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Abstract. Model-free policy learning has been shown to be capable of
learning manipulation policies which can solve long-time horizon tasks
using single-step manipulation primitives. However, training these poli-
cies is a time-consuming process requiring large amounts of data. We
propose the Local Dynamics Model (LDM) which efficiently learns the
state-transition function for these manipulation primitives. By combin-
ing the LDM with model-free policy learning, we can learn policies which
can solve complex manipulation tasks using one-step lookahead planning.
We show that the LDM is both more sample-efficient and outperforms
other model architectures. When combined with planning, we can out-
perform other model-based and model-free policies on several challenging
manipulation tasks in simulation.

Keywords: Spatial Action Space, Visual Dynamics Model, Reinforce-
ment Learning, Robotic Manipulation

1 Introduction

Real-world robotic manipulation tasks require a robot to execute complex motion
plans while interacting with numerous objects within cluttered environments.
Due to the difficulty in learning good policies for these tasks, a common approach
is to simplify policy learning by expressing the problem using more abstract
(higher level) actions such as end-to-end collision-free motions combined with
some motion primitive such as pick, place, push, etc. This is often called the
spatial action space and is used by several authors including [36, 25, 32, 33]. By
leveraging these open-loop manipulation primitives, model-free policy learning
learns faster and can find better policies. However, a key challenge with this
approach is that a large number of actions need to be considered at each timestep
leading to difficulties in learning within a large SE(2) workspace or an SE(3)
workspace of any size.

Due to these challenges, model-based policy learning presents an attractive
alternative because it has the potential to improve sample efficiency [29, 7, 13].
Applying model-based methods to robotics, however, has been shown to be diffi-
cult and often requires reducing the high-dimensional states provided by sensors
to low-dimensional latent spaces. While these methods have been successfully
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applied to a variety of robotic manipulation tasks [30, 17] they also require a
large amount of training data (on the order of 10,000 to 100,000 examples).

This paper proposes the Local Dynamics Model (LDM) which learns the
state-transition function for the pick and place primitives within the spatial ac-
tion space. Unlike previous work which learns a dynamics model in latent space,
LDM exploits the encoding of actions into image-space native to the spatial ac-
tion space to instead learn an image-to-image transition function. Within this
image space, we leverage both the localized effect of pick-and-place actions and
the spatial equivariance property of top-down manipulation to dramatically im-
prove the sample efficiency of our method. Due to this efficiency, the dynamics
model quickly learns useful predictions allowing us to perform policy learning
with a dynamics model which is trained from scratch alongside the policy. We
demonstrate this through our use of a one-step lookahead planner which uses
the state value function in combination with the LDM to solve many different
complex manipulation tasks in simulation.

We make the following contributions. First, we propose the Local Dynam-
ics Model, a novel approach to efficiently modelling environmental dynamics
by restructuring the transition function. Second, we introduce a method which
leverages the LDM to solve challenging manipulation tasks. Our experimental
results show that our method outperforms other model-based and model-free.
Our code is available at https://github.com/ColinKohler/LocalDynamicsModel.

2 Related Work

Robotic Manipulation: Broadly speaking, there are two common approaches
to learning manipulation policies: open-loop control and close-loop control. In
closed-loop control, the agent controls the delta pose of the end-effector enabling
fine-tune control of the manipulator. This end-to-end approach has been shown
to be advantageous when examining contact-rich domains [18], [12], [14]. In con-
trast, agents in open-loop control apply predefined action primitives, such as
pick, place, or push, to specified poses within the workspace. This tends to pro-
vide more data-efficient learning but comes at the cost of less powerful policies
[21].

Spatial Action Space The spatial action space is an open-loop control approach
to policy learning for robotic manipulation. Within this domain, it is common to
combine planar manipulation with a fully-convolutional neural network (FCN)
which is used as a grasp quality metric [21] or, more generally, a action-value
metric [36, 32]. This approach has been adapted to a number of different ma-
nipulation tasks covering a variety of action primitives [2, 19, 35].

Dynamics Modelling: Model-Based RL improves data-efficiency by incorporating
a learned dynamics model into policy training. Model-based RL has been suc-
cessfully applied to variety of non-robotic tasks [7, 4, 13] but has seen more mixed
success in robotics tasks. While model-based RL has been shown to work well in







Visual Foresight With a Local Dynamics Model 5

Definition 1 (Local Region). For an action a = (apos, aθ) ∈ SE(2), let Ba ⊆
Apos denote the square region with a fixed side length d (a hyperparameter) that
is centered at apos and oriented by aθ.

We are now able to state the final assumption:

Assumption 3 (Local Effects) An action a ∈ A does not affect parts of the
scene outside of Ba. That is, given any transition s′ = f(s, a), it is the case that
mask(s,Ba) = mask(s′, Ba).

