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ABSTRACT 

Modern advancements in science and engineering are built upon multidisciplinary projects that 
bring experts together from different fields. Within their respective disciplines, researchers rely 
on precise terminology for specific ideas, principles, methods, and theories. Hence, the potential 
for miscommunication is substantial, especially when common words have been adopted by one 
(or both) group(s) to represent very specific, precise, but, perhaps, different concepts. Under the 
best circumstances, misunderstanding key terms will lead toward a breakdown of efficiency. 
Under less optimal conditions, miscommunication will sow frustration, lead to errors, and inhibit 
scientific breakthroughs. Here, our research group of geoscientists and machine learning experts 
presents a process to help geoscientists understand the fundamentals of supervised learning by 
describing the general workflow (i.e., a conceptual pipeline) for supervised learning that must be 
understood by all the parties involved in a geoscience-machine learning endeavor. Terms critical 
for machine learning are introduced, defined, and used within the context of an overly simplified 
mock hydrological study to illustrate their appropriate usage, and then used again in the context 
of a published geothermal-machine learning study. These key terms are divided into two groups, 
which are 1) essential to the field of machine learning but are predominantly absent in 
geoscience or 2) homonyms (i.e., words with the same spelling or pronunciation but with 
different meanings) between the fields. Lastly, we discuss a few other important homonyms that 
were not introduced in the general workflow but arise regularly in machine learning applications. 

1. Introduction – A Preamble About How to Read This Paper 
This document is noticeably different in intent and structure compared to other manuscripts 
about geoscience or machine learning. Rather than serving as a report and discussion on the 
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results of an experiment or as a literature review, this work introduces the key terms a 
geoscientist needs to collaborate with a machine learning expert. No prior machine learning 
experience is necessary to understand this document. 

In Section 2, we present a general machine learning workflow of seven steps to provide a 
contextual framework for key terms. The description of each step (Sections 2.1-2.7) is divided 
into a short, simple, plain language overview of that step followed by three subsections that 
contain skill-building information. The first subsection (i.e., 2.x.1 in which x is the step number 
and 1 is the first subsection) is a translation and expanded explanation of the ideas from the plain 
language overview. Critical terms for machine learning are introduced and defined. Terms that 
are predominantly absent in geoscience but crucial for machine learning are bolded and 
italicized and, until the reader is comfortable with this new jargon, the reader can refer to Table 1 
for a precise definition. Terms that are homonyms (i.e., identical terms with different uses) 
between the two disciplines are bolded and, for lookup purposes, definitions for these terms are 
provided in Table 2. In the next subsection (i.e., 2.x.2), a simple hypothetical hydrological 
machine learning study is used to develop and define the core ideas, demonstrating how machine 
learning terms are used in practice. The final subsection of each step (i.e., 2.x.3) then uses these 
newly introduced terms in the context of a recently published geothermal study where machine 
learning was used to predict geothermal resource favorability in the western United States 
(Mordensky et al., 2022). The final two sections of the manuscript conclude the discussion, with 
Section 3 listing a few additional terms that the reader may find helpful when working with 
machine learning experts, and Section 4 providing conclusions. 

1.1 What Is Machine Learning?  

Since the advent of electronic computers in the middle of the 20th century, the computational 
resources available to humans have increased by orders upon orders of magnitude. Classical 
computer software operates with exact sets of programmed rules to process data and return 
results. Rather than relying upon these rigid rules, researchers began asking if the computer 
could instead learn data-driven rules from general mathematical and statistical functions to 
process the input data into results without explicit direction (i.e., without programmed rules) 
from the researchers, thereby finding patterns with little or no user bias. These newly learned 
data-driven rules could then be applied to other data. Machine learning is the field of study that 
explores the construction and study of the mathematical and statistical functions that learn (i.e., 
create correlations and/or decision functions) without direct instruction. 

Before proceeding to distinguish the language differences between geoscience and machine 
learning, one must consider the distinct goals of each discipline. Geoscience is the practice of 
studying natural geological phenomena. A geoscientist seeks to understand a natural process, 
and, by doing so, a geoscientist creates a model (i.e., a conceptual or mathematical representation 
of the process) to describe that process. In the eyes of a geoscientist, the mechanics of a model 
should, in some form, reflect the important physical processes that are observed. A machine 
learning expert, in comparison, specializes in developing a model to identify patterns in the 
data, typically for the purpose of making predictions. To a machine learning expert, the internal 
mechanics of the model need not reflect physical processes so long as the model performs well 
for its intended purpose (e.g., identifying groups with differing behavior). That is, to the 
machine learning expert, the performance of the model may supersede its operational 
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consideration for its relation to the natural world. To the machine learning expert, the 
mathematics of classification or discrimination is the science. 

1.2 What Words Should We Use? 

As in any new relationship, the potential for miscommunication is high in multi-disciplinary 
collaboration. It is particularly so when one clearly prefers to speak in terms of natural processes 
about the Earth and the other prefers to speak in mathematics and algorithms. This is not a 
disparaging comment on geoscientists or machine learning experts, but an acknowledgement 
that we geoscientists have learned to speak a common language to effectively discuss geoscience 
topics. Unfortunately, unlike foreign languages that have completely different words for almost 
everything, machine learning and geoscience experts use the same words to mean very different 
things, and sometimes, when words appear to have very similar meanings, their subtleties are 
important.  

Geoscientists come from a wide range of disciplines and retain diction intrinsic to their research 
specialties (e.g., geophysics versus geochemistry), but they have also learned to speak a common 
geoscience language to effectively discuss geoscience topics during seminars, cooperate in 
collaboration, and share common facilities. Deep comprehension for this shared technical 
vernacular among geoscience researchers diminishes the farther afield the researchers’ 
professions are from one another (e.g., civil engineering, though not strictly a geoscience 
discipline, is tied to geoscience). Consequently, the jargon used by machine learning specialists 
shares more similarities with that of a mathematician or statistician than that of a geoscientist. If 
a machine learning expert and a geoscientist seek to collaborate, how do they resolve their 
terminology? 

To the extent possible, geoscientists should learn the machine learning dictionary, because 
effective communication enables the geoscience community to take advantage of a wide range of 
tools developed for a myriad of purposes (e.g., predicting resource quality, locating resources). 
Doing so helps the geoscientists to formulate geoscience questions appropriate for mathematical 
constructs of machine learning and to supply the correct information when working with 
machine learning experts. 

