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Abstract

In this paper, we present an end-to-end instance segmen-
tation method that regresses a polygonal boundary for each
object instance. This sparse, vectorized boundary repre-
sentation for objects, while attractive in many downstream
computer vision tasks, quickly runs into issues of parity that
need to be addressed: parity in supervision and parity in
performance when compared to existing pixel-based meth-
ods. This is due in part to object instances being anno-
tated with ground-truth in the form of polygonal boundaries
or segmentation masks, yet being evaluated in a conve-
nient manner using only segmentation masks. Our method,
BoundaryFormer, is a Transformer based architecture that
directly predicts polygons yet uses instance mask segmen-
tations as the ground-truth supervision for computing the
loss. We achieve this by developing an end-to-end differ-
entiable model that solely relies on supervision within the
mask space through differentiable rasterization. Boundary-
Former matches or surpasses the Mask R-CNN method in
terms of instance segmentation quality on both COCO and
Cityscapes while exhibiting significantly better transferabil-
ity across datasets.

1. Introduction
Image segmentation [23] and scene labeling [28, 30] are

amongst the most studied topics in computer vision. In ad-

dition to pixel-wise masks, representing segments/objects

using vectorized boundary representations has applications

and significance in many downstream tasks such as shape

recognition [2], tracking [4], image understanding [31],

medical imaging [26], and 3D reconstruction [5].

The recently emerged instance segmentation task (ob-

jects or areas of interest) [10] greatly propels the practical

significance for object segmentation. Unlike detection, in-

stance segmentation predicts the detailed extent of an object

rather than a coarse bounding box. However, while a bound-

ing box can be represented by only two coordinate pairs

Code at https : / / github . com / mlpc - ucsd /
BoundaryFormer.

Figure 1. We present a model of instance segmentation which pre-

dicts the boundaries of each object in the form of a polygon. This

treats instance segmentation as a regression problem and allows

for end-to-end differentiability of predictions. At the same time,

our model requires no sacrifices in terms of resulting segmentation

quality nor introduces additional supervision requirements com-

pared algorithms which directly predict masks.

and is therefore easily turned into a regression problem,

there are difficulties when deciding how to best represent

and predict the segmentation of an object. These difficulties

combined with a historical preference for convolutional op-

erations has led the computer vision community to become

mask-centric. This entails almost all segmentation models

relying on a spatially dense function which outputs a bi-

nary confidence to determine whether each pixel belongs to

a particular object. This is in contrast to a boundary-centric
notion where a sparse set of structured points are predicted

to denote the boundary of the object in question. Polygons

are one natural choice for this structure. However, because

of some inherent difficulties along with mask-centric biases,

polygons have large hurdles to overcome. First, there is

not an immediately obvious metric (and thus loss) for poly-

gons. Second, the training regimes of mask-based models

often relies on operations and augmentations that are in-
herently difficult to robustly and efficiently implement on

polygons directly. This includes even basic operations like

cropping and intersection. Finally, evaluation of segmen-

tation quality is performed with respect to masks and not

contours which leads to a possible mismatch in training and
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testing objectives when predicting polygons.

Furthermore, one might question why even predict
boundaries over masks? Despite [10] attaining high

quality masks for instance segmentation, obtaining object

boundaries can be more suited towards certain tasks. While

masks have a large degree of flexibility, they also lack an

explicit topology which can lead to degenerate or undesir-

able behavior (e.g., uncertainty at the boundary or unex-

pected interior holes). Explicit boundaries, however, facili-

tate downstream tasks such as plane detection [18] not only

in the form of a rich, top-down structural prior but also as

a continuous output which can be end-to-end differentiated

in a larger system.

Despite many obstacles, past efforts to predict polygons

within instance segmentation have been made. Neverthe-

less, none have been able to achieve parity with baseline

mask-based segmentation models across commonly used

benchmarks. By parity, we mean a few things:

1). Parity in supervision: The method should require no

additional sources of supervision than its mask-based coun-

terpart. In particular, the method should not rely on poly-

gons directly as a source of supervision. This is crucial

since polygons are not always available and deriving poly-

gons from a mask-based ground truth can introduce subop-

timal performance or uncertainty – see Table 4.

