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ABSTRACT

Modern advancements in science and engineering are built upon multidisciplinary projects that
bring experts together from different fields. Within their respective disciplines, researchers rely
on precise terminology for specific ideas, principles, methods, and theories. Hence, the potential
for miscommunication is substantial, especially when common words have been adopted by one
(or both) group(s) to represent very specific, precise, but, perhaps, different concepts. Under the
best circumstances, misunderstanding key terms will lead toward a breakdown of efficiency.
Under less optimal conditions, miscommunication will sow frustration, lead to errors, and inhibit
scientific breakthroughs. Here, our research group of geoscientists and machine learning experts
presents a process to help geoscientists understand the fundamentals of supervised learning by
describing the general workflow (i.e., a conceptual pipeline) for supervised learning that must be
understood by all the parties involved in a geoscience-machine learning endeavor. Terms critical
for machine learning are introduced, defined, and used within the context of an overly simplified
mock hydrological study to illustrate their appropriate usage, and then used again in the context
of a published geothermal-machine learning study. These key terms are divided into two groups,
which are 1) essential to the field of machine learning but are predominantly absent in
geoscience or 2) homonyms (i.e., words with the same spelling or pronunciation but with
different meanings) between the fields. Lastly, we discuss a few other important homonyms that
were not introduced in the general workflow but arise regularly in machine learning applications.

1. Introduction — A Preamble About How to Read This Paper

This document is noticeably different in intent and structure compared to other manuscripts
about geoscience or machine learning. Rather than serving as a report and discussion on the

1347



results of an experiment or as a literature review, this work introduces the key terms a
geoscientist needs to collaborate with a machine learning expert. No prior machine learning
experience is necessary to understand this document.

In Section 2, we present a general machine learning workflow of seven steps to provide a
contextual framework for key terms. The description of each step (Sections 2.1-2.7) is divided
into a short, simple, plain language overview of that step followed by three subsections that
contain skill-building information. The first subsection (i.e., 2.x.1 in which x is the step number
and 1 is the first subsection) is a translation and expanded explanation of the ideas from the plain
language overview. Critical terms for machine learning are introduced and defined. Terms that
are predominantly absent in geoscience but crucial for machine learning are bolded and
italicized and, until the reader is comfortable with this new jargon, the reader can refer to Table 1
for a precise definition. Terms that are homonyms (i.e., identical terms with different uses)
between the two disciplines are bolded and, for lookup purposes, definitions for these terms are
provided in Table 2. In the next subsection (i.e., 2.x.2), a simple hypothetical hydrological
machine learning study is used to develop and define the core ideas, demonstrating how machine
learning terms are used in practice. The final subsection of each step (i.e., 2.x.3) then uses these
newly introduced terms in the context of a recently published geothermal study where machine
learning was used to predict geothermal resource favorability in the western United States
(Mordensky et al., 2022). The final two sections of the manuscript conclude the discussion, with
Section 3 listing a few additional terms that the reader may find helpful when working with
machine learning experts, and Section 4 providing conclusions.

1.1 What Is Machine Learning?

Since the advent of electronic computers in the middle of the 20™ century, the computational
resources available to humans have increased by orders upon orders of magnitude. Classical
computer software operates with exact sets of programmed rules to process data and return
results. Rather than relying upon these rigid rules, researchers began asking if the computer
could instead learn data-driven rules from general mathematical and statistical functions to
process the input data into results without explicit direction (i.e., without programmed rules)
from the researchers, thereby finding patterns with little or no user bias. These newly learned
data-driven rules could then be applied to other data. Machine learning is the field of study that
explores the construction and study of the mathematical and statistical functions that learn (i.e.,
create correlations and/or decision functions) without direct instruction.

Before proceeding to distinguish the language differences between geoscience and machine
learning, one must consider the distinct goals of each discipline. Geoscience is the practice of
studying natural geological phenomena. A geoscientist seeks to understand a natural process,
and, by doing so, a geoscientist creates a model (i.e., a conceptual or mathematical representation
of the process) to describe that process. In the eyes of a geoscientist, the mechanics of a model
should, in some form, reflect the important physical processes that are observed. A machine
learning expert, in comparison, specializes in developing a model to identify patterns in the
data, typically for the purpose of making predictions. To a machine learning expert, the internal
mechanics of the model need not reflect physical processes so long as the model performs well
for its intended purpose (e.g., identifying groups with differing behavior). That is, to the
machine learning ecxpert, the performance of the model may supersede its operational
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consideration for its relation to the natural world. To the machine learning expert, the
mathematics of classification or discrimination is the science.

1.2 What Words Should We Use?

As in any new relationship, the potential for miscommunication is high in multi-disciplinary
collaboration. It is particularly so when one clearly prefers to speak in terms of natural processes
about the Earth and the other prefers to speak in mathematics and algorithms. This is not a
disparaging comment on geoscientists or machine learning experts, but an acknowledgement
that we geoscientists have learned to speak a common language to effectively discuss geoscience
topics. Unfortunately, unlike foreign languages that have completely different words for almost
everything, machine learning and geoscience experts use the same words to mean very different
things, and sometimes, when words appear to have very similar meanings, their subtleties are
important.

Geoscientists come from a wide range of disciplines and retain diction intrinsic to their research
specialties (e.g., geophysics versus geochemistry), but they have also learned to speak a common
geoscience language to effectively discuss geoscience topics during seminars, cooperate in
collaboration, and share common facilities. Deep comprehension for this shared technical
vernacular among geoscience researchers diminishes the farther afield the researchers’
professions are from one another (e.g., civil engineering, though not strictly a geoscience
discipline, is tied to geoscience). Consequently, the jargon used by machine learning specialists
shares more similarities with that of a mathematician or statistician than that of a geoscientist. If
a machine learning expert and a geoscientist seek to collaborate, how do they resolve their
terminology?

To the extent possible, geoscientists should learn the machine learning dictionary, because
effective communication enables the geoscience community to take advantage of a wide range of
tools developed for a myriad of purposes (e.g., predicting resource quality, locating resources).
Doing so helps the geoscientists to formulate geoscience questions appropriate for mathematical
constructs of machine learning and to supply the correct information when working with
machine learning experts.