In any research environment, minimizing miscommunication within and beyond the research 
team increases the efficiency and quality of the work. Clear communication is central to avoiding 
misreporting and misinterpreting the data. Hereinafter, we seek to outline the general machine 
learning process (i.e., a conceptual machine learning pipeline) and, in that process, clarify key 
terms. We emphasize that the nomenclature we present is non-exhaustive, but instead serves as a 
foundation upon which to build and grow one’s parlance. 

1.3 Background for the Published Geothermal-Machine Learning Study used (below) to 
Illustrate Terminology 

In 2008, the U.S. Geological Survey released the most recent mid- to high-temperature 
geothermal resource assessment using data-driven analytical methods; however, some aspects of 
the analysis were dependent upon domain knowledge (i.e., knowledge of the geothermal 
subdiscipline) and expert decisions (Williams and DeAngelo, 2008; Williams et al., 2008; 
Williams et al., 2009). In 2022, a collaborative effort between the U.S. Geological Survey and 
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Portland State University used the same data to produce machine learning models to compare 
with the expert decision-dependent models from 2008 (Mordensky et al., 2022). This 
collaborative effort between the two institutions and the frequent need to explain terms led to the 
inspiration to develop the translational dictionary presented in this document. Below, we use 
Mordensky et al. (2022) to illustrate the proper use of key terms presented in the general 
machine learning workflow. 

 

2. A Machine Learning Workflow for Supervised Learning 
There are three primary domains of machine learning: supervised learning, unsupervised 
learning, and reinforcement learning (Fig. 1). Supervised learning is a domain of machine 
learning that is used to make predictions of a desired condition (e.g., the presence/absence of 
geothermal resources). Supervised learning seeks to find a mathematical or statistical 
relationship between measured or interpolated input data and known output data, so that new 
output values (i.e., predictions) can be made where the output values are otherwise unknown. 
‘Supervision’ is provided by measurements of the phenomenon/condition that will be predicted 
at other locations (e.g., heat flow measurements in wells can be used to construct a continuous 
heat flow map). Supervised learning has two primary forms of prediction (i.e., regression and 
classification). Regression is the prediction of a number corresponding to the magnitude of a 
property (e.g., a measure of heat flow or probability). Classification is the prediction of one of a 
finite number of pre-defined, discrete class values (e.g., rock type, mineral assemblage). In other 
words, regression is used for continuous variables, and classification is used for categorical 
variables. In contrast to supervised learning, unsupervised learning finds statistical 
relationships between data, identifying which samples are correlated and which samples belong 
to ‘similar’ groups. Finally, reinforcement learning is a domain of machine learning that 
sequentially makes decisions that are either rewarded for a correct decision or penalized for an 
incorrect decision, leading toward improved future decision making (e.g., some strategies for 
play fairway analysis). Each of the primary forms of machine learning is comprised of a range 
of methods (Fig. 1). 

Herein, we focus on a general workflow for supervised learning because the goal of making a 
prediction of interest based on available supporting geoscience data sets is a fundamental 
activity of geoscientists; however, we note that while the workflow we describe is for supervised 
learning, the machine learning terms are widely applicable across other forms of machine 
learning. We divide supervised learning into a workflow of seven distinct steps (the conceptual 
pipeline; Fig. 2): 

1. Identify a Clear Question 
2. Explore the Data 
3. Engineer Features 
4. Choose an Algorithm 
5. Train-Test Split the Data 
6. Optimize, Train, and Evaluate the Model 
7. Make Predictions 
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Figure 1. Machine learning family tree. Supervised learning, unsupervised learning, and reinforcement 

learning are commonly defined as the three primary domains of machine learning. Representative 
applications are given at end nodes. The yellow background highlights supervised learning, which is 
the focus of the workflow described in this document. Figure modified from the "Council of Europe" 
2019). 
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Figure 2. Conceptual representation of a supervised learning pipeline. Under ideal circumstances, the above 

image reflects the workflow one would follow to conduct supervised learning. Corresponding section 
numbers have been provided in the bottom-right of each step’s pane. 

 

2.1 Identify A Clear Question 

Avoiding confusion and miscommunication begins at the pre-planning stages of a project. The 
bottom line with machine learning, and even more so when working in collaboration with 
geoscientists, is that one must define what one would like to predict. 

2.1.1 Identifying a Clear Question in Machine Learning Language 

The goal of supervised learning is to create predictions of unknown conditions given 
measurements that are possibly correlated (in space, time, or type). When applying supervised 
learning tools to geoscience data, the following questions will be asked: 

1352



• What is being predicted? 
• What are the input data? 
• What will the predictions mean? 

Perhaps the most confusing homonym for non-machine learning experts is the term example. An 
example is all of the information attached to a datapoint. For supervised learning, this 
information consists of the input data that will be used to make predictions (e.g., latitude, 
longitude, rock type, geological province), along with a measured value of the property that will 
be predicted (e.g., heat flow). When data are being collected, each sample and its accompanying 
data are an example. Supervised learning learns from examples. More specifically, supervised 
learning models learn to predict by finding mathematical and statistical relationships between 
examples’ independent variables (i.e., the input data) and dependent variables (i.e., labels). That 
is, supervised learning models use labeled examples, which are instances of a phenomenon 
replete with known values for the input data and labels, to find the mathematical and statistical 
relationships. Labels can be categorical or continuous. Examples without labels are called 
unlabeled examples. The predictions from supervised learning models are called response 
variables. 

Machine learning algorithms are the mathematical and statistical functions that can be trained 
into models, which associate the input data with the labels and, in doing so, train to become 
models and predict response variables from input data.  

The data, as collected, are referred to as raw data and require processing before they are ready 
to train an algorithm to become a model. Raw data can be either categorical or continuous, and 
processing may depend on data type. 

2.1.2 Identifying a Clear Question for the Hydrological Study 

For our simple hydrological study, we ask ‘Is the water potable?’ (Fig. 3). Each sample in Figure 
3 serves as a labeled example. The measured properties of each sample (e.g., date, pH, salinity, 
and turbidity) are the raw data. The value for ‘Potable?’ (i.e., the categorical variable Yes/No) is 
the label. An algorithm will train from labeled examples to become a model that learns how to 
predict response variables (e.g., is the water potable?) for unlabeled examples (e.g., new water 
samples for which we have raw data). 

