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Abstract. Model-free policy learning has been shown to be capable of
learning manipulation policies which can solve long-time horizon tasks
using single-step manipulation primitives. However, training these poli-
cies is a time-consuming process requiring large amounts of data. We
propose the Local Dynamics Model (LDM) which efficiently learns the
state-transition function for these manipulation primitives. By combin-
ing the LDM with model-free policy learning, we can learn policies which
can solve complex manipulation tasks using one-step lookahead planning.
We show that the LDM is both more sample-efficient and outperforms
other model architectures. When combined with planning, we can out-
perform other model-based and model-free policies on several challenging
manipulation tasks in simulation.

Keywords: Spatial Action Space, Visual Dynamics Model, Reinforce-
ment Learning, Robotic Manipulation

1 Introduction

Real-world robotic manipulation tasks require a robot to execute complex motion
plans while interacting with numerous objects within cluttered environments.
Due to the difficulty in learning good policies for these tasks, a common approach
is to simplify policy learning by expressing the problem using more abstract
(higher level) actions such as end-to-end collision-free motions combined with
some motion primitive such as pick, place, push, etc. This is often called the
spatial action space and is used by several authors including [36, 25, 32, 33]. By
leveraging these open-loop manipulation primitives, model-free policy learning
learns faster and can find better policies. However, a key challenge with this
approach is that a large number of actions need to be considered at each timestep
leading to difficulties in learning within a large SF(2) workspace or an SE(3)
workspace of any size.

Due to these challenges, model-based policy learning presents an attractive
alternative because it has the potential to improve sample efficiency [29, 7, 13].
Applying model-based methods to robotics, however, has been shown to be diffi-
cult and often requires reducing the high-dimensional states provided by sensors
to low-dimensional latent spaces. While these methods have been successfully
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applied to a variety of robotic manipulation tasks [30, 17] they also require a
large amount of training data (on the order of 10,000 to 100,000 examples).

This paper proposes the Local Dynamics Model (LDM) which learns the
state-transition function for the pick and place primitives within the spatial ac-
tion space. Unlike previous work which learns a dynamics model in latent space,
LDM exploits the encoding of actions into image-space native to the spatial ac-
tion space to instead learn an image-to-image transition function. Within this
image space, we leverage both the localized effect of pick-and-place actions and
the spatial equivariance property of top-down manipulation to dramatically im-
prove the sample efficiency of our method. Due to this efficiency, the dynamics
model quickly learns useful predictions allowing us to perform policy learning
with a dynamics model which is trained from scratch alongside the policy. We
demonstrate this through our use of a one-step lookahead planner which uses
the state value function in combination with the LDM to solve many different
complex manipulation tasks in simulation.

We make the following contributions. First, we propose the Local Dynam-
ics Model, a novel approach to efficiently modelling environmental dynamics
by restructuring the transition function. Second, we introduce a method which
leverages the LDM to solve challenging manipulation tasks. Our experimental
results show that our method outperforms other model-based and model-free.
Our code is available at https://github.com/ColinKohler/LocalDynamicsModel.

2 Related Work

Robotic Manipulation: Broadly speaking, there are two common approaches
to learning manipulation policies: open-loop control and close-loop control. In
closed-loop control, the agent controls the delta pose of the end-effector enabling
fine-tune control of the manipulator. This end-to-end approach has been shown
to be advantageous when examining contact-rich domains [18], [12], [14]. In con-
trast, agents in open-loop control apply predefined action primitives, such as
pick, place, or push, to specified poses within the workspace. This tends to pro-
vide more data-efficient learning but comes at the cost of less powerful policies
[21].

Spatial Action Space The spatial action space is an open-loop control approach
to policy learning for robotic manipulation. Within this domain, it is common to
combine planar manipulation with a fully-convolutional neural network (FCN)
which is used as a grasp quality metric [21] or, more generally, a action-value
metric [36, 32]. This approach has been adapted to a number of different ma-
nipulation tasks covering a variety of action primitives [2, 19, 35].

