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Abstract

In this work we demonstrate a novel separation between symmetric neural network
architectures. Specifically, we consider the Relational Network [21] architecture as a
natural generalization of the DeepSets [32] architecture, and study their representational
gap. Under the restriction to analytic activation functions, we construct a symmetric
function acting on sets of size N with elements in dimension D, which can be efficiently
approximated by the former architecture, but provably requires width exponential in N

and D for the latter.

1 Introduction

The modern success of deep learning can in part be attributed to architectures that enforce
appropriate invariance. Invariance to permutation of the input, i.e. treating the input as an
unordered set, is a desirable property when learning symmetric functions in such fields as
particle physics and population statistics. The simplest architectures that enforce permutation
invariance treat each set element individually without allowing for interaction, as captured
by the popular DeepSet model [18, 32].

Several architectures explicitly enable interaction between set elements, the simplest being
the Relational Networks [21] that encode pairwise interaction. This may be understood as an
instance of self-attention, the mechanism underlying Transformers [27], which have emerged
as powerful generic neural network architectures to process a wide variety of data, from image
patches to text to physical data. Specifically, Set Transformers [12] are special instantiations
of Transformers, made permutation equivariant by omitting positional encoding of inputs,
and using self-attention for pooling.
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Both the DeepSets and Relational Networks architectures are universal approximators for
the class of symmetric functions. But empirical evidence suggests an inherent advantage of
symmetric networks using self-attention in synthetic settings [16], on point cloud data [12] and
in quantum chemistry [17]. In this work, we formalize this question in terms of approximation
power, and explicitly construct symmetric functions which provably require exponentially-
many neurons in the DeepSets model, yet are efficiently approximated with self-attention.

This exponential separation bears notable differences from typical separation results. In
particular, while the expressive power of a vanilla neural network is characterized by depth
and width, expressiveness of symmetric networks is controlled particularly by symmetric width.
In contrast to depth separations of vanilla neural networks [7], in this work we observe width
separations, where the weaker architectures (even with arbitrary depth) require exponential
symmetric width to match the expressive power of stronger architectures.

Summary of Contributions In this work:

• We demonstrate a width separation between the DeepSets and Relational Network
architectures, where the former requires symmetric width L≫ poly(N,D) to approxi-
mate a family of analytic symmetric functions, while the latter can approximate with
polynomial efficiency. This also answers an open question of high-dimensional DeepSets
representation posed in Wagstaff et al. [30]

• We introduce an extension of the Hall inner product to high dimensions that preserves
low-degree orthogonality of multisymmetric powersum polynomials, which may be of
independent interest.

2 Setup and Main Result

2.1 Symmetric Architectures

To introduce the symmetric architectures, we must first characterize how to treat sets as
inputs. We will consider sets of size N , where each element of the set is a vector of dimension
D. In particular, we will represent a set as a matrix X ∈ C

D×N . Thus, each column vector
xn ∈ C

D is an element of the set. Note that we consider complex-valued inputs because the
natural inner product over symmetric polynomials integrates over the complex unit circle,
see Macdonald [14] or Theorem 4.3.

A function f : CD×N → C is symmetric if f(X) = f(XΠ) for any permutation matrix
Π ∈ R

N×N , i.e. if f is invariant to permuting the columns of X. In other words, a symmetric
function treats the input X as an unordered set of column vectors. Given the symmetric
width parameter L, we consider two primary symmetric architectures:
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(a) DeepSets with symmetric width L (b) Relational Network with symmetric width L

Figure 1: Architectural diagram for SymL (left) and Sym2
L (right)

Definition 2.1. Let SymL denote the class of singleton symmetric networks with symmetric
width L, i.e. functions f of the form:

f(X) = ρ(φ1(X), . . . , φL(X)) (1)

φl(X) =
N
∑

n=1

ψl(xn) (2)

where {ψl : C
D → C}Ll=1 and ρ : C

L → C are arbitrary neural networks with analytic
activations.

The class SymL is exactly the architecture of DeepSets [32] restricted to analytic activations.
However, we introduce this notation to differentiate this class from the more expressive
architectures that allow for pairwise interaction among set elements.

From the theory of symmetric polynomials, if L ≥ L∗ :=
(

N+D
N

)

− 1, then f ∈ SymL is a
universal approximator for any analytic symmetric function [19]. Therefore we will primarily
be interested in the expressive power of SymL for L < L∗.

Definition 2.2. Let Sym2
L denote the class of pairwise symmetric networks with symmetric

width L, i.e. functions f of the form:

f(X) = ρ(φ1(X), . . . , φL(X)) (3)

φl(X) =
N
∑

n,n′=1

ψl(xn, xn′) (4)

where {ψl : C
D×D → C}Ll=1 and ρ : CL → C are arbitrary neural networks with analytic

activations.

Similarly, the class Sym2
L is exactly the architecture of Relational Pooling [21] with analytic

activations. We note this architecture is also equivalent to the 2-ary instantiation of Janossy
Pooling [16].

3



2.2 Main Result

Our main result demonstrates an exponential separation, where SymL requires exponentially
large symmetric width L to match the expressive power of the class Sym2

L for L = 1. We
choose norms to make this separation as prominent as possible: there is a hard function that
can be approximated in Sym2

L in the infinity norm, but cannot be approximated in SymL

even in an appropriately chosen L2 norm with respect to some non-trivial data distribution.

We require one activation assumption to realize the Sym2
L approximation:

Assumption 2.3. The activation σ : C → C is analytic, and for a fixed D,N there exist
two-layer neural networks f1, f2 using σ, both with O

(

D2 +D log D
ǫ

)

width and O(D logD)
bounded weights, such that:

sup
|ξ|≤3

|f1(ξ)− ξ2| ≤ ǫ, sup
|ξ|≤3

∣

∣

∣

∣

f2(ξ)−
(

1− (ξ/4)min(D,
√
N/2)

) ξ − 1/4

ξ/4− 1

∣

∣

∣

∣

≤ ǫ (5)

Essentially this assumption guarantees that networks built with the analytic activation σ are
able to efficiently approximate the map ξ → ξ2, and, a truncated form of the finite Blaschke
product[8] with one zero at ξ = 4. We show in Lemma G.3 that the exp activation satisfies
this assumption.

Theorem 2.4 (Exponential width-separation). Fix N and D > 1, and a non-trivial data
distribution µ on D ×N copies of the unit complex circle (S1)D×N .

Then there exists an analytic symmetric function g : CD×N → C such that ‖g‖L2(µ) = 1 and:

• For L ≤ N−2 exp(O(min(D,
√
N)),

min
f∈SymL

‖f − g‖2L2(µ)
≥ 1

12
. (6)

• There exists f ∈ Sym2
L with L = 1, parameterized with an activation σ that satisfies

Assumption 2.3, with width poly(N,D, 1/ǫ), depth O(logD), and max weight O(D logD)
such that over (S1)D×N :

‖f − g‖∞ ≤ ǫ (7)

Remark 1. The lower bound is completely independent of the width and depth of the
parameterized networks {ψl} and ρ. The only parameter that the theorem restricts is the
symmetric width L. This is in sharp contrast to the separations of vanilla networks [7], where
there is a natural trade-off between width and depth.

Remark 2. In the upper bound, we consider the network f ∈ Sym2
L to have width and depth

in the usual sense of vanilla neural networks, where the parameterized maps {ψl} and ρ obey
the width, depth, and weight bounds given.

4



3 Related Work

3.1 Depth Separation

Numerous works have studied the difference in expressive power between different neural
network architectures. Many of these works center on the representational gap between two-
layer and three-layer networks [4, 7]. In particular, recent works have focused on generalizing
the family of functions that realize these separations, to various radial functions [20] and
non-radial functions [28].

A separate line of work considers separations between networks when the depth varies
polynomially [24]. Notably, Vardi, Yehudai, and Shamir [26] demonstrates that depth has a
greater impact on expressivity than width, in the case of vanilla neural networks.

3.2 Symmetric Architectures

We primarily consider the symmetric neural network parameterization as introduced in
DeepSets[32], with PointNet[18] a similar symmetric parameterization using a different
pooling function. Simple linear equivariant layers were also introduced in Zaheer et al. [32].

In the context of relationships between objects in an image, the first symmetric architecture
enabling explicit pairwise interaction was introduced in Santoro et al. [21]. More complicated
symmetric architectures, allowing for higher-order interaction and more substantial equivariant
layers, were built on top of attention primitives [12, 13]. And the notion of explicit high-order
interactions between set elements before symmetrizing is formalized in the architecture of
Janossy pooling [16].

Symmetric architectures are generalized by graph neural networks [10, 22], under the restric-
tion to the complete graph.

3.3 Symmetric Network Expressivity

The dependence of representational power on the symmetric width parameter L was first
demonstrated in the D = 1 case. Under the strong condition L < N , it was proven there are
symmetric functions which cannot be exactly represented by a DeepSets network [29], and
this was later strengthened to functions which cannot be approximated in the infinity norm
to arbitrary precision [30].

The work introducing Janossy pooling [16] also includes a theoretical result showing singleton
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networks cannot exactly represent some particular pairwise symmetric network. Crucially
however, this result is restricted to a simplified, non-universal symmetric architecture excluding
the ρ transformation, and therefore does not characterize the real-world architectures given
above.

The question of expressiveness in symmetric networks may also be generalized to graph
neural networks, with a focus on distinguishing non-isomorphic graphs as compared to the
Weissfeler-Lehman test[31] and calculating invariants such as substructure counting[3]. In
particular, one may understand expressiveness in symmetric networks incorporating pairwise
interaction as the ability to learn functions of the complete graph decorated with edge
features.

3.4 Symmetric Polynomial Theory

Our proofs rely on the technical machinery of symmetric polynomial theory, thoroughly
characterized in Macdonald [14]. In particular, we utilize the integral representation of the
finite-variable Hall Inner product as introduced in Section A. Because this integral is defined
over the complex unit circle, we consequently consider complex-valued neural networks [1].

The connection of symmetric networks to the powersum polynomials was first observed
in Zaheer et al. [32], and likewise the multisymmetric powersum polynomials have been
applied in higher dimensional symmetric problems [15, 23]. The algebraic properties of the
multisymmetric powersum polynomials are well-studied, for example as a basis of higher
dimensional symmetric polynomials [19] and through their algebraic dependencies [6]. How-
ever, to the best of our knowledge this is the first work to apply the Hall inner product to
symmetric neural networks, and to extend this inner product to yield low-degree orthogonality
over the multisymmetric polynomials.

4 Warmup: One-dimensional set elements

To begin, we consider the simpler case where D = 1, i.e. where we learn a symmetric function
acting on a set of scalars. It was already observed in Zaheer et al. [32] that the universality of
DeepSets could be demonstrated by approximating the network with symmetric polynomials.
We first demonstrate that through this approximation, we can relate the symmetric width L
to expressive power.
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4.1 Symmetric Polynomials

In order to approximate symmetric networks by symmetric polynomials, we choose a suitable
basis. The powersum polynomials serve as the natural choice, as their structure matches that
of a singleton symmetric network, and they obey very nice orthogonality properties that we
detail below.

Definition 4.1. For k ∈ N and x ∈ C
N , the normalized powersum polynomial is defined as

pk(x) =
1√
k

N
∑

n=1

xkn

with p0(x) = 1.