 
Figure 3. A visual depiction of the distinctions between ‘labeled example’, ‘raw data’, and ‘labels’ in a data 

set for a simple hydrological study. In this study, ‘Potable?’ indicates whether or not the water is safe 
to drink in a Yes/No format. 
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2.1.3 Identifying a Clear Question in the Geothermal Study 

Mordensky et al. (2022) asked, how do the expert decision-dependent models from 2008 
compare to purely data-driven machine learning models using the same raw data? In this 
geothermal-machine learning study, Mordensky et al. (2022) chose five sets of raw data (i.e., 
heat flow, distance to quaternary faults, distance to magma bodies, maximum horizontal stress, 
and seismic-event density) for 700,000+ mostly unlabeled examples as cells in a 2-km-by-2-km 
grid across the western United States. Locations with confirmed geothermal systems were 
assigned positive labels, yielding 278 labeled examples for training. These raw data and 
labels were used with three machine learning algorithms to train machine learning models to 
predict response variables (i.e., the probability of finding geothermally favorable conditions in a 
cell) for unlabeled examples for the western United States. 

2.2 Explore Data 

The collected data need to be inspected for their relationships and distributions. The correlation 
and statistics of the data are important considerations for selection of machine learning 
strategies and for transformation of the raw data into a format that will work with the selected 
algorithms. 

2.2.1 Exploring Data in Machine Learning Language 

Exploratory data analysis (EDA) is the process by which one analyzes and investigates the 
primary characteristics of the raw data set (e.g., statistics like mean and mode, data types, 
missing values). The key findings of the exploratory data analysis lend guidance toward how the 
raw data need to be processed and transformed so that they may be used by an algorithm to 
train to become a model. 

It is common to use data visualization methods (e.g., plots). Although the specifics steps for 
exploratory data analysis vary from institution to institution, or even individual to individual, 
the goal remains the same: to identify key statistics of the data (e.g., Is there correlation between 
some data fields? Do some data express collinearity? Are some data values more common that 
others? Are the data normally distributed?). Data correlation is important, because input data that 
are highly correlated to each other have less unique information for predictions. Normally 
distributed data can lend confidence to predictions that are well represented by most of the data, 
but special care may be necessary when predicting extreme values.  

2.2.2 Exploring Data in the Hydrological Example 

Through examining the basic statistics of the hydrological study, we complete a simple 
exploratory data analysis. For instance, ‘Salinity’ has greater minimum, maximum, mean, and 
standard deviation values than that of ‘pH’ in Figure 3. Similarly, the range of ‘Salinity’ is far 
greater than that of ‘pH’. Also, ‘Turbidity’ and ‘Potable?’ are provided as categorical values. 
Date is provided in a Day-Month Name-Year format. Range of variables with different 
measurement units can be misleading (e.g., perhaps a small difference in pH is more important 
than a large difference in salinity), so differences identified during exploratory data analysis can 
form the foundation of feature engineering (next step; Section 2.3). 
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2.2.3 Exploring Data in the Geothermal Study 

In the 2008 geothermal resource assessment, exploratory data analysis found some raw data 
properties contained values spanning only a couple orders of magnitude (e.g., heat flow [32 – 
114 mW/m2]). Other properties ranged six orders of magnitude (i.e., distance to a quaternary 
fault [0 – 596,996 m] and distance to a magma body [0 – 362,580 m]). Similarly, depending 
upon the property in question, standard deviation ranged from single-digit values (i.e., with 
seismic event density in n/km2 and maximum horizontal stress in MPa) to greater than five-digit 
values (i.e., distance to fault in m, distance to a magma body in m). Likewise, mean values also 
varied by several orders of magnitude between the properties. 

2.3 Engineer Features 

To those new to machine learning, data manipulation may sound sinister in intent since all 
scientists are warned of a theme perhaps best articulated by Ronald C. Coase, “If you torture data 
long enough, it will confess [to anything]” (Good, 1972). Despite this important caution, 
collected data typically need preparation before the data are ready to train supervised learning 
models. Feature engineering can account for differences in measurement units (e.g., distance in 
cm versus km) or for converting categorical variables into mathematical characterizations that 
may or may not have a natural rank order. For instance, if water content is an important input 
variable, then the categories saturated/damp/dry can be ranked from wetter to drier. But if 
mapped surficial geology is used as input, it may be more difficult to provide a meaningful rank 
(e.g., Quaternary basalt/pre-Miocene basalt/sandstone/limestone).  

2.3.1 Engineering Features in Machine Learning Language 

Feature engineering is the process of using domain knowledge and an understanding of 
machine learning methods to select and transform the raw data into a format ideal for machine 
learning. Once the data have been formatted, the examples’ (i.e., the samples’) independent 
variables are called features. A feature vector is the numeric representation (e.g., categorical 
variables are represented as numbers) of the combined feature values for an example. Writing 
each example as a feature vector prepares the data for numerical analyses. A feature set is the 
list of feature names (e.g., column names in Fig. 4).  

Continuous data are often either standardized or normalized so that the difference in scale 
between features does not impart unintended bias in the machine learning process. 
Standardization of continuous data is typically accomplished by subtracting the sample mean 
and dividing by the sample standard deviation, creating an engineered feature with a mean of 0 
and a standard deviation of 1. Normalization is the process of scaling the allowable data range 
into a user-defined range defined by upper and lower limits (e.g., 0 to 1). The choice of 
standardization or normalization is left to the machine learning expert based upon the 
qualities of the data, but the general goal is to make sure that the variability of each feature has a 
similar magnitude, so that machine learning algorithms can effectively examine correlations and 
contrasts between the features. 

Categorical data commonly undergo a transformation known as one-hot-encoding, which is the 
method of converting categorical data to a machine-readable format with no rank order. A 
categorical variable with N possible values is transformed into N features (e.g., an example with 
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three possible colors, red, blue, green, has N=3), with each feature having values of 0 or 1. In 
this case, the ‘red’ feature has a value of 1 only if the color is red, and 0 if it is any other color. 
The same process is used to create ‘blue’ and ‘green’ features. 

Feature engineering also includes a wide range of transformations that optimize algorithm 
performance, and these transformations are often the result of the ingenuity of geoscientists or 
machine learning experts. Data may be transformed to isolate a signal representing a key process 
or characteristic, and strategies may be employed to isolate complex processes. For instance, 
given data sets A and B, where values in data set A are important only when the corresponding 
values of data set B are greater than a certain threshold, a new, third data set might be engineered 
to emphasize this behavior.  