The bottle arrangement task (Figures 1, 2) is an example of a robotic ma-
nipulation domain that satisfies the assumptions above. First, notice that high
value actions in this domain lead to deterministic pick and place outcomes, i.e.
picking up the bottle and placing it with a low probability of knocking it over.
Second, notice that transitions are rotationally and translationally symmetric in
this problem. Finally, notice that interactions between the hand and the world
have local effects. If the hand grasps or knocks over a bottle, that interaction
typically affects only objects nearby the interaction.

4 Method

In this section, we first introduce the Local Dynamics Model (LDM) detailing its
properties and model architecture. We then discuss how we combine the LDM
with an action proposal method to perform policy learning through one-step
lookahead planning.

4.1 Structuring the Transition Model

We simplify the problem of learning the transition function f : S × A → S

by encoding Assumptions 2 and 3 as constraints on the model as follows. First,
given a state s = (sscene, shand), we partition the scene image sscene into a region
that is invariant under a, ša = mask(s,Ba), and a region that changes under
a, ŝa = crop(s,Ba). Here, crop(s,R) ∈ R

c×d×d denotes the c-channel d × d
image patch cropped from sscene corresponding to region R ⊆ Apos, resized to
a d× d image. Using this notation, we can reconstruct the original scene image
by combining ŝa and ša:

sscene = insert(ŝa, Ba) + ša, (1)

where ŝa = crop(s,Ba) and insert(ŝa, Ba) inserts the crop into region Ba and
sets the pixels outside Ba to zero.

4.2 Local Dynamics Model

Instead of learning f directly, we will learn a function f̄ : Rc×d×d → R
c×d×d that

maps the image patch ŝa onto a new patch ŝ′a. Whereas f models the dynamics
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function Qθ using model-free Q-learning: Qθ(s, a) ← r + γmaxa′∈AQθ(s
′, a′).

Then, we define a policy πθ(a|s) = σA(Qθ(s, a)), where σA denotes the softmax
function over the action space A with an implicit temperature parameter τ . We
sample a small set of high quality actions ĀN ⊆ A by drawing N action samples
from πθ(a|s). Now, we can approximate maxa∈A Q̂(s, a) ≈ maxa∈ĀN

Q̂(s, a).

The target for learning Vψ is now Vψ(s) ← r + maxa∈ĀN
Q̂(s, a). The policy

under which our agent acts is π(a|s) = σĀN
(Q̂(s, a)). We schedule exploration

by decreasing the softmax temperature parameter over the course of learning.
We model Qθ using a fully-convolutional neural network which takes as in-

put the top-down heightmap sscene and outputs a 2-channel action-value map
(Qpick, Qplace) ∈ R

2×r×h×w where Qpick correlates with picking success and
Qplace to placing success. The orientation of the action is represented by dis-
cretizing the space of SO(2) rotations into r values and rotating s by each θ

value. Vψ is modeled as standard convolutional neural network which takes the
state s as input and outputs the value of that state. We use two target networks
parameterized by θ− and ψ− which are updated to the current weights θ and ψ
every t steps to stabilize training.

4.4 Sampling Diverse Actions

When evaluating maxa∈ĀN
Q̂(s, a) and π(a|s) = σĀN

(Q̂(s, a)), it is important to
sample a diverse set of actions ĀN . The problem is that σ(Qθ, ·)) can sometimes
be a low entropy probability distribution with a small number of high-liklihood
peaks. If we draw N independent samples directly from this distribution, we
are likely to obtain multiple near-duplicate samples. This is unhelpful since we
only need one sample from each mode in order to evaluate it using Vψ(f(s, a)). A
simple solution would be to sample without replacement. Unfortunately, as these
peaks can include a number of actions, we would have to draw a large number
of samples in order to ensure this diversity. To address this problem, we use an
inhibition technique similar to non-maximum suppression where we reduce the
distribution from which future samples are drawn in a small region around each
previously drawn sample. Specifically, we draw a sequence of samples, a1, . . . , aN .
The first sample is drawn from the unmodified distribution Qθ(s, ·). Each suc-

cessive sample j 6= N is drawn from a distribution Qθ(s, ·) − β
∑j

i=1
N (ai, σ

2),
where N denotes the standard normal distribution in R

3, and β and σ2 are con-
stants. Here, we have approximated SE(2) as a vector space R3 in order to apply
the Gaussian. Over the course of training, we slowly reduce β as the optimal
policy is learned.

5 Experiments

We performed a series of experiments to test our method. First, we investigate
the effectiveness of the Local Dynamics Model (LDM) by training the model
in isolation on pre-generated offline data. Second, we demonstrate that we can
learn effective policies across a number of complex robotic manipulation tasks.
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Block Stacking House Building

Method L1 SR L1 SR
Naive 30.3± 1.7 38± 5.6 30.4± 1.5 39.1± 1.9

LDM(128) 14.5± 2.2 70± 1.8 10.9± 0.24 70.7± 0.6

LDM(64) 8.76± 0.1 83.4± 0.6 5.88± 0.2 77.9± 1.1

Bottle Arrangement Bin Packing

Method L1 SR L1 SR
Naive 48.9± 0.9 43.8± 4.4 77.2± 0.71 35.4± 0.8

LDM(128) 43.6± 0.79 58.6± 1.3 93.3± 1.9 60.4± 2.1

LDM(64) 32.5± 1.8 66± 1.9 48.8± 0.9 65.9± 0.5

Table 1:Dynamics Model Performance. Final performance for the 4 domains
on the different dynamics models. The results show the mean and standard
deviation averaged over 3 random seeds. L1 denotes the L1-pixelwise difference
between the predicted observation and the true observation. Lower is better. SR
denotes the success rate (%) for the action. Higher is better.