Dynamics Modelling: Model-Based RL improves data-efficiency by incorporating
a learned dynamics model into policy training. Model-based RL has been suc-
cessfully applied to variety of non-robotic tasks [7, 4, 13] but has seen more mixed
success in robotics tasks. While model-based RL has been shown to work well in
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robotics tasks with low-dimensional state-spaces [30, 17], the high-dimensionality
of visual state-spaces more commonly seen in robotic manipulation tends to
harm performance. More modern approaches learn a mapping from image-space
to some underlying latent space and learn a dynamics model which learns the
transition function between these latent states [22, 16].

More recent work has examined image-to-image dynamics models similar to
the video prediction models in computer vision [6]. However, these works typi-
cally deal with short-time horizon physics such as poking objects [1] or throwing
objects [37]. Paxton et al. [24] and Hoque et al. [11] learn visual dynamics mod-
els for pick and place primitives but require a large amount of data and time to
learn an accurate model. Our work is most closely related to [3] and [34]. In [2],
Berscheid et al., learn a visual transition model using a GAN architecture but
only learn pick and push primitives while still requiring a large amount of data.
Additionally, they only examine a simple bin picking task in their experiments.
Wu et al. [34] learn a visual foresight model tailored to a suction cup gripper
and use it to solve various block rearrangement tasks. In contrast, we achieve
similar sample efficiency using a more complicated parallel jaw gripper across a
much more diverse set of objects and tasks.

3 Problem Statement

Manipulation as an MDP in a spatial ac-
tion space: This paper focuses on robotic
manipulation problems expressed as a
Markov decision process in a spatial ac-
tion space, M = (S,A,T,R,~), where
state is a top down image of the workspace
paired with an image of the object cur-
rently held in the gripper (the in-hand
image) and action is a subset of SE(2).
Specifically, state is a pair of c-channel im-
ages, § = (sscen87 Shand) € Sscene X Shanda
where Sscene € Sscene C Rexhxw g g
¢ X h x w image of the scene and spgng € Workspace

Shana € R4 i a ¢ x d x d image patch |
that describes the contents of the hand

(Figure 2). At each time step, Sscene 18 set Fig.1: The Manipulation Scene
equal to a newly acquired top-down image of the scene. spqng is set to the ori-
ented d x d image patch corresponding to the pose of the last successful pick. If
no successful pick has occurred or the hand is empty, then spqnq is set to be the
zero image. Action a € A C SE(2) is a target pose for an end effector motion
to be performed at the current timestep. If action a executes when the hand is
holding an object (when the in-hand image is not zero), then a is interpreted as
a place action, i.e. move and then open the fingers. Otherwise, a is interpreted
as a pick, i.e. move and close the fingers. Here, A = Ap,s x S' C SE(2) spans

Robot Arm
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Fig.2: MDP State. (a) The manipulation scene. (b) The top-down image of
the workspace, Sscene- (¢) The in-hand image, spand-

the robot workspace and Ap,s C R? denotes the position component of that
workspace. State and action are related to each other in that each action cor-
responds to the pixel in the state that is beneath the end effector target pose
specified by the action. We assume we have access to a function h : A — Z2 that
maps an action to the pixel corresponding to its position component.

Assumptions: The following assumptions can simplify policy learning and are
often reasonable in robotics settings. First, we assume that we can model transi-
tions with a deterministic function. While manipulation domains can be stochas-
tic, we note that high value transitions are often nearly deterministic, e.g. a high
value place action often leads to a desired next state nearly deterministicly. As
a result, planning with a deterministic model is often reasonable.

Assumption 1 (Deterministic Transitions) The transition function is de-
terministic and can therefore be modeled by the function s’ = f(s,a), i.e. the
dynamics model.

The second assumption concerns symmetry with respect to translations and
rotations of states and actions. Given a transformation g € SE(2), g(s) de-
notes the state s = (Sscene, Shand) Where Sseene has been rotated and translated
by g and Spang is unchanged. Similarly, g(a) denotes the action a rotated and
translated by g.