2.3.2 Engineering Features in the Hydrological Example 

For the hydrological study, the ‘pH’ feature is standardized, and the ‘Salinity’ feature is 
normalized from 0 to 1 (Fig. 4). The three possible values of the single categorical variable 
‘Turbidity’ are converted into three features using one-hot-encoding (i.e., compare the values in 
Fig. 3 ‘Clear’, ‘Translucent’, and ‘Opaque’ to the features in Fig. 4). Similarly, the single 
column of sample dates (Fig. 3) are one-hot-encoded into multiple season features (Fig. 4). 
Finally, in addition to the input variables, the labels are also one-hot-encoded, completing the 
transformation of the science question (Section 2.1.2) into a machine-readable format 
appropriate for machine learning. 

 

 
Figure 4. Engineered features using the raw data from Figure 3. pH has been standardized using a standard 

normal transformation. Salinity has been normalized. Season has been one-hot-encoded from the date. 
Turbidity has been one-hot-encoded. Labels have been converted from Yes and No to 1 and 0, 
respectively. Visual depiction of the distinctions between individual features, feature vectors, feature 
sets, examples, and labels are given. 
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2.3.3 Engineering Features in the Geothermal Study 

Mordensky et al. (2022) standardized each of the five input’s features, so that every feature had 
a mean of 0 and a standard deviation of 1, effectively rendering the features unitless. The labels 
(i.e., presence or absence of a geothermal system) were one-hot-encoded creating two features, 
a presence feature and an absence feature. 

2.4 Choose an Algorithm 

The machine learning expert chooses appropriate mathematical and statistical algorithms to 
train a model with consideration for the specific qualities of the phenomenon and the 
characteristics of the input data. Part of this process may entail testing several types of machine 
learning algorithms and strategies (c.f., Mordensky et al., 2022). Use of multiple methods 
allows choosing algorithms that work best or allows an evaluation of confidence in predictions 
based on agreement (or disagreement) between methods (see Section 2.6 for evaluation 
methods). 

2.4.1 Choosing an Algorithm in Machine Learning Language 

There are many forms of machine learning algorithms with varying complexity ranging from 
shallow learning (e.g., linear regression, logistic regression, decision trees, random forests, 
support vector machines) to deep learning in sequentially layered, neural networks (e.g., 
multilayer perceptron neural networks, convolutional neural networks, recurrent neural 
networks). Every algorithm has its strengths and weaknesses that need to be considered in the 
context of the available data and the research question(s). For instance, tree-based classifiers 
provide predictions that are highly interpretable as behavior thresholds (e.g., plant growth as a 
function of exceeding climate thresholds such as available sunlight or available water), so that 
the resulting decision process is easy for scientists to understand; whereas, interpreting the 
decision processes that led to a prediction from a neural network is not nearly as simple nor 
straightforward, especially when input variables are combined in many complicated 
mathematical operations.  

Some algorithms (e.g., support vector machines) directly predict a classification value, and 
some algorithms (e.g., logistic regression) predict a probability of each possible classification. 
For instance, geoscience is replete with classification labels (e.g., Yes/No and 1/0 for ‘Potable?’ 
in Figs. 3 and 4, respectively), and those classification values have clear meanings (e.g., 
potability). In this sense, geoscientists are easily able to make use of classification values 
produced by classification machine learning methods. Other algorithms predict probability 
values for each example (e.g., logistic regression). Then, given a chosen probability threshold 
(e.g., a probability threshold = 0.5), a classification label is applied depending on whether the 
example’s probability is greater than or less than the threshold probability. Understanding how 
probability values from machine learning algorithms are derived and knowing what factors lead 
to the development of those probability values is important for ensuring that the predicted 
probability values are properly interpreted, and their meaning understood. 

Algorithms can also be described as linear or non-linear. In linear algorithms, the feature 
values of an example contribute proportionally toward a prediction value (e.g., linear 
regression); whereas non-linear algorithms place particular emphasis on some feature values as 
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being more important than other feature values in the decision-making process (e.g., decision 
trees). 

With the above considerations in mind, algorithm selection is a critically important decision in 
machine learning. Specifically, algorithm selection is the method of selecting amongst the 
machine learning algorithms with consideration for their specific strengths, their specific 
weaknesses, the data available, and the requirements implicit to the research question (see 
generally Chapter 5 of Burkov [2019]). Understanding how the algorithm works helps with 
proper selection, and also helps prevent the misapplication of the method. Each method has 
implicit mathematical assumptions and restrictions that require verification and adherence.  

2.4.2 Choosing an Algorithm for the Hydrological Example 

While no analyses are performed in this manuscript for either described studies, we recommend 
simple linear models first, and moving towards more complex models incrementally. The 
sequential addition of complexity allows the science team to better understand correlations and 
possibly even causation. Simple models also tend to work better with fewer data (e.g., Fig. 4) 
and to be very fast, allowing rapid data exploration of data characteristics and predictions. 
Adding model complexity incrementally (e.g., moving from a linear to a non-linear model) 
allows the research team to understand basic characteristics of the data (e.g., if model 
performance improves with a non-linear model, the process may intrinsically be non-linear). For 
the hydrological study, logistic regression (Fig. 5) would be a good choice of a robust linear 
model for initial data analyses. If results are sufficient for study purposes, then the study is 
complete. If desired, a next step might be to employ a non-linear method such as XGBoost (Chen 
and Guestrin, 2016) to see if performance improves. This process of selecting more complicated 
(but generally harder to interpret) methods can continue until a model is deemed sufficient for a 
defined purpose (e.g., predicting potable water with sufficiently high accuracy), or until it 
becomes apparent that more complex models do not provide improved predictions. 

2.4.3 Choosing an Algorithm in the Geothermal Study 

The three algorithms chosen during algorithm selection in Mordensky et al. (2022) are forms of 
shallow learning. These three algorithms (i.e., logistic regression, support vector machines, and 
XGBoost) were selected primarily for two reasons: 1) to compare the machine learning 
approaches to the strategies of the 2008 expert decision-dependent assessment; and 2) to 
compare the performance of algorithms that function differently from one another (e.g., linear 
versus non-linear). Mordensky et al. (2022) used this diverse suite of shallow learning 
algorithms to establish a foundational understanding of how machine learning algorithms treat 
geothermal data. 
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Figure 5. Illustrated conceptual frameworks for a non-exhaustive assortment of common machine learning 

algorithms (i.e., [a] logistic regression, [b] a support vector machine, [c] XGBoost, and [d] a multilayer 
perceptron neural network). See Berkson (1944) for more information on logistic regression. See 
Cortes and Vapnik (1995) for more information on support vector machines. See Chen and Guestrin 
(2016) for more information on XGBoost. See Chollet (2021) for more information on neural networks. 
The conceptual model figures for logistic regression, support vector machines, and XGBoost are 
modified from Mordensky et al. (2022). 