In any research environment, minimizing miscommunication within and beyond the research
team increases the efficiency and quality of the work. Clear communication is central to avoiding
misreporting and misinterpreting the data. Hereinafter, we seek to outline the general machine
learning process (i.e., a conceptual machine learning pipeline) and, in that process, clarify key
terms. We emphasize that the nomenclature we present is non-exhaustive, but instead serves as a
foundation upon which to build and grow one’s parlance.

1.3 Background for the Published Geothermal-Machine Learning Study used (below) to
Hllustrate Terminology

In 2008, the U.S. Geological Survey released the most recent mid- to high-temperature
geothermal resource assessment using data-driven analytical methods; however, some aspects of
the analysis were dependent upon domain knowledge (i.e., knowledge of the geothermal
subdiscipline) and expert decisions (Williams and DeAngelo, 2008; Williams et al., 2008;
Williams et al., 2009). In 2022, a collaborative effort between the U.S. Geological Survey and
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Portland State University used the same data to produce machine learning models to compare
with the expert decision-dependent models from 2008 (Mordensky et al., 2022). This
collaborative effort between the two institutions and the frequent need to explain terms led to the
inspiration to develop the translational dictionary presented in this document. Below, we use
Mordensky et al. (2022) to illustrate the proper use of key terms presented in the general
machine learning workflow.

2. A Machine Learning Workflow for Supervised Learning

There are three primary domains of machine learning: supervised learning, unsupervised
learning, and reinforcement learning (Fig. 1). Supervised learning is a domain of machine
learning that is used to make predictions of a desired condition (e.g., the presence/absence of
geothermal resources). Supervised learning seeks to find a mathematical or statistical
relationship between measured or interpolated input data and known output data, so that new
output values (i.e., predictions) can be made where the output values are otherwise unknown.
‘Supervision’ is provided by measurements of the phenomenon/condition that will be predicted
at other locations (e.g., heat flow measurements in wells can be used to construct a continuous
heat flow map). Supervised learning has two primary forms of prediction (i.e., regression and
classification). Regression is the prediction of a number corresponding to the magnitude of a
property (e.g., a measure of heat flow or probability). Classification is the prediction of one of a
finite number of pre-defined, discrete class values (e.g., rock type, mineral assemblage). in other
words, regression is used for continuous variables, and classification is used for categorical
variables. In contrast to supervised learning, unsupervised learning finds statistical
relationships between data, identifying which samples are correlated and which samples belong
to ‘similar’ groups. Finally, reinforcement learning is a domain of machine learning that
sequentially makes decisions that are either rewarded for a correct decision or penalized for an
incorrect decision, leading toward improved future decision making (e.g., some strategies for
play fairway analysis). Each of the primary forms of machine learning is comprised of a range
of methods (Fig. 1).

Herein, we focus on a general workflow for supervised learning because the goal of making a
prediction of interest based on available supporting geoscience data sets is a fundamental
activity of geoscientists; however, we note that while the workflow we describe is for supervised
learning, the machine learning terms are widely applicable across other forms of machine
learning. We divide supervised learning into a workflow of seven distinct steps (the conceptual
pipeline; Fig. 2):

Identify a Clear Question

Explore the Data

Engineer Features

Choose an Algorithm

Train-Test Split the Data

Optimize, Train, and Evaluate the Model
Make Predictions

Nk W=
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Figure 1. Machine learning family tree. Supervised learning, unsupervised learning, and reinforcement
learning are commonly defined as the three primary domains of machine learning. Representative
applications are given at end nodes. The yellow background highlights supervised learning, which is
the focus of the workflow described in this document. Figure modified from the "Council of Europe"

2019).
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Conceptual Supervised Learning Pipeline
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Figure 2. Conceptual representation of a supervised learning pipeline. Under ideal circumstances, the above
image reflects the workflow one would follow to conduct supervised learning. Corresponding section
numbers have been provided in the bottom-right of each step’s pane.

2.1 Ildentify A Clear Question

Avoiding confusion and miscommunication begins at the pre-planning stages of a project. The
bottom line with machine learning, and even more so when working in collaboration with
geoscientists, is that one must define what one would like to predict.

2.1.1 Identifying a Clear Question in Machine Learning Language

The goal of supervised learning is to create predictions of unknown conditions given
measurements that are possibly correlated (in space, time, or type). When applying supervised
learning tools to geoscience data, the following questions will be asked:
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e What is being predicted?
e What are the input data?
e What will the predictions mean?

Perhaps the most confusing homonym for non-machine learning experts is the term example. An
example is all of the information attached to a datapoint. For supervised learning, this
information consists of the input data that will be used to make predictions (e.g., latitude,
longitude, rock type, geological province), along with a measured value of the property that will
be predicted (e.g., heat flow). When data are being collected, each sample and its accompanying
data are an example. Supervised learning learns from examples. More specifically, supervised
learning models learn to predict by finding mathematical and statistical relationships between
examples’ independent variables (i.e., the input data) and dependent variables (i.e., labels). That
is, supervised learning models use labeled examples, which are instances of a phenomenon
replete with known values for the input data and labels, to find the mathematical and statistical
relationships. Labels can be categorical or continuous. Examples without labels are called
unlabeled examples. The predictions from supervised learning models are called response
variables.

Machine learning algorithms are the mathematical and statistical functions that can be trained
into models, which associate the input data with the labels and, in doing so, train to become
models and predict response variables from input data.

The data, as collected, are referred to as raw data and require processing before they are ready
to train an algorithm to become a model. Raw data can be either categorical or continuous, and
processing may depend on data type.

2.1.2 Identifyving a Clear Question for the Hydrological Study

For our simple hydrological study, we ask ‘Is the water potable?’ (Fig. 3). Each sample in Figure
3 serves as a labeled example. The measured properties of each sample (e.g., date, pH, salinity,
and turbidity) are the raw data. The value for ‘Potable?’ (i.e., the categorical variable Yes/No) is
the label. An algorithm will train from labeled examples to become a model that learns how to
predict response variables (e.g., is the water potable?) for unlabeled examples (e.g., new water
samples for which we have raw data).