Assumption 2 (SE(2) Symmetric Transitions) The transition function is
invariant to translations and rotations. That is, for any translation and rotation
g € SE(2), T(s,a,s") =T(g(s),g(a),g(s")) for all s,a,s" € S x AxS.

The last assumption concerns the effect of an action on state. Let R C A5 be
aregion of R2. Given a state s = (Sscene, Shand)s 1€t 8hpene = MASK(S, R) € Sscene
denote the scene image that is equal to Sscene €xcept that all pixels inside R
have been masked to zero. In the following, we will be exclusively interested in

image masks involving the region B,, defined as follows:
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Definition 1 (Local Region). For an action a = (apos, ag) € SE(2), let B, C
Apos denote the square region with a fized side length d (a hyperparameter) that
is centered at apos and oriented by ag.

We are now able to state the final assumption:

Assumption 3 (Local Effects) An action a € A does not affect parts of the
scene outside of B,. That is, given any transition s’ = f(s,a), it is the case that
MASK(S, By) = MASK(s', B,).

The bottle arrangement task (Figures 1, 2) is an example of a robotic ma-
nipulation domain that satisfies the assumptions above. First, notice that high
value actions in this domain lead to deterministic pick and place outcomes, i.e.
picking up the bottle and placing it with a low probability of knocking it over.
Second, notice that transitions are rotationally and translationally symmetric in
this problem. Finally, notice that interactions between the hand and the world
have local effects. If the hand grasps or knocks over a bottle, that interaction
typically affects only objects nearby the interaction.

4 Method

In this section, we first introduce the Local Dynamics Model (LDM) detailing its
properties and model architecture. We then discuss how we combine the LDM
with an action proposal method to perform policy learning through one-step
lookahead planning.

4.1 Structuring the Transition Model

We simplify the problem of learning the transition function f : S x A — §
by encoding Assumptions 2 and 3 as constraints on the model as follows. First,
given a state s = (Sscene; Shand), We partition the scene image sgcene into a region
that is invariant under a, §, = MASK(s, B,), and a region that changes under
a, 8, = CROP(s, B,). Here, CROP(s, R) € R°*%*4 denotes the c-channel d x d
image patch cropped from Sgcene corresponding to region R C Ay, resized to
a d x d image. Using this notation, we can reconstruct the original scene image
by combining 3, and §,:

Sscene = INSERT(8q, Ba) + 34, (1)
where §, = CROP(s, B,) and INSERT(8,, B,) inserts the crop into region B, and

sets the pixels outside B, to zero.

4.2 Local Dynamics Model

Instead of learning f directly, we will learn a function f : Re*@xd — Rexdxd that
maps the image patch §, onto a new patch §/,. Whereas f models the dynamics
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F(34)

F(32)

/

Fig. 3: Local dynamics model. In order to predict the next scene image s’ ..,,.,
we learn a model f that predicts how the scene will change within B, a neigh-
borhood around action a. The output of this model is inserted into the original
scene image.

of the entire scene, f only models changes in the scene within the local region
B,. We refer to f as the local dynamics model (LDM). Given such a model, we
can define a function fscene as:

fscene(& (l) = INSERT(f(!éa)a Ba) + Sa, (2)

where §, = CROP(s, B,). We can reconstruct f as f(s,a) = (fscene(S, @), Shand)
where s}, ..., denotes the in-hand image obtained using the rules described in
Section 3. Figure 3 illustrates this process for picking and placing in a block
arrangement task.

Notice that the model in Equation 2, fscene, satisfies both Assumptions 2
and 3. The fact that it satisfies Assumption 3 is easy to see as the local dynamics
model f only models changes in the scene within the local region B,. It also
satisfies Assumption 2 because §, is invariant under transformations g € SE(2)
of s and a:

Sq = CROP(s, By)
= CROP(g(S), Bg(a))a
where g(s) rotates state s and g(a) rotates action a. As a result, Equation 2 is

constrained to be equivariant in the sense that g( fscene(s,@)) = fscene(g(s), g(a)).

