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Abstract

Several applications such as autonomous driving, aug-
mented reality and virtual reality require a precise predic-
tion of the 3D human pose. Recently, a new problem was
introduced in the field to predict the 3D human poses from
observed 2D poses. We propose Skeleton-Graph, a deep
spatio-temporal graph CNN model that predicts the future
3D skeleton poses in a single pass from the 2D ones. Un-
like prior works, Skeleton-Graph focuses on modeling the
interaction between the skeleton joints by exploiting their
spatial configuration. This is being achieved by formulating
the problem as a graph structure while learning a suitable
graph adjacency kernel. By the design, Skeleton-Graph pre-
dicts the future 3D poses without divergence in the long-term,
unlike prior works. We also introduce a new metric that mea-
sures the divergence of predictions in the long term. Our
results show an FDE improvement of at least 27% and an
ADE of 4% on both the GTA-IM and PROX datasets respec-
tively in comparison with prior works. Also, we are 88%
and 93% less divergence on the long-term motion prediction
in comparison with prior works on both GTA-IM and PROX
datasets. Code is available at https://github.com/
abduallahmohamed/Skeleton—Graph.git.

1. Introduction

An accurate 3D pose prediction model is vital for several
applications. In intersection management and autonomous
vehicles, one can prevent an accident based on the 3D poses
of pedestrians [10, 9, 30]. In Virtual and Augmented Real-
ity (VR/ AR) the predictions of the 3D pose help in deep-
ening the immersive experience [28]. Where in drones
and autonomous driving, 3D pose prediction helps in ac-
curate maneuver and motion planning through the environ-
ment [14, 42, 15, 11]. The process of obtaining the 2D
poses is quite inexpensive in comparison to the process of
obtaining the 3D poses. The 2D process does not require
special sensors such as depth sensors installed on the device.
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Figure 1: Skeleton-Graph given an input of 2D spatio-
temporal graph of observed human skeleton poses. Then, in
a single pass it predicts the next 3D poses.

Thus it is cheaper to obtain the 2D poses from an ordinary
vision sensor [3]. However, 2D poses are not suitable for the
increasing trends of requirements in a new range of appli-
cations such as the ones mentioned before [32, 31]. Thus it
is tempting to develop models that directly obtain 3D poses
from 2D ones, saving the need for expensive equipment and
upscaling to the new trends.

The recent work of [6] introduced a new long-term tra-
jectory prediction problem that focuses on the concept of
obtaining 3D poses from 2D ones. The introduced problem
goal is to predict the future expensive 3D motion trajectories
from the cheaply obtained 2D observed motion. In their
work, a deep model called GPP-Net was introduced to ad-
dress this problem. It is a three-stage deep model that uses
several concepts such as Variational Auto Encoders (VAEs)
and tailored stages for both paths and poses predictions. Be-
side GPP-Net, other 3D human motion estimation models
such as TR [36], VP [27], LTD [38] were evaluated on this
problem.

By examining the results and the architectures of these
prior works, we found that three main design components
were used separately in each prior work to enhance the re-
sults but not collectively in one work. The first component
is the exploitation of the spatial configuration of the skele-
ton explicitly through the deep architecture itself [38]. The
skeleton spatial configuration includes useful information
the leads to better predictions. The joints correlate with each
other in terms of the angles and distances between them.



This kind of information when introduced to a deep model
it will constraints the model output not to produce random
points that are far away from the ground truth. The second
component is the usage of the vision signal [6]. The vision
signal of the observed sequence contains information such as
the objects in the environment and the geometry of the scene.
This information helps in resolving the ambiguity in some
prediction scenarios. For example, it is not valid to predict a
skeleton standing on a table or a couch. The third and last
component is to avoid the use of deep recurrent architectures.
Recurrent architectures in long-term prediction problems
tend to accumulate prediction errors from a step to the next
step. We noticed this behavior in prior works [27, 6, 38] that
used these recurrent models.

Thus we introduce Skeleton-Graph in which we com-
bine these three design components in one work overcoming
the shortcoming of the prior works. First, to use the spa-
tial configuration information of the skeleton we model the
problem as a spatio-temporal graph end to end. We rely
on the adjacency matrix to encode the relationship between
the skeleton joints. Instead of a fixed adjacency matrix, we
let our model learn it and analyze it in our ablation study.
Secondly, we utilize the vision signal by fusing it into our
model. Thus, we utilize the context information to enhance
our results. We found out that the visual signal in some cases
enhances short-term predictions. Lastly, to avoid divergence
over the long-term we use a full CNN approach end to end
without any recurrent behavior. This led to better long-term
predictions in comparison with prior works. We introduce a
new metric that measures the divergence over the prediction
horizon to quantitatively judge this criterion of prediction
stability.

