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Abstract
Deep generative models have enabled the automated synthesis of high-quality data for
diverse applications. However, the most effective generative models are specialized in data
from a single domain (e.g., images or text). Real-world applications such as healthcare
require multimodal data from multiple domains (e.g., both images and corresponding text),
which are challenging to acquire due to limited availability and privacy concerns and are
much harder to synthesize. To tackle this joint synthesis challenge, we propose an End-to-end
MultImodal X-ray genERative model (EMIXER) for jointly synthesizing x-ray images and
corresponding free-text reports, all conditional on diagnosis labels. EMIXER is a conditional
generative adversarial model by 1) generating an image based on a label, 2) encoding
the image to a hidden embedding, 3) producing the corresponding text via a hierarchical
decoder from the image embedding, and 4) a joint discriminator for assessing both the
image and the corresponding text. EMIXER also enables self-supervision to leverage a vast
amount of unlabeled data. Extensive experiments with real X-ray reports data illustrate
how data augmentation using synthesized multimodal samples can improve the performance
of various supervised tasks, including COVID-19 X-ray classification with limited samples.
Radiologists also confirm the quality of generated images and reports. We quantitatively
show that EMIXER generated synthetic datasets can augment X-ray image classification, and
report generation models to achieve 5.94% and 6.9% improvement on models trained only
on real data samples. Overall, our results highlight the promise of generative models to
overcome challenges in machine learning in healthcare.

1. Introduction

While clinical applications of supervised machine learning algorithms continue to advance,
their impact is stifled by the limited amount of available labeled clinical data. This issue
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is only more dire by applications such as radiology report generation for medical images,
which jointly combine paired data across images, clinical notes, and diagnosis labels. Data
sharing across healthcare organizations and institutions remains problematic, often due
to legal and privacy concerns McGuire et al. (2008); Filkins et al. (2016). On the other
hand, generative modeling has improved dramatically in the past few years. While early
Generative Adversarial Networks (GANs) could only synthesize low-resolution grayscale
images Goodfellow et al. (2014), state-of-art generative models can now synthesize diverse
high-quality and high-resolution images Brock et al. (2018); Karras et al. (2017, 2019a,b).
GANs and related generative models have been applied to various domains such as computer
vision Brock et al. (2018); Karras et al. (2017), natural language processing Dai et al. (2017b);
Fedus et al. (2018), time-series synthesis Brophy et al. (2019), semantic segmentation Dong
et al. (2017); Luc et al. (2016), among others. This manuscript explores using generative
models to address the challenge of limited data in machine learning for clinical applications.
We explore a variety of applications, with a focus on using synthetic data to augment real
datasets – increasing the amount of the data and labels available Choi et al. (2017), thereby
improving downstream model performance.

We focus on X-rays as they are a primary diagnostic tool in many clinical workflows,
most importantly in radiology, and are used for detecting pneumonia, bone fracture, and
cancerRajpurkar et al. (2017); Gulshan et al. (2016). Recent research efforts have shown
promise for lung cancer detection in radiology, prostate cancer in pathology, and differential
diagnoses in dermatology Ardila et al. (2019); Fujisawa et al. (2019); Arvaniti et al. (2018);
Mohamed et al. (2018). Most recently, X-rays have been employed for the coronavirus
diagnosis and prognosis Jacobi et al. (2020). Along with X-rays, associated reports written
by clinicians are the primary communication between patients and doctors Schwartz et al.
(2011); Kahn Jr et al. (2009). Several deep learning based X-ray image to report writing
method have been proposed Jing et al. (2017, 2020); Li et al. (2018). Researchers have
proposed generative models for clinical data Choi et al. (2017). However, existing methods
are limited to a single modality – images or clinical reports only.

Thus, current generative models are not able to produce high-quality multimodal synthetic
datasets, which is the focus of this paper. This manuscript investigates an end-to-end approach
for generating multimodal X-ray images and text reports which are essential for radiology
applications. To this end, our work addresses the following challenges.

• Multimodal generation of images and corresponding reports: Multimodal genera-
tive models are difficult to train compared to single-mode modal generative models Liu
and Tuzel (2016); Isola et al. (2017); Zhu et al. (2017b,a); Choi et al. (2018, 2020). In the
past few years, there have been multiple attempts at developing models that can generate
multiple modalities at the same time Pu et al. (2018). In particular, text synthesis using
generative models has proven to be extremely challenging – most likely because discrete
text tokens are not differentiable – making it more difficult to train GANs. We show that
using an end-to-end approach, combined with appropriate text embeddings, can overcome
these issues.

• Generative model training with limited labels: Generative models typically require
large quantities of high-quality labeled data for training. However, labels are scarcely
available in real-world applications such as the medical domain. This renders training
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of high-quality generative models challenging. We present successful results with limited
labeled X-ray data along with a large amount of unlabeled X-ray data and conjecture
about the properties of X-rays, which make this feasible.