 

2.5 Train-Test Split the Data 

A large minority of the data (e.g., 5 – 20 %; see generally Chapter 5 of Burkov [2019]) needs to 
be set aside and not used to train the model. The remaining 80 – 95 % of the data are used to 
train the model. The data that were set aside will be used to test the model once it is trained. 
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Testing ensures that the newly trained model predicts well from new data not seen during 
training. 

2.5.1 Train-Test Splitting Data in Machine Learning Language 

Supervised learning models require examples from which to train and other examples to test 
how well the model has learned. The training examples provide the ‘supervision’ in supervised 
learning. However, the models produced from this training need to be evaluated to determine 
the quality of their performance. Put simply, the machine learning expert needs to gauge if the 
model performs well enough to be used to predict response variables for unlabeled examples. 
This evaluation of the model requires its own data separate from the data used for training. 
Hence, the initially complete feature data set needs to be split. A train-test split refers to 
randomly dividing the feature data set into training data and testing data (Fig. 6). The training 
data are used to train the model. The testing data are used to evaluate the performance of that 
model. 

2.5.2 Train-Test Splitting Data in the Hydrological Example 

At this step, the low number of samples given as the hydrological data proves to be a detriment 
for its use to train a machine learning model because there are too few examples. Although we 
are able to conduct a 4:1 split of the feature data, only one of the five labeled examples would 
then be used as the testing data. While there is no exact number of examples needed to conduct 
supervised machine learning, both the testing data and training data should contain many 
examples. Additional consideration needs to be given to the complexity of the phenomenon 
being modeled and the complexity of the selected algorithm (e.g., linear versus non-linear). As 
the complexity of the phenomenon being modeled and/or the complexity of the selected 
algorithm increase(s), machine learning requires more examples. Unfortunately, a consistently 
reoccurring challenge faced by geoscientists is having too few examples; however, there are 
strategies to address this issue (e.g., creating synthetic examples with the same statistical 
properties of the collected examples to supplement the collected examples). 

2.5.3 Train-Test Splitting Data in the Geothermal Study 

In Mordensky et al. (2022), the feature data were subject to a 4:1 train-test split, which 
corresponds to 80% of the data becoming training data and 20% of the data becoming testing 
data. 

2.6 Optimize, Train, and Evaluate the Model 

All machine learning algorithms have parameters that are fit with the data, but many 
algorithms also have parameters that can only be manually tuned to improve model 
performance. By changing the values of these manually adjusted parameters, the performance of 
the resultant models also changes. After the best values for these parameters are identified, a 
final model can be produced and evaluated. 

2.6.1 Optimizing, Training, and Evaluating the Model in Machine Learning Language 

Every model is the product of a combination of an algorithm (e.g., Fig. 5) and a feature data set. 
Many of the algorithm’s parameters within the model are adjusted as the model learns from the 
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data. However, many algorithms also have parameters that do not learn from the data and must 
be manually tuned to improve model performance. These parameters, called hyperparameters, 
are (usually, but not always) numerical values (e.g., class weight, inverse regularization strength; 
see generally Pedregosa et al., 2011 for details) that must be set by the researcher before training 
the model. Hyperparameter optimization (also termed optimization and hyperparameter 
tuning) refers to the exploration and selection of hyperparameter values that produce the best 
performing model. After the optimal values for the hyperparameters are identified, a final 
model is trained and evaluated. 

Hyperparameter optimization is completed through a technique known as validation. Validation 
begins by splitting the training data yet another time so that a sub-group (or several sub-groups) 
of validation data are set aside from the rest of the training data (Fig. 6). A model is trained 
with the remaining training data (Fig. 6). The validation data are then used by the model to find 
the validation error (also called validation loss). Loss is a measure of error, as defined by a loss 
function, between an example’s label and its associated response variable from the model. A 
cost function provides the average value of loss over all the examined examples. Common loss 
functions are mean squared error and logistic loss. Regularizers are mathematical terms that can 
be added to the loss function to achieve some desired behavior (e.g., avoid violating physical 
principles, honor physical processes, limit the number of non-unique solutions) but are not 
required. Validation explores how different hyperparameter values influence the validation 
error. The hyperparameter values that contribute to the lowest validation error (i.e., average 
loss) are said to be optimal. If the average loss is not minimized during validation, the researcher 
adjusts the hyperparameter values being explored and hyperparameter optimization is started 
again. This process is repeated until average loss is minimized with the validation data and the 
optimal hyperparameter values are identified. 

Multiple sets of training data and validation data allow for a means to assess a model’s 
variance (i.e., changes in the model’s response variables) when different data subsets are used 
to train the model.  

Some algorithms have only a couple hyperparameters that have a major impact on performance. 
Other algorithms have several hyperparameters, and the proper choice of these 
hyperparameters is essential for strong model performance. Hyperparameter exploration can be 
a computationally intensive task. Depending on the time available, the number of 
hyperparameters involved with an algorithm may be a consideration in algorithm selection. 

Once the average loss is minimized on the validation data, the hyperparameter optimization is 
complete. A final model is then trained using all training data and the optimal hyperparameter 
values (Fig. 6). The model is then ready to predict using the testing data.  

The response variables predicted from the testing data by the model are compared with the 
researcher-assigned labels to assess the testing error (i.e., a measure of error between the labels 
and response variables of the testing data). Similarly, when the trained model is used to 
predict response variables for the training data, one can examine the training error (i.e., a 
measure of error between the labels and response variables of the training data). If the training 
error is low and testing error high, the model may be overfit to the training data. Overfitting 
occurs when a model perfectly (or nearly perfectly) fits the training data but does not predict 
well from new data (e.g., test data or new samples). Reciprocally, underfitting occurs when a 
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model is some combination of not complex enough or has not trained from enough examples to 
predict the training data or testing data well, leading to high training error and high testing 
error. 

 
Figure 6. Workflow for optimizing, training, evaluating, and predicting from a supervised learning model. 