This work is organized as follows, we start with the liter-
ature review of related 2D and 3D pose estimation methods,
as well as deep graph models and trajectory prediction meth-
ods. Then, we follow up with the problem formulation and
description of Skeleton-Graph method. Next, we discuss
the problem of inconsistency in the prediction of the 3D
skeleton poses and introduce a new objective that ensures
the predicted 3D skeleton looks natural. We analyze the
performance of our approach both quantitatively and qual-
itatively and discuss the prediction stability over the long
term.

2. Related Work

2D pose estimation: With the resurgence of neural nets,
data-driven prediction paradigms have become more domi-
nant. DeepPose [35] was the first major paper that applied
deep learning to human pose estimation. In this approach,
pose estimation is formulated as a CNN-based regression
problem towards body joints. The work of [34] generates
heatmaps, describing the likelihood of the skeleton joints by
running an image through multiple resolution banks in paral-

lel to simultaneously capturing features at a variety of images
scales. [26] Introduced a novel and intuitive architecture that
consists of steps of pooling and upsampling layers to capture
information at every scale. The previous approaches work
well but were complicated in comparison with the next work.
The work of [39] came up with a quite simple but efficient
structure that consists of ResNet and few deconvolutional
layers instead of the upsampling mechanism.

3D pose estimation: Recovering 3D pose from 2D RGB
images is considered more difficult than 2D pose estimation,
due to the larger 3D pose space and more ambiguities. The
work of [22] built a framework that consists of a joint points
regression task and point detection task. They train a network
that directly regresses 3D points from an image. Later, [7]
explored a simple architecture that reasons through interme-
diate 2D pose estimations instead of directly estimating 3D
pose from an image. Further [24] explored the sources of er-
ror in 3D pose estimation. They doubted the source of error
is either from 2D to 3D mapping or from the improper visual
analysis of the scene. They concluded that lifting the ground
truth 2D joints locations to 3D space is not the source of
error and it is a relatively straightforward task but the visual
analysis is the main issue. However, since these methods
completely ignore the image context, the predicted human
motion may not be consistent with the scene. To perceive
the scene context in the pose estimation task, [13] exploits
static 3D scene structure to better estimate human pose from
monocular images considering environment constraints. A
limitation of the current formulation is that it does not model
scene occlusion. More recently, [6] formulates a new task of
long-term 3D human motion prediction with scene context in
terms of 3D poses and develops a novel three-stage computa-
tional framework that utilizes scene context for goal-oriented
motion prediction.

Advances in deep graph models: Recent advances in
deep graph CNNs [19] lead to a jump in the domain of pose
and trajectory predictions [25, 16, 37, 5, 37] as graphs CNNs
can exploit both the spatial configurations of the agents and
their corresponding inner features. Several lines of work suc-
cessfully classified human skeletons’ actions by considering
a spatio-temporal graph formulation of the skeleton [40, 17].
The recent work of [21] proposed a multi-scale deep graph
network to predict 3D human motion from 3D history.

3. Problem Formulation and Technical Ap-
proach

Given a pair of observations of 7" time steps 2D human
pose Pop and T steps 2D images I°P of the scene the goal
is to predict the next T steps 3D human poses Psp. The
human skeleton have J keypoints such that P,p € R7*2 and
Psp € R7*3. Also, the pose prediction problem includes
a path prediction problem within it. The path prediction
problem is important because it is required to keep track of



the 3D poses and to warp or re-normalize them when needed.
The position of the path is the center of the torso.

In what follows, we describe our approach to solve the
problem at hand. We first start by modeling the problem
as a spatio-temporal graph that represents the 2D motion
of the human skeleton over time. Then we describe the
Skeleton-Graph model wrapping with the loss function.

3.1. The formulation of the spatio-temporal graph

We start modeling the problem as a spatio-temporal skele-
ton graph. On each observed time-step ¢, {t € Z | 0 <t <
T} we define a graph G; = (M4, &;). Where V is the graph
vertices at time step ¢. Each vertex will hold the pose P,
information of the corresponding j, {j € Z | 0 < j < J}
skeleton key-point. The &; is the collection of graph edges.
The adjacency matrix A; defines the weight values of the
graph edges. In our formulation we set the weights to be
one, later we describe in our model how we learn proper val-
ues for entries of A;. Now, we can represent our input as a
spatio-temporal graph SGinpw = {G° [t € Z, 0 <t < T}
and the output is {P}, | t € Z, T < t < T} which is the
next 3D poses.