A classical result in symmetric polynomial theory is the existence of an L2 inner product that
grants orthogonality for products of powersums. To make this notion explicit and keep track
of products, we index products with partitions.

Definition 4.2. An integer partition λ is non-increasing, finite sequence of positive integers
λ1 ≥ λ2 ≥ · · · ≥ λk. The weight of the partition is given by |λ| =

∑k
i=1 λi. The length of a

partition l(λ) is the number of terms in the sequence.

Then we characterize a product of powersums by:

pλ(x) =
∏

i

pλi
(x) (8)

This notation intentionally also allows for the empty partition, such that if λ = ∅ then pλ = 1.
All together, we can now state the following remarkable fact:

Theorem 4.3 ([14, Chapter VI (9.10)] ). There exists a L2(dν) inner product (for some
probability measure ν) such that, for partitions λ, µ with |λ| ≤ N :

〈pλ, pµ〉V = zλ✶λ=µ (9)

where zλ is some combinatorial constant.

We index this inner product with V because it is written as an expectation with respect to a
density proportional to the squared Vandermonde polynomial (see Section A for the precise
definition). This inner product may also be considered the finite-variable specialization of
the Hall inner product, defined on symmetric polynomials over infinitely many variables [14,
Chapter I (4.5)].

It’s easy to check that the degree of pλ is equal to |λ|. So this theorem states that the
powersum terms pλ are "almost" an orthogonal basis, except for correlation between two
high-degree terms.
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Let us remark that we assume analytic activations for the sake of this theorem, as the
orthogonality property does not hold for symmetric polynomials with negative exponents.
However, in exchange for that assumption we can apply this very powerful inner product,
that ultimately results in the irrelevance of network depth.

4.2 Projection Lemma

Before we can proceed to prove a representational lower bound, we need one tool to better
understand f ∈ SymL. Utilizing the orthogonality properties of the inner product 〈·, ·〉V
allows us to project any f ∈ SymL to a simplified form, while keeping a straightforward
dependence on L.

For example, consider some uniformly convergent power series (with no constant term)
φ(x) =

∑∞
i=1 cikpk(x). We claim 〈p2p1, φ3〉V = 0. Indeed, expanding φ3, one exclusively gets

terms of the form pk1pk2pk3 , and because the partition {k1, k2, k3} is of a different length than
{2, 1}, they are clearly distinct partitions so by orthogonality 〈p2p1, pk1pk2pk3〉V = 0.

Motivated by this observation, we can project f to only contain products of two terms. Let
us introduce P1 to be the orthogonal projection onto span({pt : 1 ≤ t ≤ N/2}), and P2 to be
the orthogonal projection onto span({ptpt′ : 1 ≤ t, t′ ≤ N/2}).
Lemma 4.4. Given any f ∈ SymL, we may choose coefficients vij over i ≤ j ≤ L, and
symmetric polynomials φi over i ≤ L, such that:

P2f =
L
∑

i≤j

vij(P1φi)(P1φj) (10)

4.3 Rank Lemma

Given the reduced form of f above, we may now go about lower bounding its approximation
error to a given function g.

By the properties of orthogonal projection, we have ‖f − g‖2V ≥ ‖P2(f − g)‖2V . And by
Parseval’s theorem, the function approximation error ‖P2f − P2g‖2V equals

∑

t≤t′

(〈

P2f,
ptpt′

‖ptpt′‖V

〉

V

−
〈

P2g,
ptpt′

‖ptpt′‖V

〉

V

)2

.

Rearranging the orthogonal coefficients in the form of matrices, we have the following fact:

Lemma 4.5. Given any f ∈ SymL, and g such that P2g = g, we have the bound

‖P2f − P2g‖2V ≥ 1

2
‖F −G‖2F (11)
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where F,G ∈ C
N/2×N/2 are matrices with entries Ftt′ = 〈P2f, ptpt′〉V , Gtt′ = 〈P2g, ptpt′〉V .

Furthermore, F has maximum rank L.

The significance of this lemma is the rank constraint: it implies that choosing symmetric
width L corresponds to a maximum rank L on the matrix F . From here, we can use standard
arguments about low-rank approximation in the Frobenius norm to yield a lower bound.

4.4 Separation in one-dimensional case

Our main goal in this section is to construct a hard symmetric function g that cannot be
efficiently approximated by SymL for L ≤ N/4. It is not particularly expensive for the
symmetric width L to scale linearly with the set size N : however, we will use the same proof
structure to prove Theorem 2.4, which will require L to scale exponentially.

Theorem 4.6. For D = 1:

max
‖g‖V =1

min
f∈SymL

‖f − g‖2V ≥ 1− 2L

N
(12)

In particular, for L = N
4

we recover a constant lower bound of 1
2
.

Proof (sketch). Choose g such that P2g = g. Then because P2 is an orthogonal projection
and applying Lemma 4.5:

min
f∈SymL

‖f − g‖2V ≥ min
f∈SymL

‖P2f − P2g‖2V (13)

≥ 1

2
min

rank(F )≤L
‖F −G‖2F (14)

We note that ‖ptpt‖2V = z{t,t} = 2, so the choice of g = 1√
N

∑N/2
t=1 ptpt can be seen to obey

‖g‖V = 1, and implies that G is the scaled identity matrix 2√
N
I ∈ C

N/2×N/2. Then by
standard properties of the SVD:

min
f∈SymL

‖f − g‖2V ≥ 1

2
min

rank(F )≤L
‖F − 2√

N
I‖2F (15)

=
1

N/2
min

rank(F )≤L
‖F − I‖2F (16)

=
1

N/2
(N/2− L) (17)

= 1− 2L

N
(18)
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5 Proof Sketch of Main Result

5.1 Challenges for High-dimensional Set Elements

We’d like to strengthen this separation in several ways:

• Generalize to the D > 1 case,

• Realize a separation where the symmetric width L must scale exponentially in N and
D, showing that SymL is infeasible,

• Show the hard function g can nevertheless be efficiently approximated in Sym2
L for L

polynomial in N and D

First, in order to approximate via polynomials in the high-dimenionsal case, we will require
the high-dimensional analogue of powersum polynomials:

Definition 5.1. For a multi-index α ∈ N
D, the normalized multisymmetric powersum

polynomial is defined as:

pα(X) =
1

√

|α|
∑

n

∏

d

xαd

dn . (19)

So the plan is to find a high-dimensional analogue of Lemma 4.4 and Lemma 4.5, now
using multisymmetric powersum polynomials, mimic the proof of the D = 1 case, and then
additionally show the hard function g is efficiently computable in the pairwise symmetric
architecture. Note that because the algebraic basis of multisymmetric powersum polynomials
is of size L∗ =

(

N+D
N

)

− 1, we can expect an exponential separation when we apply a similar
rank argument.1

5.2 Sketch of Main result (lower bound)

Because we are in high dimensions, we cannot simply apply the restricted Hall inner product
introduced in Theorem 4.3. To the best of our knowledge, there is no standard generalization
of the Hall inner product to multi-symmetric polynomials that preserves the orthogonality
property. For the main technical ingredient in the high-dimensional case we introduce a novel
generalization, which builds on two inner products.

First, we introduce a new input distribution ν over set inputs X ∈ C
D×N , and induce an L2

inner product:

〈f, g〉A = EX∼ν

[

f(X)g(X)
]

. (20)

1We subtract one in order to discount the constant polynomial.
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We use this inner product to measure the approximation error of SymL. That is, we seek a
lower bound to minf∈SymL

‖f − g‖A, for a suitable choice of hard function g.

We can now apply an analogue of Lemma 4.4 to project f to a simplified form. But we cannot
immediately apply an analogue of Lemma 4.5, as it relied on Parseval’s theorem and the
low-degree multisymmetric powersum polynomials are not orthogonal in this inner product.
Put another way, if we represent 〈·, ·〉A as a matrix in the basis of low-degree multisymmetric
powersums, it will be positive-definite but include some off-diagonal terms.

The idea is to now introduce a new inner product with a different input distribution ν0

〈f, g〉A0
= EX∼ν0

[

f(X)g(X)
]

, (21)

and define the bilinear form

〈f, g〉∗ = 〈f, g〉A − 2〈f, g〉A0
. (22)

Typically positive-definiteness is lost when subtracting two inner products, but we prove that
〈·, ·〉∗ is an inner product when restricted to a particular subspace of symmetric polynomials
(see Theorem D.3). Furthermore, the careful choice of ν and ν0 cancels the off-diagonal
correlation of different multisymmetric powersums, so they are orthogonal under this new
inner product 〈·, ·〉∗.

By the norm domination ‖ · ‖A ≥ ‖ · ‖∗, we are able to pass from the former L2 norm to the
latter norm that obeys orthogonality, and apply an analogue of the Rank Lemma 4.5. Thus
we derive a lower bound using any hard function g whose corresponding matrix G (built
from orthogonal coefficients) is diagonal and high-rank. And because the total number of
polynomials is L∗, the rank argument now yields an exponential separation.

Based on this proof, we have much freedom in our choice of g. By choosing its coefficients in
the basis of multisymmetric powersum polynomials, it’s easy to enforce the conditions that
G is diagonal and high-rank for variety of possible functions. However, ensuring that g is not
pathological (i.e. that it is bounded and Lipschitz), and can be efficiently approximated in
Sym2

L, requires a more careful choice.

5.3 Sketch of Main Result (upper bound)

It remains to approximate the hard function g with a network from Sym2
L. First we must

make a choice of g in particular.

Based on the lower bound proof, the desiderata for g is that it is supported exclusively on
terms of the form pαpα over many values of α, as this induces a diagonal and high-rank
matrix G in an analogue of Lemma 4.5. Furthermore, by simple algebra one can confirm
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that pα(X)pα(X) = 1
|α|
∑

n,n′

∏D
d=1(xdnxdn′)αd , so g supported on these polynomials can

clearly be written in the form of a network in Sym2
L. This structure of g guarantees difficult

approximation, and is akin to the radial structure of the hard functions introduced in works
on depth separation [7].

We must however be careful in our choice of g: for the matrix G to be high-rank, g must
be supported on exponentially many powersum polynomials. But this could make ‖g‖∞
exponentially large, and therefore challenging to approximate efficiently with a network from
Sym2

L.

We handle this difficulty by defining g in a different way. We introduce a finite Blaschke
product µ(ξ) = ξ−1/4

ξ/4−1
, a function that analytically maps the unit complex circle to itself.

Then the choice

g(X) =
N
∑

n,n′=1

D
∏

d=1

µ(xdnxdn′) (23)

ensures that ‖g‖∞, ‖g‖A, and Lip(g) are all polynomial in N,D, 1
ǫ

for ǫ approximation error
(see Lemma E.3). Furthermore, again from simple algebra it is clear that g is only supported
on terms of the form pαpα. So it remains to show that the induced diagonal matrix G is
effectively high rank, which follows from expanding the Blaschke products.

Satisfied that this choice of g will meet the desiderata for the lower bound, and has no
pathological behavior, it remains to construct f ∈ Sym2

L for L = 1 that approximates g.

That is, choose ψ1 and ρ so that g(X) ≈ ρ
(

∑N
n,n′=1 ψ1(xn, xn′)

)

. Clearly we may take ρ to

be the identity, and ψ1(xn, xn′) to approximate
∏D

d=1 µ(xdnxdn′), which is straightforwardly
calculated in depth O(logD) by performing successive multiplications in a binary-tree like
structure (see Theorem F.1).

