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Abstract—Achieving artificially intelligent-native wireless net-
works is necessary for the operation of future 6G applications
such as the metaverse. Nonetheless, current communication
schemes are, at heart, a mere reconstruction process that lacks
reasoning. One key solution that enables evolving wireless com-
munication to a human-like conversation is semantic commu-
nications. In this paper, a novel machine reasoning framework
is proposed to pre-process and disentangle source data so as
to make it semantic-ready. In particular, a novel contrastive
learning framework is proposed, whereby instance and cluster
discrimination are performed on the data. These two tasks
enable increasing the cohesiveness between data points mapping
to semantically similar content elements and disentangling data
points of semantically different content elements. Subsequently,
the semantic deep clusters formed are ranked according to their
level of confidence. Deep semantic clusters of highest confidence
are considered learnable, semantic-rich data, i.e., data that can be
used to build a language in a semantic communications system.
The least confident ones are considered, random, semantic-poor,
and memorizable data that must be transmitted classically. Our
simulation results showcase the superiority of our contrastive
learning approach in terms of semantic impact and minimalism.
In fact, the length of the semantic representation achieved is
minimized by 57.22% compared to vanilla semantic communica-
tion systems, thus achieving minimalist semantic representations.
Index Terms— Semantic communications, contrastive learning,
semantic language, AI-Native, 6G, beyond 6G.

I. INTRODUCTION

To enable emerging services like the metaverse, digital
twins, Web 3.0, and Industry 5.0 [1] over wireless systems,
such as 6G and beyond, there is a need for a fundamen-
tally novel approach to performing communication in such
systems. In particular, instead of relying on classical data-
centric artificial intelligence (AI) techniques that limit wireless
network generalizability and autonomy we must move towards
generalizable, knowledge-based, and reasoning-driven wireless
networks [2], through the concept of semantic communications.
Semantic communications is a communication paradigm that
involves transforming radio nodes into intelligent, reasoning
agents that can unravel semantic content elements (meaning)
and can communicate a minimal, efficient, and generalizable
representation that expresses the aforementioned meaning. In
semantic communications the transmitter-receiver pair become
a teacher-apprentice that exchange a semantic language rather
than acting as a mere bit-pipeline.

Hence, semantic communication is the path to AI-native
wireless networks [2]. Nonetheless, building a mature semantic
language that can express structure, minimally and efficiently
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is a very challenging task. Low-layer source data tends to be
very entangled and its structure is not directly interpretable
as random information overlay its meaningful aspects. Thus,
identifying the semantic content elements in a datastream and
describing them via a minimal, efficient, and generalizable
representation becomes a very complex learning task and
would lead to an overly complex semantic language. This
complexity is not a result of the content complexity, but
rather a consequence of attempting to learn the semantic
content elements of possibly spurious random data points. It
is thus necessary to devise a fully-fledged mechanism that
enables disentangling semantic rich data from spurious random
information in raw source data. This is a fundamental step in
communicating a language that captures meaningful structure
and leads to a minimalist and efficient semantic communication
system. Essentially, semantic communication systems cannot
be robust, nor tend to generalizability, if their languages capture
spurious information in the raw data.

A. Prior Works

Recently, a number of works [3]–[7] studied the concept
of semantic communication systems. In [3], a deep learning
based semantic communication system for text transmission
was devised. The work in [4] proposes deep learning approach
to perform semantic communication for speech signals. The
authors in [5] introduce a comprehensive semantic commu-
nications framework for enabling goal-oriented task execution.
In [6], an emergent semantic communication system framework
via a signaling game and a neuro-symbolic AI approach is
proposed. The authors in [7] explored task-oriented multi-
user semantic communications to transmit data with single-
modality and multiple modalities. While the works in [3]–
[7] are interesting, they fail to acknowledge the entangled
and intertwined nature of raw data. Furthermore, although the
works in [3]–[7] study a language, yet they fail to distinguish
the characteristics of a semantic language as well as the AI and
computational approaches needed to build a language from raw
entangled data. Also, the works [3]–[7] do not take into account
the fact that semantic-poor data points are a complex learnable
task, but a simple memorization task, and thus are more
efficiently transmitted classically. Finally, none of the works
in [3]–[7] propose a fully fledged framework to disentangle
raw data into meaningful semantic content elements that can
be used to build a semantic language. Clearly, there is a gap
in the research community to build semantic communication
systems that can leverage raw data so as to build a language
and transmit knowledge.
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Fig. 1: Illustrative figure showcasing end-to-end (E2E) classical communication systems versus E2E semantic communication systems.