3.2. Skeleton-Graph model

From a top view, our model consists of four main compo-
nents. The spatio-temporal graph CNN (SPGCNN) receives
the spatio-temporal graph of the observed motion and gen-
erates a representation for it. The second component lies
within the SPGCNN component. It is a CNNs that learns an
adjacency matrix based on the temporal skeleton structure.
The third component is the vision graph fusion. This com-
ponent mixes both the graph representation from SPGCNN
and the visual signal from the vision extractor. Lastly, the
time-extrapolator CNN (TXCNN) receives this fused repre-
sentation of both visual and graph and predicts the next 3D
poses. In the upcoming section, we explain each component
separately. These components can be seen in Figure 2. Our
code is open-sourced and includes all the implementation
details of the model. The supplementary materials include
the fine implementation details of each component.

The spatio-temporal graph CNN (SPGCNN) Our de-
sign of this layer processes the graph vertices data which has
the shape of T' x J x [z, y] in two steps. The first step is
a spatial step where it applies CNNs over the graph nodes
weighting the CNN kernel by the values of the adjacency
matrix. This spatial step takes into account the connection be-
tween the skeleton nodes by exploiting the adjacency matrix.
This aligns with our design goal of using this information
to enhance the results. Then, a temporal step is applied to
the tensor from the spatial step. This step is a simple CNNs
but acts on the time 7" as a features channel. We refer to
the work of [40] regarding more details about the spatio-
temporal graph CNNs. The output of this layer is a graph

embedding that represents the observed 2D skeleton motion
over time and has the shape of T' x J x F', where F'is the
learned features of each joint.

Learning a proper adjacency matrix The work of [25]
proposed a kernel function to weigh the adjacency matrix
that is tailored to their problem. Instead, in our approach
we let the model discover the best weights of the adjacency
matrix [38]. The adjacency matrix A has the dimensions
of T' x J x J, one can imagine it as a 2D image with T’
features channels. Thus, we use CNNs that take the temporal
skeleton adjacency matrix as an input and learns a new one.
Then, this learned adjacency A is used within the previous
component of our model. In our ablation study, we show the
benefit of using this learned matrix. The learned adjacency
matrix A has the dimensions of T’ x .J x .J but differs from
the original one A in terms of the entries. This can be seen
in Figure 6.

Vision graph fusion As we observe 2D images I°°, us-
ing them could be beneficial to our model. We have two
options, the first as in [6] to use the last observed image
only I?P. The intuition behind using the last image is that
it is the nearest observation of what is to be predicted next.
We also tested the idea of using the full sequence of the
observed images Ig?.’T to use more visual context. Yet, em-
pirically as we will show in the experiments section using
the last image improves the path prediction while the whole
sequence of images improves the pose prediction on one of
the datasets. The vision feature extractor is a CNNs that
is designed to down-size the images in terms of the spatial
aspects (Width and height) to match the graph embedding.
Then, both the image embedding and the graph embedding
are concatenated. This can be seen in Figure 3. This simple
concatenation gives the model the ability to learn a fused
representation leveraging both visual and graph contexts.
The final representation has the dimensions of T' x J x F.
This representation is to be used by the next layer to predict
the next 7' 3D poses.

The time-extrapolator CNN (TXCNN) This is the last
step in Skeleton-Graph model. As we arrive at the embed-
ding that represents the history of the 2D observations, we at-
tempt to predict the next T 3D steps. Asin [25,2,23,37,41],
using CNNs was proven to be better than recurrent mod-
els as it does not result in diverged predictions. The TX-
CNN receives an embedding of the history with the shape
of T' x J x F. The TXCNN treats the time as a features
channel and through ordinary CNNS, it predicts the next T
3D poses P steps. Simply, it extrapolates the time into the
future moving it from 7" observed steps to T predicted steps.
The final output of our model is " x J x [z, y, z] which is
the predicted 3D poses.
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Figure 2: Skeleton-Graph model components. The model receives as an input a 2D skeleton temporal 1" graph poses V', A and
predicts the the next 3D skeleton temporal poses. The model can learn a suitable adjacency A matrix through the adjacency
CNN. Also, it can use the observed visual signal in the form of a still image or a video. The time-extrapolator CNN is
responsible for predicting the next T temporal 3D poses, while the spatio-temporal graph CNN processes the 2D temporal
graphs. J, F, C, [z, y, z] are the number of the skeleton joints, the learned features dimensions, the vision features channels
and the joint coordinates, respectively.

