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Abstract

To unveil how the brain learns, ongoing work seeks biologically-plausible ap-
proximations of gradient descent algorithms for training recurrent neural net-
works (RNNs). Yet, beyond task accuracy, it is unclear if such learning rules
converge to solutions that exhibit different levels of generalization than their non-
biologically-plausible counterparts. Leveraging results from deep learning theory
based on loss landscape curvature, we ask: how do biologically-plausible gradient
approximations affect generalization? We first demonstrate that state-of-the-art
biologically-plausible learning rules for training RNNs exhibit worse and more vari-
able generalization performance compared to their machine learning counterparts
that follow the true gradient more closely. Next, we verify that such generalization
performance is correlated significantly with loss landscape curvature, and we show
that biologically-plausible learning rules tend to approach high-curvature regions in
synaptic weight space. Using tools from dynamical systems, we derive theoretical
arguments and present a theorem explaining this phenomenon. This predicts our
numerical results, and explains why biologically-plausible rules lead to worse and
more variable generalization properties. Finally, we suggest potential remedies that
could be used by the brain to mitigate this effect. To our knowledge, our analysis
is the first to identify the reason for this generalization gap between artificial and
biologically-plausible learning rules, which can help guide future investigations
into how the brain learns solutions that generalize.

1 Introduction

A longstanding question in neuroscience is how animals excel at learning complex behavior involving
temporal dependencies across multiple timescales and thereafter generalize this learned behavior
to unseen data. This requires solving the temporal credit assignment problem: how to assign the
contribution of past neural states to future outcomes. To address this, neuroscientists are increasingly
turning to the mathematical framework provided by recurrent neural networks (RNNs) to model
learning mechanisms in the brain [1, 2]. Temporal credit assignment in RNNs is typically achieved
by backpropagation through time (BPTT), or other gradient descent-based optimization algorithms,
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none of which are biologically-plausible (or bio-plausible for short). Therefore, the use of RNNs as a
framework to understand the computational principles of learning in the brain has motivated an influx
of bio-plausible learning rules that approximate gradient descent [1–3].

Performance of such rules is typically quantified by accuracy. Although the accuracy achieved
by these rules is often comparable to true gradient descent, little is known about the breadth of
the emergent solutions, namely how well they generalize. Broadly speaking, generalization refers
to a trained model’s ability to adapt to previously unseen data, and is typically measured by the
so-called generalization gap: the difference between training and testing error. This is especially
important when learning complex tasks with nonlinear RNNs where the loss landscape is non-
convex, and therefore, many solutions with comparable training accuracy can exist. These solutions,
characterized as (local) minima in the loss landscape, can nonetheless exhibit drastically different
levels of generalization (Figure 1). It is not clear if gradient-based methods like BPTT and the
existing bio-plausible alternatives have a different tendency to converge to loss minima that provide
better or worse generalization.

While better predictors of the generalization performance remains an open research question in deep
learning [4], recent extensive studies identify flatness of the loss landscape at the solution point as a
promising predictor for generalization [5–9]. Leveraging these empirical and theoretical findings, we
ask: how do proposed biologically-motivated gradient approximations affect flatness of the converged
solution on loss landscape, and thereby, generalization?

Our overarching goal is to investigate generalization trends for existing bio-plausible temporal
credit assignment rules, and in particular, examine how truncation-based bio-plausible gradient
approximations can affect such trends. Specifically, our contributions are summarized as follows:

• In numerical experiments, we demonstrate across several well-known neuroscience and
machine learning benchmark tasks that state-of-the-art (SoTA) bio-plausible learning rules
for training RNNs exhibit worse and more variable generalization gaps, compared to true
(stochastic) gradient descent (Figure 2A-C).

• Using the same experiments, we show that bio-plausible learning rules tend to approach high-
curvature regions in synaptic weight space as measured by the loss’ Hessian eigenspectrum
(Figure 2D-F). Further, we verify that this correlates with worse generalization (Figure 2D-F
and 3), which is consistent with the literature.

• We present a theorem to explain this phenomenon by examining the weight update equation
as a discrete dynamical system, which sheds light on a potential connection between gradient
alignment and the preference over converging to narrower minima (Theorem 1, Figure 4).

Given the core components in designing artificial neural networks: data, objective functions, learning
rules and architectures [10], we investigate different learning rules while holding the data, objective
function and architecture constant. SoTA RNN learning rules investigated include a three-factor rule
with symmetric feedback (symmetric e-prop [11]), a three-factor rule using random feedback weights
(RFLO [12]) and a multi-factor rule using local modulatory signaling (MDGL) [13]. For in-depth
explanation of how these rules are implemented and why they are bio-plausible, please refer to
Appendix A.2. We also encourage the reader to visit Appendix B for Theorem 1 proof and discussion
on loss landscape geometry. In the last paragraph of the Discussion section, we discuss potential
remedies implemented by the brain and provide preliminary results (Appendix Figure 5). To our
knowledge, our analysis is the first to highlight and quantitatively provide a mechanistic explanation
of the reason for this gap in solution quality between artificial and bio-plausible learning rules for
RNNs, thereby motivating further investigations into how the brain learns solutions that generalize.

2 Related works

2.1 Bio-plausible gradient approximations

Investigating bio-plausible learning rules is of interest both to identify more efficient training strategies
for artificial networks and to better understand learning in the brain [2, 3, 14–43]. In order for
learning to reach a certain goal quantified by an objective, learning algorithms often minimize a loss
function [10]. The error gradient, if available, tells us how each parameter should be adjusted in
order to have the steepest local descent. For training RNNs, which are widely used as a model for
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Figure 1: Setup. A) Illustration of an RNN trained to minimize error/loss function L (left). Ex-
isting bio-plausible proposals for RNNs estimate the gradient by neglecting dependencies that are
biologically implausible to compute (right). B) Low training error/loss can be achieved by partially
following a gradient (right), but preference for converging to minima with certain generalization
properties remains underexamined for these learning rules (left). C) Minima flatness matters: 1-D
loss landscape illustration with two solutions that equally minimize loss L, but exhibit drastically
different generalization properties: the narrower minima is more sensitive to perturbation.

neural circuits [44–63], standard algorithms that follow this gradient — real time recurrent learning
(RTRL) and BPTT — are not bio-plausible and have overwhelming memory storage demands [3, 64].
However, learning rules that only approximate the true gradient can sometimes be as effective
as those that follow the gradient exactly [10, 65]. Because of that, bio-plausible learning rules
that approximate the gradient using known properties of real neurons have been proposed and
led to successful learning outcomes across many different tasks in feedforward networks [1, 66–
75], with recent extensions to recurrently connected networks [11–13, 76]. These existing bio-
plausible rules for training RNNs [11–13] are truncation-based (which is the focus of this study),
so that the untruncated gradient terms can be assigned with putative identities to known biological
learning ingredients: eligibility traces, which maintain preceding activity on the molecular levels [77–
82], combined with top-down instructive signaling [77, 78, 83–89] as well as local cell-to-cell
modulatory signaling within the network [13, 90, 91]. For efficient online learning in RNNs, other
approximations (not necessarily bio-plausible) to RTRL [92–97] have also demonstrated to produce
good performance. Given the impressive accuracy achieved by these approximate rules, several
studies began to investigate their convergence properties [98], e.g. for random backpropagation
weights in feedforward networks [99, 100]. However, the trend of generalization capabilities of these
rules, especially in RNNs, is underexamined.