B. Contributions

The main contribution of this article is a novel contrastive

learning approach to pre-process and disentangle raw data

making it semantic-ready. In particular, a contrastive learning

scheme is adopted at the transmitter side so as to disentangle

raw source data into deep semantic clusters. This deep seman-

tic clustering enables the separation of learnable data from

memorizable data as well as data points belonging to different

semantic content elements. In essence, learnable data are data

points with rich semantic information, i.e., such data points

can be expressed via a representation that has a meaning-

ful semantic content element. Meanwhile, memorizable data
points are random data points that do not necessarily map

to a particular significance, and are thus semantically poor.

Essentially, first, an instance discrimination contrastive learning

task is performed whereby data points are compared to their

neighbours at the instance-level. That is, instances undertake a

perturbation which mimics a distribution shift, then the teacher

learns whether such data points are semantically close or not.

Second, building on this instance discrimination task, a deep

cluster discrimination task is performed so as to increase the

cohesiveness between data points that belong to the same

semantic content element, and disentangle semantic content

elements of different meaning. The deep contrastive-semantic

clusters built are further ranked per confidence level so as to

label the least confident, as semantic poor data points, i.e.,

memorizable data that must be classically transmitted. To the
best of our knowledge this is the first work that pre-processes
raw data via contrastive learning so as to disentangle semantic
rich data points from semantic poor ones. This is also the
first work that enables increasing the cohesiveness between
semantically similar data points, and increases the disen-
tanglement between semantically different raw data points.
Simulation results demonstrate that our contrastive learning

disentanglement method enables realizing a large semantic

impact (71.9% higher than conventional semantic communi-

cation systems) despite increases in the content complexity.

Our simulation results also show that the proposed contrastive

learning approach yields representations of smaller length and

thus enables a minimalist semantic communication system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Semantic Communication Model
Consider a teacher b, who observes source information,

which can stem from any use case (e.g. hologram, tactile

feedback, image data) and is willing to transmit knowledge

contained in the raw, low-layer, source datastream X to an

apprentice d, as shown in Fig. 1.

1) At the reasoning-driven transmitter side: The goal of

the teacher is to first disentangle the semantic content

elements Y = {Y1, . . . , Yn}, (n is the number of

semantic content elements in the source information)

contained in the datastream X , i.e. separate the different

meaning elements contained in the source data. Then,

for every content element the teacher must learn a cor-

responding semantic representation Z = {Z1, . . . , Zn}
with desirable properties. Essentially, Z is the minimal,

efficient, and generalizable description of Y .

2) At the reasoning-driven receiver side: The goal of the

apprentice is to understand the meaning contained in the

semantic representation Zi and use it to computationally

generate semantic content elements Yi.

To efficiently and effectively transmit semantic information

between a teacher and an apprentice, it is necessary to devise a

semantic language, that transforms the transmitter-receiver bit-

pipeline into a structured information transfer. As we discussed

in [2], we can define a semantic language as follows:

Definition 1. A semantic language L = (Xi, Zi), (or L =
(Xl,i, Zi)) is a dictionary (from a data structure perspective)
that maps the source raw datastream (or an interventional
learnable Xl,i) to their corresponding semantic representation
Zi, based on the identified semantic content elements Yi.