not the 3D pose prediction problem. For the bone length,
the prior approaches and ours use Lo, norm to force the
correct bone length. For the angles between the joints, some
used the rotation angles but we preferred to use the cosine
similarity because of its well-defined range. As mentioned
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CxJx F before our consistency loss is composed of two parts. The
TxJIXF TxJxF first part is a cosine similarity between each skeleton joint
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Graph J in comparison with the predicted joints. It is defined as
Embedding Slgnal follows:
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Where C is the cosine similarity. The second part of the SCL
is what enforces the reasonable bone length. It is defined as

Figure 3: Vision graph fusion. C, W, H are the image chan-
nels, width and height.
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follows:
4. The Skeleton Consistency Objective SCLL, = w5 DO D S HH PP, - 15].tH2H1
During our experiments, we noticed that we have accurate Thus, the SCL loss function will be defined as:
results exceeding the state-of-the-art but the predicted 3D
B y Lscr = MSCLeos + A2SCLL, (1)

skeletons do not look natural. For example, a skeleton might
be setting but the distance between the neck and body is
awkward. Examples of these abnormal skeletons can be
seen in Figure 4. Due to this, we introduce a loss function
that forces the predicted skeletons to be more consistent.

Where A; and A, are weighting parameters. We found that
setting both A\; = 0.0005 and A2 = 0.1 works the best.
Now, we can define the objective function that we train

> ; X against:
We call this loss Skeleton Consistency Loss (SCL) which
enforces the correct bone length and angles between the 1 T g 5
joints in the predicted 3D poses. The skeleton consistency Lskeleton-Graph = T_J Z HP; — Pf H2 4+ Lsc ()
concept was introduced in prior works [4, 8, 29, 3, 33] in t=1 j=1

which they focus on the skeleton reconstruction problem
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Figure 4: Different cases of deformation of the predicted 3D skeletons. Arrow indicates the time direction. The first two poses
(a) and (b) show awkward joint angles between each joint. The case (c) one the right shows failure in both predicted angle and

bone length.

5. Experiments

In this section, we describe the datasets used in the train-
ing, the training settings, and evaluation metrics. Then we
compare with several prior models followed by an ablation
study of our model both in quantitatively and qualitatively
manners.

5.1. Datasets description

GTA-IM: GTA Indoor Motion Dataset [6] emphasizes on
human-scene interactions. The motivation of this dataset is
to fix the problem that real datasets of human-scene inter-
action has which is the noisy 3D human pose annotations
and limited long-range human motion. The synthetic data
of motions and interactions were collected from 3D video
game Grand Theft Auto V by controlling characters, cameras,
and the physical system. The data set contains 50 human
characters acting inside 10 different large indoor scenes. The
dataset includes RGBD frames with 1920 x 1080 resolution,
the corresponding ground-truth 3D human pose joints, hu-
man skeleton segmentation, and the camera parameters. We
split 8 scenes for training and 2 scenes for evaluation fol-
lowing the settings of [6]. We also transfer the 3D path into
the camera coordinate frame for both training and evalua-
tion. PROX: Proximal Relationships with Object eXclusion
(PROX) is a new dataset captured using the Kinect-One sen-
sor by [13]. It contains 12 different 3D scenes with a total of
60 recorded scenarios. Each video is 30 FPS with camera pa-
rameters, calibration parameters, and human body segments.
3D skeleton points(25 joints) of the human pose are cap-
tured by Kinect-One sensor and 2D keypoints(25 joints) are
captured by OpenPose. In our experiment, we split PROX
dataset with 52 training sequences and 8 sequences for test-
ing following the settings of [6]. The usage of OpenPose
to generate the ground truth makes it less accurate than the

GTA-IM dataset. This is because the ground truth will inherit
the errors of OpenPose. Also, the PROX dataset was mostly
captured in a lab environment making it less diverse in terms
of visual features. These flaws of the PROX dataset will im-
pact our results as we will see in the ablation study section.
A similar discussion was raised by the authors of [6]. Also,
having results on the PROX dataset shows the robustness of
our method in the case of noisy estimated 2D poses.