Testing data are used to infer how the validated model will perform when new data are processed.  

 

2.6.2 Optimizing, Training, and Evaluating a Model from the Hydrological Study 

Presuming a researcher had only four examples in their training data, like with the simple 
hydrological feature data, one example would need to be used for validation, leaving only three 
examples for training. Under these circumstances, it is highly likely that the resulting model 
would be underfit. Many more examples would be needed during training to produce a well-
performing model. 

2.6.3 Optimizing, Training, and Evaluating the Models from the Geothermal Study 

During validation, Mordensky et al. (2022) used the default loss functions in Python’s Scikit-
Learn and XGBoost modules for each of the selected algorithms to gauge the performance of the 
thousands of models resulting from the thousands of unique combinations of hyperparameter 
values (Pedregosa et al., 2011; Chen and Guestrin, 2016). The validation data were used to 
calculate loss values through the loss functions. The hyperparameter values that contributed to 
the model that produced the lowest average loss from the validation data were then used with all 
the training data to produce a final model (i.e., the proposed best model for prediction). The 
final model was then evaluated using the testing data to verify that the model performs equally 
well for new data. 
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2.7 Make Predictions 

Once the model is trained and performs well during evaluation, the model can be used to make 
predictions using new data.  

2.7.1 Making Predictions in Machine Learning Language 

Following training, validation, and evaluation, the supervised learning model is ready to 
predict for new, unlabeled examples. When discussing machine learning models, the term 
generalize is sometimes used in lieu of predict and generalization in lieu of prediction. When 
generalizing with the model, the testing error provides a metric of reliability regarding the new 
generalizations of the model from unlabeled examples. However, should that model be used 
with new, unlabeled examples that have values well beyond the ranges of the feature values in 
the training data (i.e., new data are very different from previous data), the confidence in that 
testing error lessens. 

2.7.2 Making Predictions with the Hydrological Example 

With the hydrological data, the limited number of the examples used in training would likely 
mean that the model would not be properly trained to generalize from the full range of values 
that would be found with newly collected data; hence, the model would be underfit. This can be 
seen by the fact that for the sample data set, every time the water is ‘clear’, it is potable, and any 
lack of clarity indicates that water is not potable. This means that a very accurate model for the 
hydrological study data would use only the turbidity to predict potability, but seawater is very 
clear in some areas; yet seawater is not potable. In this case, more labeled examples would be 
needed for training to produce an accurate model for a wide range of natural waters.  

2.7.3 Making Predictions with the Geothermal Study 

Many machine learning studies only use one machine learning algorithm to train and evaluate 
a model. Mordensky et al. (2022) used three algorithms and, in doing so, were able to compare 
the different models from the different algorithms trained using the same data. Each model was 
used to predict geothermal favorability across the western United States (see favorability maps in 
Mordensky et al. [2022]). The favorability maps that were produced by the different algorithms 
generally agreed in terms of areas of high geothermal favorability but expressed greater 
variability in predictions between models in areas of low favorability. If the goal of study is to 
find high-favorability areas, the differences between the models may not be critical, and the 
general agreement between the models adds confidence in the predictions. The models trained 
from non-linear algorithms (i.e., support vector machines and XGBoost) predicted greater 
geospatial granularity than that of the linear algorithm (i.e., logistic regression). 

 

3. Additional Homonyms 
While many of the key terms needed to discuss machine learning are novel to a geoscientist 
(Table 1), many other key terms do not appear as new but, instead, are homonyms (Table 2). 
Here, we present prominent homonyms shared by geoscience and machine learning that were 
not discussed in the conceptual pipeline of Section 2. 
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3.1 Survey 

To a geoscientist, ‘a survey’ refers to the systematic investigation of the geology beneath a 
specific area. The word can also be used as a verb for the conduction of that systematic 
investigation. A geoscientist may also refer to a state’s geological survey or the U.S. Geological 
Survey as ‘the Survey’. To a machine learning expert, a survey is akin to what a geoscientist 
knows as a literature review paper. That is, a survey paper in machine learning focuses on 
summarizing the findings from several works with a unifying theme to synthesize additional 
understanding of a topic. 

3.2 Risk 

Geological studies involving risk define risk as a function of the likelihood of occurrence for a 
given hazard (e.g., a landslide, a volcanic eruption, an earthquake) and the damage that hazard 
would produce. In machine learning, risk refers to a measure of the possibility that a machine 
learning process will produce a model that makes less reliable predictions with new data. In 
machine learning, risk can be measured by comparing loss. 

3.3 Epoch 

In geoscience, an epoch refers to a (reasonably short) length of time on the scale of (only) tens of 
millions of years. In geologic time, epochs are used to subdivide the next longer segment of time 
(i.e., periods). For instance, the ‘Jurassic’ in ‘Late Jurassic’ would be a period and the ‘late’ in 
‘Late Jurassic’ would define the epoch. In machine learning, some algorithms pass through the 
data several times during training (e.g., multilayer perceptron neural networks). Each of these 
passes of the entire training data is referred to as an epoch. Hundreds or thousands of epochs 
may be used to fully train a model. 

3.4 Entropy 

In science, the common definition of entropy refers to the measure of molecular disorder 
addressed in thermodynamics; although, the term is also used more generally as a qualitative 
reference to disorder. While not starkly different, the nuanced derivation of machine learning’s 
entropy is a mathematical measure of randomness, but that measure is not necessarily of a 
subatomic nature. Examples’ features inherently contain some degree of uncertainty with their 
values. The less constrained those feature values are, the more entropy (i.e., the greater 
uncertainty) they hold. 

 

4. Conclusion 
In this study, a general workflow (i.e., a conceptual pipeline) for supervised learning is 
presented. In that process, key machine learning terms that may be new to geoscientists are 
defined and their context explained. Homonyms between the disciplines are identified and 
defined. Lastly, common homonyms not presented in the general workflow are presented and 
briefly discussed. We emphasize that the terms provided here are non-exhaustive. The intent of 
this work is to produce an initial resource to which geoscientists and machine learning experts 
may refer when working together. 
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Table 1. Novel Key Machine Learning Terms 

Term Definition & Implications What a Geoscientist Should Think 
algorithm The mathematical or statistical 

function(s) that map(s) inputs to 
outputs. Also known as hypothesis, 
concept, predictor, or prediction 
rule. 