Ultimately, we use a slight variant of this function for the formal proof. Because the orthogo-
nality of our newly introduced inner product 〈·, ·〉∗ only holds for low-degree polynomials,
we must truncate high-degree terms of g; we confirm in Appendix F that this truncation
nevertheless preserves the properties we care about.

6 Discussion

In this work, we’ve demonstrated how symmetric width captures more of the expressive
power of symmetric networks than depth when restricted to analytic activations, by evincing
an exponential separation between two of the most common architectures that enforce
permutation invariance.

The most unusual property of this result is the complete independence of depth, owing to
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the unique orthogonality properties of the restricted Hall inner product when paired with
the assumption of analyticity. This stands in contrast to the case of vanilla neural networks,
for which separations beyond small depth would resolve open questions in circuit complexity
suspected to be quite hard [25]. Furthermore, the greater dependence on width than depth is a
unique property to symmetric networks, whereas the opposite is true for vanilla networks [26].

A natural extension would be to consider the simple equivariant layers introduced in Zaheer
et al. [32], which we suspect will not substantially improve approximation power of SymL.
Furthermore, allowing for multiple such equivariant layers, this network becomes exactly akin
to a Graph Convolutional Network [10] on a complete graph, whereas Sym2

L corresponds to
a message passing network [9] as it is capable of interpreting edge features.

6.1 Limitations

The major limitation of this result is the restriction to analytic functions. Although analytic
symmetric functions nevertheless appear crucially in the study of exactly solvable quantum
systems [2, 11], this assumption may be be overly strict for general problems of learning
symmetric functions. We nevertheless conjecture that these bounds will still hold even
allowing for non-analytic activations, and consider this an exciting question for future work.
Additionally, whether the hard function g can be efficiently learned with gradient descent
remains unclear, and future work could touch on the learnability.

Acknowledgements: This work has been partially supported by the Alfred P. Sloan
Foundation, NSF RI-1816753, NSF CAREER CIF-1845360, and NSF CCF-1814524.
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A Preliminaries

A.1 Notation

We’ll use N to denote the naturals including 0. The indicator function for the condition
x = y is written as ✶x=y. Given an integer weak composition α ∈ N

D, we will often consider

the multidimensional polynomial zα =
∏D

d=1 z
αd

d . For two vectors x, x′ ∈ C
D, we denote their

elementwise product by x ◦ x′.

A.2 Inner Products

We introduce two L2 inner products (defined with respect to probability measures) we’ll use
throughout the work. For symmetric functions f, g : CN → C, define:

〈f, g〉V =
1

(2π)NN !

ˆ

[0,2π]N
f(eiθ)g(eiθ)|V (eiθ)|2dθ , (24)

where for z ∈ C
N , we have the Vandermonde determinant

V (z) =
∏

1≤i<j≤N

(zj − zi) . (25)

This inner product is well-known in the theory of symmetric polynomials, as a finite-variable
analogue of the Hall inner product [14]. Equivalently, if we let V denote the joint density
of eigenvalues of a Haar-distributed unitary matrix in C

N×N , it is known [5] that this inner
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product may be written as

〈f, g〉V = Ey∼V

[

f(y)g(y)
]

. (26)

For arbitrary functions f, g : CD → C, we also consider the L2 inner product given as an
expectation over D random variables

〈f, g〉S1 =
1

(2π)D

ˆ

[0,2π]D
f(eiθ)g(eiθ)dθ (27)

= Eq∼(S1)D

[

f(q)g(q)
]

, (28)

with the notation q ∼ (S1)D meaning each entry of q is i.i.d. uniform on S1.

For this inner product, we will introduce the following notation. For a multi-index α ∈ N
D

and a dummy variable q of dimension D, we let qα denote the polynomial function z 7→ zα.
Then it’s clear that

〈qα, qβ〉S1 = ✶α=β . (29)

Note that we will consider this inner product over varying dimensions throughout the paper,
but it will be clear from context the dimension, i.e. how many i.i.d. random variables uniform
on S1 we are sampling over.

A.3 Symmetric Polynomials

We remind the notation from the main body: p0(x) = 1, and for k ∈ N\{0} and any partition
λ:

pk(x) =
1√
k

N
∑

n=1

xkn (30)

pλ(x) =
∏

i

pλi
(x) . (31)

We will also sometimes use set notation to index products of powersums. For example,
p{2,1} = p2p1 = p1p2.

Finally, we need the notation that if nt denotes the number of times t appears in λ, then
zλ =

∏

t nt!. Note that this definition of zλ is slightly different that most texts, as we’re
considering the normalized powersums.

Then we can state Theorem 4.3 explicitly:

Theorem A.1. [[14, Chapter VI (9.10)] ] For partitions λ, µ with |λ| ≤ N :

〈pλ, pµ〉V = zλ✶λ=µ . (32)
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A.4 Multisymmetric Polynomials

When D > 1, in order to approximate our network with polynomials, we introduce the
multivariate analog of symmetric polynomials. For example, suppose D = 2, and we write
our set elements the following way:

X =

{[

y1
z1

]

,

[

y2
z2

]

, . . .

[

yN
zN

]}

Then a basis of symmetric functions is given by the multisymmetric power sum polynomials,
some examples:

p(2,3)(X) =
1√
2 + 3

∑

n

y2nz
3
n (33)

p(4,1)(X) =
1√
4 + 1

∑

n

y4nz
1
n . (34)

For general N and D, our input is X ∈ C
D×N where we want functions that are invariant to

permuting the columns xn of this matrix. Note that we write scalar entries of this matrix as
xdn.

Definition A.2. For a multi-index α ∈ N
D, the normalized multisymmetric powersum

polynomial is defined as:

pα(X) =
1

√

|α|
∑

n

xαn (35)

=
1

√

|α|
∑

n

∏

d

xαd

dn (36)

with p0 = 1.

An algebraic basis of symmetric functions in this setting is given by all pα for all |α| ≤ N ,
where |α| =∑d αd (for a proof see Rydh [19]).

We remind the notation from the introduction, where L∗(N,D) = |{α ∈ N
D : |α| ≤ N}| =

(

N+D
N

)

− 1 is the size of this algebraic basis (discouting the constant polynomial). Intuitively
then it’s clear why L ≥ L∗ will make SymL a universal approximator, as each of the L
symmetric features {φl}Ll=1 will calculate one of these basis elements.

B One Dimensional Set Elements

We will first consider the setting where D = 1, i.e. each set element is a scalar. In this setting,
we will amend notation slightly so that we consider symmetric functions f acting on x ∈ C

N ,
where each xn is a scalar set element.
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B.1 Projection Lemma

Let us remind P1 to be the orthogonal projection onto span({pt : 1 ≤ t ≤ N/2}), and P2 to
be the orthogonal projection onto span({ptpt′ : 1 ≤ t, t′ ≤ N/2}).

Lemma B.1. Given any f ∈ SymL, we may choose coefficients vij over i ≤ j ≤ L, and
symmetric polynomials φi over i ≤ L, such that:

P2f =
L
∑

i≤j

vij(P1φi)(P1φj) . (37)

Proof. Consider the general parameterization of f given in Equation 1. Because all network
activations are analytic, we can write all maps parameterizing f by power series.

Note that the inner product 〈·, ·〉V integrates over a compact domain, therefore the projection
P2f will be determined by the value of f restricted to that domain. Thus, all power series in
the sequel will converge uniformly and we may freely interchange infinite sums with each
other as well as with inner products.

Explicitly, to parameterize f we write ψl(xn) = cl0+
∑∞

k=1
clk√
k
xkn so that φl(x) =

∑N
n=1 ψl(xn) =

Ncl0 +
∑∞

k=1 clkpk(x).

Because ρ is also given as a power series, it can be equivalently written as a power series with
all variables having constant offsets. So we can subtract the constant terms from every φl

and write:

ρ(y) =
∑

η∈NL

vηy
η , (38)

φl =
∞
∑

k=1

clkpk , (39)

where yη =
∏N

n=1 y
ηn
n . Hence

f = ρ(φ1, . . . , φL) =
∑

η

vηφ
η . (40)

We proceed to calculate P2f . To begin, consider 〈ptpt′ , φη〉 for any choice of indices 1 ≤ t, t′ ≤
N/2. To illustrate, suppose ηi = ηj = ηk = 1 and η is 0 everywhere else. Then we may write

〈ptpt′ , φη〉V = 〈ptpt′ , φiφjφk〉V =
∞
∑

i′=1

∞
∑

j′=1

∞
∑

k′=1

cii′cjj′ckk′〈ptpt′ , pi′pj′pk′〉V = 0 . (41)

In other words, after distributing the product φiφjφk, we are left with a sum of terms of the
form pi′pj′pk′ . So treated as partitions, we clearly have {i′, j′, k′} 6= {t, t′}, where all these
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indices are positive. Thus, because t+ t′ ≤ N , we can apply the orthogonality property of
the inner product to conclude 〈ptpt′ , pi′pj′pk′〉V = 0.

By similar logic, 〈ptpt′ , φη〉 = 0 whenever |η| 6= 2, so we may cancel all such terms in the
expansion of f to get

P2f = P2





∑

η∈NL

vηφ
η



 =
∑

|η|=2

vηP2φ
η .

Here we can simplify notation. Let {ei}Li=1 denote the standard basis vectors in dimension L.
Every η ∈ N

L with |η| = 2 can be written as η = ei + ej, so let vij := vei+ej . Then we can
rewrite:

P2f =
L
∑

i≤j

vijP2φiφj .

Finally, note again by orthogonality we have that P2(pi′pj′) = 0 if it is not the case that
1 ≤ i′, j′ ≤ N/2. So observe that we may pass from P2 to P1:

P2φiφj = P2

( ∞
∑

i′=1

cii′pi′

)( ∞
∑

j′=1

cjj′pj′

)

(42)

= P2

∞
∑

i′=1

∞
∑

j′=1

cii′cjj′pi′pj′ (43)

=

N/2
∑

i′=1

N/2
∑

j′=1

cii′cjj′pi′pj′ (44)

=





N/2
∑

i′=1

cii′pi′









N/2
∑

j′=1

cjj′pj′



 (45)

= (P1φi)(P1φj) . (46)

So ultimately we get

P2f =
L
∑

i≤j

vij(P1φi)(P1φj) . (47)

B.2 Rank Lemma

The following lemma is a generalization of the the Rank Lemma 4.5, which we will use for
both the one- and high-dimensional cases. Ultimately, for an inner product 〈·, ·〉 with certain
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orthogonality properties, it allows us to pass from function error ‖f − g‖2 to Frobenius norm
error ‖F −G‖2F for some induced matrices F,G.

Lemma B.2. Consider a commutative algebra equipped with an inner product, and a set
of elements {pt}Tt=1. Suppose the terms p{t,t′} = ptpt′, indexed by sets {t, t′}, are pairwise
orthogonal, and normalized such that

‖ptpt′‖2 ≥
{

1 t 6= t′

2 t = t′

Consider the terms:

φl =
T
∑

t=1

cltpt ,

f =
L
∑

l≤l′

vll′

1 + ✶l=l′
φlφl′ ,

g =
T
∑

t≤t′

gtt′

1 + ✶t=t′
ptpt′ .