Raw Data Set

Raw Data Labels
Samples Collection Date pH Salinity (ppt) Turbidity Potable?
(Sample 01 21 Sept. 1937 7.2 5.20 Clear Yes Labeled Example
Sample 02 02 Sept. 1945 5.6 35.6 Opaque No Labeled Example
(Sample 03 20 July 1976 6.8 4.20 Clear Yes Labeled Example
Sample 04 20 August 1977 5.5 30.8 Translucent No Labeled Example
(Sample 05 20 March 2013 4.3 36.9 Opaque No Labeled Example)

Figure 3. A visual depiction of the distinctions between ‘labeled example’, ‘raw data’, and ‘labels’ in a data
set for a simple hydrological study. In this study, ‘Potable?’ indicates whether or not the water is safe
to drink in a Yes/No format.
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2.1.3 Identifying a Clear Question in the Geothermal Study

Mordensky et al. (2022) asked, how do the expert decision-dependent models from 2008
compare to purely data-driven machine learning models using the same raw data? In this
geothermal-machine learning study, Mordensky et al. (2022) chose five sets of raw data (i.e.,
heat flow, distance to quaternary faults, distance to magma bodies, maximum horizontal stress,
and seismic-event density) for 700,000+ mostly unlabeled examples as cells in a 2-km-by-2-km
grid across the western United States. Locations with confirmed geothermal systems were
assigned positive labels, yielding 278 labeled examples for training. These raw data and
labels were used with three machine learning algorithms to train machine learning models to
predict response variables (i.e., the probability of finding geothermally favorable conditions in a
cell) for unlabeled examples for the western United States.

2.2 Explore Data

The collected data need to be inspected for their relationships and distributions. The correlation
and statistics of the data are important considerations for selection of machine learning
strategies and for transformation of the raw data into a format that will work with the selected
algorithms.

2.2.1 Exploring Data in Machine Learning Language

Exploratory data analysis (EDA) is the process by which one analyzes and investigates the
primary characteristics of the raw data set (e.g., statistics like mean and mode, data types,
missing values). The key findings of the exploratory data analysis lend guidance toward how the
raw data need to be processed and transformed so that they may be used by an algorithm to
train to become a model.

It is common to use data visualization methods (e.g., plots). Although the specifics steps for
exploratory data analysis vary from institution to institution, or even individual to individual,
the goal remains the same: to identify key statistics of the data (e.g., Is there correlation between
some data fields? Do some data express collinearity? Are some data values more common that
others? Are the data normally distributed?). Data correlation is important, because input data that
are highly correlated to each other have less unique information for predictions. Normally
distributed data can lend confidence to predictions that are well represented by most of the data,
but special care may be necessary when predicting extreme values.

2.2.2 Exploring Data in the Hydrological Example

Through examining the basic statistics of the hydrological study, we complete a simple
exploratory data analysis. For instance, ‘Salinity’ has greater minimum, maximum, mean, and
standard deviation values than that of ‘pH’ in Figure 3. Similarly, the range of ‘Salinity’ is far
greater than that of ‘pH’. Also, ‘Turbidity’ and ‘Potable?’ are provided as categorical values.
Date is provided in a Day-Month Name-Year format. Range of variables with different
measurement units can be misleading (e.g., perhaps a small difference in pH is more important
than a large difference in salinity), so differences identified during exploratory data analysis can
form the foundation of feature engineering (next step; Section 2.3).
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2.2.3 Exploring Data in the Geothermal Study

In the 2008 geothermal resource assessment, exploratory data analysis found some raw data
properties contained values spanning only a couple orders of magnitude (e.g., heat flow [32 —
114 mW/m?]). Other properties ranged six orders of magnitude (i.e., distance to a quaternary
fault [0 — 596,996 m] and distance to a magma body [0 — 362,580 m]). Similarly, depending
upon the property in question, standard deviation ranged from single-digit values (i.e., with
seismic event density in #/km” and maximum horizontal stress in MPa) to greater than five-digit
values (i.e., distance to fault in m, distance to a magma body in m). Likewise, mean values also
varied by several orders of magnitude between the properties.

2.3 Engineer Features

To those new to machine learning, data manipulation may sound sinister in intent since all
scientists are warned of a theme perhaps best articulated by Ronald C. Coase, “If you torture data
long enough, it will confess [to anything]” (Good, 1972). Despite this important caution,
collected data typically need preparation before the data are ready to train supervised learning
models. Feature engineering can account for differences in measurement units (e.g., distance in
cm versus km) or for converting categorical variables into mathematical characterizations that
may or may not have a natural rank order. For instance, if water content is an important input
variable, then the categories saturated/damp/dry can be ranked from wetter to drier. But if
mapped surficial geology is used as input, it may be more difficult to provide a meaningful rank
(e.g., Quaternary basalt/pre-Miocene basalt/sandstone/limestone).

2.3.1 Engineering Features in Machine Learning Language

Feature engineering is the process of using domain knowledge and an understanding of
machine learning methods to select and transform the raw data into a format ideal for machine
learning. Once the data have been formatted, the examples’ (i.e., the samples’) independent
variables are called features. A feature vector is the numeric representation (e.g., categorical
variables are represented as numbers) of the combined feature values for an example. Writing
each example as a feature vector prepares the data for numerical analyses. A feature set is the
list of feature names (e.g., column names in Fig. 4).

Continuous data are often either standardized or normalized so that the difference in scale
between features does not impart unintended bias in the machine learning process.
Standardization of continuous data is typically accomplished by subtracting the sample mean
and dividing by the sample standard deviation, creating an engineered feature with a mean of 0
and a standard deviation of 1. Normalization is the process of scaling the allowable data range
into a user-defined range defined by upper and lower limits (e.g., 0 to 1). The choice of
standardization or normalization is left to the machine learning expert based upon the
qualities of the data, but the general goal is to make sure that the variability of each feature has a
similar magnitude, so that machine learning algorithms can effectively examine correlations and
contrasts between the features.

Categorical data commonly undergo a transformation known as one-hot-encoding, which is the
method of converting categorical data to a machine-readable format with no rank order. A
categorical variable with N possible values is transformed into N features (e.g., an example with
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three possible colors, red, blue, green, has N=3), with each feature having values of 0 or 1. In
this case, the ‘red’ feature has a value of 1 only if the color is red, and 0 if it is any other color.
The same process is used to create ‘blue’ and ‘green’ features.

Feature engineering also includes a wide range of transformations that optimize algorithm
performance, and these transformations are often the result of the ingenuity of geoscientists or
machine learning experts. Data may be transformed to isolate a signal representing a key process
or characteristic, and strategies may be employed to isolate complex processes. For instance,
given data sets A and B, where values in data set A are important only when the corresponding
values of data set B are greater than a certain threshold, a new, third data set might be engineered
to emphasize this behavior.