2.2 Loss landscape curvature and generalization performance

Given the central importance of understanding how neural networks perform in situations unseen
during training [4, 101–107], the deep learning community has made tremendous efforts to develop
tools for understanding generalization that we leverage here. That flat minima could lead to better
generalization was observed more than two decades ago [108]. Intuitively, under the same amount
of perturbation ✏ in parameter space (e.g. loss landscape changes due to addition of new data)
worse performance degradation will be seen around the narrower minima (see Figure 1C). We note
that perturbations in parameter space can be linked to that in the input space [6]. Recently, many
empirical studies have consistently supported the usefulness of this predictor [109–116]. In particular,
the authors of [5] performed an extensive study and found that flatness-based measures have a
higher correlation with generalization than other alternatives. Motivated by this, several studies have
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characterized properties of the loss functions’s Hessian — whose eigenspectrum carries information
about curvature [117–121]. Connections between flatness and generalization performance have shed
light on the reason for greater generalization gaps in large batch training [112, 122–125], and also
have inspired optimization methods to favor flatter minima [109, 110, 126–133]. Despite the criticism
of scale-dependence of flatness [134], where parameter rescaling can drastically change flatness but
not always generalization quality, flatness — with parameter scales taken into account [135, 136] —
are connected to PAC-Bayesian generalization error bounds [7–9]. Moreover, a recent theoretical
study rigorously connects flatness of the loss surface to generalization in classification tasks under
the assumption that labels are (approximately) locally constant [6]. Leveraging the great progress
from deep learning community, we aim to study generalization properties of bio-plausible learning
rules from a geometric perspective.

3 Results

In this section, we first describe the network and learning setup we use (Figure 1A). Next, we
present a number of numerical experiments where we compute generalization gap directly on
three commonly used ML and neuroscience tasks (Figure 2A-C), for truncation-based bio-plausible
gradient approximations. For the same experiments, we also quantify loss landscape curvature along
learning trajectories, and connect these quantities to generalization behavior (Figures 2D-F and 3).
Finally, we provide theoretical arguments and a theorem that explains how gradient alignment in
bio-plausible gradient approximations can affect curvature preference (Theorem 1, Figure 3) and thus,
generalization. Through additional experiments, we verify the predictive power of our theory. We
conclude with discussions on potential remedies used by the brain (Appendix Figure 5) and future
directions.

FD E Delayed match-to-samplePattern generation Sequential MNIST

A CB Delayed match-to-samplePattern generation Sequential MNIST
Generalization gap historgrams

Generalization gap vs leading Hessian eigenvalue

Figure 2: Bio-plausible temporal credit assignment rules show worse and more variable gen-
eralization gap, which can be informed by loss landscape curvature. A-C) Generalization gap
distributions computed at the end of training across different random weight initializations for several
well-known neuroscience and machine learning tasks. The higher the generalization gap, the worse
the generalization performance. BPTT (black), bio-plausible alternatives (magenta, yellow and green).
D-F) Scatter plots showing the trend of generalization gap v.s. leading loss Hessian eigenvalue across
many runs; each point corresponds to a single run of the same runs as in A-C.

3.1 Network and learning setup

The detailed governing equations of our setup can be found in Methods (Appendix A). We consider
a RNN with Nin input units, N hidden units and Nout readout units (Figure 1A). We verified that
trends hold for different network sizes and refer the reader to Appendix A.3 for more details. The
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update formula for ht 2 RN (the hidden state at time t) is governed by:

ht+1 = �(Whf(ht),Wxxt), (1)

where �(·) : RN ! RN is the hidden state update function, f(·) : RN ! RN is the activation
function, Wh 2 RN⇥N (resp. Wx 2 RNin⇥N ) is the recurrent (resp. input) weight matrix and
x 2 RNin is the input. For �, we consider a discrete-time implementation of a rate-based recurrent
neural network (RNN) similar to the form in [137] (details in Appendix A). Readout ŷ 2 RNout , with
readout weights w 2 RNout⇥N , is defined as

ŷ = hw, f(ht)i. (2)

We performed experiments on three tasks: sequential MNIST [138], pattern generation [139] and
delayed match-to-sample tasks [140]. The objective is to minimize scalar loss L 2 R, which is
defined as

L(Wh) =

(
1

2TB

P
B

i=1

P
T

t=1
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�1
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P
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P
Nout
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k,t

log⇡̂
(i)
k,t

, for classification tasks
(3)

given target readout y 2 RNout , task duration T 2 R and batch size B 2 R. ⇡k,t 2 R is the
one-hot encoded target for readout unit k at time t and ⇡̂k,t = softmaxk(ŷ1,t, . . . , ŷNOUT ,t) =
exp(ŷk,t)/

P
k0 exp(ŷk0,t) is the predicted category probability.

Different learning algorithms examined in this work are BPTT (our benchmark), which update
weights by computing the exact gradient (rL(Wh) 2 RN⇥N ):

�Wh = �⌘rL(Wh), (4)

and three SoTA bio-plausible learning rules that update weights using approximate gradient:

[�Wh = �⌘r̃L(Wh), (5)

where r̃L(Wh) 2 RN⇥N denotes a gradient approximation and ⌘ 2 R denotes the learning rate.
These three learning rules are explained further in Appendix A (Methods) but we note that these
bio-plausible learning rules are based on truncations of dependency paths — on the computational
graph for the exact gradient— that are biologically implausible to compute (Figure 1A). In all figures,
learning rules are labelled as "Three-factor" (symmetric e-prop), "RF Three-factor" (RFLO) and
"MDGL", respectively. We remark that the focus here is on comparing artificial to bio-plausible
learning rules, rather than between biological rules. Finally, we note that tasks were learned with
mostly comparable training accuracies for all learning rules, and that generalization gaps reflect
testing departure from these values. We refer the reader to Appendix for more details (Appendix A.3).

3.2 Generalization gap and loss landscape curvature

To study generalization performance, our first step is to compute the generalization gap empirically.
Generalization gap is defined train accuracy minus test accuracy; the larger the generalization gap,
the worse the generalization performance. For various learning rules, we plot the histogram of
generalization gap at the end of training across runs with distinct initializations; different colors
represent different learning rules (Figure 2A-C). Notice that these bio-plausible rules achieve worse
and more variable generalization performance than their machine learning counterpart (BPTT).

We now investigate if the generalization gap behavior described above correlates well with Loss
landscape curvature. We use the leading eigenvalue of the loss’ Hessian (where derivatives are taken
with respect to model parameters) as a measure for curvature following previous practice [122] and
note that it is practical for both empirical [119] and theoretical analyses (Theorem 1). There exists
other measures for flatness and due to the scale-dependence issue of Hessian spectrum [134], we also
test using parameter scale-independent measures (see Appendix Figures 7 and 8). When we plot
generalization gap points from Figure 2A-C against the corresponding leading Hessian eigenvalue,
a statistically significant correlation is observed (Figure 2D-F). We also observed such correlation
across runs with the learning rule fixed (Appendix Figure 12). We note that we did not expect this
relation to be very tight since in addition to worse generalization gap on average, bio-plausible
learning rules exhibit increased variance. This is an important and consistent trend we observed but
might have been overlooked in previous studies.
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CBA Delayed match-to-samplePattern generationSequential MNIST

Figure 3: Bio-plausible gradient approximations tend to approach high curvature regions in
loss landscape. Dominant Hessian eigenvalues are plotted throughout training for bio-plausible
learning rules and BPTT. This analysis is done for A) sequential MNIST, B) pattern generation and
C) delayed match-to-sample tasks. Solid lines/shaded regions: mean/standard deviation of dominant
Hessian eigenvalue curves across five independent runs.