2). Parity in evaluation: While polygonal boundary an-

notations do exist in some instance segmentation datasets,

e.g. [16], further technical barriers await when using poly-

gon predictions for evaluation against the ground-truth di-

rectly. This is due to the vectorized polygon representation

not being unique and there existing a one-to-many represen-

tation from masks to polygons. In other words, two similar

masks may have polygons that have large differences in the

control points, creating a mismatch between training loss

and evaluation.

Finally, we also want to deal with 3). Parity in access.

While the predictive model itself might deviate in terms of

architecture, the model should be generally considered to

be a “drop-in” replacement for a mask-based segmentation

head. This includes working within one and two-stage ar-

chitectures, e.g., with respect to either full image or RoI

features.

While certain works have touched upon aspects of our

model [9,14], none has yet to provide a fully polygon based

solution that is accessible to a myriad of architectures and

matches performance of mask-based architectures on stan-

dard datasets. We believe providing a clearer picture into

the capabilities of polygons in providing a performant and

end-to-end differentiable segmentation pipeline could be

helpful to further development within the field. We outline

our contributions below:

1. In this paper, we present a new instance segmenta-

tion method, BoundaryFormer, a Transformer based

approach for predicting an object’s boundary as a
polygon directly. Our model outperforms the strong

baseline Mask R-CNN [10] on the MS-COCO [16]

dataset and achieves competitive results on Cityscapes

[7] when training from scratch while significantly out-

performing it when transferring from a COCO-based

initialization. To the best of our knowledge, this is

the first time a method with polygonal outputs has

matched or exceeded Mask R-CNN on the MS-COCO

dataset. Furthermore, BoundaryFormer does so with-

out compromising its ability to be trained end-to-end.

2. BoundaryFormer uses pixel-wise masks as ground-

truth for supervision and evaluation by utilizing a

novel differentiable rasterization module. There-

fore, BoundaryFormer adds no new supervision re-

quirements over Mask R-CNN [10].

3. By only relying on masks as a source of supervision,

our model can be placed as a drop-in replacement for

the mask-based segmentation head of R-CNN [10] as

either a full image-based component or an RoI-based

component. Furthermore, it can be adopted in other

common architectures including FCOS [29].

2. Related Work
We highlight past work which has predicted polygonal

(or contour-based) segmentations and make special note of

those which have adopted rasterization as a form of super-

vision for their models.

2.1. Point-based Losses
We first discuss contour-based segmentation algorithms

which rely primarily on a matching between predicted

points and ground-truth points sampled from a known poly-

gon. Therefore, these methods require access to some

polygonal ground-truth. As one of the first works built on

modern architectures, DeepSnake [25] considers an initial

octagonal polygon derived from four extreme points, after

which an iterative process of refinement is carried out using

circular convolutions. The resulting refinements are super-

vised using an L1 loss against a uniform ground-truth poly-

gon. On the other hand, PolarMask [34] models polygons in

a polar representation along with an approximation to IoU

as supervisory signal.

Applying a direct distance loss in a Transformer-based

architecture for line segmentation detection [35] and pose

recognition [13] exists, but they have the direct ground-truth

supervision on the points.

PolyTransform [14] uses an off the shelf mask-based

segmentation pipeline to predict an initial binary mask of an

object from which highly accurate initial polygons(s) can be

derived using an non-differentiable border following algo-

rithm. These polygons are then deformed using Transform-
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ers [32] after which a point-based loss is used for supervi-

sory signal.

Building off of DeepSnake, DANCE [20] considers an

FCOS [29] detector to produce an initial box proposal.

Points are uniformly sampled along this box to produce an

initial polygon which can be deformed using an attention-

like process. This initial box contour allows for a novel

ground-truth matching which can be more easily optimized.

In addition, the attentive process plus predicted edge maps

(which relies on access to panoptic annotations) improve

performance.

2.2. Mask-based Losses
We next consider contour-based models which entirely

or in-part rely on rasterized forms of predicted polygons as

supervision. ACDRNet [9] provides a system which takes

crops of objects of interest as input and iteratively deforms

an initial contour by predicting a dense heatmap of offsets in

feature-space. A 3D neural renderer [11] is applied to a tri-

angulation of the predictions against the ground-truth masks

using an MSE loss. In addition, ACDRNet relies on two ad-

ditional losses: a balloon like loss to force expansion of the

contour and a curvature term. While an interesting proof

of concept, the authors do not consider integration into an

actual detection pipeline and performance on the standard

MS-COCO [16] is not considered.