Model Architecture: We model the local dynamics model, f, using the UNet
model architecture shown in Figure 4 with four convolution and four deconvolu-
tion layers. It takes as input the image patch 5, € R®*¥*? and outputs a patch
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Fig.4: LDM architecture. Model architecture used in f, the local dynamics
model. Each blue box represents a 3x3 ResNet Block.

from the predicted next state, §, € Rexdxd The size of this image patch must be
large enough to capture the effects of pick and place actions, but small enough
to ignore objects not affected by the current interaction. In our experiments, we
set d = 64 pixels which corresponds to roughly 20cm in the workspace.

Loss Function: f is trained using a reconstruction loss, i.e. a loss which mea-
sures the difference between a predicted new state image patch and a ground
truth image patch. Typically, this is accomplished using a pixel-wise L2 loss [10].
However, we instead model pixel values as a multinomial probability distribu-
tion over 21 different possible values for each pixel (in our case, these are depth
values since we use depth images). This enables us to use a cross entropy loss,
which has been shown to have better performance relative to an L2 loss [31]. We
were able to improve performance even further by using a focal loss rather than
a vanilla cross entropy loss [20]. This alleviates the large class imbalance issues
that arise from most pixels in §, having the same value and focuses learning on
parts of the pixel space with the most challenging dynamics.

4.3 Policy Learning

While there are a variety of ways to improve policy learning using a dynamics
model, here we take a relatively simple one-step lookahead approach. We learn
the state value function Vy(s), and use it in combination with the dynamics
model to estimate the @ function, Q(s, a) = Vi(f(s,a)). A key challenge here
is that it is expensive to evaluate max,ea Q(s,a) Or arg maXqeA Q(s,a) over
large action spaces (such as the spatial action space) because the forward model
must be queried separately for each action. We combat this problem by learning
an approximate () function that is computationally cheap to query and use it
to reduce the set of actions over which we maximize. Specifically, we learn a



8 Kohler et al.

function Qg using model-free Q-learning: Qq(s,a) < r + ymaxyeca Qo(s’,a’).
Then, we define a policy my(als) = 04(Qs(s,a)), where o4 denotes the softmax
function over the action space A with an implicit temperature parameter 7. We
sample a small set of high quality actions Ay C A by drawing N action samples

from mp(als). Now, we can approximate maxascs Q(s,a) ~ max,c i, Q(s,a).
The target for learning Vi is now Vy(s) < r + max,c 1, Q(s,a). The policy

under which our agent acts is 7(als) = 04, (Q(s,a)). We schedule exploration
by decreasing the softmax temperature parameter over the course of learning.

We model @y using a fully-convolutional neural network which takes as in-
put the top-down heightmap sscene and outputs a 2-channel action-value map
(Qpicks Qplace) € R2XTxhxw where Qpick correlates with picking success and
Qplace to placing success. The orientation of the action is represented by dis-
cretizing the space of SO(2) rotations into r values and rotating s by each 6
value. V, is modeled as standard convolutional neural network which takes the
state s as input and outputs the value of that state. We use two target networks
parameterized by #~ and ¢~ which are updated to the current weights 8 and ¥
every t steps to stabilize training.

4.4 Sampling Diverse Actions

When evaluating max,¢ 1, Q(s,a) and 7(als) = 01, (Q(s,a)), it is important to
sample a diverse set of actions Apy. The problem is that o(Qy, -)) can sometimes
be a low entropy probability distribution with a small number of high-liklihood
peaks. If we draw N independent samples directly from this distribution, we
are likely to obtain multiple near-duplicate samples. This is unhelpful since we
only need one sample from each mode in order to evaluate it using Vi, (f(s,a)). A
simple solution would be to sample without replacement. Unfortunately, as these
peaks can include a number of actions, we would have to draw a large number
of samples in order to ensure this diversity. To address this problem, we use an
inhibition technique similar to non-maximum suppression where we reduce the
distribution from which future samples are drawn in a small region around each
previously drawn sample. Specifically, we draw a sequence of samples, a1, ..., axN-.
The first sample is drawn from the unmodified distribution Qy(s, ). Each suc-
cessive sample j # N is drawn from a distribution Qg(s,-) — 8> 7_, N(a;, 0?),
where A denotes the standard normal distribution in R3, and 8 and o2 are con-
stants. Here, we have approximated SE(2) as a vector space R? in order to apply
the Gaussian. Over the course of training, we slowly reduce g as the optimal
policy is learned.