So far, we investigated the endpoints of optimization trajectories, where training performance has
converged. Now, we visualize the whole training trajectory. This done is for two reasons: 1) account
for early stopping that can halt training anywhere along the trajectory due to time constraints; 2)
flatness during training could give indications of avoiding or escaping high-curvature regions. We
observe that the biologically motivated gradient approximations tend to rapidly approach high-
curvature regions compared to their machine learning counterpart (Figure 3). Together, these results
demonstrate a clear trend and a link between generalization gap and loss landscape curvature: both
being increased and more variable for bio-plausible rules. We also stopped BPTT early to match
the test accuracy of the three-factor rule, and observed similar trends as in the main text (Appendix
Table 1). We also note that the curvature convergence behavior seems to be a shared problem of
temporal truncations of the gradient (Appendix Figure 9), which is what the existing bio-plausible
gradient approximations for RNNs are based on. Next, we provide a theoretical argument as to why
truncated temporal credit assignment rules favor high curvature regions of the loss landscape.

3.3 Theoretical analysis: link between curvature and gradient approximation error

We discussed how generalization can be linked to curvature, and we now examine the link between
curvature and gradient alignment during learning dynamics. We represent approximate gradients in
a rule agnostic manner, where an arbitrary approximation is represented in terms of its component
along the gradient direction plus an arbitrary orthogonal vector (Figure 4A):

~̂g = ⇢~g + ~e, (6)

where ~g := rL(Wh) 2 RN
2

and ~̂g 2 RN
2

are the exact and approximate gradients, respectively
(we reshaped rL(Wh) into a vector here); ~e 2 RN

2

is an arbitrary orthogonal vector to ~g. Here,
scalar ⇢ 2 R represents the relative step length along the gradient direction that the approximate rule
is making. As we will see in Theorem 1, ⇢ is an important quantity in our analysis. One can easily
compute ⇢ from ~g and ~̂g by ⇢ =

~̂g
T
~g

~gT~g
.

We express weight updates as discrete dynamical systems (with weights Wh as the state variables):

W
+
h
 W

�
h

+ F (W�
h
) = W

�
h
� ⌘rL(W�

h
), for BPTT (7)

W
+
h
 W

�
h

+ F̂ (W�
h
) = W

�
h
� ⌘r̃L(W�

h
), for an approximate rule, (8)

where ⌘ is the learning rate, r̃ is an approximate gradient, and F : RN
2 ! RN

2

(resp. F̂ : RN
2 !

RN
2

) denotes the map defined by BPTT (resp. an approximate) weight update rule. Notation W
+

and W
� denotes W at the next and current step, respectively. We note in passing that dynamical

systems view of weight updates have been used previously [141, 142].

We introduce additional notations before presenting Theorem 1. J 2 RN
2⇥N

2

(resp. bJ 2 RN
2⇥N

2

)
is the Jacobian of the dynamical system of BPTT (resp. an approximate rule) in Eq. 7 (resp. Eq. 8).
�
J

1 2 R (resp. c
�
J

1 2 R) is the leading eigenvalue for BPTT (resp. an approximate rule) Jacobian.
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�
H

1 2 R is the leading eigenvalue of the loss’ Hessian matrix. W ⇤
B
2 RN⇥N (resp. W ⇤

e
2 RN⇥N ) is

the final fixed point for BPTT (resp. an approximate rule). We now present Theorem 1.
Theorem 1. Consider a RNN defined in Eq. 1 with a single scalar output ŷ and least squares loss
as in Eq. 3 presented only at the last time step T , and weights are updated according to the difference
equation for BPTT 7 (resp. an approximate rule 8) on a single example (stochastic gradient descent)
using learning rate ⌘B (resp. ⌘e). In the limit of stable fixed point convergence with zero training
error, the dominant loss’ Hessian eigenvalue attained by BPTT (resp. approximate rule) is bounded
by |�H

1 (W ⇤
B
)| < 1

⌘B

(resp. |�H

1 (W ⇤
e
)| < 1

|⇢|⌘e

).

Proof. Full proof is in Appendix B. Here is a summary of the main steps involved:

1. The Jacobian of BPTT dynamical system (Eq. 7) is the loss’ Hessian scaled by a constant;

2. Using the above relationship, we can bound |�H

1 | from |�J

1 | < 1, which is the condition for
discrete time dynamical system to converge to a fixed point

3. However, the link between the Jacobian of an approximate update rule and the loss’ Hessian
is less obvious. Thus, we derive a link between |c�J

1 | and |�J

1 |, and then apply the step above

The consequence of the upper bound derived in Theorem 1 is that truncated gradient rules can converge
to minima with a higher dominant Hessian eigenvalue than BPTT, with the leading eigenvalue bound
inversely proportional to |⇢| (|⇢| < 1 usually). In practice, ⇢ can vary depending on task settings
and in our setup, we observed it to be somewhere between 0.02 and 0.3. We remark that this higher
upper-bound is consistent with the increased spread of curvature and generalization observed for
bio-plausible rules in experiments. Theorem 1 highlights scalar ⇢ (Eq. 6), relative step length along
the gradient direction, as an important factor in the curvature bound. To test that, we eliminate the
factor of ⇢ by reducing learning rule of BPTT such that its step length is matched to that of the three-
factor rule. This resulted in the blue curves in Figure 4, which is still trained using BPTT but with the
update scaled by a factor of ⇢. By matching the step length of BPTT and a three-factor rule along
the gradient direction, similar convergence behaviors were observed. Similar observations were also
made when the matching step experiment were repeated at three times the learning rate for all rules
(Appendix Figure 12C). This result then attributes the curvature preference behavior to relative
step length along the gradient direction, and thereby indicating a link between curvature and
gradient alignment under certain conditions. Consistent with earlier results, when the step length
of BPTT is matched to that of a three-factor rule, its generalization performance also worsened
(Appendix Figure 6).

We make a few more remarks regarding Theorem 1. ⇢ is usually less than 1 because otherwise
the additional orthogonal component ~e would imply a larger update size for the approximate rule
compared to BPTT. This would make the approximate rule more prone to numerical instabilities
(Eq. 9) and would require a change in solver hyperparameters such as overall learning rate which
in turn, influence the update size. In our experiments, when the three-factor rule was scaled up to
match the along-gradient update sizes of BPTT, we quickly ran into numerical overflow (values of
NaNs in the network), which is expected for a very large learning rate. The exact point for when
this numerical instability is reached depends on many factors such as the model, task, numerical
precision as well as the consistency of update direction. We have also equated numerical instabilities
in simulations as a proxy for situations problematic for the brain in Discussion. Curiously, ~e did not
seem to play a helpful role in finding flatter minima; this could be due to that approximation error ~e is
not well aligned with the sharpest directions (Appendix Figure 10). In fact, ~e being orthogonal to the
leading Hessian eigenvectors is a consequence of the assumptions behind Theorem 1. Despite making
assumptions including scalar output, MSE loss and loss available at the last step, our empirical results
indicate that our conclusions also extend to other setups: vector output, cross-entropy loss and loss
that accumulates over time steps (Figure 4). In Appendix B.3, we discuss the generality of Theorem 1
by using quadratic expansion of the loss function and assuming that ~e is orthogonal to the leading
Hessian eigenvectors.