CurveGCN [17] predicts polygonal boundaries through

a graph convolutional neural network from an initial con-

tour proposal. For the bulk of training, they use an ordinary

Chamfer loss, however, they do note that fine-tuning their

model with respect to a differentiable accuracy metric, i.e.

triangulating the polygon into a mesh and supervising with

respect to masks using a differentiable renderer [22] leads

to improved results.

Lastly, some recent work [6] considers using boundary

information as an additional supervision for instance seg-

mentation, however, they still predict masks directly and not

polygons.

3. Method

3.1. Setting

Instance segmentation considers an input image I ∈
R

H×W×3 and is tasked with producing N ordered instances

Oi, 1 ≤ i ≤ N . Most modern benchmarks consider

instances as a tuple (Mi, ci) where Mi is a per-pixel bi-

nary mask denoting membership by the object and where

ci ∈ {1, . . . , C} is the predicted class of the object.

Since Mi is a binary mask, most segmentation models

find it natural to predict some downsampled version of Mi.

Mi is predicted as a discrete grid of continuous confidence

values Mi(x, y) with x ∈ {1, . . . , X ′}, y ∈ {1, . . . , Y ′}
for a mask size of X ′ × Y ′. This phrases mask prediction

as a classification problem. At inference time, Mi is trans-

formed into a binary mask with an ordinary decision rule

(usually Mi(x, y) > 0.5). Therefore, without approxima-

tions or relaxations, Mi is not differentiable for downstream

components relying on Mi(x, y).

In this work, we phrase the prediction of Mi rather as

a regression problem. This decomposes the prediction of

Mi into two parts. First, we predict K vertices Vi =
{(xi

0, y
i
0), . . . , (x

i
K−1, y

i
K−1} which define the boundary of

a polygon in 2D under a fixed ordering. Then, we produce

Mi through rasterization to the desired mask size X ′ × Y ′.
Mi must be produced because instance segmentation re-

lies on masks for evaluation. This leads to the following

choices: how should Vi be predicted and more importantly,

how should Vi be supervised with respect to the ground

truth. We present our approach to this problem as Bound-
aryFormer.

3.2. Instance Segmentation with Mask-supervised
Boundary Regression Transformers

We design BoundaryFormer as a component that can be

added on to existing detection-based frameworks. While we

believe BoundaryFormer is generally applicable, we con-

sider a more concrete setup for the sake of presentation.

In particular, we assume a detector built upon a standard

FPN architecture (this includes FCOS [29] or R-CNN [10])

which produces feature maps F = {P2, . . . , P5} in de-

creasing resolution from the image I . From these fea-

tures, the detector proposes N objects in the form of boxes

Bi = (li, ti, wi, hi) which denote the left edge, top edge,

width, and height of the box respectively. Each Bi cor-

responds to some ground-truth mask Mi where Mi is ex-

pected to be clipped to Bi. We use Bi as a means to ini-

tialize an ellipsoidal polygon Vi(0) inscribed in Bi, sim-

ilar to other contour-based methods [14, 20, 25]. From

Vi(0), our model iteratively refines this shape L times by

Vi(j + 1) = gj(F, Vi(j)) to produce a final prediction

Vi(L).

We visualize a concrete implementation in Figure 2.

Since we are dealing with point sets, we implement g with

Transformers [32] using two kinds of attention. Each vertex

within the polygon Vi corresponds to some point embedding

P k
i where 1 ≤ k ≤ K and includes a “point encoding”

modeled off of the usual Transformer sine positional en-

coding. The first kind of attention allows each P k
i to attend

to all other point embeddings P k′
i within the same object.