5.2. Evaluation metrics

The main metric for evaluating the 3D path and 3D pose
prediction is the Mean Per Joint Position Error (MPJPE) [ 18].
For a frame ¢ € T and a skeleton with .J joints , MPJPE is
computed as:

pt — pt
J ]2

J
Eypipe(t) = }Z ‘ 3
=1

The prior formulation is used to compute the 3D pose error.
In case of the 3D path error, a specif joint is chosen such as
the center of the skeleton torso. We also use two common
metrics that can be found in the literature of pedestrian tra-
jectory prediction [1, 12, 25] to evaluate our performance.
First, the Mean Average Displacement Error(ADE) defined
in equation 4 which judges the overall performance of both
pose and path errors overall the predicted trajectory. Second,
the Mean Final Displacement Error(FDE) which judges the
performance at the final time step of the trajectory. The FDE
is an indicator of the accumulation of the errors in the pre-
diction, in other terms a low FDE means fewer errors were
accumulated. The FDE defined in equation 5. Lastly, we
define a measure for the stability over the prediction horizon
STB, Equation 6. It is the average error for both path and
pose predictions. If the predictions deviate or accumulate
errors over the long-term this metric increases and vice versa.



Though this metric only discusses the divergence over the
prediction horizon and it does not indicate the accuracy of
the predictions, unlike the ADE and FDE metrics.

ADE = % ([% ZtT:l EAIPJPE(t)]

pose

“4)

pose

FDE = 1 ([EMPJPE(t - T)}
(5)

+ {EMPJPE(t = T)} pmh)

STB, = \/ L <Val'{EMPJPE(t)‘t e T}

pose

(6)
5.3. Training settings

For all of our experiments, we use SGD optimizer. The
initial learning rate for GTA-IM is 0.01 and 0.03 for the
PROX dataset. The number of training epochs is 450 and we
decrease the learning rate by a factor of 0.2 every 200 epochs.
We use a batch size of 128 and 1 second of observation and 2
seconds for predictions following the settings of [6]. We used
GTX-1080Ti for training on a 128 GB RAM machine. The
need for a large RAM comes when the models are trained
using the visual signal. Training each model took between 8
hours and 24 hours depending on the used dataset.

5.4. Comparison with Prior Methods on GTA-IM
& PROX Datasets

In this section, we perform quantitative evaluations of our
method. The evaluation results of the 3D path and pose pre-
dictions on the GTA-IM dataset are shown in Table 1 while
the PROX dataset results are in Table 2. Overall, Skeleton-
Graph outperforms the prior methods on several metrics. For
the FDE we are 105 mm more accurate than GPP-Net [6]
on the GTA-IM dataset and 110 mm more accurate than
GPP-Net on the PROX dataset. This shows that we did not
accumulate error over the long-term prediction, unlike prior
methods. The ADE is slightly better than the previous state-
of-the-art GPP-Net by 10mm. This means, on average we
have a more accurate 3D path and pose predictions. For the
divergence in the long-term, the STB,, has a drastic drop
in comparison with prior works. We are 88% better on the
GTA-IM dataset and 93% better on the PROX dataset. This
can be seen in the tables where our 0.5 seconds are close to
the 2 seconds prediction in terms of MPJPE which means no
divergence happening in the long-term, unlike prior works.
We also notice that our model on the 0.5 seconds horizon
in GTA-IM does not perform better than the prior methods.
The same notice can be seen in the PROX dataset results. We
highlight this as a trade-off between accuracy over short-term

+ Var{E]\,[pJpE(t)‘t S T} [h)
pa

prediction versus the stability of prediction over the long-
term due to not using recurrent approaches. As discussed in
the introduction recurrent approaches tend to be accurate in
the short term. For example, we notice that prior methods
tend to be accurate over the short-term but diverge drasti-
cally over the long term, unlike our model. Overall, though
our model behaves like this in the short term, the overall
average performance is still better than the prior methods
by at least 27% and 4% on both the FDE and ADE metrics,
respectively.

6. Ablation Study

In this section, we extensively analyze the different be-
haviors of Skeleton-Graph model in both quantitative and
qualitative ways. We start with a quantitative analysis of the
different configurations of our model such as the adjacency
learning and the skeleton consistency loss. We follow up
with a visual analysis of these components and their effect
on the results.

6.1. Quantitative analysis of model components

In this section we study the different components of
Skeleton-Graph model. The components are: Learning adja-
cency CNN +A, image embedding +72°, video embedding
+I7P,. and the two different components of our skeleton con-
sistency loss SCL¢os, SCL,,. Table 3 shows an evaluation
of these configuration on both GTA-IM and PROX datasets.