One might assume increasing learning rate of the approximate rules could compensate for the reduced
step length due to ⇢. However, this can raise other issues. Suppose �W = �⌘~g for exact gradient
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Figure 4: Preference for high curvature regions connected to worse gradient alignment under
certain conditions. A) An arbitrary gradient approximation, ~̂g, its component along the gradient
direction, ⇢~g, and orthogonal to the gradient ~e (Eq. 6). The scalar ⇢ represents the relative step length
along the gradient direction. B) Illustration for Theorem 1: if gradient ~g is aligned with the sharpest
directions but error ~e is not (see Appendix Figure 10), smaller step length along the gradient direction
can make it harder to step over narrow minima. C-E) Leading loss Hessian eigenvalue v.s. training
iteration for three-factor rule, BPTT, and modified BPTT (three-factor, theory). For the latter, step
length along the gradient direction of BPTT was matched to three-factor rule by multiplying BPTT
update with a factor of ⇢ and recovers curvature trends of three-factor rule.

and we increase the learning rate of approximate update until d�W = �⌘~g � ⌘~e (magnitude of ~e is
scaled accordingly), and because ~g ? ~e:

kd�Wk2 = ⌘
2k~gk2 + ⌘

2k~ek2 > ⌘
2kgk2 = k�Wk2 (9)

In other words, if approximate updates d�W make the same amount of progress as BPTT along the
gradient direction, d�W would have a larger magnitude due to the orthogonal component ~e, and
large update magnitude can be very problematic for numerical stability [143]. Thus, the magnitude
of ~e limits the learning rate that can be used. Because of the numerical issues associated with
increasing the learning rate for approximate rules (due to ~e), the differences in generalization
and curvature convergence between rules cannot be reduced by increasing the learning rate
for approximate rules. To balance between this numerical stability issue and the potential benefit of
large learning rates, one can consider using a large learning rate early in training to prevent premature
stabilization in sharp minima followed by gradual decay to mitigate the stability issue (see Appendix
Figure 5).

Taken together, Theorem 1 and Eq. 9 connect gradient alignment with the curvature of converged
solution under certain conditions. For an approximation that is aligned poorly with the exact
gradient, large orthogonal approximation error vector ~e limit the step length for numerical
stability reasons (Eq. 9) and small relative step length ⇢ correspond to a larger curvature
bound (Theorem 1).

4 Conclusion

While developing bio-plausible learning rules is of an interest for both answering neuroscience
questions and searching for more efficient training strategies for artificial networks, generalization
properties of solutions found by these rules are severely underexamined. Through various well-
known machine learning and working memory tasks, we first demonstrate empirically that existing
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bio-plausible temporal credit assignment rules attain worse generalization performance, which is
consistent with their tendency to converge to high-curvature regions in loss landscape. Second, our
theoretical analysis offers an explanation for this preference of high curvature regions based on worse
alignment to true gradient. This regime corresponds to the situation where the step length along the
gradient direction is small and the approximation error vector is large. Finally, we test this theory
empirically by matching the relative step length along the gradient direction resulting in similar
convergence behavior (Figure 4).

5 Discussion

Our study — a stepping stone toward understanding biological generalization using deep learning
methods — raises many exciting questions for future investigations, both on the front of stronger
deep learning theory and more sophisticated biological ingredients.

Deep learning theory and its implications: In this study, we investigate generalization properties
using loss landscape flatness, a promising predictor with recent rigorous connection to generalization
gap [6]. Yet, to what extent can flatness explain generalization is still an open question in deep
learning. For instance, curvature is a local measure, which means that its informativeness of robustness
against global perturbation is limited. Moreover, the theoretical association between flatness and
generalization is provided in the form of upper bound [6, 9] and the bound may not always be tight,
which is consistent with more variability in generalization gap for bio-plausible learning rules but
offers less predictive power. Despite observing a significant correlation between generalization
gap and a curvature-based measure in Figure 2, the relationship appears to be messy, suggesting
other factors involved for explaining generalization. Given that developing better predictors of
generalization is still a work in progress [4], we anticipate stronger theoretical tools to be applied for
studying biological generalization in the future. Our results are also consistent with existing findings
linking learning rate to loss landscape curvature in deep networks [124]. In the case of bio-plausible
gradient approximations, small step length along the gradient direction cannot be compensated by
increasing the learning rate, as that would inadvertently increase the error vector, causing numerical
issues (Eq. 9). Curiously, the approximation error vector ~e did not seem to play a role other than
restricting the learning rate. While it is well-known that stochastic gradient noise (SGN) can help with
finding flat minima due to the alignment of SGN covariance and Hessian near minima [123, 144–146],
that may not apply to approximation error vector ~e resulting primarily from temporal truncation
of the gradient (see Figure 1A and Appendix Figure 10). This indicates that noise with different
properties (e.g. different directions) could affect generalization differently, thereby motivating future
investigations into how a broad range of biological noises — which may differ from noise in ML
optimization (e.g. SGN) — can impact generalization.

Moreover, our results are closely related to a series of study that examined the "catapulting" behavior
in learning [147–151]. This can happen when the second order Taylor term of the loss function
would dominate over the first, which would cause learning to cross the threshold for step size stability
and "catapult" into a flatter region that can accommodate the step size. If the truncation noise is
only aligned with the eigendirections associated with negligible eigenvalues, then it can only have
limited contributions to the second order Taylor term. On top of that, the orthogonal noise term would
require a smaller learning rate to be used to avoid numerical issues, as explained earlier. Overall,
these would lead to a weaker second order Taylor term relative to the first for bio-plausible temporal
credit assignment rules, which would then increase the threshold for step size stability. This increased
stability is closely tied to the greater dynamical stability (for the weight update difference equation) of
approximation rules predicted by Theorem 1, due to the correspondence between loss’ Hessian matrix
and the Jacobian matrix of the weight update difference equation (the correspondence is explained in
Theorem 1 proof in Appendix B).

Toward more detailed biological mechanisms: On the front of more sophisticated biological
ingredients that may improve generalization performance, we see two lines of approaches: 1- develop
bio-plausible learning rules that align better with the gradient, as suggested by our rule agnostic
analysis (Theorem 1, Figure 4); and 2- instead of studying learning rules in isolation, consider also
other neural circuit components [152–159] that could interact with the learning rule. An important
component would be the architecture, including connectivity structure and neuron model, found
through evolution [157] (see also [160]). To address our main question, this study varies learning rules
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while holding data, objective function and architecture constant (see [10]). However, these different
components can interact, and more sophisticated architecture can facilitate task learning [160–167].
Given the exploding parameter space resulting from such interactions, we believe it requires careful
future analysis and is outside of the scope for this one paper.