Then we have the bound

‖f − g‖2 ≥ 1

2
‖CTV C −G‖2F , (48)

where Clt = clt, Vll′ = vll′ , Gtt′ = gtt′, where we define V and G to be symmetric.

Proof. To begin, we calculate inner products for t 6= t′:

〈

f,
p{t,t′}
‖p{t,t′}‖

〉

=
1

‖p{t,t′}‖

〈

L
∑

l≤l′

T
∑

t,t′=1

vll′

1 + ✶l=l′
cltcl′t′ptpt′ , ptpt′

〉

(49)

= ‖ptpt′‖
L
∑

l≤l′

vll′

1 + ✶l=l′
(cltcl′t′ + clt′cl′t) (50)

= ‖ptpt′‖
(

L
∑

l=l′

vll
2
(cltclt′ + clt′clt) +

L
∑

l<l′

vll′(cltcl′t′ + clt′cl′t)

)

(51)

= ‖ptpt′‖
(

L
∑

l=l′

vllcltclt′ +
L
∑

l<l′

vll′(cltcl′t′ + clt′cl′t)

)

. (52)
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Defining vll′ = vl′l, we may reindex and write the second sum as:

L
∑

l<l′

vll′(cltcl′t′ + clt′cl′t) =
L
∑

l<l′

vll′cltcl′t′ +
L
∑

l<l′

vll′clt′cl′t (53)

=
L
∑

l<l′

vll′cltcl′t′ +
L
∑

l>l′

vll′cltcl′t′ . (54)

So putting this together we get

〈

f,
p{t,t′}
‖p{t,t′}‖

〉

= ‖ptpt′‖
(

L
∑

l,l′

vll′cltcl′t′

)

= ‖ptpt′‖[CTV C]t,t′ .

By a similar calculation we conclude:
〈

f,
p{t,t}

‖p{t,t}‖

〉

=
‖ptpt‖

2
[CTV C]t,t .

For g, we can directly calculate:
〈

g,
p{t,t′}
‖p{t,t′}‖

〉

= ‖ptpt′‖[G]t,t′ (55)

〈

g,
p{t,t}

‖p{t,t}‖

〉

=
‖ptpt‖

2
[G]t,t . (56)

Finally, by Parseval’s Theorem we calculate:

‖f − g‖2 =
∑

t

(〈

f,
p{t,t}

‖p{t,t}‖

〉

−
〈

g,
p{t,t}

‖p{t,t}‖

〉)2

+
T
∑

t<t′

(〈

f,
p{t,t′}
‖p{t,t′}‖

〉

−
〈

g,
p{t,t′}

‖p{t,t′}‖

〉)2

(57)

=
∑

t

(〈

f,
p{t,t}

‖p{t,t}‖

〉

−
〈

g,
p{t,t}

‖p{t,t}‖

〉)2

+
1

2

T
∑

t 6=t′

(〈

f,
p{t,t′}

‖p{t,t′}‖

〉

−
〈

g,
p{t,t′}
‖p{t,t′}‖

〉)2

(58)

=
T
∑

t

‖p{t,t}‖2
4

[CTV C −G]2t,t +
1

2

T
∑

t 6=t′

‖p{t,t′}‖2 · [CTV C −G]2t,t′ (59)

≥ 1

2

T
∑

t

[CTV C −G]2t,t +
1

2

T
∑

t 6=t′

[CTV C −G]2t,t′ , (60)

where in the last line we use our assumption on the lower bound of ‖p{t,t′}‖2 and ‖p{t,t}‖2.
Hence:

‖f − g‖2 ≥ 1

2
‖CTV C −G‖2F . (61)
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B.3 Proof of one-dimensional Lower Bound

Theorem B.3. Let D = 1. Then using the Vandermonde L2 inner product over symmetric
polynomials

max
‖g‖V =1

min
f∈SymL

‖f − g‖2V ≥ 1− 2L

N
. (62)

In particular, for L = N
4

we recover a constant lower bound.

Proof. We first build our counterexample g by choosing its coefficients in the powersum basis,
say:

g =
1√
N

N/2
∑

t=1

ptpt . (63)

From orthogonality and the fact that ‖ptpt‖2V = 2 it’s clear that ‖g‖V = 1, and note that
P2g = g. Applying Lemma B.1, for any f ∈ SymL we can write P2f in the form

P2f =
L
∑

i≤j

vij(P1φi)(P1φj) . (64)

One may also confirm that the Vandermonde inner product satisfies the requirements of
Lemma B.2 when restricted to the range of P2, owing to the orthogonality property and the
fact that for 1 ≤ t, t′ ≤ N/2:

〈ptpt′ , ptpt′〉V =

{

1 t 6= t′

2 t = t′

So we’ve met all the necessary requirements to apply Lemma B.2 to P2f and P2g, thus we
have:

min
f∈SymL

‖f − g‖2V ≥ min
f∈SymL

‖P2f − P2g‖2V (65)

≥ min
C,V

1

2
‖CTV C − 2 ∗ 1√

N
I‖2F (66)

= min
C,V

1

N/2
‖CTV C − I‖2F , (67)

where the factor of 2 appears based on the definition of the matrix G in Lemma B.2

Note that CV CT ∈ C
N/2×N/2, but V ∈ C

L×L. So if N/2 > L, then CV CT is a rank-deficient
approximation of the identity, and clearly we have

min
f∈SymL

‖f − g‖2V ≥ N/2− L

N/2
= 1− 2L

N
. (68)
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C Exact statement of Main Result

C.1 Theorem Statement

We begin by restating the main result, where for convenience we will change from N set
elements to 2N .

We introduce the notation D̂ := min
(

D, ⌊
√

N/2⌋
)

. We also introduce the L2 inner product

〈f, g〉A = Ey∼V ;q,r∼(S1)D

[

f(X(y, q, r))g(X(y, q, r))
]

, (69)

where the set input X(y, q, r) ∈ C
D×2N with matrix entries xdn(y, q, r) is defined by:

xdn(y, q, r) =

{

qdyn 1 ≤ n ≤ N ,

rdyn−N N + 1 ≤ n ≤ 2N .
(70)

And we restate the activation assumption in this new notation:

Assumption C.1. The activation σ : C → C is analytic, and for a fixed D,N there exist
two-layer neural networks f1, f2 using σ, both with O

(

D2 +D log D
ǫ

)

width and O(D logD)
bounded weights, such that:

sup
|ξ|≤3

|f1(ξ)− ξ2| ≤ ǫ, sup
|ξ|≤3

∣

∣

∣

∣

f2(ξ)−
(

1− (ξ/4)min(D,
√

N/2)
) ξ − 1/4

ξ/4− 1

∣

∣

∣

∣

≤ ǫ (71)

Then our main theorem is thusly:

Theorem C.2 (Exponential width-separation). Fix 2N and D such that D̂ > 1, and consider
set elements X ∈ C

D×2N . Define

g(X) = −4N2

4D̂
+

2N
∑

n,n′=1

D̂
∏

d=1

(

1− (xdnxdn′/4)D̂
) xdnxdn′ − 1/4

xdnxdn′/4− 1
(72)

(73)

and g′ = g
‖g‖A . Then the following is true:

• For L ≤ N−2 exp(O(D̂)),

min
f∈SymL

‖f − g′‖2A ≥ 1

12
. (74)
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• For L = 1, there exists f ∈ Sym2
L, parameterized with an activation σ that satisfies

Assumption C.1, with width poly(N,D, 1/ǫ), depth O(logD), and maximum weight
magnitude O(D logD) such that over the unit torus:

‖f − g′‖∞ ≤ ǫ . (75)

Remark 3. Let us remark about one aspect that will ease exposition. In the sequel, we will
assume D ≤

√

N/2 so that D̂ = D. This is not a necessary assumption; in the case that

D >
√

N/2, we can simply replace all instances of D with D̂ in the definition of g and the
subsequent proof. Because the data distribution has each row of X ∈ C

D×2N is i.i.d., the proof
goes through exactly. Indeed, it would be equivalent to truncating each set vector to the first
D̂ elements. This will only impact the bounds by replacing D with D̂, in which circumstances
we will clearly state.

C.2 Proof Roadmap

Let us roadmap the general proof.

In Section D.1, we justify the inner product 〈·, ·〉A and show it can be used to prove a
high-dimensional analogue of the Projection Lemma (see Lemma D.2). In Section D.2 we
further introduce a second inner product, whose orthogonality properties (see Theorem D.3)
allow us to apply the Rank Lemma B.2. In Section D.3, we combine these results to first
prove a lower bound for a simple choice of hard function (see Theorem D.4). Because this
simple choice is not suitable for demonstrating the upper bound, we then conclude by showing
the hard function g′ also evinces a lower bound via a similar argument (see Theorem D.5).

In Section E, we demonstrate the properties of the hard function g, by constructing the pieces
of g one by one and controlling their behavior, leading to Lemma E.3 which yields all the
properties we need about g for the rest of the proof.

In Section F we complete the proof of the upper bound. Specifically, in Section F.1 we show
how to write g′ exactly in an analogous form to Sym2

L, but using very specific activations. In
Section F.2 we write an approximation of this network in Sym2

L using a given activation, and
in Section F.3 we control the error between these two networks.

D Lower Bound of Main Result

D.1 An L2 inner product

As discussed in Section 5.2, we must first define an appropriate L2 inner product, before we
can prove a lower bound on function approximation. To that end, we will define an input
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distribution for the set inputs X.

Let us introduce several random variables: let y ∼ V as in the definition of the inner product
〈·, ·〉V over N variables. Let q and r be two random vectors of dimension D, with each entry
i.i.d. uniform on S1.

Then we can define an input distribution for X ∈ C
D×2N with matrix entries xdn:

xdn =

{

qdyn 1 ≤ n ≤ N

rdyn−N N + 1 ≤ n ≤ 2N .
(76)

The point of this assignment is how it transforms multisymmetric power sums:

pα(X) =
1

√

|α|

2N
∑

n=1

∏

d

xαd

dn (77)

=
1

√

|α|

N
∑

n=1

∏

d

yαd
n qαd

d +
1

√

|α|

N
∑

n=1

∏

d

yαd
n rαd

d (78)

= p|α|(y) · (qα + rα) . (79)

Then as stated before we have the inner product:

〈f, g〉A = Ey∼V,q∼(S1)D,r∼(S1)D

[

f(X)g(X)
]

. (80)

From our choices above we may use separability to write 〈·, ·〉A in terms of previously
introduced inner products. For example:

〈pα,pβ〉A = Ey,q,r

[

p|α|(y)(q
α + rα)pβ|(y)(qβ + rβ)

]

(81)

= Ey

[

p|α|(y)pβ|(y)
]

Eq,r

[

(qα + rα)(qβ + rβ)
]

(82)

= 〈p|α|, p|β|〉V · 〈qα + rα, qβ + rβ〉S1 . (83)

We can now observe this inner product grants a “partial" orthogonality:

Lemma D.1. Consider α, β ∈ N
D with 1 ≤ |α|, |β| ≤ N/2. Then for γk ∈ N

D \ {0}, if
K 6= 2

〈

pαpβ,

K
∏

k=1

pγk

〉

A

= 0 . (84)

Otherwise, for K = 2, we have:

〈pαpβ,pγpδ〉A = 2 · (1 + ✶|α|=|β|) · ✶{|α|,|β|}={|γ|,|δ|} · (✶α+β=γ+δ + ✶(α,β)=(γ,δ) + ✶(α,β)=(δ,γ)) .
(85)
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Proof. By separability, we can confirm that

〈pαpβ,

K
∏

k=1

pγk〉A = 〈p|α|p|β|,
K
∏

k=1

p|γk|〉V · C , (86)

where C is the value of the expectation on the random variables q and r. Thus if K 6= 2,
because |α|+ |β| ≤ N , this term is 0 by orthogonality of the Vandermonde inner product.

