate 0.01

is adopted with |D(t,e)
k | = 10 and E = 3. For both the ADAM

optimizer and the mini-batch SGD algorithm, the cross-entropy
loss function is used.

For performance comparisons, we consider the following FL
frameworks:
• FedAvg: This framework assumes lossless transmission of

the local model updates from the wireless devices to the PS
without compression, as done in [1].

• Proposed FL framework: This is the proposed FL framework
when Rk = 1.5, Qk = CkRk, G = 25, and B = 10.
The EM-GAMP algorithm in [10] is employed as a sparse
signal recovery algorithm during the global block update
reconstruction. The dimension of a subvector for vector
quantization is set to be the largest integer, L, such that
L2Q

⋆
s ≤ 215, where Q⋆

s is the optimal number of shape
quantization bits.

• ScalarQCS: ScalarQCS is the communication-efficient FL
framework developed in [10] when employing the aggregate-
and-estimate strategy with Qk = 1, Rk = 1/Ck, G = 25,
and B = 10.

• HighVQ: HighVQ is the communication-efficient FL frame-
work developed in [5] when Qk = Ck. The dimension of
each partition for vector quantization is set to the largest
integer, L, such that L2CkL ≤ 215 for device k.

• D-DSGD: D-DSGD is the communication-efficient FL
framework developed in [6]. The number of the nonzero
entries for device k is set to be Sk such that CkN̄ =
log2

(
N̄
Sk

)
+ 33.

For the proposed FL framework and ScalarQCS, we set
Sk = argmax

S

{
S : Rk < N

2K′S log(N/(K′S))

}
, motivated by a

recovery condition in the CS theory [12]. Except for D-DSGD,
we normalize the input data values of the training and test data
samples using the mean and standard deviation of the MNIST
dataset. For D-DSGD, we adjust the input data values of the
training and test data samples so that these values are between
0 and 1.

In Fig. 1, we compare the classification accuracy of dif-
ferent FL frameworks in the homogeneous scenario. Fig. 1



Fig. 1. Classification accuracy vs. communication overhead for different FL
frameworks in the homogeneous scenario.

Fig. 2. Classification accuracy of different FL frameworks in the heterogeneous
scenario with various average communication overheads.

shows that the proposed FL framework outperforms the exist-
ing communication-efficient FL frameworks regardless of the
communication overhead allowed for the devices. Further, the
proposed FL framework with a 0.5-bit overhead per local model
entry shows less than a one percent decrease in classification
accuracy compared to FedAvg which may require a 32-bit
overhead per local model entry for perfect transmission of the
local model updates. This result demonstrates that the proposed
FL framework enables an accurate reconstruction of the global
model update, while significantly reducing the communication
overhead of FL.

In Fig. 2, we compare the classification accuracy of different
FL frameworks in the heterogeneous scenario with various av-
erage communication overheads. In this simulation, we set C =
{0.05, 0.06, 0.07} for E[Ck] = 0.06, C = {0.08, 0.09, 0.1, 0.2}
for E[Ck] = 0.1175, and C = {0.3, 0.4, 0.5} for E[Ck] = 0.4.
Fig. 2 shows that the proposed FL framework converges to
the highest classification accuracy among the communication-
efficient FL frameworks, irrespective of the average commu-
nication overhead allowed for the devices. In particular, the
performance gain of the proposed FL framework over the ex-
isting FL frameworks increases as the average communication
overhead decreases. This results implies that the proposed FL

framework is effective for enabling wireless FL particularly
when the dimensionality of the local model updates is much
higher than the wireless link capacity.

VI. CONCLUSION

In this paper, we have presented a novel framework for
communication-efficient wireless FL. We have shown that our
framework significantly reduces the communication overhead
of FL by leveraging both vector quantization and CS-based
dimensionality reduction for compressing the local model up-
dates at the wireless devices. Further, we have optimized the
design of vector quantizer to minimize the compression error
of the local model update. Using the MNIST dataset, we have
demonstrated the superiority of the proposed framework over
the existing FL frameworks in terms of both communication
efficiency and learning accuracy.
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