The second allows each P k
i to attend to the image features

F . While the first kind of attention is implemented using

ordinary (quadratic) self-attention, we implement the point

to image feature attention using Deformable Attention [36]

which significantly reduces the computational cost. Fur-

thermore, this allows multi-scale across levels P2 through

P5. Finally, for each embedding P k
i , gj predicts a 2D offset
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Figure 2.Illustration of BoundaryFormer:Given an image, multi-scale features are collected and boxes for each object are proposed
by the underlying detector. We initialize a proposed polygon for each box using a simple ellipse. At each layer, attention between points
within the polygon as well as attention from points to the image features is performed in order to refine the polygon. New points are inserted
between existing ones in order to efficiently produce higher resolution polygons as the refinement progresses. After each refinement, the
predicted polygon is rasterized in a differentiable manner and compared to the ground-truth mask using a mask-based loss.

(Δx,Δy)to refine the vertex using an MLP.

3.3. Mask-based Supervision

Given the predictive model, we expect a final output
polygonViconsisting ofKpoints for each proposed box
Bifrom the underlying detector. However, in order to train
such a model, we must provide a means of supervision.
Most previous work has relied upon point-based matching
losses where some scheme to assign a predicted point to
a point in thepolygonal ground-truthis devised. These
might include: the Chamfer distance [14], permutation-
based matching [17], and assignment rules that depend on
the initial contour [20]. However, we believe these ap-
proaches are undesirable and unnecessary. First, they re-
quire access to ground-truth polygons which are not always
available and attempting to derive polygonal contours from
masks is a noisy process (Table4). These ground-truth
polygons might need to be sampled (up or down) against
heuristics in order to satisfy the requirements of point-based
losses. Second, weevaluateinstance segmentation quality
with respect tomasks(i.e. COCO mask AP [16]), and there-
fore it’s not guaranteed that these metrics are optimizing the
desired metric. Lastly, many essential operationsare non-
trivialto implement on polygons directly. This includes:
clipping to a box (required for RoI-like operations), inter-
section, and even union. However, the mask-based coun-
terparts are simple, highly optimized, and differentiable in
existing frameworks.
Therefore, we require our model to only require mask-

I(x, y)V

D(V, x, y)

C(V, x, y)

Figure 3.Illustration of differentiable rasterizer:We illustrate
the transformation from polygonal point predictions to a differ-
entiably rasterized mask: pixels are given signs based on being
within the polygon or not, projections onto the nearest segment are
computed, and Equation1determines the final rasterized value.

based supervision and furthermore, to require it in the exact
same sense as an ordinary mask-based segmentation model.
We transparently handle this transformation from polygon
space to mask space by the usage of a differentiable 2D
rasterizer. Because of the dynamic nature of rasterization,
we are afforded more flexibility than a purely mask-based
model. We now describe specific details of the rasterization
process.

3.3.1 A polygon-specific rasterizer

While previous work [9,17] has used 3D renderers (leav-
ing the depth component constant) to produce masks from
polygons in a differentiable manner, these methods require
the additional step of triangulation. We find this to be un-
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necessary, especially accounting for the time necessary for

triangulation and additional choice of triangulation method

required. Rather, we use [19] as inspiration to design a ras-

terizer that operates on polygons directly rather than trian-

gulated meshes.

The pipeline of the proposed differentiable rasterizer is

shown in Figure 3. Consider a polygon with vertices V and

a desired rasterization pixel size of X ′ × Y ′. For each pixel

(x, y) where 0 ≤ x < X ′, 0 ≤ y < Y ′, we use a PnP algo-

rithm [1] to determine whether the pixel at position (x, y)
lies within the polygon as C(V, x, y), where C = 1 if it lies

within and −1 if it does not. Then, each pixel (x, y) is pro-

jected onto the closest segment on the polygon’s boundary

and this distance is recorded as D(V, x, y). Finally, follow-

ing [19], we model each pixel’s contribution to the raster-

ized image as a sigmoidal function (with some sharpness τ )

according to the associated distance:

I(x, y) = σ

(
C(V, x, y) ∗D(V, x, y)

τ

)
(1)

Therefore, this rasterizer provides signal solely from the

boundary without the need to consider derived mesh points.

The rasterizer and backwards pass are implemented en-

tirely in CUDA. This affords us efficiency to train solely

with the differentiable rasterizer for the entirety of training.

We find the Dice [24] loss to be critical to the success of

training with rasterized masks, although it’s likely similar

losses, e.g., Lovasz-Softmax [3] perform equally well.