2.3.2 Engineering Features in the Hydrological Example

For the hydrological study, the ‘pH’ feature is standardized, and the ‘Salinity’ feature is
normalized from 0 to 1 (Fig. 4). The three possible values of the single categorical variable
‘Turbidity’ are converted into three features using one-hot-encoding (i.e., compare the values in
Fig. 3 ‘Clear’, ‘Translucent’, and ‘Opaque’ to the features in Fig. 4). Similarly, the single
column of sample dates (Fig. 3) are one-hot-encoded into multiple season features (Fig. 4).
Finally, in addition to the input variables, the labels are also one-hot-encoded, completing the
transformation of the science question (Section 2.1.2) into a machine-readable format
appropriate for machine learning.

Feature Data Set Individual

4/A/‘/ Featl"es \\‘A

Samples (Spring Summer pH Salinity (ppt) Clear Translucent Opague Potable? Feature Set )

Sample 01 (O <1 1.15 0.03 1 0 0 1 Feature Vector)
Sample02 O 1 -0.24 096 0 0 1 0 Feature Vector
Sample 03 (0O 1 0.80 0.00 1 0 0 1 Feature Vector)
Sample04 0O 1 -0.33 081 0 1 0 0 Feature Vector
Sample 05 (3 0 -1.37 1.00 0 0 1 0 Feature Vector)
Normalized One-Hot-Encoded
Salinity Turbidity
One-Hot-Encoded Standardized One-Hot-Encoded
Seasons pH Labels

Figure 4. Engineered features using the raw data from Figure 3. pH has been standardized using a standard
normal transformation. Salinity has been normalized. Season has been one-hot-encoded from the date.
Turbidity has been one-hot-encoded. Labels have been converted from Yes and No to 1 and 0,
respectively. Visual depiction of the distinctions between individual features, feature vectors, feature
sets, examples, and labels are given.
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2.3.3 Engineering Features in the Geothermal Study

Mordensky et al. (2022) standardized each of the five input’s features, so that every feature had
a mean of 0 and a standard deviation of 1, effectively rendering the features unitless. The labels
(i.e., presence or absence of a geothermal system) were one-hot-encoded creating two features,
a presence feature and an absence feature.

2.4 Choose an Algorithm

The machine learning expert chooses appropriate mathematical and statistical algorithms to
train a model with consideration for the specific qualities of the phenomenon and the
characteristics of the input data. Part of this process may entail testing several types of machine
learning algorithms and strategies (c.f, Mordensky et al., 2022). Use of multiple methods
allows choosing algorithms that work best or allows an evaluation of confidence in predictions
based on agreement (or disagreement) between methods (see Section 2.6 for evaluation
methods).

2.4.1 Choosing an Algorithm in Machine Learning Language

There are many forms of machine learning algorithms with varying complexity ranging from
shallow learning (e.g., linear regression, logistic regression, decision trees, random forests,
support vector machines) to deep learning in sequentially layered, neural networks (e.g.,
multilayer perceptron neural networks, convolutional neural networks, recurrent neural
networks). Every algorithm has its strengths and weaknesses that need to be considered in the
context of the available data and the research question(s). For instance, tree-based classifiers
provide predictions that are highly interpretable as behavior thresholds (e.g., plant growth as a
function of exceeding climate thresholds such as available sunlight or available water), so that
the resulting decision process is easy for scientists to understand; whereas, interpreting the
decision processes that led to a prediction from a neural network is not nearly as simple nor
straightforward, especially when input variables are combined in many complicated
mathematical operations.

Some algorithms (e.g., support vector machines) directly predict a classification value, and
some algorithms (e.g., logistic regression) predict a probability of each possible classification.
For instance, geoscience is replete with classification labels (e.g., Yes/No and 1/0 for ‘Potable?’
in Figs. 3 and 4, respectively), and those classification values have clear meanings (e.g.,
potability). In this sense, geoscientists are easily able to make use of classification values
produced by classification machine learning methods. Other algorithms predict probability
values for each example (e.g., logistic regression). Then, given a chosen probability threshold
(e.g., a probability threshold = 0.5), a classification label is applied depending on whether the
example’s probability is greater than or less than the threshold probability. Understanding how
probability values from machine learning algorithms are derived and knowing what factors lead
to the development of those probability values is important for ensuring that the predicted
probability values are properly interpreted, and their meaning understood.

Algorithms can also be described as linear or non-linear. In linear algorithms, the feature
values of an example contribute proportionally toward a prediction value (e.g., linear
regression); whereas non-linear algorithms place particular emphasis on some feature values as
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being more important than other feature values in the decision-making process (e.g., decision
trees).

With the above considerations in mind, algorithm selection is a critically important decision in
machine learning. Specifically, algorithm selection is the method of selecting amongst the
machine learning algorithms with consideration for their specific strengths, their specific
weaknesses, the data available, and the requirements implicit to the research question (see
generally Chapter 5 of Burkov [2019]). Understanding how the algorithm works helps with
proper selection, and also helps prevent the misapplication of the method. Each method has
implicit mathematical assumptions and restrictions that require verification and adherence.

2.4.2 Choosing an Algorithm for the Hydrological Example

While no analyses are performed in this manuscript for either described studies, we recommend
simple linear models first, and moving towards more complex models incrementally. The
sequential addition of complexity allows the science team to better understand correlations and
possibly even causation. Simple models also tend to work better with fewer data (e.g., Fig. 4)
and to be very fast, allowing rapid data exploration of data characteristics and predictions.
Adding model complexity incrementally (e.g., moving from a linear to a non-linear model)
allows the research team to understand basic characteristics of the data (e.g., if model
performance improves with a non-linear model, the process may intrinsically be non-linear). For
the hydrological study, logistic regression (Fig. 5) would be a good choice of a robust linear
model for initial data analyses. If results are sufficient for study purposes, then the study is
complete. If desired, a next step might be to employ a non-linear method such as XGBoost (Chen
and Guestrin, 2016) to see if performance improves. This process of selecting more complicated
(but generally harder to interpret) methods can continue until a model is deemed sufficient for a
defined purpose (e.g., predicting potable water with sufficiently high accuracy), or until it
becomes apparent that more complex models do not provide improved predictions.