Additionally, learning rate modulation [168, 169] could be one of many possible remedies employed
by the brain. We conjecture that neuromodulatory mechanisms could be coupled with these learning
rules to improve the convergence behavior through our scheduled learning rate experiments (Appendix
Figure 5), where an initial high learning rate could prevent the learning trajectory from settling in
sharp minima prematurely followed by gradual decay to avoid instabilities. One possible way to
realize such learning rate modulation could be through serotonin neurons via uncertainty tracking,
where the learning rate is high when the reward prediction error is high (this can happen at the
beginning of learning) [170]. Since the authors of [170] showed that inhibiting serotonin led to
failure in learning rate modulation, we conjecture that such inhibition might have an impact on the
generalization performance of learning outcomes. On the topic of balancing numerical instabilities
and potential advantages of large learning rates, while the analog nature of biology may seem to
avoid finite precision representation in digital computers that give rise to numerical instabilities,
the same problems that lead to numerical instabilities in digital computers, such as big ranges
between quantities added or multiplied, remains an issue for biology since quantities must be
stored in noisy activity patterns of neurotransmitter release. Future investigations could investigate
potential homeostatic mechanisms that regulate biological quantities to avoid such instabilities,
thereby enabling larger "learning rates” to be used so as to find flatter minima. Other ingredients for
future investigations could include intrinsic noise with certain structures [154, 171, 172] (including
directions and bias/variance properties) that would make them more favourable for generalization.
Taken together, we hope to see follow up investigations — riding on the rapid advancements both
at the front of deep learning theory and sophisticated biological mechanisms — into how the brain
attains solutions that generalize.
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A Methods

A.1 Hessian eigenspectrum analysis

As mentioned, we focus on the leading Hessian eigenvalue because it has been used previ-
ously [122, 173] and is very feasible for both empirical [119, 174] and theoretical analyses (The-
orem 1). The leading Hessian eigenvalue can be computed by performing power iterations on the
Hessian vector product without knowing the full Hessian matrix (Algorithm 2 in [119]). To find
multiple top eigenvalues, e.g. top 200 eigenvalues, one can use generalized power method via QR
decomposition [175]. We focused on the loss’ Hessian for recurrent weights but observed similar
trend for input weights as well. Stopping procedure for the power iteration were similar to that
of [119]; we set the tolerance to 1e� 6, and observed that all iterations in our experiments converged
before reaching the maximum iterations allowed, which was set to 500.

Due to the scale-dependence issue of Hessian spectrum [134], we also used scale-independent
measures. For instance, we examined the power-law decay coefficient for the Hessian eigenvalues
(Figure 7 in Appendix). We also looked at the recently proposed relative flatness measure [6] (Figure 8
in Appendix). We used the code in [176] to fit a power-law distribution to top 200 eigenvalues. We
found similar results had we chosen top 50 or 100 eigenvalues instead, and 200 was chosen mainly
due to computational load. We note that the link of power-law decay to generalization has also been
examined in some recent studies [121, 177, 178].

A.2 Network setup and learning rule implementations

Neuron Model: We consider a discrete-time implementation of a rate-based recurrent neural network
(RNN) similar to the form in [137]. The model denotes the internal hidden state as ht and the
observable states, i.e. firing rates, as f(ht) at time t, and we use ReLU activation for f . The dynamics
of those states are governed by

ht+1 = ↵ht + (1� ↵) (Whf(ht) +Wxxt) , (10)

where ↵ = e
�dt/⌧m denotes the leak factor for simulation time step dt and membrane time constant

⌧m, Wh denotes the weight of the recurrent synaptic connection, Wx denotes the strength of the input
synaptic connection and xt denotes the external input at time t. we use subscripts to represent indices
of neurons and time steps. For instance, hi,t represents the hidden activity h of neuron i at time t.
Wh,ij represents the (ij)th entry of recurrent weight matrix Wh. Model in Eq. 10 were used for the
sequential MNIST and pattern generation tasks.

We mention in passing that the choice of ReLU activation, which has discontinuous first derivative,
means that the loss Hessian matrix is not guaranteed to be symmetric. A real matrix that is not
symmetric can have complex eigenvalues come in conjugate pairs, and if they were amongst the
top eigenvalues, power iterations may not converge. However, all iterations have converged in
our experiments as mentioned above. Also, because of potential technical issues resulting from
non-symmetric Hessian matrices, we foresee challenges in applying our methodology to spiking
neural networks (SNNs), which have discontinuous activation functions. Due to the energy efficiency
and biological realism of SNNs [97, 179–188], we believe extending to SNNs is an important future
direction.

For the delayed match to sample task, which is a working memory task, it was found in [13] and [11]
that units with adaptive threshold as an additional hidden variable can play an important role in the
computing capabilities of RNNs. Thus, we implemented adaptive threshold neuron units [165] for
that task. In our rate-based implementation, this turns out to be a simple addition of a second hidden
variable bt that represents the dynamic threshold component:

ht+1 = ↵ht + (1� ↵) (Whf(ht � bt) +Wxxt) ,

bt+1 = �bt + (1� �)f(ht � bt), (11)

where bj,t denotes the dynamic threshold that adapts based on past neuron activity. The decay factor
� is given by e

�dt/⌧b for simulation time step dt and adaptation time constant ⌧b, which is typically
chosen on the behavioral task time scale [13].

Network output and loss function:
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Readout ŷ is defined as
ŷ = hw, f(ht)i (12)

for readout weights w.

We quantify how well the network output ŷ matches the desired target y using loss function L, which
is defined as

L(Wh) =

(
1

2TB

P
B

i=1

P
T

t=1

P
Nout

k=1 (ŷ(i)
k,t
� y

(i)
k,t

)2, for regression tasks
�1
TB

P
B

i=1

P
T

t=1

P
Nout

k=1 ⇡
(i)
k,t

log⇡̂
(i)
k,t

, for classification tasks
(13)

for target output y, task duration T , Nout output neurons and batch size B. ⇡k,t is the one-hot en-
coded target and ⇡̂k,t = softmaxk(ŷ1,t, . . . , ŷNOUT ,t) = exp(ŷk,t)/

P
k0 exp(ŷk0,t) is the predicted

category probability.

Biological gradient approximations (truncation-based)
The goal of this subsection is to explain where the approximation happens for each of the bio-plausible
learning rules. For full details regarding these rules, we encourage to reader to refer to the respective
references. We start by writing down the gradient in terms of real-time recurrent learning (RTRL)
factorization:

@L

@Wh,ij

=
X

l,t

@L

@hl,t

@hl,t

@Wh,ij

, (14)

Key problems that RTRL poses to biological plausibility and computational cost reside in the second
factor @hl,t

@Wh,ij

that arises during the factorization of the gradient (Eq. 14). The factor @hl,t

@Wh,ij

keeps
track of all recursive dependencies of hl,t on weight Wh,ij arising from recurrent connections. These
recurrent dependencies can be obtained recursively as follows:
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+
P

m 6=l
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@Wh,ij| {z }
depends on all weights Wh,lm

. (15)

Thus, the factor @hl,t

@Wh,ij

poses a serious problem for biological plausibility: it involves nonlocal terms
that should be inaccessible to neural circuits, i.e. that knowledge of all other weights in the network
is required in order to update the weight Wh,ij .

RFLO [12] (labeled as "RF Three-factor") and symmetric e-prop [11] (labeled as "Three-factor") seek
to address this by truncating the expensive nonlocal terms in Eq. 15 so that the updates to weight
Wh,ij would only depend on pre- and post-synaptic activity:

\@hl,t

@Wh,ij

=

(
@hi,t

@Wh,ij

+ @hi,t

@hi,t�1

\@hi,t�1

@Wh,ij

, l = i

0, l 6= i

(16)

which results in a much simpler factor than the triple tensor in Eq. 15.