Plain Skeleton-Graph model: We directly train the raw
skeleton-graph model without self-learning adjacent matrix,
consistency constraints, and visual signal. This raw model
alone outperforms the previous work on both the GTA-IM
and PROX datasets on both FDE and ADE metrics. This
validates that the graph approach we utilize in our model and
the full CNN approach can remarkably decrease predictive
MPIJPE in the pose prediction task. We also notice that the
results are divergence-free along the GTA-IM and PROX
datasets with STB,, that is better than prior methods.

Skeleton-Graph with learning adjacency +.4: The
work of [25] suggested that the kernel function that governs
the value of the adjacency matrix influences the results of
the trajectory prediction significantly. Overall, the adjacency
matrix is important in GCNNSs because it governs the inter-
action between the graph nodes. Instead of searching for
a handmade kernel function, we decided to let the model
discovers the proper weights for the adjacency matrix. From
Table 3 we can see that the usage of the learned adjacency
matrix STB, improves the performance in comparison with
the plain model. This indicates that the model discovered a
better interaction between the graph nodes. Figure 6 illus-
trates a heat map of the learned adjacency STB,. We notice
an increase in the connections between the two legs joints,
the same happens between the two hands joints. This em-



3D path error (mm) 3D pose error (mm) J
Time step (second) 0.5 1 1.5 2 0.5 1 1.5 2 FDE ADE STB,
TR [36] 277 352 457 603 291 374 489 641 622 436 147
TR [36] + VP [27] 157 240 358 494 174 267 388 526 510 326 150
VP [27] + LTD [38] 124 194 276 367 121 180 249 330 349 230 98
GPP-Net [6] 104 163 219 297 91 158 237 328 313 200 93
Skeleton-Graph (ours) 154 163 172 186 198 209 217 230 208 192 11

Table 1: Results of the GTA-IM dataset. Results of 3D path and pose MPJPE error are reported in mm. The lower, the better.

3D path error (mm) 3D pose error (mm) 4
Time step (second) 0.5 1 1.5 2 0.5 1 1.5 2 FDE ADE STB,
TR [36] 487 583 682 783 512 603 698 801 792 644 126
TR [36] + VP [27] 262 358 461 548 297 398 502 590 569 427 126
VP [27] + LTD [38] 194 263 332 394 216 274 335 3% 394 300 82
GPP-Net [6] 189 245 317 389 190 264 335 406 398 292 90
Skeleton-Graph (ours) 264 269 272 277 281 287 291 298 288 280 6

Table 2: Results of the PROX dataset. Results of 3D path and pose MPJPE error are reported in mm. The lower, the better.

phasizes that the motion of humans has a strong pattern that
is related to the coordination between both the hands and the
legs. We also notice that the spine connections are almost
the same as the original skeleton joints. This indicates that
the spine does not contribute too much to the motion pattern.
Skeleton-Graph +A + Skeleton Consistency Loss
(SCL): Though the model with the learned adjacency matrix
performs well, the model will generate many weird human
poses without the consistency constraints. We show 3 failure
cases in Figure 4 where the angles and distances between
joints are out of the normal range of a human body. We
add cosine similarity+SCL..s and joints distance+SCL[,
in the loss function and fine-tune hyper-parameters(optimal
weights) to combine the three terms of loss: prediction-
target loss, cosine similarity loss, and norm loss. We get
improved performance by using these constraints as shown
in Table 3 on the GTA-IM dataset. On the other hand, in the
PROX dataset, it seems only the+SCL,, enhances the per-
formance. This is because of the nature of the PROX dataset.
The PROX dataset ground truth is machine-generated so it is
not accurate when compared with the GTA-IM dataset which
the ground truth is obtained from the game directly. This
is behavior was seen before in the work of [6]. However,
adding consistency loss does increase the training time in
comparison with the plain model. Yet, it results in more
accurate FDE and ADE results and more natural-looking
skeletons as we will see in the qualitative study section.
Skeleton-Graph +A+SCL+ visual signal: ~We start
with the GTA-IM dataset. The prior work of [6] shown that
using the visual signal of the last observed frame enhances
the performance. From Table 3 we notice that using the
last frame —I—I%D did enhance the short-term 3D path error in
comparison with the previous components on the GTA-IM
dataset. Yet, it did not enhance the short-term 3D pose error.
When we used the full sequence of observed images +13°.