For the K = 2 case, we begin again by using separability:

〈pαpβ,pγpδ〉A =
〈

p|α|p|β|, p|γ|p|δ|
〉

V
·
〈

(qα + rα)(qβ + rβ), (qγ + rγ)(qδ + rδ)
〉

S1
. (87)

Let’s consider first the inner product of power sums. Plugging in the definition of the
normalizing constant zλ gives:

〈

p|α|p|β|, p|γ|p|δ|
〉

V
= (1 + ✶|α|=|β|) · ✶{|α|,|β|}={|γ|,|δ|} .

Consider now the second inner product term. Noting that each element qd, rd is i.i.d. uniform
on the unit circle, orthogonality of the Fourier basis implies we can calculate this inner product
by only including terms with matching exponents. Bearing in mind that α, β, γ, δ 6= 0, we
must always have terms of the form 〈qα+β, qγrδ〉S1 = 0, and therefore we distribute and
calculate:

〈

qα+β + qαrβ + qβrα + rα+β, qγ+δ + qγrδ + qδrγ + rγ+δ
〉

S1

= 〈qα+β, qγ+δ〉S1 + 〈qαrβ + qβrα, qγrδ + qδrγ〉S1 + 〈rα+β, rγ+δ〉S1

= 2 · ✶α+β=γ+δ + 2 · ✶(α,β)=(γ,δ) + 2 · ✶(α,β)=(δ,γ) .

Collecting the terms of both products and evaluating the indicator functions under all cases
gives the result.

Looking at Equation 85, we can see inner product 〈·, ·〉A does not grant full orthogonality.
The inner product gives orthogonality between powersum products of different lengths, but
〈pαpβ,pγpδ〉A can be non-zero if α + β = γ + δ, even in the cases where {α, β} 6= {γ, δ}.

Nevertheless, this inner product still suffices to prove a similar result about projection for
the D > 1 case.

Let P1 be the orthogonal projection onto span({pα : 1 ≤ |α|, |β| ≤ N/2}) and P2 be the
orthogonal projection onto span({pαpβ : 1 ≤ |α|, |β| ≤ N/2}). Here by orthogonal, we mean
with respect to 〈·, ·〉A.

Lemma D.2. Given any f ∈ SymL with D > 1, we may choose coefficients vij over i ≤ j ≤ L,
and multisymmetric polynomials φi over i ≤ L, such that:

P2f =
L
∑

i≤j

vij(P1φi)(P1φj) . (88)
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Proof. As in Lemma B.1, if we approximate ψl(xn) = cl0 +
∑

α 6=0
clα√
|α|
xαn, then symmetrizing

gives φl(X) = Ncl0 +
∑

α 6=0 clαpα.

By a similar approximation as in Lemma B.1 that allows us to subtract out constant terms,
we write:

f =
∑

η∈NL

vηφ
η , (89)

φl =
∑

α 6=0

clαpα . (90)

Note that by Lemma D.1, 〈pαpβ, φ
η〉A = 0 unless |η| = 2. So similarly to before, we may

rewrite

P2f =
∑

|η|=2

vηP2φ
η .

Here we can simplify notation. Let {ei}Li=1 denote the standard basis vectors in dimension L.
Every η ∈ N

L with |η| = 2 can be written as η = ei + ej, so let vij := vei+ej . Then we can
rewrite:

P2f =
∑

i≤j

vijP2φiφj .

Again, by Lemma D.1, we know P2 will annihilate any term of the form pγpδ if it’s not the
case that 1 ≤ |γ|, |δ| ≤ N/2. One can see this by noting that, for 1 ≤ |α|, |β| ≤ N/2, then
{|α|, |β|} 6= {|γ|, |δ|}, and by the Lemma, 〈pαpβ,pγpδ〉A = 0.

So we may pass from P2 to P1:

P2φiφj = P2





∑

γ∈ND

ciγpγ





(

∑

δ∈ND

cjδpδ

)

(91)

= P2

∑

γ∈ND

∑

δ∈ND

ciγcjδpγpδ (92)

=
∑

1≤|γ|≤N/2

∑

1≤|δ|≤N/2

ciγcjδpγpδ (93)

=





∑

1≤|γ|≤N/2

ciγpγ









∑

1≤|δ|≤N/2

cjδpδ



 (94)

= (P1φi)(P1φj) . (95)
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So ultimately we get

P2f =
L
∑

i≤j

vij(P1φi)(P1φj) . (96)

D.2 A Diagonal Inner Product

Before we can apply Lemma B.2, which lets us transform function approximation error into
matrix approximation error, we need a better inner product, one that is diagonal in the
low-degree multisymmetric powersum basis.

Consider two more inner products, defined for f, g in the range of P2:

〈f, g〉A0
= Ey∼V,q∼(S1)D,r=0

[

f(X)g(X)
]

. (97)

This is nearly the same distribution as before, except we fix r = 0.

Then define

〈f, g〉∗ = 〈f, g〉A − 2〈f, g〉A0
. (98)

Because f and g are restricted to the range of P2, we demonstrate positive-definiteness of
this object, and therefore it is a valid inner product.

Theorem D.3. The bilinear form 〈·, ·〉∗ is an inner product when restricted to the range of
P2. Furthermore, it is diagonal in the powersum basis p{α,β} for 1 ≤ |α|, |β| ≤ N/2.

Proof. Given pαpβ,pγpδ ∈ im(P2), we can consider 〈pαpβ,pγpδ〉A0
which can similarly be

calculated via separability:

〈pαpβ,pγpδ〉A0
= 〈p|α|p|β|, p|γ|p|δ|〉V · 〈qα+β, qγ+δ〉S1

= (1 + ✶|α|=|β|) · ✶{|α|,|β|}={|γ|,|δ|} · ✶α+β=γ+δ .

It follows from Lemma D.1 that:

〈pαpβ,pγpδ〉∗ = 〈pαpβ,pγpδ〉A − 2〈pαpβ,pγpδ〉A0

= 2 · (1 + ✶|α|=|β|) · (✶(α,β)=(γ,δ) + ✶(α,β)=(δ,γ)) .
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To eliminate the ambiguity of pαpβ vs. pβpα, let us define p{α,β} equal to both these terms.
Then we can equivalently write:

〈p{α,β},p{γ,δ}〉∗ = 2 · (1 + ✶|α|=|β|) · (1 + ✶α=β) · ✶{α,β}={γ,δ} .

Evaluating the indicator functions under all cases we can see:

〈pαpβ,pγpδ〉∗ =



















0 {α, β} 6= {γ, δ}
2 {α, β} = {γ, δ}, |α| 6= |β|
4 {α, β} = {γ, δ}, |α| = |β|, α 6= β

8 {α, β} = {γ, δ}, α = β

Then we’ve shown that the bilinear form 〈·, ·〉∗, treated as a matrix in the basis of all p{α,β},
is positive-definite and diagonal. Since this basis spans the range of P2, it follows that the
bilinear form is an inner product.

D.3 Proof of Lower Bound

We first prove a lower bound using a slightly simpler hard function g, before updating the
argument to the true choice of g further below.

Theorem D.4. Let D > 1. In particular, assume min(N/2, D − 1) ≥ 2. Then we have

max
‖g‖A=1

min
f∈SymL

‖f − g‖2A ≥ 1

6
− L

6 · 2min(N/2,D−1)
. (99)

So for L ≤ 2min(N/2,D−1)−3 we have a constant lower bound on the approximation error.

Proof. Define T = |{α ∈ N
D : |α| = N/2}| and choose the bad function g = 1√

12T

∑

|α|=N/2 p{α,α}.

Observe that although 〈·, ·〉A is not fully orthogonal in the powersum basis, we can nevertheless
calculate by Lemma D.1 that for |α| = |β| = N/2:

〈p{α,α},p{β,β}〉A = 4 · (✶α+α=β+β + ✶(α,α)=(β,β) + ✶(α,α)=(β,β)) (100)

= 12 · ✶α=β . (101)
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Therefore we can confirm that g is normalized:

‖g‖2A =
1

12T

∑

|α|=N/2

∑

|β|=N/2

〈p{α,α},p{β,β}〉A (102)

=
1

12T

∑

|α|=N/2

∑

|α|=N/2

12 · ✶α=β (103)

=
1

T

∑

|α|=N/2

1 (104)

= 1 . (105)

Again, we have P2g = g. Now by Lemma D.2, we may write:

P2f =
L
∑

i≤j

vij(P1φi)(P1φj) .

Finally, note that 〈·, ·〉∗ obeys the inner product conditions of Lemma B.2 on the range of P2,
following from orthogonality and the normalization:

〈pαpβ,pαpβ〉∗ =











2 |α| 6= |β|
4 |α| = |β|, α 6= β

8 α = β

So we can apply Lemma B.2 to P2f,P2g, and the inner product 〈·, ·〉∗. Hence, we can derive:

min
f∈SymL

‖f − g‖2A
(a)

≥ min
f∈SymL

‖P2f − P2g‖2A (106)

(b)

≥ min
f∈SymL

‖P2f − P2g‖2∗ (107)

(c)

≥ min
C,V

1

2
‖CTV C − 2 ∗ 1√

12T
I‖2F (108)

= min
C,V

1

6T
‖CTV C − I‖2F . (109)

Here, (a) follows from the definition of P2 as an orthogonal projection with respect to 〈·, ·〉A,
(b) follows from the fact that ‖ ·‖2A ≥ ‖·‖2∗, and (c) follows from the application of Lemma B.2.

These matrices are elements of CT×T , but the term CTV C is constrained to rank L. Hence,
as before we calculate:

min
f∈SymL

‖f − g‖2A ≥ T − L

6T
=

1

6
− L

6T
. (110)

32



Letting m = min(N/2, D − 1) and assuming m ≥ 2, it is a simple bound to calculate

T =

(

N/2 +D − 1

N/2

)

≥
(

2m

m

)

≈ 4m√
πm

≥ 2m ,

and the bound follows.

This theorem demonstrates a hard function g that cannot be efficiently approximated by
f ∈ SymL for L = poly(N,D), but it does not yet evince a separation. Indeed, observing

that ‖g‖∞ = 1√
12T

N2T = N2
√
T√

12
, g has very large magnitude, and there’s no obvious way to

easily approximate this function by an efficient network in Sym2
L.