5.1 Accuracy of the Local Dynamics Model

Experiment: We generate 5k steps of noisy expert data for each of the domains
in Figure 5 by rolling out a hand coded stochastic policy. For the block stacking
and house building domains we train the models for 5k iterations of optimization.
For the bottle arrangement and bin packing domains we train the models for
10k iterations.

Metrics: We examine two metrics of model accuracy: 1.) the L1-pixelwise dif-
ference between the predicted observation and the true observation and 2.) the
success rate of the action primitives. A pick action is defined as a success if the
model correctly predicts if the object will be picked up or not. Similarly, a place
action is defined as a success provided the model correctly predicts the pose of
the object after placement. The L1 difference provides a low level comparison of
the models whereas the success rate provides a higher level view which is more
important for planning and policy learning.

Baselines: We compare the performance of three dynamics models.

1. LDM(64): Local Dynamics Model with a crop size of 64 pixels.

2. LDM(128): Local Dynamics Model with a crop size of 128 pixels.

3. Naive: UNet forward model with 128×128 input and output size. The action
is encoded by concatenating a binary mask of the action position onto the
state s.
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Block Stacking Bottle Arrangement

Method 4 Block 5 Block 5 Bottle 6 Bottle
RS 48 23 8 4

FC-DQN 98 89 82 48

LDM 99 84 86 65

Table 2: Generalization Experiment. We show the success rate (%) of zero-
shot generalization over 100 episodes. Higher is better.

5.3 Generalization

One advantageous property of model-based RL, is its ability to generalize to
unseen environments provided the underlying dynamics of the environments re-
mains similar. In order to test how well LDM generalizes, we trained LDM,
FC-DQN, and RS on the block stacking and bottle arrangement domains on a
reduced number of objects and evaluated them with an increased number of ob-
jects, i.e. zero-shot generalization. Specifically, we trained our models on 3 block
stacking and evaluated them on 4 and 5 block stacking. Similarly, we trained our
models on 4 bottle arrangement and evaluated them on 5 and 6 bottle arrange-
ment. As shown in Table 2, LDM is more effective for zero-shot generalization
when compared to both the model-free (FC-DQN) and model-based (RS) base-
lines.

6 Limitations and Future Work

This work has several limitations and directions for future research. The most
glaring of these is our use of a single-step lookahead planner for policy learning.
One large advantage of model-based methods is their ability to plan multiple
steps ahead to find the most optimal solution. For instance in bin packing, our
single-step planner will occasionally greedily select a poor action which results
in the final pack being taller whereas a multi-step planner would be able to
avoid this action by examining the future consequences. Similarly, model-based
methods have been shown to work well in multi-task learning where a more
general model is learned and leveraged across a number of tasks. While we show
that we can use the LDM for zero-shot generalization, our planning approach is
more tailored to learning single-policies. The LDM on the other hand, is shown
to be capable of modeling the interactions between many different objects across
many different tasks making it ideal for use in multi-task learning.

In terms of the LDM, we believe their are two interesting avenues for future
work. First, due to our modeling of the pixels as probability distributions, we
can easily estimate the uncertainty of the LDM’s predictions by calculating the
pixelwise entropy of the model output. This could prove useful when planning
by allowing us to avoid taking actions which the LDM is more uncertain about
leading to more robust solutions. Secondly, although we encode SE(2) equiv-
ariance into the LDM by restructuring the dynamics function, we could also



explore the use of equivriatant CNNs in the LDM architecture. These equviari-
ant CNNs have been shown to greatly improve sample efficiency across a wide
number of tasks and have recently started being applied to robotic manipulation
tasks similar to those we present in this work.

7 Conclusion

In this paper, we propose the Local Dynamics Model (LDM) approach to forward
modeling which learns the state-transition function for pick and place manip-
ulation primitives. The LDM is able to efficiently learn the dynamics of many
different objects faster and more accurately compared to similar methods. This
sample efficiency is achieved by restructuring the transition function to make the
LDM invariant to both objects outside the region near the action and to trans-
formations in SE(2). We show that the LDM can be used to solve a number of
complex manipulation tasks through the use of a single-step lookahead planning
method. Through the combination of the LDM with our planning method which
samples a diverse set of actions, our proposed method is able to outperform the
model-free and model-based baselines examined in this work.
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