3.3.2 Alignment
Alignment with ground-truth: We emphasize that we use

the exact same ground-truth masks (although possibly at

differing resolutions) as an ordinary R-CNN pipeline. Thus,

it is imperative that we ensure our differentiable rasteriza-

tion is “aligned” to the method of rasterization built into

the COCO API [16]. Due to differences in what is consid-

ered a “pixel”, we ensure that we subtract a half pixel on all

coordinates before passing them to our rasterizer. This sig-

nificantly improves alignment and thus performance, e.g.,

mask AP drops from 36.1 AP to 35.3 AP when not aligned.

Alignment with architecture: When building off of ex-

isting architectures, e.g., FPN [15], operations often have

a bias towards alignment with convolutions. We find that

when we attempt to use BoundaryFormer in an RoI-less

setting, i.e., directly attending to the full image-based fea-

tures, it is essential to perform a global pooling-like oper-

ation to significantly increase performance — without this,

mask AP drops from 36.1 AP to 34.2 AP. We hypothesize

this might be due to aliasing in the deconvolutional process

of the FPN.

3.4. Coarse to fine upsampling
By having each point dedicated to a single point query

embedding, we afford a great deal of flexibility to our

model. However, since often we might have a large num-

ber O of objects or object proposals and K control points

for each object, this can require computation on the order

of O ∗K ∗ L if we include L layers. At the same time, it’s

unlikely that we truly need K vertices until the prediction

is itself more accurate. Therefore, we consider a base num-

ber of control points B (usually 8) and upsample the points

by 2× at each layer. Specifically, given Vi(l) consisting of

K(l) points, we first apply gl(G, Vi(l)) to get refinements to

produce Vi(l + 1) still consisting of K(l) points. Then, be-

tween each point (xj , yj) and (xj+1, yj+1), we insert a new

point at the midpoint
(

xj+xj+1

2 ,
yj+yj+1

2

)
. We do not av-

erage the corresponding point embeddings Pj and Pj+1 to

initialize the new point and instead insert the corresponding

“learned” point embedding . Overall, this speeds up train-

ing and memory consumption by about 1.5× versus using

the same number of points at each layer.

3.5. Loss

We finally present the loss of our polygon-based bound-

ary prediction model trained jointly with a box-based detec-

tor. Suppose the detector is trained against Lbbox. We de-

note the subset of foreground-matched boxes as {Bi | 1 ≤
i ≤ R} and associate ground-truth mask Mi of resolution

X ′ × Y ′ to each. If our predictive model of polygons con-

sists of L layers, then we have dense outputs corresponding

to Vi(l) with 1 ≤ l ≤ L. Then, using Ii(l) to denote the

(differentiably) rasterized version of Vi(l), we define a total

loss:

L = Lbbox +
L∑
l

R∑
i=1

Dice (Ii(l),Mi) (2)

This loss provides parity in supervision since like a stan-

dard instance segmentation model, it relies only on access

to ground-truth masks Mi.

4. Experiments
We evaluate the parity in performance of Boundary-

Former across the commonly used MS-COCO dataset

[16] and Cityscapes dataset [7]. We additionally provide

experiments for transferring models from MS-COCO to

Cityscapes to illustrate possible differences based on the un-

derlying representation learned. We focus on comparisons

with Mask R-CNN [10] as the standard baseline for instance

segmentation, although, we calibrate our results with other

contour-based and masked-based models. Furthermore, we

consider inclusion of BoundaryFormer in both single stage,

FCOS [29], and two stage approaches, Faster R-CNN [27].

4.1. Training Details

All models are trained in an end-to-end fashion with re-

spect to the entire network. We aim to keep underlying
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backbones and architectures as close as possible to Mask

R-CNN [10] to compare as fairly as possible. Therefore,

unless specified, we use a ResNet50-FPN backbone for

all models and follow the exact same settings as Mask-

RCNN in Detectron2 [33] with only the “mask head” of

Mask R-CNN replaced with the architecture outlined in Fig-

ure 2. While Mask R-CNN requires RoI pooling to predict

masks, this feature is optional in our approach and frees us

from constraints that such a grid-based approach imposes.