Thus, we consider a more complicated choice for g, that allows for the separation:

Theorem D.5. Let D > 1. Then let g′ = g
‖g‖A for g as defined in Lemma E.3, such that

‖g′‖A = 1. Then for L ≤ N−2 exp(O(D)):

min
f∈SymL

‖f − g′‖2A ≥ 1

12
. (111)

Proof. The lower bound follows almost identically as before. By Lemma E.3.4 we still have
that P2g

′ = g′. So we can write

g =
∑

1≤|α|≤N/2

gαp{α,α} (112)

g′ =
∑

1≤|α|≤N/2

gα
‖g‖A

p{α,α} . (113)

Thus, by the same reasoning as Theorem D.4 we recover the lower bound:

min
f∈SymL

‖f − g′‖2A ≥ min
f∈SymL

‖P2f − P2g
′‖2A (114)

≥ min
f∈SymL

‖P2f − P2g
′‖2∗ (115)

≥ min
C,V

1

2
‖CTV C −G′‖2F , (116)

where G′ is the matrix induced by g′ as given in Lemma B.2, i.e. the diagonal matrix indexed
by G′

αα = 2gα
‖g‖A .
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Now, by the partial orthogonality of 〈·, ·〉A noted in Lemma D.1, we have:

‖g‖2A =
∑

1≤|α|≤N/2

∑

1≤|β|≤N/2

〈gαp{α,α}, gβp{β,β}〉A (117)

=
∑

1≤|α|≤N/2

∑

1≤|β|≤N/2

gαgβ(12 · ✶α=β) (118)

= 12
∑

1≤|α|≤N/2

|gα|2 . (119)

Hence, we can say

‖G′‖2F =
∑

1≤|α|≤N/2

∣

∣

∣

∣

2gα
‖g‖A

∣

∣

∣

∣

2

(120)

=
4
∑

1≤|α|≤N/2 |gα|2

12
∑

1≤|α|≤N/2 |gα|2
(121)

=
1

3
. (122)

Call G′
L the best rank-L approximation of G′ in the Frobenius norm. By classical properties

of SVD it follows that G′
L is a diagonal matrix with L entries corresponding to the L largest

elements of G′. Then because ‖G′‖2F = 1
3
:

‖G′
L −G′‖2F =

1

3
−

L
∑

l=1

( |2gαl
|

‖g‖A

)2

, (123)

where we order |gαl
| in non-increasing order.

Combining Lemma E.3.2 and E.3.4 yields the inequality that for all α such that 1 ≤ |α| ≤ N/2:

( |2gα|
‖g‖A

)2

≤ 4N2

(

1−
(

1

4

)2
)2D

, (124)

so we can conclude

min
f∈SymL

‖f − g′‖2A ≥ 1

2
‖G′

L −G′‖2F (125)

≥ 1

6
− 2LN2

(

1−
(

1

4

)2
)2D

. (126)

Hence, if L ≤ 1
24

·N−2
(

16
15

)2D
, we derive a lower bound:

min
f∈SymL

‖f − g′‖2A ≥ 1

12
. (127)

We remark here that in the instance D >
√

N/2, we replace D with D̂ in the above bound,
which is consistent with Theorem C.2.
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E Definition of hard function g

In this section we incrementally build the (unnormalized) hard function g, ultimately for
the sake of Lemma E.3. This lemma characterizes all the properties of g that we need to
guarantee the lower and upper bounds.

Remark 4. In the following section, we assume D ≤
√

N/2 for simplicity of exposition. In

the case that D >
√

N/2, we replace all instances of D in our functional definitions with

D̂ = min(D,
√

N/2), which is only necessary for a projection argument in Lemma E.3 and
makes no meaningful change to the proofs.

E.1 Mobius transform

We begin with the following, with ξ ∈ C and |ξ| = 1. And in the sequel, we always fix r = 1/4.
Consider the 1-D Mobius transformation, with its truncated variant with t ≥ 1:

µ(ξ) =
ξ − r

rξ − 1
(128)

µ̂t(ξ) =
(

1− (rξ)t
)

· µ(ξ) (129)

= (r − ξ) ·
(

1 + rξ + (rξ)2 + · · ·+ (rξ)t−1
)

(130)

Lemma E.1. The following properties hold (where infinity norms are defined with respect to
S1):

1. ‖µ‖∞ = 1

2. ‖µ‖S1 = 1

3. ‖µ̂t‖∞ ≤ 1 + rt

4. ‖µ̂t‖2S1 = 1 + r2t

5. 〈µ̂t, 1〉S1 = r, 〈µ̂t, ξ〉S1 = r2 − 1 and |〈µ̂t, ξ
a〉S1 | < 1− r2 for all a ≥ 2

6. For |ξ| = 1, |ω| ≤ 1 + 1
t
,

|µ̂t(ξ)− µ̂t(ω)| ≤ 6|ξ − ω| (131)

Proof. It is a fact [8] that µ analytically maps the unit disk to itself, and additional the unit
circle to itself, i.e. for any |ξ| = 1 we have |µ(ξ)| = 1. Hence ‖µ‖∞ = ‖µ‖S1 = 1.

We can see that truncation gently perturbs this fact, so for |ξ| = 1:

|µ̂t(ξ)| = |1− (rξ)t| · |µ(ξ)| (132)

≤ 1 + rt (133)
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Additionally, we can calculate the coefficient on each monomial in µ̂:

〈µ̂t, ξ
a〉S1 =



















r a = 0

−(ra−1 − ra+1) 1 ≤ a ≤ t− 1

−rt−1 a = t

0 a ≥ t

(134)

It is easy to confirm that the value of |〈µ̂t, ξ
a〉S1 | is maximized at a = 1. Hence, we can write

the L2 norm:

‖µ̂t‖2S1 =
∞
∑

a=0

|〈µ̂t, ξ
a〉S1 |2 (135)

= r2 +
t−1
∑

a=1

(

ra−1 − ra+1
)2

+ r2t−2 (136)

= r2 +
t−1
∑

a=1

(

r2a−2 − 2r2a + r2a+2
)

+ r2t−2 (137)

= 1 + r2t (138)

Finally, for |ξ| = 1, |ω| ≤ 1 + 1
t
≤ 2:

|µ(ξ)− µ(ω)| =
∣

∣

∣

∣

ξ − r

rξ − 1
− ω − r

rω − 1

∣

∣

∣

∣

(139)

=

∣

∣

∣

∣

(r2 − 1)(ξ − ω)

(rξ − 1)(rω − 1)

∣

∣

∣

∣

. (140)

So noting r = 1
4

we get

|µ(ξ)− µ(ω)| ≤ 8

3
|ξ − ω| . (141)

Thus:

|µ̂(ξ)− µ̂(ω)| =
∣

∣

(

1− (rξ)t
)

· µ(ξ)−
(

1− (rω)t
)

· µ(ω)
∣

∣ (142)

≤
∣

∣

(

1− (rξ)t
)

· µ(ξ)−
(

1− (rω)t
)

· µ(ξ)
∣

∣+
∣

∣

(

1− (rω)t
)

· µ(ξ)−
(

1− (rω)t
)

· µ(ω)
∣

∣

(143)

≤ |µ(ξ)| · rt|ξt − ωt|+ |1− (rω)t| · |µ(ξ)− µ(ω)| (144)

≤ rt|ξt − ωt|+ |1− (rω)t| · 8
3
|ξ − ω| . (145)

Note that for |ξ| = 1, |ω| ≤ 1 + 1
t
, because |ω|k ≤ e for k ≤ t, we have

∣

∣ξt − ωt
∣

∣ =
∣

∣(ξ − ω)(ξt−1 + ξt−2ω + · · ·+ ξωt−2 + ωt−1
∣

∣ ≤ et|ξ − ω| . (146)

36



Further plugging in that r = 1
4

and t ≥ 1:

|µ̂(ξ)− µ̂(ω)| ≤ 4−tet|ξ − ω|+
(

1 + 4−te
)

· 8
3
|ξ − ω| (147)

< 6|ξ − ω| . (148)

E.2 h function

Now, consider z ∈ C
D with |zi| = 1 for all i. We now define:

h(z) =
D
∏

i=1

µ̂D(zi) . (149)

Lemma E.2. The following are true:

1. ‖h‖∞ ≤ 1 + 2−D

2. 1 ≤ ‖h‖2S1 ≤ 1 + 2−D

3. For z, z′ ∈ (S1)D

|h(z)− h(z′)| ≤ 12‖z − z′‖1 .

Proof. We can immediately bound:

‖h‖∞ =
D
∏

i=1

‖µ̂D‖∞ (150)

(a)

≤
(

1 + rD
)D

(151)

(b)

≤ 1 + 2D · rD (152)

≤ 1 + 2−D , (153)

where (a) follows from Lemma E.1.3 and (b) follows from the binomial identity that (1+x)t ≤
1 + 2tx for x ∈ [0, 1], t ≥ 1. In the last line we simply plug in r = 1/4.

Similarly by Lemma E.1.4,

‖h‖2S1 =
D
∏

i=1

‖µ̂D‖2S1 (154)

=
(

1 + r2D
)D

(155)

≤
(

1 + rD
)D

. (156)
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And so by the same binomial inequality, we have

1 ≤ ‖h‖2S1 ≤ 1 + 2−D . (157)

Finally, observe that:

|h(z)− h(z′)| ≤
D
∑

i=1

∣

∣

∣

∣

∣

(

i−1
∏

j=1

µ̂D(zj)

)

(µ̂D(zi)− µ̂D(z
′
i))

(

D
∏

j=i+1

µ̂D(z
′
j)

)∣

∣

∣

∣

∣

(158)

(a)

≤
D
∑

i=1

|µ̂D(zi)− µ̂D(z
′
i)| (1 + rD)D−1 (159)

(b)

≤ 6
D
∑

i=1

|zi − z′i|
(

1 + 2−D
)

(160)

≤ 12‖z − z′‖1 , (161)

where in (a) we apply E.1.3, and in (b) we apply E.1.6 and the same binomial identity as
above.

E.3 g function

Now, reminding zn,n′ = xn ◦ xn′ , let:

g(X) = −4N2rD +
2N
∑

n,n′=1

h(zn,n′) . (162)

Note that we subtract a constant here to ensure g has no constant term, which will be
necessary for the fact P2g = g.

Remark 5. The following lemma is the only place we explicitly require the assumption
D ≤

√

N/2, as this guarantees that P2g = g. In the case that D >
√

N/2, we simply replace

all instances of D in this section with D̂ = min(D,
√

N/2). This ensures g is only supported

on p{α,α} with |α| ≤ D̂2 ≤ N/2. And the subsequent proofs are identical.

Lemma E.3. The following are true:

1. ‖g‖∞ ≤ 12N2.

2. 1 ≤ ‖g‖2A ≤ 3N2(1 + 2−D).

3. P2g = g.

4. We may write g =
∑

1≤|α|≤N/2 gαp{α,α}, where |gα|2 ≤ N2(1− r2)2D.

5. Lip(g) ≤ 48N
√
ND.
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Proof. First, it’s easy to see from Lemma E.2.1

‖g‖∞ ≤ | − 4N2rD|+ 4N2‖h‖∞ (163)

≤ 4N2
(

2−2D + 1 + 2−D
)

(164)

≤ 12N2 . (165)

Let us expand h as

h(z) =
∑

‖α‖∞≤D

hαz
α , (166)

noting that by definition of µ̂D and Lemma E.1.5 we have the constant term h0 = rD.