After the truncation, RFLO and e-prop implement:

\@L
@Wh,ij

=
X

t

@L

@hi,t

\@hi,t

@Wh,ij

, (17)

\@hi,t

@Wh,ij

=
@hi,t

@Wh,ij

+
@hi,t

@hi,t�1

\@hi,t�1

@Wh,ij

. (18)

The main difference between symmetric e-prop and RFLO implementation is that symmetric feedback
is used for symmetric e-prop, i.e. output weight w is used as the feedback weight for the @E

@h
, whereas

RFLO uses fixed random feedback weights [75] for greater biological plausibility. We note in
passing that the authors of e-prop have tested their formulation with fixed random feedback weights
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as well. MDGL [13] also truncates RTRL, but it restores some of the non-local dependencies –
those within one connection step — that could potentially be communicated via mechanisms similar
to the abundant cell-type-specific local modulatory signaling unveiled by recent transcriptomics
data [90, 91]. With that, the expensive memory trace term in Eq. 15 becomes

@hl,t

@Wh,ij

⇡

8
><

>:

Wh,lif
0(hi,t�1)

\@hi,t�1

@Wh,ij

, i 6= l

@hi,t

@Wh,ij

+ @hi,t

@hi,t�1

\@hi,t�1

@wij

, i = l

(19)

MDGL involves one additional approximation: replace Wh,li with type-specific weights Wab to
mimick the cell-type-specific nature of local modulatory signaling (for cell i in group a and cell j in
group b, where a, b 2 C for a total of C cell groups). For simplicity, we just used Wab = Wli, i.e.
without cell-type approximation. This results in overall MDGL implementation as

\@L
@Wh,ij

=
X

t

@L

@hi,t

\@hi,t

@Wh,ij

+
\@hi,t�1

@Wh,ij

X

l

Wh,li

@L

@hl,t

, (20)

Interpretation of the above update rule in terms of biological processes can be found in the MDGL
paper [13, 189].

We note that input, recurrent and output weights were all being trained. This section illustrates the
approximate gradient for updating recurrent weights Wh, and similar expressions were obtained for
updating input weights Wx. The approximations, however, did not apply to output weights, as the
gradient for that would not violate the aforementioned issue of nonlocality (Eq. 15).

A.3 Simulation details

We used TensorFlow [190] version 1.14 and based it on top of [191]. We modified the code for
rate-based neurons (Eq. 10 and 11). 1 We used the code in [176] for the power-law analysis (Figure 7
in Appendix). SGD optimizer was used to study the effect of gradient approximation in isolation
without the complication of additional factors, as Adam optimizer with adaptive learning rate could
convolute our matching step length experiments in Figure 4. That said, we verified that the curvature
convergence behavior is also observed for Adam optimizer (Figure 11 in Appendix. Learning
rates were optimized by picking within {3e � 4, 1e � 3, 3e � 3, 1e � 2, 3e � 2, 1e � 1} for each
algorithm. For the sequential MNIST task, we explored batch sizes within {64, 256, 1024}. For the
sequential MNIST task, these hyperparameters were optimized based on validation performance (the
validation set loaded using tensorflow.examples.tutorials.mnist). For the two other tasks, these
hyperparameters were optimized based on the training performance, but we also tried optimizing
on the test set and observed similar trends. Trainings were stopped when both the loss and leading
Hessian eigenvalue stabilized. As stated, we repeated runs with different random initialization to
quantify uncertainty and weights were initialized similarly as in [12].

Simulations were completed on a computer server with x2 20-core Intel(R) Xeon(R) CPU E5-2698
v4 at 2.20GHz. The average time to complete one run of sequential MNIST, pattern generation
and delayed match to sample tasks in Figure 3 were approximately 2 hours, 1 hour and 1 hour,
respectively. Since the computation of second order gradient becomes prohibitively expensive as
sequence length T becomes large, all tasks involved no more than 50 time steps. For instance, this
was achieved for the sequential MNIST task using the row-by-row implementation. Using fewer
time steps, however, should not affect the general trend as the gradient truncation effects were still
significant. Because of the use of fewer steps, we dropped the leak factor ↵ in Eq. 10 (i.e. set ↵ = 0).

For the matching step length experiments (Figure 4), we simply obtained ⇢ =
~̂g
T
~g

~gT~g
for the three-factor

learning rule and scaled BPTT updates by that amount. For scheduled learning rate experiments
(Figure 5), the additional hyperparameters included initial learning rate, decay percentage and decay
frequency. We used an initial learning rate that was three times the uniform rate (used in other figures)
and decay the learning rate by 80% every X iterations, where X was roughly the total number of
training iterations (used in other figures) divided by 30. Since the point of that figure was to show
that learning rate scheduling could lead to flatter minima than using a fixed learning rate, we did not

1Our code is available: https://github.com/Helena-Yuhan-Liu/BiolHessRNN.
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search extensively across these additional hyperparameters as the first set of hyperparameters we
tried was enough to demonstrate that point.

For the pattern generation task, our network consisted of N = 30 neurons described in Eq. 10. Input
to this network was provided by a random Gaussian input (Nin = 1). The fixed target signal had a
duration of 50 steps and given by the sum of four sinusoids, with fixed period of 10, 40, 70 and 100
steps. For learning, we used mean squared loss function. Training for this task used full batch. For
testing, we perturbed the input with additive zero-mean Gaussian noise (with � picked uniformly
between 0 and 0.2 across runs), to mimick the situation where the agent had to faithfully produce the
desired pattern even under perturbations. Unlike the other tasks, this task measures accuracy by mean
squared error, for which the lower the better. To maintain the convention of higher generalization gap
being worse, the generalization gap for this task was computed by test error minus train error.

For the delayed match to sample task, our network consisted of N = 100 neurons, which include
50 neurons with (Eq. 11) and 50 neurons without (Eq. 10) threshold adaptation. The task involved
the presentation of two sequential cues, each taking on a binary value, lasting 2 steps and separated
by a delay of 16 steps. Input to this network was provided by Nin = 2 neurons. The first (resp.
second) input neuron sent a value of 1 when the presented cue took on a value of 1 (resp. cue 0), and
0 otherwise. The network was trained to output 1 (resp. 0) when the two cues have matching (resp.
non-matching) values. For learning, we used cross-entropy loss function and the target corresponding
to the correct output was given at the end of the trial. Training for this task used full batch. For
testing, we tested on increased delay, with the period picked uniformly between the training delay
period and twice the training delay period, to mimick situations where the animal has to hold the
memory longer than it did during the learning phase.

For the sequential MNIST task [138], our network consisted of N = 128 neurons described in Eq. 10.
Input to this network was provided by Nin = 28 units that represented the grey-scaled value of a
single row, totalling 28 steps and the network prediction was made at the last step. For learning, we
used the cross-entropy loss function and the target corresponding to the correct output was given at
the end of the trial. For testing, we used the existing MNIST test set [138] with additive zero-mean
Gaussian input noise. As mentioned, this task did not train with full batch but we found the trend to
hold across different batch sizes.

Finally, we note that comparisons between BPTT and approximate rules were done at comparable
training accuracies for the pattern generation and delayed match to sample tasks. For the sequential
MNIST task, the three-factor rule achieved only around 70% training accuracy, but the training
accuracy did not explain the curvature convergence behavior. To see this, while three-factor theory
(blue in Fig 4), which corresponds to BPTT with reduced step length, achieves an accuracy of > 95%
but still attains similar curvature convergence to that of the three-factor rule.
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B Theorem 1

B.1 Proof of Theorem 1

Proof. First, we note that the Jacobian of the dynamical system for BPTT update (Eq. 7) is simply
the loss Hessian scaled by �⌘. This implies that

|�J

1 | = ⌘B |�H

1 |, (21)

where we remind the reader that �J

1 2 R (resp. c�J

1 2 R) is the leading eigenvalue for BPTT (resp. an
approximate rule) Jacobian; �H

1 2 R is the leading eigenvalue of the loss’ Hessian matrix.