on the GTA-IM dataset, the 3D pose error was the lowest
among all the modes of configurations. This indicates that it
helped predicting the 3D poses. Yet, for the 3D path, it had
the highest error among all the configurations. This shows a
trade-off between the path and poses objectives influenced
by the presence of the visual signal. Overall, using the
vision signal resulted in a performance that is similar to the
usage of the consistency objective on the ADE and FDE
metrics with a noticeable inner performance enhancement
in the short term of both path and pose predictions. For the
PROX dataset using the vision signal either the last image,
+1I2P or the full sequence +I7°; resulted in a divergence
of the results. This aligns with the findings of [6] over the
PROX dataset. In addition, the PROX were captured in an
empty lab environment, and thus it no as rich as the GTA-IM
dataset. This made the dataset to be less diverse in terms
of the background and the camera poses. So inherently the
vision signal becomes less useful leading to ambiguity in the
predictions as seen in Table 3.

6.2. Qualitative study of the models’ components

To understand the effect of each configuration in our
model, we visualize the predicted 3D human poses per each
configuration as shown in Figure 5. Starting from the stan-
dard model with self-learning adjacent matrix alone +A.
The entire predicted pose looks natural in some areas and
unnatural in other areas. The predicted right leg stretches out
naturally and the left leg bends just like the target. However,
the left hand in the pose is too close to the head and looks
weird since there is no norm loss SCLy5 in the objective
function. After we add norm loss(seen on the top right), the
prediction has a reasonable left hand but the right leg joints
penetrate the ground which is not possible in reality. Once
the cosine loss being added SCL,,s to the objective, the
penetration problem is gone but the distances between joints



Dataset Skeleton-Graph configuration

3D path error (mm)

3D pose error (mm) 1

+A  4SCLeos  +SCLp, +13P +13° 1 05 1 L5 2 05 1 L5 2 FDE  ADE  STB,
150 165 175 191 198 211 220 234 213 193 16
v 159 169 178 192 196 208 216 229 211 193 14
v v 161 169 176 187 199 209 217 230 208 193 10
GTA-IM v v 159 169 177 191 191 204 212 225 208 191 14
v v v 159 168 177 190 193 205 213 226 208 191 11
v v v v 154 163 172 186 198 209 217 230 208 191 11
v v v v 165 174 181 193 190 202 211 224 208 192 11
320 348 353 360 369 375 3719 38 373 364 7
v 309 314 317 323 335 339 342 347 335 328 5
v v 280 287 290 296 297 303 307 314 305 296 5
PROX v v 264 269 272 277 281 287 291 298 288 280 6
v v v 293 299 302 308 292 298 302 308 308 300 5
v v v v 353 353 355 360 358 362 365 370 365 359 3
v v v v 283 290 294 301 308 314 319 325 313 304 6

Table 3: Skeleton-Graph ablation. +A is the model with learned adjacency. SCLos and +SCL,, indicates the usage of the
SCL components. The usage of last image is +15°, +17°,. indicates the usage of whole observed sequence. All results are in
mm, the lower the better. The (0.5, 1, 1.5, 2) are time steps in seconds. Bolded numbers are the best in each column.

(c) self-learning A + consistency loss A N

I prediction

(d) self-learning A + cosine loss C e .

Figure 5: Effect of different configurations of Skeleton-Graph model on the 3D pose predictions. Arrow indicates the time
direction. Top left:Skeleton-Graph model with learned adjacency +.4; Bottom left: Skeleton-Graph model +.4 + weighted
Lscr; Top right: Skeleton-Graph model +.4 +SCL 5 only; Bottom right: Skeleton-Graph model +.A4 +SCL,;.

-:a:.-- 1
i
Sy .

Figure 6: Heat map of the learned adjacency matrix A versus
the original adjacency that represents the connection between
the skeleton joints.

become unnatural especially in the first five frames(seen on
the bottom right). When both SCL 5 and SCL,,s are used
in training our model the resulted skeletons look very natural
as shown in the bottom left in Figure 5. More qualitative
cases are in the supplementary materials.