Now we can expand

g(X) = −4N2rD +
2N
∑

n,n′=1

h(zn,n′) (167)

= −4N2rD +
2N
∑

n,n′=1



rD +
∑

1≤‖α‖∞≤D

hαz
α
n,n′



 (168)

=
2N
∑

n,n′=1

∑

1≤‖α‖∞≤D

hαz
α
n,n′ (169)

=
∑

1≤‖α‖∞≤D

hα

2N
∑

n,n′=1

D
∏

d=1

(xdnxdn′)αd (170)

=
∑

1≤‖α‖∞≤D

hα|α|
(

1
√

|α|

2N
∑

n=1

D
∏

d=1

xαd

dn

)(

1
√

|α|

2N
∑

n′=1

D
∏

d′=1

x
αd′

d′n′

)

(171)

=
∑

1≤‖α‖∞≤D

hα|α|p{α,α}(X) . (172)

Note that ‖α‖∞ ≤ D implies |α| ≤ D2 ≤ N/2, so it clearly follows that P2g = g. So by
Lemma D.1, 〈p{α,α},p{β,β}〉A = 12 · ✶α=β whenever 1 ≤ |α|, |β| ≤ N/2, so we can handily
calculate:

‖g‖2A =
∑

1≤‖α‖∞≤D

h2α|α|2‖p{α,α}‖2A (173)

≤ 12 · (N/2)2
∑

1≤‖α‖∞≤D

h2α (174)

≤ 3N2‖h‖2S1 (175)

≤ 3N2
(

1 + 2−D
)

, (176)

where the last line uses Lemma E.2.2.
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And likewise

‖g‖2A =
∑

1≤‖α‖∞≤D

h2α|α|2‖p{α,α}‖2A (177)

≥ 12



−rD +
∑

‖α‖∞≤D

h2α



 (178)

= 12(−rD + ‖h‖2S1) (179)

≥ 1 , (180)

and the last line again uses Lemma E.2.2. Finally, note that for any α such that |α| ≤ N/2,
applying Lemma E.1.5.

|gα|2 = |hα|α||2 = |α|2
D
∏

i=1

|〈µ̂D, ξ
αi〉S1 |2 (181)

≤ N2(1− r2)2D . (182)

Finally we consider the Lipschitz norm. For X, X̂ ∈ C
D×2N with each entry of unit norm,

it’s easy to confirm by Lemma E.2.3 that:

|g(X)− g(X̂)| ≤
2N
∑

n,n′=1

|h(zn,n′)− h(ẑ′n,n′)| (183)

≤ 12
2N
∑

n,n′=1

‖zn,n′ − ẑn,n′‖1 (184)

= 12
2N
∑

n,n′=1

D
∑

d=1

|xdnxdn′ − x̂dnx̂dn′ | (185)

≤ 12
2N
∑

n,n′=1

D
∑

d=1

|xdn| · |xdn′ − x̂dn′ |+ |x̂dn′ | · |xdn − x̂dn| (186)

= 48N
2N
∑

n=1

D
∑

d=1

|xdn − x̂dn| (187)

= 48N‖X − X̂‖1 (188)

≤ 48N
√
2ND‖X − X̂‖2 (189)

F Upper Bound of Main Result

In this section we prove the upper bound to representing g with an admissible activation that
satisfies Assumption C.1.
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The strategy is as follows. In Section F.1 we exactly encode the hard function g with
an efficient network, but allowing the choice of very particular activation functions. In
Section F.2, we leverage Assumption C.1 to build a network that approximates the exact one,
using a given activation. We complete the proof in Section F.3 by showing the exact and
approximate networks stay close together, inducting through the layers.

F.1 Exact Representation

Let us first describe how to write g exactly with a network in Sym2
L, using particular

activations. We can then demonstrate to approximate those activations, which only introduces
a polynomial dependence in the desired error bound ǫ.

For exact representation, the activations we will allow are ξ → ξ2, and ξ → µ̂D(ξ). Note that
from the fact that ξ · ω = 1

2
((ξ + ω)2 − ξ2 − ω2), we can exactly multiply scalars with these

activations.

Then consider the following structure for f ∈ Sym2
L with L = 1. Given x, x′ ∈ C

D with
|xi| = |x′i| = 1 for all i, we define ψ∗

1(x, x
′) via a network as follows. In particular, we will use

· to explicitly indicate all scalar multiplication:

z∗ = (x1 · x′1, . . . , xD · x′D) (190)

Z(1)∗ = (µ̂D(z
∗
1), . . . , µ̂D(z

∗
D)) ∈ C

D (191)

Z(2)∗ =
(

Z
(1)∗
1 · Z(1)∗

2 , . . . , Z
(1)∗
D−1 · Z

(1)∗
D

)

∈ C
D/2 (192)

. . . (193)

Z(log2 D)∗ = Z
(log2 D−1)∗
1 · Z(log2 D−1)∗

2 ∈ C (194)

ψ∗
1(x, x

′) = Z(log2 D)∗ (195)

In other words, we exactly calculate ψ∗
1(x, x

′) = h(x◦x′) through log2D layers by multiplying
the terms µ̂D(zi) at each layer. Note that |z∗i | = 1 for all i. So by applying Lemma E.1.3, it

is the case that each entry |Z(k)∗
i | = |µ̂D(z

∗
i )|k ≤ (1 + rD)D ≤ 1 + 2−D for all k ≤ log2D.

Now, for an input ξ ∈ C we define the map

ρ∗(ξ) =
−4N2rD + ξ

‖g‖A
, (196)

and it’s easy to confirm that we exactly represent:

g′(X) = ρ∗

(

2N
∑

n,n′=1

ψ∗
1(xn, x

′
n)

)

. (197)
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F.2 Approximate Representation

Now, we can imitate the network above using the exp activation, and control the approximation
error in the infinity norm. Let us assume we’ve chosen f1, f2 as in Lemma G.3. Furthermore, let
us define ξ ⋆ ω = 1

2
(f1(ξ + ω)− f1(ξ)− f1(ω)), so that ⋆ approximates scalar multiplication.

Then we mimic the exact network via:

z = (x1 ⋆ x
′
1, . . . , xD ⋆ x

′
D) (198)

Z(1) = (f2(z1), . . . , f2(zD)) ∈ C
D (199)

Z(2) =
(

Z
(1)
1 ⋆ Z

(1)
2 , . . . , Z

(1)
D−1 ⋆ Z

(1)
D

)

∈ C
D/2 (200)

. . . (201)

Z(log2 D) = Z
(log2 D−1)
1 ⋆ Z

(log2 D−1)
2 ∈ C (202)

ψ1(x, x
′) = Z(log2 D) . (203)

In other words, we replace all instances of multiplication · with ⋆, and all instances of µ̂D

with f2. Finally, we define the map ρ as:

ρ(ξ) =
4N2

‖g‖A
·
(

ξ

4N2
⋆ 1− rD

)

, (204)

where we can clearly represent the constant rD via one additional neuron.

F.3 Proof of Upper Bound

We complete the approximation of g′ by showing the exact and approximate networks are
nearly equivalent in infinity norm, leveraging the assumption on our activation.

Theorem F.1. Consider ǫ > 0 such that ǫ ≤ min
(

1
100
, 1
12D2

)

. For L = 1, there exists
f ∈ Sym2

L, parameterized with an activation σ that satisfies Assumption C.1, with width
O(D3 +D2 log DN

ǫ
, depth O(logD), and maximum weight magnitude D logD such that over

inputs X ∈ C
D×2N with unit norm entries:

‖f − g′‖∞ ≤ ǫ . (205)

Proof. Let f be given by the Sym2
L network calculated in the previous section, i.e.

f(X) = ρ

(

2N
∑

n,n′=1

ψ1(xn, x
′
n)

)

. (206)
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Clearly L = 1. From Assumption C.1 and what it guarantees about f1 and f2, it’s clear
that the maximum width of f is O(D3 +D2 log D

ǫ
), the depth is O(logD), and the maximum

weight magnitude is O(D logD).

We can prove the quality of approximation by matching layer by layer. First we note a quick
lemma:

Lemma F.2. For |ξ|, |ω| ≤ 3
2
:

|ξ ⋆ ω − ξ · ω| ≤ 3

2
ǫ . (207)

Proof. Based on Assumption C.1, note that for |ξ|, |ω| ≤ 3
2
, we have that |ξ + ω| ≤ 3 and

therefore:

|ξ ⋆ ω − ξ · ω| ≤ 1

2

(

|f1(ξ + ω)− (ξ + ω)2|+ |f1(ξ)− ξ2|+ |f1(ω)− ξ2|
)

(208)

≤ 3

2
ǫ . (209)

It follows that, because all |xi| = 1:

‖z∗ − z‖∞ = max
i≤D

|xi ⋆ x′i − xi · x′i| ≤
3

2
ǫ . (210)

Now, because |z∗i | = 1, it follows from our assumption on ǫ that |zi| ≤ 1+ 3
2
ǫ ≤ 1+ 1

D
. Hence,

we can apply Lemma E.1.6 and say

‖Z(1)∗ − Z(1)‖∞ = max
i≤D

|µ̂D(z
∗
i )− f2(zi)| (211)

≤ max
i≤D

|µ̂D(z
∗
i )− µ̂D(zi)|+ |µ̂D(zi)− f2(zi)| (212)

(a)

≤ 6

(

3

2
ǫ

)

+ ǫ (213)

≤ 10ǫ . (214)

where (a) follows from Lemma E.1.6 and Assumption C.1 again.
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Note, observe the following inequality, for any i:

|Z(1)∗
2i · Z(1)∗

2i+1 − Z
(1)
2i · Z(1)

2i+1| ≤ |Z(1)∗
2i · Z(1)∗

2i+1 − Z
(1)∗
2i · Z(1)

2i+1|+ |Z(1)∗
2i · Z(1)

2i+1 − Z
(1)
2i · Z(1)

2i+1|

(215)

= |Z(1)∗
2i | · |Z(1)∗

2i+1 − Z
(1)
2i+1|+ |Z(1)

2i+1| · |Z
(1)∗
2i − Z

(1)
2i | (216)

= |µ̂D(z
∗
2i)| · 10ǫ+ |f2(z2i+1)| · 10ǫ (217)

(a)

≤ 10ǫ(|µ̂D(z
∗
2i)|+ |µ̂D(z2i+1)|+ ǫ) (218)

(b)

≤ 10ǫ

(

|µ̂D(z
∗
2i)|+ |µ̂D(z

∗
2i+1)|+ 6

(

3

2
ǫ

)

+ ǫ

)

(219)

(c)

≤ 10ǫ(1 + rD + 1 + rD + 4ǫ+ ǫ) (220)

(d)

≤ 10ǫ(5/2) (221)

≤ 25ǫ , (222)

where (a) follows from Lemma G.3, (b) follows from Lemma E.1.6, (c) follows from Lemma
E.1.3, and (d) follows from the fact that ǫ ≤ 1

100
.

Hence, to draw error bounds one layer higher, we calculate:

‖Z(2)∗ − Z(2)‖∞ = max
i≤D/2

|Z(1)∗
2i · Z(1)∗

2i+1 − Z
(1)
2i ⋆ Z

(1)
2i+1| (223)

≤ max
i≤D/2

|Z(1)∗
2i · Z(1)∗

2i+1 − Z
(1)
2i · Z(1)

2i+1|+ |Z(1)
2i · Z(1)

2i+1 − Z
(1)
2i ⋆ Z

(1)
2i+1| (224)

(a)

≤ 25ǫ+
3

2
ǫ (225)

≤ 27ǫ , (226)

where in line (a) we apply Lemma F.2 under the assumption that |Z(1)
i | ≤ 3

2
for all i.