The underlying idea or structure technique 
used to build a model. An untrained 
model. Examples include linear 
regression, decision trees, and neural 
networks. 

algorithm 
selection 

A method of selecting among 
algorithms or algorithm parameters 
to avoid overfitting. 

The process to consider which algorithm 
and its parameters are most appropriate 
when considering the qualities of a 
dataset. 

average loss Loss averaged by all the examined 
examples. Given by the cost 
function. 

Average of the loss function for examined 
samples. 

cost function Provides average of loss across all 
the examined examples (see Table 2 
for 'example'). 

Gives the average of the error (i.e., loss) 
function. The function that is minimized 
during optimization. Minimizing average 
loss (i.e., error) generally improves the 
performance of a machine learning model. 
There may be multiple terms encapsulated 
in the cost function to achieve multiple 
goals (e.g., minimize error, find a solution 
that honors physical constraints, find a 
solution that minimizes uncertainty). Also 
called the objective or objective function, 
although a cost function is but one type of 
objective function. 

deep learning A form of machine learning with 
algorithms based on numerous 
sequential layers in a neural 
network. 

Highly flexible machine learning 
algorithms that perform well at the cost of 
interpretability (i.e., a black-box 
problem). Deep learning can result in 
models with low training error but are 
prone to overfitting. 

exploratory 
data analysis 

The process analyzing and 
investigating the primary 
characteristics of the data set. Often 
referred to as EDA. 

Examining the distribution, types, and 
relationships of data. 

feature 
engineering 

The process of using domain 
knowledge (i.e., knowledge of the 
discipline) to select and transform 
the most relevant variables from 
raw data so that machine learning 
may better use the data. 

Processing data into a format usable by 
machine learning algorithms. 
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feature vector The combined values for an 
example’s features (see Table 2 for 
'example'). 

The combined values for the different data 
fields tied to an observation. Example: the 
feature vector for a rock sample 01 with a 
feature set of (age, density, and rock type) 
is (6.7 Ma, 3.4 g/cm3, igneous). 

hyperparameter A property of an algorithm, usually 
(but not always) having a numerical 
value. This value influences the 
way the model works and is not 
learned from the data. Instead, it is 
set by the data analyst before 
training the algorithm. 

Hyperparameters are variables that control 
how a model learns but cannot be learned 
from the data. One must explore and 
select hyperparameters when training new 
models. 

hyperparameter 
optimization 

The process of finding a set of 
algorithm parameters that results in 
the best performance according to 
the chosen metric. That is, the 
process of iteratively training a 
model that results in the best 
performance through the adjustment 
hyperparameters. Also termed 
hyperparameter tuning (see 
'optimization' in Table 2). 

The process of identifying and selecting 
hyperparameter values that produce the 
best performing model with a given 
algorithm. 

linear algorithm An algorithm in which the feature 
values of an example are linearly 
combined to produce a label value 
(see 'example' and 'label' in Table 
2). 

An algorithm in which features' values 
contribute proportionally toward a 
prediction. 

loss A measure of prediction 
performance on a single example. A 
measure of error at a single training 
site (commonly, some measure of 
the difference between the 
prediction and the training data at 
that location). A common example 
would be the squared error. 

The error between a prediction and its 
associated label. 

loss function Computes the error between the 
response variable and the expected 
label (i.e., an error function). 

How the error between a prediction and a 
label (see Table 2 for 'label') is calculated. 
An example of loss would be the squared 
error (i.e., quadratic loss) between a 
prediction and a known value. 

machine 
learning 

The field of study that explores the 
construction and study of 
mathematical and statistical models 
that learn without direct instruction. 

An entire field of study with many sub-
disciplines but the unifying component of 
these disciplines is that models are 
learning from data. 

non-linear 
algorithm 

An algorithm that produces a label 
value by combining features using a 

Algorithms that can form more 
complicated prediction functions to 
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mathematically non-linear function 
(e.g., a decision tree). 

distinguish between examples. 

normalization The process of scaling data into a 
pre-selected range (e.g., commonly 
0 to 1) or simply transforming data 
onto the unit sphere. 

A type of transformation in feature 
engineering that allows the different 
datasets to share the same scale. 

one-hot-
encoding 

A means to quantify categorical 
data. 

Every categorical value is converted to a 
feature. These new features have a value 
of 0 except where the categorical value for 
that example and the feature match; this 
feature's value is set to 1. For example, if 
we were using flower color as a category 
with [red, green, yellow, blue] as potential 
colors and the flower in question was 
green, the corresponding feature values 
would be [0,1,0,0]. 

overfitting Training a predictor that achieves 
low training error but has high 
variance. 

When an algorithm creates a model that 
matches the training dataset very well, too 
well (i.e., low training error), but does not 
predict well from data not used during 
training. 

regularizer A term added to the objective 
function to achieve some desired 
behavior. 

Regularizers are additional terms in the 
objective function to improve the machine 
learning algorithm. Some regularizers 
ensure rapid convergence to an answer 
(i.e., mathematical techniques to speed up 
optimization). Some prevent overfitting. 
Some ensure convergence to answers that 
honor likely physical conditions (e.g., 
temperature varies smoothly in space, heat 
flow is likely similar to the regional 
average) and avoid violating physical 
principles. 

reinforcement 
learning 

Decision making over time with 
consequences dependent on 
external, possibly delayed feedback. 

A domain of machine learning that 
considers stimuli (e.g., previous decisions, 
conditions, events) to make decisions that 
either lead toward a reward (for a correct 
decision) or a punishment (for an 
incorrect decision). 
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response 
variable 

The variable that corresponds to a 
prediction that is made by a 
machine learning-derived model. It 
is a subtle distinction, but the 
machine learning scientist 
frequently uses the term 
"prediction" when discussing the 
value of the response variable for 
one set of input variables, and 
"response variable" when 
discussing all possible predictions 
that are made from all possible 
input data combinations. 

What a model predicts. 

shallow 
learning 

Learning that does not involve 
multiple layers of a neural network. 

Algorithms apart from neural networks, 
including linear regression, logistic 
regression, support vector machines, and 
decision trees. Neural networks classify as 
shallow learning if they have only one 
hidden layer. 

supervised 
learning 

A domain of machine learning in 
which the algorithm is given input-
output pairs to learn from, so that 
predictions can be made with new 
data. 

A machine learning approach that uses 
labeled data sets to predict values for 
unlabeled datasets (see Table 2 for 'label'). 

training data Set of input-output data used for 
supervised learning. 