Second, with the assumption of a single output ŷ, loss presented only at the last time step T and
stochastic gradient descent (updates on a single data example as opposed to batch updates), least
squares loss in Eq. 3 can be simplified to:

L(Wh) =
1

2
(ŷ � y)2, (22)

resulting in the following difference equations for discrete dynamical systems defined by BPTT
(Eq. 7) and an approximate rule (Eq. 8):

�Wh|BPTT = F (Wh) = �⌘B(ŷ � y)rŷ, (23)

�Wh|approximate = F̂ (Wh) = �⌘e(ŷ � y)r̃ŷ, (24)

where we remind the reader that r̃ is the notation for an approximate gradient.

We then compute the Jacobian of the difference equations above:
J = �⌘B

�
rŷrŷT + (ŷ � y)r2

ŷ
�

(for BPTT) (25)

bJ = �⌘e
⇣
rŷr̃ŷT + (ŷ � y)rr̃ŷ

⌘
(for an approximate rule). (26)

In the limit of zero error (y � ŷ) = 0, i.e. close to an optimum, the term involving (y � ŷ) becomes
negligible. That simplifies the Jacobian to

J ⇡ �⌘BrŷrŷT

bJ ⇡ �⌘erŷr̃ŷT . (27)

In this case, J and bJ are rank-1 matrices. A rank-1 square matrix has only one nonzero eigenvalue,
and by inspection, that one eigenvalue is

For J : |�J

1 (W
⇤
B
)| = ⌘BrŷTrŷ

��
W

⇤
B

(28)

! |�H | (21)
= |�J

1 |/⌘B = rŷTrŷ (29)

For bJ : |c�J

1 (W
⇤
e
)| = ⌘e|r̃ŷTrŷ|

���
W⇤

e

(a)
= |⌘e⇢rŷTrŷ|

��
W⇤

e

(29)
= |⇢⌘e�H

1 (W ⇤
e
)|, (30)

where equality (a) is explained as follows. We first remind the reader that ⇢ is defined such that
~̂g = ⇢~g + ~e (Eq. 6). For the case of a scalar output ŷ, ~̂g = @L

@ŷ
r̃ŷ and ~g = @L

@ŷ
rŷ. So if we

divide both sides of ~̂g = ⇢~g + ~e by @L

@ŷ
we get r̃ŷ = ⇢rŷ + ~e/

@L

@ŷ
. Since we have ~e ? ~g by

definition, then ~e
>rŷ = 0 because ~g is just a scaled rŷ when the output is a scalar. This leads to

r̃ŷTrŷ = (⇢rŷ + ~e/
@L

@ŷ
)>rŷ = ⇢rŷTrŷ.

Since we assume the gradient descent dynamical system converges to an optimum, this corresponds
to an asymptotic stable fixed point. Hence, |�J

1 | < 1 and |c�J

1 | < 1, which implies:

|�J

1 (W
⇤
B
)| < 1

(21)! ⌘B |�H

1 (W ⇤
B
)| < 1! |�H

1 (W ⇤
B
)| < 1

⌘B
(31)

|c�J

1 (W
⇤
e
)| < 1

(30)! |⇢⌘e�H

1 (W ⇤
e
)| < 1! |�H

1 (W ⇤
e
)| < 1

|⇢|⌘e
. (32)
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B.2 Discussion on tightness of the bound

Following the derivation, it is clear that the tightness of the bound will depend on how close the
magnitude of leading Jacobian eigenvalue is to 1 upon convergence. That is related to the distribution
of minima flatness along the loss landscape, which impacts the probability of a rule converging to a
minima with flatness in a certain range. Such distribution is likely problem dependent. If the loss
were convex, there would just be one minimum and the question of minima preference would become
irrelevant.

B.3 Discussion on generality of Theorem 1

The proof above examines a special case where the Jacobian of weight update equations becomes
rank-1. We remind the reader that for the case of multivariate loss, higher rank cases or batch
updates, we would not have arrived at the rank-1 Jacobian step (Eq. 27). For many tasks considered
in neuroscience, the rank 1 case can apply, which explains the validity of Theorem 1. We also note in
passing that for the case of stochastic gradient descent, the Hessian Jacobian correspondence (Eq. 21)
would point to loss’ Hessian matrix evaluated on a single example, which could reflect the robustness
against perturbing that particular example. Moreover, simulation results show our conclusion holds
in higher rank cases (Figure 4). The challenge of generalizing the proof to higher Jacobian rank case
is that we are no longer guaranteed that the leading eigenvectors of BPTT Jacobian coincide with
the leading eigenvectors of an approximate rule Jacobian. Thus, it becomes much harder to relate
|c�J

1 | and |�J

1 |. Rather than providing further proof, we provide an intuition for why our conclusion —
where the convergence behavior between rules differs by their step length along the gradient direction
— can hold in higher rank cases under Assumption 1.

Assumption 1. Approximation error vector ~e (but not ~g) lies orthogonal to the subspace spanned
by the leading Hessian eigenvectors. Here, leading Hessian eigenvectors refer to the eigenvectors
corresponding to the outlier Hessian eigenvalues in light of the well known observation that there
exists only a few large (outlier) eigenvalues and the rest are near zero [117, 118, 174]).

The ramification of Assumption 1 is that ~e will lie in the subspace spanned by eigenvectors corre-
sponding to tiny eigenvalues, making H~e tiny. In the extreme scenario where ~e lies in the null space
of H , H~e would be 0. We verify this assumption numerically in Figure 10. We saw from the proof
above that this assumption is automatically satisfied in the rank-1 Jacobian case. We remark that this
assumption should not hold for stochastic gradient noise (SGN), as SGN covariance matrix is well
aligned with the Hessian matrix near a minima [123]. This could be why ~e, unlike stochastic gradient
noise, does not seem to be contributing much to escaping narrow minima.

We consider the case of small enough weight updates such that the loss surface can be approximated
using second order Taylor expansion. Thus, the loss change after one update becomes:

�L ⇡ �W
T
~g +

1

2
�W

T
H�W

= �⌘B~gT~g +
1

2
⌘
2
B
~g
T
H~g, (for exact rule) (33)

d�L ⇡ d�W
T

~g +
1

2
d�W

T

H d�W

= �⌘e~̂gT~g +
1

2
⌘
2
e
~̂g
T
H~̂g. (for an approximate rule) (34)

We next focus on the first and second Taylor term (T1 and T2) for the exact rule as well as the terms
(cT1 and cT2) for an approximate rule:

T1 := ⌘B~g
T
~g,cT1 := ⌘e

~̂g
T
~g, T2 :=

1

2
⌘
2
B
~g
T
H~g,cT2 :=

1

2
⌘
2
B
~̂g
T
H~̂g,
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and we note that first and second Taylor terms can determine how likely the update will be trapped in
a local minima:

�L < 0 (enables descend) ! T1 > T2

�L > 0 (restricts convergence) ! T1 < T2

d�L < 0 (enables descend) !cT1 > cT2

d�L > 0 (restricts convergence) !cT1 < cT2. (35)

Given their central role in determining convergence, we compare these terms between exact rule and
an approximate rule. For the first Taylor term (T1), it is easy to see that:

~̂g
T
~g = ⇢~g

T
~g.