5 Experiments

We performed a series of experiments to test our method. First, we investigate
the effectiveness of the Local Dynamics Model (LDM) by training the model
in isolation on pre-generated offline data. Second, we demonstrate that we can
learn effective policies across a number of complex robotic manipulation tasks.
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Network Architecture: A classification UNet with bottleneck Resnet blocks [8]
is used as the architecture of the LDM. A similar network architecture is used
for the Q-value model, Qg, with the exception of using basic Resnet blocks. The
state value model, Vi, is a simple CNN with basic Resnet blocks and two fully-
connected layers. The exact details for the number of layers and hidden units
can be found in our Github repository.

Implementation Details: The workspace has a size of 0.4m X 0.4m and Sscene
covers the workspace with a heightmap of size of 128 x 128 pixels. We use 8
discrete rotations equally spaced from 0 to 7. The target network is synchronized
every 100 steps. We used the Adam optimizer [15], and the best learning rate
and its decay were chosen to be 1072 and 0.95 respectively. The learning rate is
multiplied by the decay every 2000 steps. We use the prioritized replay buffer [28]
with prioritized replay exponent o = 0.6 and prioritized importance sampling
exponent By = 0.0 annealed to 1 over training. The expert transitions are given
a priority bonus of €4 = 1 as in Hester et al. [9]. The buffer has a size of 10000
episodes. Our implementation is based on PyTorch [23].

N,
’

o

(a) Block Stacking (b) House Building (c) Bottle Arrange  (d) Bin Packing

Fig.5: Tasks. The window in the top-left corner shows the goal state.

Task Descriptions: For all experiments, both the training and testing is pre-
formed in the PyBullet simulator [5]. In the block stacking domain, three cubes
are placed randomly within the workspace and the agent is tasked with placing
these blocks into a stable stack. In the house building domain, two cubes and one
triangle are placed randomly within the workspace and the agent is tasked with
placing the triangle on top of the two cube blocks. In the bottle arrangement
domain, the agent needs to gather six bottles in a tray. These three environments
have spare rewards (+1 at goal and 0 otherwise).

In the bin packing domain, the agent must compactly pack eight blocks
into a bin while minimizing the height of the pack. This environment uses a
richer reward function and provides a positive reward with magnitude inversely
proportional to the highest point in the pile after packing all objects. Example
initial and goal configurations for these domains can be seen in Figure 5.
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Block Stacking

House Building

Method L1 SR L1 SR
Naive 30.3+£1.7 38+ 5.6 30.4+1.5 39.1+£1.9
LDM(128) 14.5+2.2 70 £ 1.8 10.94+0.24 70.7+0.6
LDM(64) 8.76 0.1 83.4+0.6 588+0.2 779+1.1

Bottle Arrangement Bin Packing

Method L1 SR L1 SR
Naive 48.94+0.9 43.8 +4.4 7724071 35.44+0.8
LDM(128) 43.6+£0.79 58.6=+1.3 93.3+1.9 60.4 + 2.1
LDM(64) 32.5+1.8 66 +1.9 488 +0.9 659+0.5

Table 1: Dynamics Model Performance. Final performance for the 4 domains
on the different dynamics models. The results show the mean and standard
deviation averaged over 3 random seeds. L.1 denotes the L1-pixelwise difference
between the predicted observation and the true observation. Lower is better. SR,
denotes the success rate (%) for the action. Higher is better.