Note that from Lemma E.1.3

|Z(1)
i | ≤ |Z(1)

i − Z
(1)∗
i |+ |Z(1)∗

i | (227)

≤ 10ǫ+ 1 + rD <
3

2
(228)

so this assumption is guaranteed.
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We induct upwards through layers: assume that ‖Z(k)∗ − Z(k)‖∞ ≤ 3k+1ǫ for k ≥ 2. Then:

|Z(k)∗
2i · Z(k)∗

2i+1 − Z
(k)
2i · Z(k)

2i+1| ≤ |Z(k)∗
2i · Z(k)∗

2i+1 − Z
(k)∗
2i · Z(k)

2i+1|+ |Z(k)∗
2i · Z(k)

2i+1 − Z
(k)
2i · Z(k)

2i+1|

(229)

= |Z(k)∗
2i | · |Z(k)∗

2i+1 − Z
(k)
2i+1|+ |Z(k)

2i+1| · |Z
(k)∗
2i − Z

(k)
2i | (230)

(a)

≤ 3k+1ǫ(|Z(k)∗
2i |+ |Z(k)

2i+1|) (231)

(b)

≤ 3k+1ǫ(|Z(k)∗
2i |+ |Z(k)∗

2i+1|+ 3k+1ǫ) (232)

(c)

≤ 3k+1ǫ((1 + rD)D + (1 + rD)D + 3k+1ǫ) (233)

(d)

≤ 3k+1ǫ

(

1 + 2−D + 1 + 2−D +
1

4

)

(234)

≤ 3k+1ǫ

(

11

4

)

, (235)

where (a) and (b) are both applications of the inductive hypothesis, (c) follows from Lemma
E.1.3, (d) is the binomial inequality and the fact that for any k ≤ log2D:

3k+1ǫ ≤ 3
(

4log2 D
)

ǫ (236)

=
ǫ

3D2
(237)

≤ 1

4
. (238)

And as before:

‖Z(k+1)∗ − Z(k+1)‖∞ = max
i

|Z(k)∗
2i · Z(k)∗

2i+1 − Z
(k)
2i ⋆ Z

(k)
2i+1| (239)

≤ max
i

|Z(k)∗
2i · Z(k)∗

2i+1 − Z
(k)
2i · Z(k)

2i+1|+ |Z(k)
2i · Z(k)

2i+1 − Z
(k)
2i ⋆ Z

(k)
2i+1| (240)

(a)

≤ 3k+1ǫ

(

11

4

)

+
3

2
ǫ (241)

≤ 3k+2ǫ , (242)

where in line (a) we apply Lemma F.2 under the assumption that |Z(k)
i | ≤ 3

2
for all i.

Note that as before

|Z(k)
i | ≤ |Z(k)

i − Z
(k)∗
i |+ |Z(k)∗

i | (243)

≤ 3k+1ǫ+ (1 + rD)D (244)

≤ 3k+1ǫ+ 1 + 2−D ≤ 3

2
, (245)

so the assumption is granted.
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Thus, completing the induction and remembering the definition of ψ1, we conclude:

‖ψ∗
1(xn, xn′)− ψ1(xn, xn′)‖∞ ≤ 3log2 D+1ǫ < 3D2ǫ . (246)

Hence, we can finally bound the final networks:

‖g′ − f‖∞ =

∥

∥

∥

∥

∥

ρ∗

(

2N
∑

n,n′=1

ψ∗
1(xn, xn′)

)

− ρ

(

2N
∑

n,n′=1

ψ1(xn, xn′)

)∥

∥

∥

∥

∥

∞

(247)

=
1

‖g‖A

∥

∥

∥

∥

∥

2N
∑

n,n′=1

ψ∗
1(xn, xn′)− 4N2

([

1

4N2

2N
∑

n,n′=1

ψ1(xn, xn′)

]

⋆ 1

)∥

∥

∥

∥

∥

∞

(248)

(a)

≤ 4N2

∥

∥

∥

∥

∥

1

4N2

2N
∑

n,n′=1

ψ∗
1(xn, xn′)−

([

1

4N2

2N
∑

n,n′=1

ψ1(xn, xn′)

]

⋆ 1

)∥

∥

∥

∥

∥

∞

(249)

(b)

≤ 4N2

∥

∥

∥

∥

∥

1

4N2

2N
∑

n,n′=1

ψ∗
1(xn, xn′)− 1

4N2

2N
∑

n,n′=1

ψ∗
1(xn, xn′)

∥

∥

∥

∥

∥

∞

+ 4N2 · 3
2
ǫ (250)

≤ 4N2 ‖ψ∗
1(x, x

′)− ψ(x, x′)‖∞ + 4N2 · 3
2
ǫ (251)

≤ 12N2D2ǫ+ 6N2ǫ (252)

≤ 18N2D2ǫ , (253)

where in (a) we apply the lower bound ‖g‖A ≥ 1 from E.3.2 and in (b) we once again apply
Lemma F.2, valid from the fact that for all X with unit norm entries:

∣

∣

∣

∣

∣

1

4N2

2N
∑

n,n′=1

ψ1(xn, xn′)

∣

∣

∣

∣

∣

≤ 3D2ǫ ≤ 3

2
. (254)

So it remains to map ǫ→ ǫ
18N2D2 in order to yield that ‖f−g′‖ ≤ ǫ. Note that this remapping

only changes the maximum width to be O(D3 +D2 log ND
ǫ

.

G Activation Assumption for exp

We prove that the activation exp satisfies Assumption C.1.

We need the following standard fact, whose proof we include for completeness:

Lemma G.1. Fix J and let γ be a primitive Jth root of unity. Then

1

J

J−1
∑

j=0

γij =

{

1 i ≡ 0 mod J

0 i 6≡ 0 mod J
(255)
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Proof. If i ≡ 0 mod J , then γij = 1 for all integer j and clearly

1

J

J−1
∑

j=0

γij = 1 . (256)

Suppose i 6≡ 0 mod J . Note that any Jth root of unity x must satisfy xJ = 1, or equivalently

(1− x)

(

J−1
∑

j=0

xj

)

= 0 . (257)

Because i 6≡ 0 mod J and γ is a primitive root, it follows γi 6= 1 is another root. Therefore
setting x = γi and factoring out the non-zero term (1− γi) gives

J−1
∑

j=0

γij = 0 . (258)

Using this fact, we can approximate simple analytic functions via shallow networks in the
exp activation.

Lemma G.2. For any J ∈ N with J > D, there exists a shallow neural networks f1, f2 using
the exp activation, with O(JD) neurons and O(D logD) weights, such that

sup
|ξ|≤3

∣

∣f1(ξ)− ξ2
∣

∣ ≤ 4

J !

(

3

4

)J

(259)

sup
|ξ|≤3

|f2(ξ)− µ̂D(ξ)| ≤ 17D

(

3

4

)J

. (260)

Proof. Let γ be a primitive Jth root of unity, r = 1/4, and let k ∈ N such that 0 ≤ k ≤ J −1.
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By applying Lemma G.1 we can define a network f (k) and expand as:

f (k)(ξ) :=
J−1
∑

j=0

γ−kj

J
exp(γjrξ) (261)

=
J−1
∑

j=0

γ−kj

J

∞
∑

i=0

(γjrξ)i

i!
(262)

=
∞
∑

i=0

(rξ)i

i!

[

1

J

J−1
∑

j=0

γ(i−k)j

]

(263)

=
∞
∑

i=0

(rξ)i

i!
✶i≡k mod J (264)

=
∞
∑

i=0

(rξ)iJ+k

(iJ + k)!
(265)

=
(rξ)k

k!
+

∞
∑

i=1

(rξ)iJ+k

(iJ + k)!
. (266)

It follows that we can bound:

sup
|ξ|≤3

∣

∣

∣

∣

f (k)(ξ)− (rξ)k

k!

∣

∣

∣

∣

≤
∞
∑

i=1

∣

∣

∣

∣

(rξ)iJ+k

(iJ + k)!

∣

∣

∣

∣

(267)

≤ 1

J !

∞
∑

i=1

(

3

4

)iJ+k

(268)

≤ 1

J !

(

3

4

)J ∞
∑

i=0

(

3

4

)iJ

(269)

≤ 1

J !

(

3

4

)J
1

1− (3/4)J
(270)

≤ 4

J !

(

3

4

)J

, (271)

so we can define

f1(ξ) :=
2

r2
f (2)(ξ) (272)

with only J neurons each of width magnitude at most O(1), and instantly gain the bound

sup
|ξ|≤3

∣

∣f1(ξ)− ξ2
∣

∣ = sup
|ξ|≤3

2

r2

∣

∣

∣

∣

f (k)(ξ)− (rξ)2

2!

∣

∣

∣

∣

(273)

≤ 2

r2
· 4

J !

(

3

4

)J

. (274)
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Second, we define

f2(ξ) := r

(

D−1
∑

k=0

k!f (k)(ξ)

)

−
D
∑

k=1

k!

r
f (k)(ξ) . (275)

First, let us note that, in spite of seeming to have factorial weights, we can write this network
with small weights via properties of the exponential:

f2(ξ) = r

(

D−1
∑

k=0

exp(log k!)f (k)(ξ)

)

−
D
∑

k=1

exp(log k!)

r
f (k)(ξ) (276)

= r
D−1
∑

k=0

J−1
∑

j=0

γ−kj

J
exp(log k! + γjrξ)−

D
∑

k=1

1

r

J−1
∑

j=0

γ−kj

J
exp(log k! + γjrξ) . (277)

The network contains 2DJ neurons, with the norm of each weight bounded by O(D logD).

Then using the decomposition

µ̂D(ξ) = r
D−1
∑

k=0

(rξ)k − 1

r

D
∑

k=1

(rξ)k

we derive:

sup
|ξ|≤3

|f2(ξ)− µ̂D(ξ)| ≤ sup
|ξ|≤3

∣

∣

∣

∣

∣

r

(

D−1
∑

k=0

k!f (k)(ξ)

)

− r

D−1
∑

k=0

(rξ)k

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(

D
∑

k=1

k!

r
f (k)(ξ)

)

− 1

r

D
∑

k=1

(rξ)k

∣

∣

∣

∣

∣

(278)

≤
(

D−1
∑

k=0

rk!

)

4

J !

(

3

4

)J

+

(

D
∑

k=1

k!

r

)

4

J !

(

3

4

)J

(279)

≤ 17D

(

3

4

)J

. (280)

Now, let us restate this result, choosing the error rate ǫ explicitly:

Lemma G.3. For any ǫ > 0, there exists a shallow neural networks f1, f2 using the exp
activation, with O

(

D2 +D log D
ǫ

)

neurons and O(D logD) weights, such that

sup
|ξ|≤3

∣

∣f1(ξ)− ξ2
∣

∣ ≤ ǫ , (281)

sup
|ξ|≤3

|f2(ξ)− µ̂D(ξ)| ≤ ǫ . (282)

We remark again that, in the event D >
√

N/2, we replace D with D̂ in order to approximate
the Blaschke product µ̂D̂ as this is the function we use to build the hard function g in that
case. So we recover the statement of Assumption C.1.
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