B. Semantic Language Model
In classical communications, the goal is to minimize the

system entropy and maximize the channel capacity. In essence,



statistical entropy characterizes the number of “yes/no” ques-
tions we would have to ask in order to get complete information
on the datastream we are dealing with. Entropy cannot be used
in semantic communication systems as it solely depends on the
freedom of choice of the transmitter rather than the meaning
of the message. Thus, in a semantic communication system,
the equivalent of “entropy” is the “language complexity” as
discussed in [2]. Henceforth, in a semantic communication
system, the goal of the complexity of the language is to char-
acterize the difficulty of identifying and learning the semantic
content elements in the raw datasteram X . It is given by [2]:

Γ(L) = min
p(Z|X)

LL(p) +K(p), (1)

where, LL(p) =
∑N
i=1− log p(Zi|Xi) is the cross-entropy

loss, and K(p) is the Kolmogorov complexity of the distri-
bution p(Z|X). From (1), one can observe:
• The language complexity, unlike Shannon’s information-

theoretic perspective, is a metric that depends on the
meaning of representations. (1) is a function of: a) the
fidelity of the representation model in capturing the se-
mantic content elements in the datastream, and b) the
Kolmogorov complexity that characterizes the individual-
ity of the semantic content elements as well as capturing
the shortest effective binary description of Xi [2].

• If the majority of the data lacks structure, the learning
task becomes increasingly difficult. Nonetheless, this is
not necessarily a result of complex content, but rather of
a high number of random data points that lack semantic
significance. In this setting, such data points must be
memorized rather than learned. That is, the semantic com-
munication system must retain them as is and classically
transmit them.

Furthermore, (1) is an ideal theoretical equation that measures
complexity in terms of the idealized, shortest, and best obtain-
able model that can represent the semantic content elements
in the data. The Kolmogorov complexity term in (1) is not
computable, i.e., there is no single function that will return
the complexity of a particular representation binary string.
Thus, for tractability and to capture a realistic representation
model, based on fundamentals from transfer learning [8], we
can rewrite the language complexity as follows:

Γ(L, ζ,Λ) = Eθ Λ(θ|L){LL(pθ(Zi|Xi)}+βKL(Λ(θ|L)||ζ(θ),

where the second term KL(Λ(θ|L)||ζ(θ) is the KL divergence
that characterizes the information in the parameters of the
representation model. Moreover, ζ and Λ are, respectively,
the pre-distribution and post-distribution of the representation
model. Such distributions do not correspond to a prior or
posterior of a Bayesian setting [8]. A pre-distribution is used to
initialize the semantic representation model so as to initiate the
gradual learning of a semantic language. Meanwhile the post-
distribution is used to fine-tune the language acquired between
the teacher and the apprentice. Both of these distributions de-
pend on the level of symmetry between teacher and apprentice

and their knowledge bases1.

C. Problem Formulation

As previously discussed, a language that lacks structure
will have a very large complexity due to the large amount
of spurious random data points captured via representations.
Remarkably, raw data tends to be very entangled, and it
contains a large amount of random information. Hence, relying
on the raw datastream X will lead to: a) an overly complex
language with representations that cannot express meaningful
semantic content elements, and b) such a problem mimicks the
overfitting machine learning (ML) scenario whereby the radio
nodes have not learned representations but merely memorized
spurious patterns in the source information. To alleviate this
problem, it is necessary to devise a comprehensive method
that enables disentangling the learnable X l data points from
the memorizable ones Xm. Performing such disentanglement
technique will allow the radio node to:
• Use X l as their structure-rich datastream to build a se-

mantic language, and learn efficient and minimal semantic
representations. Thus, X l will be transmitted semanti-
cally.

• Transmit Xm classically due to the lack of structure
and rich semantic content elements in these data points.
Attempting to perform reasoning or learning on Xm

is a computationally inefficient scheme. Meanwhile, the
classical communication scheme (which essentially targets
characterizing the uncertainty in information) remains
very efficient as it is not concerned with meaning.

The goal of this work is to propose a novel contrastive learning
technique that enables pre-processing and disentangling raw
source data, to ultimately separate learnable and memorizable
data via instance and cluster discrimination. This approach
also increases the cohesiveness between semantically similar
data points and disentangling semantic different ones. Next, we
delve into the analytical foundation of our proposed contrastive
learning framework.