5.1 Accuracy of the Local Dynamics Model

Experiment: We generate 5k steps of noisy expert data for each of the domains
in Figure 5 by rolling out a hand coded stochastic policy. For the block stacking
and house building domains we train the models for 5k iterations of optimization.
For the bottle arrangement and bin packing domains we train the models for
10k iterations.

Metrics: We examine two metrics of model accuracy: 1.) the Ll-pixelwise dif-
ference between the predicted observation and the true observation and 2.) the
success rate of the action primitives. A pick action is defined as a success if the
model correctly predicts if the object will be picked up or not. Similarly, a place
action is defined as a success provided the model correctly predicts the pose of
the object after placement. The L1 difference provides a low level comparison of
the models whereas the success rate provides a higher level view which is more
important for planning and policy learning.

Baselines: We compare the performance of three dynamics models.

1. LDM(64): Local Dynamics Model with a crop size of 64 pixels.

2. LDM(128): Local Dynamics Model with a crop size of 128 pixels.

3. Naive: UNet forward model with 128 x 128 input and output size. The action
is encoded by concatenating a binary mask of the action position onto the
state s.
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Bin Packing

Results: In Table 1, we summarize the 065
accuracy of the models in the four do- 0.0
mains on a held-out test set. While both 095
LDM(64) and LDM(128) are able to gen-
erate realistic images in non-cluttered do-
mains, we find that defining a small local-
ized area of affect to be vital in cluttered //W
domains such as bin packing. The most s

common failure mode occurs when the S ertone
model overestimates the stability of ob-
ject placements. For example, it has diffi-
culties in determining the inflection point
when stacking blocks which will lead to
the stack falling over. Equally important
to the final performance of the models is
how efficiently they learn. In Figure 6, the action primitive success rate is shown
over training for the bin packing environment. The sample efficiency of LDM(64)
makes it much more useful for policy learning as the faster the dynamics model
learns the faster the policy will learn.

— LDM(64)
—— LDM(128)
—— Naive

AP Success Rate

e o o

e 2 ¢
&

Fig.6: Sample Efficiency. Action
primitive success rate for bin pack-
ing. Results averaged over three ran-
dom seeds. Shading denotes stan-
dard error.

5.2 Policy Learning

Here, we evaluate our ability to use the local dynamics model to learn policies
that solve the robotic manipulation tasks illustrated in Figure 5. In each of these
domains, the robot must execute a series of pick and place actions in order to
arrange a collection of objects as specified by the task. These are sparse reward
tasks where the agent gets a non-zero reward only upon reaching a goal state. As
such, we initialize the replay buffer for all agents with 100 expert demonstration
episodes in order to facilitate exploration.

Baselines: We compare our approach with the following baselines.

1. FC-DQN: Model-free policy learning using a fully-convolutional neural net-
work to predict the g-values for each action in the spatial-action space. Ro-
tations are encoded by rotating the input and output for each 6 [36].

2. Random Shooing (RS): RS samples K candidate action sequences from
a uniform distribution and evaluates each candidate using the dynamics
module. The optimal action sequence is chosen as the one with the highest
return [27, 26]. Due to the size of the action space, we restrict action sampling
to only sample actions which are nearby or on obejcts within the workspace.

3. Dyna-Q: FC-DQN model trained Dyna-style where training iterates be-
tween two steps. First, data is gathered using the current policy and used
to learn the dynamics model. Second, the policy is improved using synthetic
data generated by the dynamics model. At test time only the policy is used
[29].
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For fairness, all algorithms use the same model architecture. For RS and
Dyna-Q, an extra head is added onto the state value model after the feature
extraction layers in order to predict the reward for that state. When a model
is not used, such as the value model for RS, they are not trained during that
run. The forward model is not pretrained in any of the algorithms considered.
All algorithms begin training the forward model online using the on-policy data
contained in the replay buffer — the same data used to train the policy.

3 Block Stacking House Building

Success Rate
Success Rate

0 1000 2000 3000 4000 0 2000 4000 6000 8000
Episodes Episodes

Bottle Arrangment Bin Packing

Success Rate

0 2000 4000 6000 8000 0 2000 4000 6000 8000 10000 12000 14000
Episodes Episodes
Fig.7: Simulation Experiment Evaluation. Evaluation performance of
greedy-policy. Models are trained until LDM reaches convergence. Results aver-
aged over 3 random seeds. Shading denotes standard error.