The examples used by a model to learn 
the relationship between inputs and 
outputs. Bad training data will result in a 
bad model. 

training error A measure of error between the 
training data and the prediction 
made using the model with the 
training data. Empirical estimate of 
risk over the training dataset. 

A measure of a model's performance with 
the training data. 

train-test split Partitioning training data from 
testing data for supervised machine 
learning. 

The feature data are divided so that a large 
percentage of the data are used for 
training and a smaller percentage are used 
to evaluate (i.e., to test) the trained model. 

underfitting Training a predictor that fails to 
predict well with the training data 
and the testing data. Producing an 
undertrained model. 

Training a model that needs more 
complexity (e.g., more structure or more 
training examples) to produce reliable 
predictions. 

unsupervised 
learning 

Machine learning when prediction 
labels are not provided. Finding 
relationships between input data 
and then grouping based upon these 
relationships.  

A machine learning approach that groups 
data in different ways or simplifies data 
by finding internal relationships. 
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validation A technique to estimate the model's 
ability to predict on unseen data 
(i.e., data outside the training data 
set). 

An evaluation of the model while tuning 
hyperparameters. 

validation data Set of input-output data used to 
evaluate a model for validation (i.e., 
for hyperparameter optimization). 

Validation data are used to measure the 
error of a model to tune hyperparameters 
during validation. 

validation error The measure of error between a 
model's predictions for the 
validation data and those data 
labels. 

Optimal hyperparameters are chosen 
when hyperparameter values minimize the 
validation error. 
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Table 2. Geoscience-Machine Learning Homonyms 

Term What a Machine Learning Scientist Thinks What a Geoscientist May Think 
class One of a set of finite target values for a label. A category or subdivision with very 

specific definitions in some fields 
such as mineralogy and petrology. 

classification A supervised learning approach to predict and 
apply class labels to examples. 

Generally, the grouping of similar 
objects within a system. 

entropy Mathematical construct of disorder; entropy of 
a random variable is the average level of 
“information”, “surprise”, or “uncertainty” 
inherent in the variable’s possible outcomes. 
That is, the more certain or the more 
deterministic an event is, the less information 
it will contain. In a nutshell, the information is 
an increase in uncertainty or entropy. 

Most commonly refers to the 
thermodynamics definition of a 
measure of unavailable energy which 
is a function of molecular disorder, 
also used as a general measure of 
disorder or uncertainty.  

epoch A full pass of all the training data during an 
optimization procedure. 

The geological time period when a 
rock was deposited. Geological eras 
are composed of geological periods. 

example From a dataset, a single datum replete with 
values for the features of the feature set. That 
is, one row of a dataset, containing one or 
more features and possibly a label. 

An instance generally representative 
of a larger population. 

feature An independent attribute or variable for an 
example used to make predictions. 

Any aspect of a system (e.g., distance 
from a fault), characteristic, or 
structure of a rock. 

feature set The features that lead toward a prediction, 
specifically the field titles for the attribute data 
(e.g., age, weight, height, and blood pressure 
might be considered a feature set for predicting 
an individual's health). 

A collection of geological 
observations, sometimes qualitative 
(e.g., structures). 

generalization The ability of a model to predict on unseen 
(i.e., general) data. Similarly, generalize is 
sometimes used in place of predict. 

Often the lay definition of broad 
statement is meant, but 
generalization is also used in 
cartography and geographic 
information systems to refer to 
methods used to limit the symbology 
needed or shown on map products. 

label The true condition (i.e., dependent variable) of 
what is trying to be predicted by supervised 
machine learning. 

A means of specimen identification 
or classification term applied to 
samples or data. 

labeled 
example 

Examples with corresponding labels (see 
'examples' and 'labels' for additional 
information). 

Representative specimens with 
identification indices or tags. 

(to) learn To create and tune decision functions using 
mathematical and statistical rules. 

To gain or acquire knowledge by 
study, experience, or being taught. 
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model What is produced by training an algorithm and 
can then be used to make predictions. A 
combination of decision functions composed 
of procedures dependent upon the algorithm 
chosen during model selection and specific 
values learned during training. 

A spatial, conceptual, or 
mathematical representation of a 
phenomenon. 

optimization The process of finding a set of inputs to an 
objective function (e.g., a loss function) that 
results in a maximum or minimum function 
evaluation. 

Improving efficiency (e.g., 
streamlining). 

pipeline A workflow with discrete steps for a complete 
machine learning task. 

A pipe for conveying fluid or gas. 

predictions The output of a machine learning model. An interpretation, forecast, or 
prognosis dependent on previous 
data but not necessarily dependent on 
a mathematical or statistical model. 

raw data Untouched data before engineering. Data directly from measurement with 
no modifications. 

regression A numerical value estimate produced from a 
trained model. 

Marine regression is a geological 
process when areas of submerged 
seafloor become exposed during 
changes in sea level.  

risk A measure of the possibility that the machine 
learning process will produce a model that 
makes less reliable predictions with new data. 
Risk is estimated by validation. 

A combination of hazard, value, and 
vulnerability. 

standardization Data are transformed to a mean of 0 and a 
standard deviation of 1. 

Adhering to specific methods and 
units of measurement to follow 
industry standards. 

survey A literature review of machine learning 
studies. 

A systematic investigation of the 
geology beneath a specific area or a 
government institution. 

testing data Same as training data but are not part of the 
data used to train the algorithm. Used to assess 
performance of the model with data yet unseen 
by the model.  

Experimental results. 

testing error A measure of the error between the testing 
data and the predictions made using the model 
with the testing data. That is, the error when a 
trained model is used to predict results on data 
from which the model has not been trained. 
The less the testing error, the better. If testing 
error is similar to validation error, this is 
evidence that the algorithm produced a reliable 
predictor.  

Uncertainty or variability introduced 
into data during lab experiments, 
analyses, or other "tests". 
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train Adjust (i.e., change) the weights (i.e., 
parameters) of an algorithm using label 
examples to reduce loss and risk. 

Some form of personnel education. 

unlabeled 
examples 

Examples without labels (see 'examples' and 
'labels' for additional information). 

Representative specimens without a 
proper identifier. 

variance In addition to the statistical definition (see 
What a Geoscientist May Think), changes in 
the model when using different portions of the 
training data set; simply, variance is the 
variability in the model prediction. The degree 
of overfitting or underfitting. 

A statistical definition providing a 
measure of how far data are 
distributed about the mean. 
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