2.4.3 Choosing an Algorithm in the Geothermal Study

The three algorithms chosen during algorithm selection in Mordensky et al. (2022) are forms of
shallow learning. These three algorithms (i.e., logistic regression, support vector machines, and
XGBoost) were selected primarily for two reasons: 1) to compare the machine learning
approaches to the strategies of the 2008 expert decision-dependent assessment; and 2) to
compare the performance of algorithms that function differently from one another (e.g., linear
versus non-linear). Mordensky et al. (2022) used this diverse suite of shallow learning
algorithms to establish a foundational understanding of how machine learning algorithms treat
geothermal data.
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Figure 5. Mllustrated conceptual frameworks for a non-exhaustive assortment of common machine learning
algorithms (i.e., [a] logistic regression, [b] a support vector machine, [c] XGBoost, and [d] a multilayer
perceptron neural network). See Berkson (1944) for more information on logistic regression. See
Cortes and Vapnik (1995) for more information on support vector machines. See Chen and Guestrin
(2016) for more information on XGBoost. See Chollet (2021) for more information on neural networks.
The conceptual model figures for logistic regression, support vector machines, and XGBoost are
modified from Mordensky et al. (2022).

2.5 Train-Test Split the Data

A large minority of the data (e.g., 5 — 20 %; see generally Chapter 5 of Burkov [2019]) needs to
be set aside and not used to train the model. The remaining 80 — 95 % of the data are used to
train the model. The data that were set aside will be used to test the model once it is trained.
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Testing ensures that the newly trained model predicts well from new data not seen during
training.

2.5.1 Train-Test Splitting Data in Machine Learning Language

Supervised learning models require examples from which to train and other examples to test
how well the model has learned. The training examples provide the ‘supervision’ in supervised
learning. However, the models produced from this training need to be evaluated to determine
the quality of their performance. Put simply, the machine learning expert needs to gauge if the
model performs well enough to be used to predict response variables for unlabeled examples.
This evaluation of the model requires its own data separate from the data used for training.
Hence, the initially complete feature data set needs to be split. A train-test split refers to
randomly dividing the feature data set into training data and testing data (Fig. 6). The training
data are used to train the model. The testing data are used to evaluate the performance of that
model.

2.5.2 Train-Test Splitting Data in the Hydrological Example

At this step, the low number of samples given as the hydrological data proves to be a detriment
for its use to train a machine learning model because there are too few examples. Although we
are able to conduct a 4:1 split of the feature data, only one of the five labeled examples would
then be used as the testing data. While there is no exact number of examples needed to conduct
supervised machine learning, both the testing data and training data should contain many
examples. Additional consideration needs to be given to the complexity of the phenomenon
being modeled and the complexity of the selected algorithm (e.g., linear versus non-linear). As
the complexity of the phenomenon being modeled and/or the complexity of the selected
algorithm increase(s), machine learning requires more examples. Unfortunately, a consistently
reoccurring challenge faced by geoscientists is having too few examples; however, there are
strategies to address this issue (e.g., creating synthetic examples with the same statistical
properties of the collected examples to supplement the collected examples).

2.5.3 Train-Test Splitting Data in the Geothermal Study

In Mordensky et al. (2022), the feature data were subject to a 4:1 train-test split, which
corresponds to 80% of the data becoming training data and 20% of the data becoming testing
data.

2.6 Optimize, Train, and Evaluate the Model

All machine learning algorithms have parameters that are fit with the data, but many
algorithms also have parameters that can only be manually tuned to improve model
performance. By changing the values of these manually adjusted parameters, the performance of
the resultant models also changes. After the best values for these parameters are identified, a
final model can be produced and evaluated.

2.6.1 Optimizing, Training., and Evaluating the Model in Machine Learning Language

Every model is the product of a combination of an algorithm (e.g., Fig. 5) and a feature data set.
Many of the algorithm’s parameters within the model are adjusted as the model learns from the
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data. However, many algorithms also have parameters that do not learn from the data and must
be manually tuned to improve model performance. These parameters, called hyperparameters,
are (usually, but not always) numerical values (e.g., class weight, inverse regularization strength;
see generally Pedregosa et al., 2011 for details) that must be set by the researcher before training
the model. Hyperparameter optimization (also termed optimization and hyperparameter
tuning) refers to the exploration and selection of hyperparameter values that produce the best
performing model. After the optimal values for the hyperparameters are identified, a final
model is trained and evaluated.

Hyperparameter optimization is completed through a technique known as validation. Validation
begins by splitting the training data yet another time so that a sub-group (or several sub-groups)
of validation data are set aside from the rest of the training data (Fig. 6). A model is trained
with the remaining training data (Fig. 6). The validation data are then used by the model to find
the validation error (also called validation loss). Loss is a measure of error, as defined by a loss
function, between an example’s label and its associated response variable from the model. A
cost function provides the average value of loss over all the examined examples. Common loss
functions are mean squared error and logistic loss. Regularizers are mathematical terms that can
be added to the loss function to achieve some desired behavior (e.g., avoid violating physical
principles, honor physical processes, limit the number of non-unique solutions) but are not
required. Validation explores how different hyperparameter values influence the validation
error. The hyperparameter values that contribute to the lowest validation error (i.e., average
loss) are said to be optimal. If the average loss is not minimized during validation, the researcher
adjusts the hyperparameter values being explored and hyperparameter optimization is started
again. This process is repeated until average loss is minimized with the validation data and the
optimal hyperparameter values are identified.

Multiple sets of training data and validation data allow for a means to assess a model’s
variance (i.e., changes in the model’s response variables) when different data subsets are used
to train the model.

Some algorithms have only a couple hyperparameters that have a major impact on performance.
Other algorithms have several hyperparameters, and the proper choice of these
hyperparameters is essential for strong model performance. Hyperparameter exploration can be
a computationally intensive task. Depending on the time available, the number of
hyperparameters involved with an algorithm may be a consideration in algorithm selection.

Once the average loss is minimized on the validation data, the hyperparameter optimization is
complete. A final model is then trained using all #raining data and the optimal hyperparameter
values (Fig. 6). The model is then ready to predict using the testing data.

The response variables predicted from the testing data by the model are compared with the
researcher-assigned labels to assess the testing error (i.e., a measure of error between the labels
and response variables of the testing data). Similarly, when the trained model is used to
predict response variables for the training data, one can examine the training error (i.e., a
measure of error between the labels and response variables of the training data). 1f the training
error is low and testing error high, the model may be overfit to the training data. Overfitting
occurs when a model perfectly (or nearly perfectly) fits the training data but does not predict
well from new data (e.g., test data or new samples). Reciprocally, underfitting occurs when a
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model is some combination of not complex enough or has not trained from enough examples to
predict the fraining data or testing data well, leading to high training error and high testing
error.