7. Conclusion

We showed that the usage of graph CNNs with self-
learning adjacency matrix and formulating the problem as a
spatio-temporal graph is suitable for the problem of 3D skele-
ton motion predictions. We achieved state-of-the-art results
on well-known benchmarks. The design of our model results
in divergence-free predictions in the long term, unlike prior
works. This was shown using the introduced STB, metric.
The deformation in prediction was solved using a skeleton
consistency loss. The integration of the vision signal im-
proved the results on the GTA-IM dataset. In the future, we
would like to target the short-term prediction accuracy issue
and investigate different methods for integrating the visual
signals.
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A. Failure Cases

Figure 4 illustrates several failure cases by our model.
In case (1) we notice a skeleton sitting but our model was
not able to capture the torso crouch to represent this mode.
Case (2) the predicted skeleton trajectory overshoots, in
other terms the model predicted too much of a momentum
from the history of the observations. Case (3) and (4) are
complex situations where the target skeleton changes from
sitting to standing, we notice our model was not able to
capture this trend. This is probably because of the lack
of history that represents this trend in the 2D observations.
Case (5) and (6) is a skeleton sitting or relaxing on an object,
though our prediction are close, they look abnormal. This
happens because in these two cases the joints angles vary a
lot in which the predictions become harder. We believe in
the future adding more dynamics oriented constraints can
enhance these prediction errors.

B. Skeleton-Graph Model Configuration

We found out that the number of TXCNN and SPGCNN
layers affects the model performance significantly. Ta-
ble 5 we show the effect with the number of TXCNN and
SPGCNN on the model performance. We used residual con-
nection while going deeper using this layers. First, we notice
that going deeper with the number of SPGCNN results in a
significant performance drop on both path and pose estima-
tion. This is the same behavior noted in [20]. Going deeper
with the number of TXCNNSs beyond 11 layers resulted in a
drop of the performance. We notice that the performance for
both 9 and 11 TXCNN layer are close to each other. Also,
the result of the ablation is the same on both PROX and
GTA-IM datasets. This means that our model is expected
to behave in the same way on different datasets, a kind of
agnostically to the dataset.

C. Model Architecture

Table 6 shows the inner details of our model. The struc-
ture of each component in terms of the parameters of the
CNN layers, the usage of batch norm and the location of the
activation functions are all shown in this table.
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Table 4: Several failure cases predicted by Skeleton-Graph . The green skeletons represents ground-truth and red skeleton
represents prediction. The deeper color the skeleton is, the earlier moment it is corresponding to.

Dataset 1 3 5 7 9 11

320/362 267/290 211/247 221/250 213/237  230/245
262/296  252/278 230/251 198/246 212/239  210/225
272/298  273/277 234/257 206/234 203/241 202/231
271/295 264/288 233/263 208/250 233/260 233/260
413/455 361/373 340/319 339/361 367/314 336/347
462/454  433/506 362/397 403/372 346/345 376/367
499/416 397/441 426/414 439/468 741/443 351/274
582/679 455/420 400/408 420/426 409/484 371/351

GTA-IM

PROX

NN W =T W=

Table 5: The effect of the choice of the number of TXCNN
and SPGCNN on prediction results. The row is for the
number of TXCNN layer while the column is for the number
of SPGCNN layers. All readings are in mm, the lower the
better. The numbers are Path/Pose errors. The error is over
2 seconds prediction horizon.
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Component

Layer name / description

Layer strucutre

Input CNN(2,3,k=3,p=1)
. Graph GraphCNN(3,3)
Spatio-Temporal Graph CNN | - digcency CNN(3,3) BN,PReLU,CNN(2,3,k=3,p=1),BN
Temporal CNN CNN(3,3) BN,PReLU,CNN(2,3,k=3,p=1),BN
CNN(3,6,k=3,p=1), BN, PReL.U,
CNN(6,9,k=3,p=1,s=2), BN, PReLU,
Vision Features Extractor CNN(®,12,k=3,p=1,5=2), BN, PReLU,
CNN(12,15,k=3,p=1,s=2), BN, PReLU,
CNN(15,18,k=3,p=1,s=2), BN, PReLU,
CNN(18,21,k=3,p=1,s=2), BN, PReLU
Concatenate C(')ncatena}te' spatio-temporal graph CNN output
with the vision features extractor output
Input CNN(T+C,T,3,p=1), BN, PReLU
Time Extrapolator CNN Middle CNN(T',T k=3,p=1), BN, PReLU + residual
Output CNN(T',T k=3,p=1),

Table 6: Skeleton-Graph architecture description. CNN = Convolutional Neural Layer, k= kernel, p= padding, s= stride, BN=
Batch Normalization, PReLU = Parametric ReLU activation function, T= observed time steps, C= vision signal features

channels and 7T'= predicted time steps.
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