III. CONTRASTIVE LEARNING FOR DISENTANGLING
SEMANTIC CONTENT ELEMENTS

Given a set of unlabeled2 datastreams, we let κ be the feature
embedding network that extracts key structural information
encoded in the low-dimensional vector subspace ψκ : X →
Z ∈ RN . Furthermore, we let φκ be a classifying function that
associates every semantic representation with its ground-truth
semantic content element pseudo-label φκ : Z → Y , where
Y ∈ Y , Y is the universal set of possible semantic content
elements that can be communicated. Essentially, the goal is
that representations of the same cluster must share similar
pseudo-labels vis-à-vis the semantic content elements they

1Learning and optimizing such distributions is an important research avenue
that is outside the scope of this paper.

2Unlabeled here refers to datastreams with unknown semantic content
elements.



are representing. Next, we discuss how we perform instance
discrimination to improve the generalizability of the represen-
tations that should be learned from the raw source data. Then,
cluster discrimination is performed among the data points in X
to optimize the boundaries between different semantic content
elements and ultimately separate memorizable data. In essence,
the higher confidence clusters are semantic rich structures and
are learnable clusters, meanwhile lower confidence clusters
are semantic poor clusters with memorizable properties that
must be classically transmitted. For instance, semantic-rich
data can be thought as “meaningful structural elements” of a
hologram, meanwhile memorizable data may be random details
in a hologram that do not have a meaning or structure (e.g.
information that human beings would not notice about that
hologram if trying to describe it). Furthermore, the instance
discrimination technique performs this clustering while making
sure that the mapping κ leads to minimalist representations.

A. Improving the Robustness of Semantic Representations via
Instance Discrimination

To perform instance discrimination [9], we first consider
every mapping function ψκ, and we construct another momen-
tum encoder function3 ψκ̃ that shares an identical structure
but independent parameters κ̃. Furthermore, for every raw
datastream in X , we randomly apply a set of transformations
X so as to mimic future distribution changes, and improve the
robustness of reasoning with respect to vertical generalizabil-
ity (distribution shifts). For each instance of the datastream
Xi, we represent two perturbed copies, namely, χ1(Xi) and
χ2(Xi). As such, after passing such perturbed copies with the
momentum encoder, we obtain ai = ψκ(χ1(Xi)) and bi =
φκ(χ2(Xi)). In the instance discrimination, the contrastive
learning task must match ai and bi, against the contrastive set,
composed by K stale representations of the pseudo-negative
samples of the semantic content element pseudo-labels [10]:

B̃i = {b̃|b̃ ∈ Cl ∀l ∈ [1,M ] and l 6= i} = {b̃1, . . . , b̃K},

where Cl is the memory bank used to manage the semantic
content element and its respective cluster, and M is the possible
number of semantic content elements that might occur for the
observed data stream. The loss resulting from the instance
discrimination step is given by [10]–[12]:

LI(Xi) = − log
exp(cos(ai, bi)/τ)∑

b̃∈B̃∪{bi} exp(cos(ai, b̃))/τ
. (2)

Next, we contrast random information with respect to clusters
containing semantically similar content elements.

B. Disentangling Semantic Content Elements via Semantic
Cluster Discrimination

Essentially, data points that map to a single semantic content
element (and its representation) must belong to a single seman-
tic cluster free from any random information. Thus, in order to

3In this work, we consider the momentum contrast as our scheme for
instantiation and instance discrimination.

discover the random information existing within semantically
similar clusters, we investigate the decision boundaries between
such clusters. Then, we adopt an approach that enables closing
the gap between semantically similar content elements, and
eliminating random information from semantic rich clusters.
In essence, cluster discrimination increases the compactness
between intra-content data points, and increases the separation
between inter-content data points, learnable, and memorizable
data. Thus, given a sample ai, its probability of being in a
semantically similar cluster is given by [10]–[12]:

Pi,l =

∑
b∈Cl

exp(cos(ai, b̃))/τ∑N
l′=1

∑
b̃∈Cl′

exp(cos(ai, b̃)/τ)
, (3)

Then, we formulate the cluster discrimination loss as:

LD =
1

N

N∑
i=1

M∑
l=1

−Pi,l logPi,l. (4)