Training a Supervised Learning Model

Machine Learning

Feature Data Training Data Training Data A!gofi’t’hm
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(Split) T (split) = j
p 1 plit) > =
\\Va?i.daticn Data
< a®» —— | Hyperparameter
~ Iy Optimization
~ Hy,o aj,
E’r ﬂ,fn
~ ‘féram‘?r g Da't‘a o \
~ erg, g,
~ Plip,: ; 8
Testing Data ..._”’fear',-of Machine Learning

~ " i
e - Algonth_m
- /

!

— Test Data Predictions
New Data ¥ \, ;
= : and Evaluation
R L e il , | Validated
= Model
Nonn? Moo’
S g’ ¥ wie gim
*|New Data Predictions

Figure 6. Workflow for optimizing, training, evaluating, and predicting from a supervised learning model.
Testing data are used to infer how the validated model will perform when new data are processed.

2.6.2 Optimizing, Training, and Evaluating a Model from the Hydrological Study

Presuming a researcher had only four examples in their training data, like with the simple
hydrological feature data, one example would need to be used for validation, leaving only three
examples for training. Under these circumstances, it is highly likely that the resulting model
would be underfit. Many more examples would be needed during training to produce a well-
performing model.

2.6.3 Optimizing, Training, and Evaluating the Models from the Geothermal Study

During validation, Mordensky et al. (2022) used the default loss functions in Python’s Scikit-
Learn and XGBoost modules for each of the selected algorithms to gauge the performance of the
thousands of models resulting from the thousands of unique combinations of hyperparameter
values (Pedregosa et al., 2011; Chen and Guestrin, 2016). The validation data were used to
calculate loss values through the loss functions. The hyperparameter values that contributed to
the model that produced the lowest average loss from the validation data were then used with all
the training data to produce a final model (i.e., the proposed best model for prediction). The
final model was then evaluated using the testing data to verify that the model performs equally
well for new data.
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2.7 Make Predictions

Once the model is trained and performs well during evaluation, the model can be used to make
predictions using new data.

2.7.1 Making Predictions in Machine Learning Language

Following training, validation, and evaluation, the supervised learning model is ready to
predict for new, unlabeled examples. When discussing machine learning models, the term
generalize is sometimes used in lieu of predict and generalization in lieu of prediction. When
generalizing with the model, the testing error provides a metric of reliability regarding the new
generalizations of the model from unlabeled examples. However, should that model be used
with new, unlabeled examples that have values well beyond the ranges of the feature values in
the training data (i.e., new data are very different from previous data), the confidence in that
testing error lessens.

2.7.2 Making Predictions with the Hydrological Example

With the hydrological data, the limited number of the examples used in training would likely
mean that the model would not be properly trained to generalize from the full range of values
that would be found with newly collected data; hence, the model would be underfit. This can be
seen by the fact that for the sample data set, every time the water is ‘clear’, it is potable, and any
lack of clarity indicates that water is not potable. This means that a very accurate model for the
hydrological study data would use only the turbidity to predict potability, but seawater is very
clear in some areas; yet seawater is not potable. In this case, more labeled examples would be
needed for training to produce an accurate model for a wide range of natural waters.

2.7.3 Making Predictions with the Geothermal Study

Many machine learning studies only use one machine learning algorithm to train and evaluate
a model. Mordensky et al. (2022) used three algorithms and, in doing so, were able to compare
the different models from the different algorithms trained using the same data. Each model was
used to predict geothermal favorability across the western United States (see favorability maps in
Mordensky et al. [2022]). The favorability maps that were produced by the different algorithms
generally agreed in terms of areas of high geothermal favorability but expressed greater
variability in predictions between models in areas of low favorability. If the goal of study is to
find high-favorability areas, the differences between the models may not be critical, and the
general agreement between the models adds confidence in the predictions. The models trained
from non-linear algorithms (i.e., support vector machines and XGBoost) predicted greater
geospatial granularity than that of the linear algorithm (i.e., logistic regression).

3. Additional Homonyms

While many of the key terms needed to discuss machine learning are novel to a geoscientist
(Table 1), many other key terms do not appear as new but, instead, are homonyms (Table 2).
Here, we present prominent homonyms shared by geoscience and machine learning that were
not discussed in the conceptual pipeline of Section 2.
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3.1 Survey

To a geoscientist, ‘a survey’ refers to the systematic investigation of the geology beneath a
specific area. The word can also be used as a verb for the conduction of that systematic
investigation. A geoscientist may also refer to a state’s geological survey or the U.S. Geological
Survey as ‘the Survey’. To a machine learning expert, a survey is akin to what a geoscientist
knows as a literature review paper. That is, a survey paper in machine learning focuses on
summarizing the findings from several works with a unifying theme to synthesize additional
understanding of a topic.

3.2 Risk

Geological studies involving risk define risk as a function of the likelihood of occurrence for a
given hazard (e.g., a landslide, a volcanic eruption, an earthquake) and the damage that hazard
would produce. In machine learning, risk refers to a measure of the possibility that a machine
learning process will produce a model that makes less reliable predictions with new data. In
machine learning, risk can be measured by comparing loss.

3.3 Epoch

In geoscience, an epoch refers to a (reasonably short) length of time on the scale of (only) tens of
millions of years. In geologic time, epochs are used to subdivide the next longer segment of time
(i.e., periods). For instance, the ‘Jurassic’ in ‘Late Jurassic’ would be a period and the ‘late’ in
‘Late Jurassic’ would define the epoch. In machine learning, some algorithms pass through the
data several times during training (e.g., multilayer perceptron neural networks). Each of these
passes of the entire training data is referred to as an epoch. Hundreds or thousands of epochs
may be used to fully train a model.

3.4 Entropy

In science, the common definition of entropy refers to the measure of molecular disorder
addressed in thermodynamics; although, the term is also used more generally as a qualitative
reference to disorder. While not starkly different, the nuanced derivation of machine learning’s
entropy is a mathematical measure of randomness, but that measure is not necessarily of a
subatomic nature. Examples’ features inherently contain some degree of uncertainty with their
values. The less constrained those feature values are, the more entropy (i.e., the greater
uncertainty) they hold.