For the second Taylor term (T2) and if H is symmetric:

~̂g
T
H~̂g = ⇢

2
~g
T
H~g + 2⇢~gT H~e|{z}

⇡ 0

+ ⇢
2
~e
T
H~e|{z}

⇡ 0, Assumption 1

⇡ ⇢
2
~g
T
H~g. (36)

To match the convergence behavior between exact and an approximate rules (Eq. 35) on a (locally)
second order loss surface, we can make (T1, T2) approximately equal to (cT1,

cT2) by setting ⌘B = ⇢⌘e,
which predicts our numerical results (Figure 4). We note that if Assumption 1 were not satisfied, then
the above might not hold. We note in passing that if we can satisfy Assumption 1 without being near
an optimum, then we may not need the negligible training error assumption.
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C Additional Simulations

In the last paragraph in Discussion, we discussed how learning rate modulation could be one of the
potential remedies used by the brain. We also explained how learning rate modulation could serve
as a balance between the potential benefits of large learning rate and the numerical stability issue
mentioned shortly after the presentation of Figure 4 and Theorem 1 in Results. In Appendix Figure 5,
we used a large learning rate early in training to prevent premature stabilization in sharp minima
followed by gradual decay to mitigate the stability issue. With this remedy, we observed a reduction
in the curvature of the converged solution and improvement in generalization performance. This
result also connects with the finding that sensory depletion during critical periods in training deep
networks, which can be related to a small learning rate early in training, can impair learning and
yield convergence to sharp minima [192]. However, it is important to note that this strategy does not
correct the problem; the gap still exists compared to BPTT, suggesting room for further research.

CBA Delayed match-to-samplePattern generation Sequential MNIST

Figure 5: Learning rate modulation as a possible remedy of the problem. We increased the
learning rate in the beginning of training to prevent the three-factor rule from stabilizing in sharp
minima prematurely, followed by a gradual decay to prevent instability. Top panels show this
strategy helps to reduce the curvature of the converged solution. Bottom panels show this leads to a
slight improvement in generalization gap (vertical lines denote distribution mean). However, it is
important to note that this strategy does not correct the problem; the gap still exists compared to
BPTT, suggesting room for further research. Plotting conventions follow that of the previous figures.
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We present additional simulations referred in the main text. In Figure 4, we attributed the convergence
to high curvature regions to reduced along-gradient step length. In Appendix Figure 6, we confirm
that such high curvature convergence indeed corresponds to worsened generalization performance,
thereby linking reduced along-gradient step length to worsened generalization performance. As
mentioned in the main text, due to the scale-dependence issue of Hessian spectrum [134], we also
used scale-independent measures. For instance, we examined the power-law decay coefficient for the
Hessian eigenvalues (Appendix Figure 7). We also looked at the recently proposed relative flatness
measure [6] (Appendix Figure 8). These additional measures support the trends observed before:
BPTT converges to lower curvature regions compared to the three-factor rule. We also observe
that the tendency to approach high curvature regions seems to be a shared problem for temporal
truncations of the gradient (Appendix Figure 9).

A CB Delayed match-to-samplePattern generation Sequential MNIST

Generalization gap historgrams

Figure 6: Modified BPTT (three-factor, theory) resulted in worse and more variable general-
ization performance. Here, we follow the convention of previous generalization gap histogram plots
and investigated the generalization performance of modified BPTT (three-factor, theory) in Figure 4.

CBA Delayed match-to-samplePattern generationSequential MNIST

Figure 7: Loss’ Hessian eigenspectrum for the three-factor rule exhibits significantly steeper
power-law decay compared to that of BPTT. We fit a power-law function to the top 200 eigenvalues
at the end of training and measure the decay parameter. Fitting to the top 50 or 100 eigenvalues
resulted in similar trends. Solid lines/shaded regions: mean/standard deviation of eigenspectrum
obtained at the end of training across five independent runs.

CBA Delayed match-to-samplePattern generationSequential MNIST

Figure 8: Curvature preference behavior corroborated using relative flatness measure [6]. Here,
the trend is consistent with that of Figure 3. Note that the relative flatness measure can be computa-
tionally intensive for recurrent weights, so we computed it for readout weights. Plotting conventions
follow that of previous figures.
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Sequential MNIST

Figure 9: Approaching high curvature regions seems to be a shared problem for temporal
truncations of the gradient. We repeat the analysis in Figure 3 for truncated BPTT (TBPTT). Here,
"Trunc X" means X time steps are truncated during the gradient calculation. We observe that TBPTT
tends to converge to high curvature regions. Plotting conventions follow that of previous figures.

In response to our discussion on the potential impact of noise direction (see explanation shortly after
the presentation of Theorem 1, Discussion section and Appendix B.3), we confirm that the error
vector ~e is significantly less aligned with the leading Hessian eigenvectors relative to the gradient
vector ~g (Appendix Figure 10). As explained in Methods, we used SGD optimizer due to confounding
factors in Adam optimizer that could convolute our matching step length analysis in Figure 4. We
observe similar curvature convergence trends as in Figure 3 when we repeated the experiments with
Adam optimizer in Appendix Figure 11.

Sequential MNIST

Figure 10: Truncation error vector (compared to the gradient) is significantly less aligned with
the top Hessian eigenvector subspace. Following [173], we compute the cosine similarity between
the error vector (of the three-factor rule) and a top Hessian eigenvector (averaged over the top 5
eigenvectors). The absolute value of the cosine similarity was taken. We observe weak alignment of
the approximation error vector ~e with the leading Hessian eigenvectors. Similar trends were attained
had we averaged over the leading 10 or 20 eigenvectors. Plotting conventions follow that of previous
figures.
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Sequential MNIST

Figure 11: Curvature convergence behavior also holds for Adam optimizer. As explained in
Methods, we used SGD optimizer due to confounding factors in Adam optimizer that could convolute
our matching step length analysis in Figure 4. We observe similar trends as in Figure 3. Plotting
conventions follow that of previous figures.

Finally, to further examine the correlation between leading Hessian eigenvalue and generalization
performance (observed in Figure 2), we also observed such correlation correlation for runs with the
learning rule fixed (Appendix Figure 12). For the matching step experiment in Figure 4, similar
observations were also made when we repeated the experiment at three times the learning rate
(Appendix Figure 12C). Moreover, we stopped BPTT early to match the test accuracy of the three-
factor rule, and observed similar curvature convergence and generalization performance trends as
previously (Appendix Table 1).

A CB
Matching step experiment, higher rateGeneralization gap vs leading Hessian eigenvalue

Figure 12: We repeat the generalization gap vs leading Hessian eigenvalue scatter plot in Figure 2
with the learning rule fixed for A) BPTT and B) the three-factor rule. As expected, a significant
correlation between generalization gap and leading Hessian eigenvalue is observed. Unlike Figure 2,
where the hyperparameters were fixed for each rule (tuned using the procedure in Appendix A.3), the
learning rate is varied here in order to get a wide enough curvature range to observe the correlation.
C) The matching step experiment in Figure 4 were repeated here with the learning rate increased by
three times for all rules, and the observation agrees with that in Figure 4. Plotting convention follows
that of previous figures.

Learning Leading Hessian eigenvalue Generalization gap
Three-factor 2550± 490 0.5± 0.3

BPTT, early stopping 316± 84 0.2± 0.1

Table 1: BPTT stopped early to match the test accuracy of the three-factor rule for the sequential
MNIST task. Higher generalization gap and leading Hessian eigenvalue is again observed for the
three-factor rule, as expected. Each rule is repeated for five runs with different random weight
initialization.
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