Rather, we present results without the need of RoI pool-

ing such that the point to image features attention is with

respect to the entirety of {P2, . . . , P5}. One notable excep-

tion to standard training is that instead of SGD, we train all

models with the Adam [12] optimizer according to the set-

tings outlined in Swin [21] due to our use of Transformers

(except a weight decay of 0.20 for larger models).

For details specific to BoundaryFormer, we train all

models with coarse to fine upsampling over 4 layers of

Transformers [32] to produce a final output of 64 points on

COCO and 128 on Cityscapes. All other parameters with

respect to deformable attention follow the same settings of

Deformable DETR’s [36] decoder layer.

For rasterization, we find that τ = 0.1 (denoting raster-

ization smoothness) generally performs well. Additionally,

we rasterize polygons during training to a fixed X ′ × Y ′ =
64×64 resolution. When performing rasterization, we only
rasterize the predicted polygon within its box, not with re-

spect to the entire image. This emulates the behavior of RoI

pooling. Like Mask R-CNN [10], the ground-truth mask is

clipped to this box.

Inference: At inference time, we follow the same infer-

ence procedures as the underlying detector. We rely on ras-

terization from the COCO API directly [16] rather than our

own rasterizer since differentiability is not required.

4.2. COCO

COCO [16] is a large-scale dataset containing 118K

training images of natural scenes with 80 annotated fore-

ground classes. It has historically been a relatively difficult

dataset for contour or boundary-based models to achieve

parity in performance with mask-based approaches. As far

as we can tell, our model is the first to achieve parity in
mask quality to Mask R-CNN on COCO.

We detail these comparisons in Tables 1 and 2. We note

that BoundaryFormer achieves a slight edge in mask quality

over Mask R-CNN and is competitive with the boundary-

preserving variant [6] while significantly outperforming the

best contour-based method [20]. At the same time, we ob-

serve that both models attain the same box performance —

indicating that both tasks (mask or polygon prediction) pro-

vide multi-task training benefits to the underlying detector

when trained end-to-end. While we find the best results us-

ing R-CNN as an underlying architecture, BoundaryFormer

Method Backbone Detector AP AP50 APbbox

Mask R-CNN [10] R50-FPN R-CNN 35.2 56.3 38.6

Mask R-CNN* [10] R50-FPN R-CNN 35.8 56.8 38.8

BMask R-CNN [6] R50-FPN R-CNN 36.6 56.7 39.4

BMask R-CNN* [6] R50-FPN R-CNN 36.4 56.3 37.8

DANCE [20] R50-FPN FCOS 34.5 55.3 40.2

BoundaryFormer (ours) R50-FPN FCOS 35.8 55.7 40.2

BoundaryFormer (ours) R50-FPN R-CNN 36.1 56.7 38.8

Table 1. Results on MS-COCO val: We compare Boundary-

Former to the state of the art in contour/boundary prediction [20]

as well as mask-based counterparts. * indicates re-trained with

Adam [12].

can still match Mask R-CNN when using FCOS. Perfor-

mance appears to be slightly worse despite performing bet-

ter with respect to box AP. We hypothesize this might be

due to FCOS using only P3-P7 within its FPN whereas R-

CNN includes P2 and thus might learn enhanced features

relevant to boundary prediction.

4.3. Cityscapes

Cityscapes [7] consists of a diverse set of street scenes

across European cities. The dataset is relatively small com-

pared to COCO — consisting of only 2975 training images,

however, each image is of a high resolution and annotation

quality. Furthermore, it is notable for its large amount of oc-

clusion [10] which causes a significant number of instances

to be fragmented into multiple simple polygons. This cre-

ates problems for boundary prediction which usually only

consists of predicting and matching to a single ground-truth

polygon. While we compare to other methods which in-

clude mitigations (e.g., initialization from masks [14]), we

emphasize that BoundaryFormer uses no special handling
and does not deviate from the standard training process.

We highlight the performance of our method with re-

spect to both ImageNet and COCO initializations. COCO

initializations are made using a model trained under the

standard 1x training schedule, i.e., the models in Table 1.

Mask R-CNN [10] and BoundaryFormer results are the av-

erage of three runs to account for well-known instabilities

in Cityscapes training.