4. Conclusion

In this study, a general workflow (i.e., a conceptual pipeline) for supervised learning is
presented. In that process, key machine learning terms that may be new to geoscientists are
defined and their context explained. Homonyms between the disciplines are identified and
defined. Lastly, common homonyms not presented in the general workflow are presented and
briefly discussed. We emphasize that the terms provided here are non-exhaustive. The intent of
this work is to produce an initial resource to which geoscientists and machine learning experts
may refer when working together.
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Table 1. Novel Key Machine Learning Terms

Term Definition & Implications What a Geoscientist Should Think
algorithm The mathematical or statistical The underlying idea or structure technique
function(s) that map(s) inputs to used to build a model. An untrained
outputs. Also known as hypothesis, model. Examples include linear
concept, predictor, or prediction regression, decision trees, and neural
rule. networks.
algorithm A method of selecting among The process to consider which algorithm
selection algorithms or algorithm parameters  and its parameters are most appropriate

average loss

cost function

deep learning

exploratory
data analysis

feature
engineering

to avoid overfitting.

Loss averaged by all the examined
examples. Given by the cost
function.

Provides average of loss across all
the examined examples (see Table 2
for 'example’).

A form of machine learning with
algorithms based on numerous
sequential layers in a neural
network.

The process analyzing and
investigating the primary
characteristics of the data set. Often
referred to as EDA.

The process of using domain
knowledge (i.e., knowledge of the
discipline) to select and transform
the most relevant variables from
raw data so that machine learning
may better use the data.
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when considering the qualities of a
dataset.

Average of the loss function for examined
samples.

Gives the average of the error (i.e., loss)
function. The function that is minimized
during optimization. Minimizing average
loss (i.e., error) generally improves the
performance of a machine learning model.
There may be multiple terms encapsulated
in the cost function to achieve multiple
goals (e.g., minimize error, find a solution
that honors physical constraints, find a
solution that minimizes uncertainty). Also
called the objective or objective function,
although a cost function is but one type of
objective function.

Highly flexible machine learning
algorithms that perform well at the cost of
interpretability (i.e., a black-box
problem). Deep learning can result in
models with low training error but are
prone to overfitting.

Examining the distribution, types, and
relationships of data.

Processing data into a format usable by
machine learning algorithms.



feature vector

hyperparameter

hyperparameter

optimization

linear algorithm

loss

loss function

machine

learning

non-linear
algorithm

The combined values for an
example’s features (see Table 2 for
'example').

A property of an algorithm, usually
(but not always) having a numerical
value. This value influences the
way the model works and is not
learned from the data. Instead, it is
set by the data analyst before
training the algorithm.

The process of finding a set of
algorithm parameters that results in
the best performance according to
the chosen metric. That is, the
process of iteratively training a
model that results in the best
performance through the adjustment
hyperparameters. Also termed
hyperparameter tuning (see
'optimization' in Table 2).

An algorithm in which the feature
values of an example are linearly
combined to produce a label value
(see 'example' and 'label' in Table
2).

A measure of prediction
performance on a single example. A
measure of error at a single training
site (commonly, some measure of
the difference between the
prediction and the training data at
that location). A common example
would be the squared error.
Computes the error between the
response variable and the expected
label (i.e., an error function).

The field of study that explores the
construction and study of
mathematical and statistical models
that learn without direct instruction.
An algorithm that produces a label
value by combining features using a
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The combined values for the different data
fields tied to an observation. Example: the
feature vector for a rock sample 01 with a
feature set of (age, density, and rock type)
is (6.7 Ma, 3.4 g/em’, igneous).
Hyperparameters are variables that control
how a model learns but cannot be learned
from the data. One must explore and
select hyperparameters when training new
models.

The process of identifying and selecting
hyperparameter values that produce the
best performing model with a given
algorithm.

An algorithm in which features' values
contribute proportionally toward a
prediction.

The error between a prediction and its
associated label.

How the error between a prediction and a
label (see Table 2 for 'label") is calculated.
An example of loss would be the squared
error (i.e., quadratic loss) between a
prediction and a known value.

An entire field of study with many sub-
disciplines but the unifying component of
these disciplines is that models are
learning from data.

Algorithms that can form more
complicated prediction functions to



normalization

one-hot-
encoding

overfitting

regularizer

reinforcement
learning

mathematically non-linear function
(e.g., a decision tree).

The process of scaling data into a
pre-selected range (e.g., commonly
0 to 1) or simply transforming data
onto the unit sphere.

A means to quantify categorical
data.

Training a predictor that achieves
low training error but has high
variance.

A term added to the objective
function to achieve some desired
behavior.

Decision making over time with
consequences dependent on
external, possibly delayed feedback.
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distinguish between examples.

A type of transformation in feature
engineering that allows the different
datasets to share the same scale.

Every categorical value is converted to a
feature. These new features have a value
of 0 except where the categorical value for
that example and the feature match; this
feature's value is set to 1. For example, if
we were using flower color as a category
with [red, green, yellow, blue] as potential
colors and the flower in question was
green, the corresponding feature values
would be [0,1,0,0].

When an algorithm creates a model that
matches the training dataset very well, too
well (i.e., low training error), but does not
predict well from data not used during
training.

Regularizers are additional terms in the
objective function to improve the machine
learning algorithm. Some regularizers
ensure rapid convergence to an answer
(i.e., mathematical techniques to speed up
optimization). Some prevent overfitting.
Some ensure convergence to answers that
honor likely physical conditions (e.g.,
temperature varies smoothly in space, heat
flow is likely similar to the regional
average) and avoid violating physical
principles.

A domain of machine learning that
considers stimuli (e.g., previous decisions,
conditions, events) to make decisions that
either lead toward a reward (for a correct
decision) or a punishment (for an
incorrect decision).



response
variable

shallow
learning

supervised
learning

training data

training error

train-test split

underfitting

unsupervised
learning

The variable that corresponds to a
prediction that is made by a
machine learning-derived model. It
is a subtle distinction, but the
machine learning scientist
frequently uses the term
"prediction" when discussing the
value of the response variable for
one set of input variables, and
"response variable" when
discussing all possible predictions
that are made from all possible
input data combinations.

Learning that does not involve
multiple layers of a neural network.