Results: The results are summarized in Figure 7. They show that our method
(shown in blue) is more sample efficient than FC-DQN in all domains except
bin packing. We attribute the under-performance in bin packing to the diffi-
cult transition function that the state prediction model must learn due to the
varied geometry of the blocks interacting with each other. LDM significantly
out-preforms the model-based baselines in all domains. RS preforms poorly even
with a high quality state prediction model due to the low probability of randomly
sampling a good trajectory in large actions spaces. Dyna-Q performs similarly
poorly due to the minute differences between the simulated experiences and the
real experiences cause the policy learned to preform worse on real data.
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Block Stacking Bottle Arrangement

Method 4 Block 5 Block 5 Bottle 6 Bottle
RS 48 23 8 4
FC-DQN 98 89 82 48
LDM 99 84 86 65

Table 2: Generalization Experiment. We show the success rate (%) of zero-
shot generalization over 100 episodes. Higher is better.

5.3 Generalization

One advantageous property of model-based RL, is its ability to generalize to
unseen environments provided the underlying dynamics of the environments re-
mains similar. In order to test how well LDM generalizes, we trained LDM,
FC-DQN, and RS on the block stacking and bottle arrangement domains on a
reduced number of objects and evaluated them with an increased number of ob-
jects, i.e. zero-shot generalization. Specifically, we trained our models on 3 block
stacking and evaluated them on 4 and 5 block stacking. Similarly, we trained our
models on 4 bottle arrangement and evaluated them on 5 and 6 bottle arrange-
ment. As shown in Table 2, LDM is more effective for zero-shot generalization
when compared to both the model-free (FC-DQN) and model-based (RS) base-
lines.

6 Limitations and Future Work

This work has several limitations and directions for future research. The most
glaring of these is our use of a single-step lookahead planner for policy learning.
One large advantage of model-based methods is their ability to plan multiple
steps ahead to find the most optimal solution. For instance in bin packing, our
single-step planner will occasionally greedily select a poor action which results
in the final pack being taller whereas a multi-step planner would be able to
avoid this action by examining the future consequences. Similarly, model-based
methods have been shown to work well in multi-task learning where a more
general model is learned and leveraged across a number of tasks. While we show
that we can use the LDM for zero-shot generalization, our planning approach is
more tailored to learning single-policies. The LDM on the other hand, is shown
to be capable of modeling the interactions between many different objects across
many different tasks making it ideal for use in multi-task learning.

In terms of the LDM, we believe their are two interesting avenues for future
work. First, due to our modeling of the pixels as probability distributions, we
can easily estimate the uncertainty of the LDM’s predictions by calculating the
pixelwise entropy of the model output. This could prove useful when planning
by allowing us to avoid taking actions which the LDM is more uncertain about
leading to more robust solutions. Secondly, although we encode SE(2) equiv-
ariance into the LDM by restructuring the dynamics function, we could also



explore the use of equivriatant CNNs in the LDM architecture. These equviari-
ant CNNs have been shown to greatly improve sample efficiency across a wide
number of tasks and have recently started being applied to robotic manipulation
tasks similar to those we present in this work.

7 Conclusion

In this paper, we propose the Local Dynamics Model (LDM) approach to forward
modeling which learns the state-transition function for pick and place manip-
ulation primitives. The LDM is able to efficiently learn the dynamics of many
different objects faster and more accurately compared to similar methods. This
sample efficiency is achieved by restructuring the transition function to make the
LDM invariant to both objects outside the region near the action and to trans-
formations in SE(2). We show that the LDM can be used to solve a number of
complex manipulation tasks through the use of a single-step lookahead planning
method. Through the combination of the LDM with our planning method which
samples a diverse set of actions, our proposed method is able to outperform the
model-free and model-based baselines examined in this work.
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