We observe that BoundaryFormer is still able to achieve

parity with Mask R-CNN despite being at a significant dis-

advantage by predicting a single polygon for fragmented

objects. Surprisingly, when initializing BoundaryFormer

from COCO, it significantly exceeds Mask R-CNN in final

performance which might indicate a polygonal representa-

tion transfers well.

4.4. Ablation studies

We provide ablations for the hyperparameters of both

the supervision (the rasterization process) and some model-

specific hyperparameters/justifications.

Polygonal ground-truth from masks? While we promote
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Method Backbone Detector Schedule Output Supervision AP AP50 AP75 APS APM APL

Mask R-CNN [10] R50-FPN R-CNN 1× masks masks 36.1 57.3 38.7 19.7 38.0 47.1

Mask R-CNN [10] R101-FPN R-CNN 3× masks masks 39.2 61.1 42.3 22.4 41.4 50.7

BMask R-CNN [6] R50-FPN R-CNN 1× masks masks 36.6 57.0 39.6 19.4 38.7 48.0

BMask R-CNN [6] R101-FPN R-CNN 1× masks masks 38.3 59.2 41.3 20.3 40.8 50.2

DeepSnake [25] R50-FPN CenterNet - polygons polygons 30.5 - - - - -

PolarMask [25] R101-FPN FCOS 2× polygons polygons 32.1 53.7 33.1 14.7 33.8 45.3

DANCE [20] R50-FPN FCOS 1× polygons polygons + panoptic 34.6 55.9 36.4 19.3 37.2 43.9

DANCE [20] R101-FPN FCOS 3× polygons polygons + panoptic 38.1 60.2 40.5 21.5 40.7 48.8

BoundaryFormer (ours) R50-FPN R-CNN 1× polygons masks 36.4 57.2 39.0 19.6 38.6 47.9

BoundaryFormer (ours) R101-FPN R-CNN 1× polygons masks 37.7 58.8 40.5 20.4 40.2 49.0

BoundaryFormer (ours) R101-FPN R-CNN 3× polygons masks 39.4 60.9 42.6 22.1 42.0 51.2

Table 2. Results on MS-COCO test-dev: We evaluate and compare BoundaryFormer on the MS-COCO test-dev set with larger backbones

and longer training schedules, showing that its performance scales as expected while staying competitive with strong mask-based baselines.

Method model init poly init e2e sup AP AP50

Mask R-CNN* [10] ImageNet N/A - masks 34.2 60.7

Mask R-CNN* [10] COCO N/A - masks 36.5 62.0

DeepSnake [25] ImageNet extreme pts � poly 28.2 -

UPSNet [14] COCO pred masks - masks 37.8 -

PolyTransform [14] COCO pred masks - both 40.2 -

BoundaryFormer ImageNet ellipse � masks 34.7 60.8

BoundaryFormer COCO ellipse � masks 38.3 62.9

Table 3. Results on Cityscapes val: We establish that Boundary-

Former can maintain parity with Mask R-CNN even on the dif-

ficult Cityscapes dataset. Additionally, when using a model ini-

tialized from COCO, BoundaryFormer shows improved transfer

ability over Mask R-CNN and is competitive with PolyTransform,

which requires the use of a mask head to initialize its contours.

Lastly, BoundaryFormer is the only model that both relies solely

on ground-truth masks for supervision and is end-to-end differen-

tiable. * indicates re-trained with Adam [12].

the usage of masks directly as supervision of our model

for both performance and flexibility, contour models that

require access to polygonal ground-truth could resort to

generating contours from masks themselves when masks

are the only available annotation source. Therefore, we

re-generate the COCO training dataset (where polygonal

ground-truth is available) and replace the existing segmen-

tations with those generated using a border following al-

gorithm (i.e., cv2.findContours) in order to retrain

DANCE [20]. In Table 4, we observe sharp decreases in

resulting performance as measured by the unmodified MS-

COCO val set — indicating that generating polygons from

masks can introduce errors. While it’s plausible this could

be improved, we believe it acts as an unnecessary barrier in

producing an accurate, certain model.