Thus, the total loss will be formulated as [10]–[12]: LT =
ηLI + εLD, where we can set η = ε = 1 in case we
want to minimize the exhaustive per-dataset parameter tun-
ing. To minimize this loss, the weights κ and the decision
boundaries of the semantic clusters are updated by back-
propagation. Meanwhile, the momentum encoder κ̃ is updated
via κ̃ ← ωκ̃ + (1 − ω)κ, where ω is the momentum encoder
coefficient. To distinguish X l from Xm, the deep semantic
clusters are ranked from highest confidence to the lowest
confidence. Thus, the distinction is not binary: the higher the
level of confidence, the more learnable and semantic rich
those data points are. Meanwhile, semantic deep clusters with
the lowest level of confidence contain the data points that
are the most memorizable and semantic poor. Categorizing
particular semantic deep clusters and their corresponding data
points as Xm is a function of the lowest tolerable level of
confidence. This is based on the tolerable language complexity
in (1), the computation capability of the system, and the content
complexity of the source data.

IV. SIMULATION RESULTS AND ANALYSIS

A. Performance Evaluation via Semantic Key Performance
Indicators (KPIs)

Given that semantic communication systems are knowledge-
centric, and thus leverage communication and computing re-
sources; it is necessary to evaluate the performance of such
systems using novel metrics. As such, in our simulation results,
to evaluate the superiority of disentangling learnable and mem-
orizable data via contrastive learning, we rely on the notion
of semantic impact. Essentially, as we have defined it in [2],
the semantic impact ιYi

measures the equivalent computational
packets generated via the transmission of a semantic represen-
tation. In other words, it measures the number of packets that
a semantic representation can computationally generate, and
thus highlights the amount of communication resources and
time that could be saved when deploying semantic systems.
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Fig. 2: Average representation length |Zi| (bits) versus content
complexity (nats).
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Fig. 3: Semantic impact ιYi (Packets/(Representation ×s)) versus
content complexity (nats).

B. Simulation Results

For our simulations, we consider X to be the low-level
binary equivalent of a mixture model of CIFAR-10(/100) [13]
and ImageNet-10/Dogs [14]. The simulations adopted the
stochastic gradient descent (SGD) optimizer, ω = 0.9, and
τ = 0.1. The learning rate was set to 0.02 across 200 epochs
and a batch size of 32 [15].

In Fig. 2, we can see that the average representation length
increases with the content complexity. In fact, we can see that,
for a low content complexity, semantically transmitting all the
data might result in a smaller representation length. This is
because the amount of random information, and thus Xm

is considerably small. Meanwhile, as we increase the content
complexity, we can see that semantically transmitting all the
data is not a feasible approach anymore as the representation
length steeply increases as we increase the content complexity.
In contrast, when adopting our contrastive learning approach to
pre-process the data, we can see that the average representation
length is contained and minimalism can be achieved in the
representation used, even for higher complexity orders. In fact,
our representation is minimized by 57.22% compared to the
vanilla semantic approach.

In Fig. 3, we compare the semantic impact ιYi
for classical

communications, fully transmitting all data via semantic com-
munications, and adopting our proposed contrastive learning
approach to disentangle X l and Xm. We can see that while
for a low content complexity, semantically transmitting all the
data might be a feasible solution, however, as we increase

the content complexity we can see how the semantic impact
drastically decreases. Meanwhile, when contrastive learning is
adopted to pre-process the language, we can see that the seman-
tic impact grows despite increases in the content complexity. In
fact, a 71.9% improvement is achieved compared to a semantic
communication system that lacks language pre-processing.

V. CONCLUSION

In this paper, we have proposed a novel contrastive learning
approach to pre-process and disentangle the raw data used in
semantic communication systems. In particular, our contrastive
learning approach performs instance and cluster discrimination
on raw data points. In essence, we increase the cohesiveness
between data points that belong semantically similar content
elements and disentangle data points belonging to semantically
different content elements. Subsequently, we rank the deep
semantic clusters and consider the least confident ones as
memorizable, semantic-poor data. Simulation results demon-
strate the superiority of our contrastive learning approach
compared to pure semantic and classical communications vis-
à-vis semantic impact and minmalism of the representation.
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