A domain of machine learning in
which the algorithm is given input-
output pairs to learn from, so that
predictions can be made with new
data.

Set of input-output data used for
supervised learning.

A measure of error between the
training data and the prediction
made using the model with the
training data. Empirical estimate of
risk over the training dataset.
Partitioning training data from
testing data for supervised machine
learning.

Training a predictor that fails to
predict well with the training data
and the testing data. Producing an
undertrained model.

Machine learning when prediction
labels are not provided. Finding
relationships between input data
and then grouping based upon these
relationships.
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What a model predicts.

Algorithms apart from neural networks,
including linear regression, logistic
regression, support vector machines, and
decision trees. Neural networks classify as
shallow learning if they have only one
hidden layer.

A machine learning approach that uses
labeled data sets to predict values for
unlabeled datasets (see Table 2 for 'label").

The examples used by a model to learn
the relationship between inputs and
outputs. Bad training data will result in a
bad model.

A measure of a model's performance with
the training data.

The feature data are divided so that a large
percentage of the data are used for
training and a smaller percentage are used
to evaluate (i.e., to test) the trained model.
Training a model that needs more
complexity (e.g., more structure or more
training examples) to produce reliable
predictions.

A machine learning approach that groups
data in different ways or simplifies data
by finding internal relationships.



validation

validation data

validation error

A technique to estimate the model's
ability to predict on unseen data
(i.e., data outside the training data
set).

Set of input-output data used to
evaluate a model for validation (i.e.,
for hyperparameter optimization).
The measure of error between a
model's predictions for the
validation data and those data
labels.

An evaluation of the model while tuning
hyperparameters.

Validation data are used to measure the
error of a model to tune hyperparameters
during validation.

Optimal hyperparameters are chosen
when hyperparameter values minimize the
validation error.
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Table 2. Geoscience-Machine Learning Homonyms

Term What a Machine Learning Scientist Thinks = What a Geoscientist May Think
class One of a set of finite target values for a label. A category or subdivision with very
specific definitions in some fields
such as mineralogy and petrology.
classification A supervised learning approach to predict and  Generally, the grouping of similar
apply class labels to examples. objects within a system.
entropy Mathematical construct of disorder; entropy of Most commonly refers to the
a random variable is the average level of thermodynamics definition of a
“information”, “surprise”, or “uncertainty”’ measure of unavailable energy which
inherent in the variable’s possible outcomes. is a function of molecular disorder,
That is, the more certain or the more also used as a general measure of
deterministic an event is, the less information  disorder or uncertainty.
it will contain. In a nutshell, the information is
an increase in uncertainty or entropy.
epoch A full pass of all the training data during an The geological time period when a
optimization procedure. rock was deposited. Geological eras
are composed of geological periods.
example From a dataset, a single datum replete with An instance generally representative
values for the features of the feature set. That  of a larger population.
is, one row of a dataset, containing one or
more features and possibly a label.
feature An independent attribute or variable for an Any aspect of a system (e.g., distance

feature set

generalization

label

labeled
example

(to) learn

example used to make predictions.

The features that lead toward a prediction,
specifically the field titles for the attribute data
(e.g., age, weight, height, and blood pressure
might be considered a feature set for predicting
an individual's health).

The ability of a model to predict on unseen
(i.e., general) data. Similarly, generalize is
sometimes used in place of predict.

The true condition (i.e., dependent variable) of
what is trying to be predicted by supervised
machine learning.

Examples with corresponding labels (see
'examples' and 'labels' for additional
information).

To create and tune decision functions using
mathematical and statistical rules.
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from a fault), characteristic, or
structure of a rock.

A collection of geological
observations, sometimes qualitative
(e.g., structures).

Often the lay definition of broad
statement 1s meant, but
generalization is also used in
cartography and geographic
information systems to refer to
methods used to limit the symbology
needed or shown on map products.
A means of specimen identification
or classification term applied to
samples or data.

Representative specimens with
identification indices or tags.

To gain or acquire knowledge by
study, experience, or being taught.



model

optimization

pipeline

predictions

raw data

regression

risk

standardization

survey

testing data

testing error

What is produced by training an algorithm and
can then be used to make predictions. A
combination of decision functions composed
of procedures dependent upon the algorithm
chosen during model selection and specific
values learned during training.

The process of finding a set of inputs to an
objective function (e.g., a loss function) that
results in a maximum or minimum function
evaluation.

A workflow with discrete steps for a complete
machine learning task.

The output of a machine learning model.

Untouched data before engineering.

A numerical value estimate produced from a
trained model.

A measure of the possibility that the machine
learning process will produce a model that
makes less reliable predictions with new data.
Risk is estimated by validation.

Data are transformed to a mean of 0 and a
standard deviation of 1.

A literature review of machine learning
studies.

Same as training data but are not part of the
data used to train the algorithm. Used to assess
performance of the model with data yet unseen
by the model.

A measure of the error between the testing
data and the predictions made using the model
with the testing data. That is, the error when a
trained model is used to predict results on data
from which the model has not been trained.
The less the testing error, the better. If testing
error is similar to validation error, this is
evidence that the algorithm produced a reliable
predictor.
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A spatial, conceptual, or
mathematical representation of a
phenomenon.

Improving efficiency (e.g.,
streamlining).

A pipe for conveying fluid or gas.

An interpretation, forecast, or
prognosis dependent on previous
data but not necessarily dependent on
a mathematical or statistical model.
Data directly from measurement with
no modifications.

Marine regression is a geological
process when areas of submerged
seafloor become exposed during
changes in sea level.

A combination of hazard, value, and
vulnerability.

Adhering to specific methods and
units of measurement to follow
industry standards.

A systematic investigation of the
geology beneath a specific area or a
government institution.
Experimental results.

Uncertainty or variability introduced
into data during lab experiments,
analyses, or other "tests".



train

unlabeled
examples
variance

Adjust (i.e., change) the weights (i.e.,
parameters) of an algorithm using label
examples to reduce loss and risk.

Examples without labels (see 'examples' and
'labels' for additional information).

In addition to the statistical definition (see
What a Geoscientist May Think), changes in
the model when using different portions of the
training data set; simply, variance is the
variability in the model prediction. The degree
of overfitting or underfitting.

Some form of personnel education.

Representative specimens without a
proper identifier.

A statistical definition providing a
measure of how far data are
distributed about the mean.
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