DANCE [20] Polygons (verbatim) Polygons (from masks)

Mask AP 34.5 23.1

Table 4. Comparison in training a point-based supervised
model using verbatim polygons from annotators or those gen-
erated using standard algorithms from masks.

Rasterization smoothness (τ ): The rasterization smooth-

ness dictates the (inverse) steepness of the sigmoidal func-

tion in Equation 1. While it must be sufficiently large to

allow good gradient flow, it should also be small enough to

accurately reflect what will be predicted at inference time,

i.e., the hard rasterization of the predicted polygons. We

find that lower values of τ are required (i.e. sharper), how-

ever, within that lower range, the performance is generally

robust with values around τ = 0.1 to be sufficient. Larger

values, e.g., τ = 1.0 lack sufficient sharpness for optimal

results and mask AP drops to 35.6.

Rasterization resolution (X ′ × Y ′): Like Mask R-CNN,

each instance is supervised at a fixed resolution with respect

to some mask loss. We investigate the impact of the choice

of resolution on resulting performance. In our experiments,

we find that 64 × 64 performs well with performance satu-

rating at larger resolutions. However, this might be a conse-

quence of the lower quality annotations in COCO and these

characteristics might change on higher quality annotations,

e.g., LVIS [8].

X′ × Y ′ 14× 14 20× 20 40× 40 64× 64 80× 80

Mask AP 34.5 35.5 35.9 36.1 36.1

Number of control points/layers (K,L): We investigate

the tradeoff in performance given the number of initial

points, number of layers, and whether to use a coarse to fine

strategy (i.e., K1 �= KL). We find that even with only two

layers, the model still performs reasonably well — suffering

only a 1 point drop in Mask AP. Furthermore, we find using

less points to lead to similar drop, however, we observe no

degradation in performance when comparing our coarse to

fine strategy to a dense one.

L/K1/KL 2/32/64 3/16/64 4/4/32 4/8/64 4/64/64 4/16/128

Mask AP 35.0 35.7 35.2 36.1 36.1 36.2

5. Qualitative Analysis
We briefly investigate the general qualitative quality of

predicted polygons in Table 4. Furthermore, we observe
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Figure 4.BoundaryFormer is able to predict high quality instance segmentations over the MS-COCO dataset:Predicted boundary
points are shown in black. The resulting rasterized mask is overlayed onto the instance in color.

some robustness to fragmented objects in Figure5bwhere
multiple polygons are required for to make a perfect predic-
tion. Nonetheless, BoundaryFormer has implicitly learned
a reasonable single-polygon approximation — likely owing
to its supervision in the form of masks. Finally, we exhibit
the approximations our coarse to fine strategy learns in Fig-
ure5aand improvements in quality it makes as more and
more points become available.

V(1) V(2) V(3) V(4) ground truth

(a)

(b)

Figure 5.Progressive refinement and fragment robustness (a)
illustrates the progressive improvement in boundary quality over
layers.(b)shows some implicitly learned robustness to frag-
mented objects (ground-truth is shown in the top-left).

6. Conclusion
We presented BoundaryFormer, a simple baseline for re-

gressing instance segmentations as polygonal boundaries
rather than predicting dense masks. Despite regressing
polygons, this model relies on supervisiononly through
masks. Combined with a strong point-based architecture
and supervision in pixel space, BoundaryFormer can match
and outperform mask-based counterparts across a variety of
datasets. As a result, we believe that many tasks that have
historically been mask-based,e.g., semantic and panoptic
segmentation can now be revisited. Furthermore, we hope
downstream tasks that have relied on non-differentiable
mask predictions can now consider using the sparse repre-
sentation of a polygon and the end-to-end differentiability
it provides. Finally, we believe further research can allevi-
ate some limitations: predicting fragmented objects faith-
fully, incorporating additional mask-based advancements,
and finding more efficient architectures. While this work
predictsa sparse representation, it nonetheless requires the
full, dense form of an object’s mask for supervision — rais-
ing the issue of whether the supervision could be made
sparser and more boundary-centric.
Societal impact:Our work is concerned with predicting ex-
tents of objects within images. Like other systems of detec-
tion and recognition, both bias learned from datasets as well
as misuse could cause societal harm. However, we believe
our work is consistent with the existing risks in advancing
such systems.
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