• Difficultly of data augmentation with limited data: The task of training a generative
model for classifier augmentation Huang et al. (2018); Antoniou et al. (2017) is particularly
challenging in the case of rare diseases or new phenotypes, as the limited amount of labels
render training of generative models difficult. For example, in the case of the COVID-19
pandemic, the amount of available X-ray data and labels is extremely low. Given the
limited labels, training high-quality generative models to augment the original dataset is a
challenge. Pretraining models of large and diverse augmented data can potentially provide
robust embeddings for new phenotypes.

We propose EMIXER, an end-to-end multimodal generative model that can generate paired
chest X-ray images and corresponding reports simultaneously, conditioned on diagnosis labels.
Our primary contributions are summarized in the following.

• Multimodal X-ray image and report generation. We show that EMIXER generates
high-quality X-ray images and corresponding reports. Multiple radiologists scored average
7.340/10 for synthetic data and 7.825/10 for real data on their realisticness and quality.
Furthermore, EMIXER generated synthetic datasets used to augment X-ray image classifi-
cation models lead to up to 5.94% improvement in classification accuracy compared to
models trained on real X-ray images only. Similarly, EMIXER augmented paired X-ray image
and report datasets to improve X-ray report generation models up to 6.9% as measured
by the CIDEr scores.

• Learning high-quality generative models from limited samples. EMIXER uses
self-supervision to enable learning of high-quality generative models from limited labels.
We show that even with 30% of the original labels, EMIXER can outperform baselines with
the 100% labeled data in terms of image classification and report generation tasks.

• Improved classification of COVID-19 chest X-rays via data augmentation. We
utilize the pre-trained model of EMIXER with augmenting classification models, applied
to the automated diagnosis of COVID-19 from X-ray images. Our results show 11%
improvement in predictive accuracy than the one without using pre-trained EMIXER model.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our work shows that multimodal generative models can help overcome two major challenges
in machine learning for healthcare. First, generative models enable generating synthetic
data that can be shared across healthcare institutions to overcome data access issues.
Synthetic multimodal data such X-ray image and reports can facilitate machine learning
model development by many researchers who can not access private datasets. Second,
generative models can augment real datasets to improve model performance. In machine
learning for healthcare, there are many applications where dataset sizes are small to develop
machine learning models. Generative models can augment real datasets to improve model
performance leading more widespread adoption and deployment. Our method may be helpful
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in showing that these challenges in healthcare can be solved with multimodal generative
models.

2. Related Work

Generative models. In the past few years, there has been significant progress in generative
modeling of complex imaging data. Since the introduction of the Generative Adversarial
Networks (GAN), there have been many variants proposed, such as DCGAN, Progressive GAN,
Self-supervised GANs Goodfellow et al. (2014); Karras et al. (2017); Radford et al. (2015); Dai
et al. (2017a), among others. In addition to GANs, other types of generative models are also
quite widely used such as Flow Models, Autoregressive Models, and variational autoencoders
Kingma and Welling (2013); Kingma and Dhariwal (2018); Dinh et al. (2014, 2016). Flow
Models use a stack of invertible transformations to a sample from prior distributions, and
thus can compute the exact log-likelihoods of observations. Autoregressive models factorize
the distribution over observations into a sequence of conditional distributions (e.g. over pixels
for images), then process each component in sequence Oord et al. (2016); Van den Oord
et al. (2016). For image generation applications, GAN-based models produce among the
photo-realistic images. However, the training of GAN models can be quite challenging with
known issues such as mode collapse, and instability in convergence Salimans et al. (2016).
There have been many works to improve upon these challenges, e.g., by changing the objective
function Arjovsky et al. (2017). Some other research efforts have focused on constraining
the discriminator through gradient penalties or normalization Miyato and Koyama (2018).
BigGAN Zhang et al. (2018); Brock et al. (2018) adds the self-attention block, and ProGAN
considers training a single model across a sequence of increasing resolutions Karras et al.
(2017). While there is a lot of effort in modeling single modalities, especially images, there is
a shortage of research on multimodal image and text generation. This work addresses the
challenge of multimodal joint generation of image and text.
Medical report generation. Deep learning based image classification has been successfully
applied to many different types of medical image classification tasks such as diabetic retinopa-
thy classification, X-ray classification, cancer detection from cell images, and X-ray based
bone classification Wang et al. (2018); Gulshan et al. (2016); Milletari et al. (2016), among
other applications. Similarly, different image segmentation algorithms have successfully
applied to medical images to identify different organs and diseases. There have been progress
in the task of automated report generation for medical images such as X-rays Liu et al.
(2019). Generative models have been applied X-ray image generation but do not handle
multimodal data generation Waheed et al. (2020). Existing applications of machine learning
to clinical tasks must address a variety of challenges, such availability of large datasets.

3. Methods

3.1. Problem Definition

We begin by introducing notations. We denote real chest X-ray images as In ∈ Rl×l where
l× l is the size of the image, text X-ray reports as Sn and labels as yn ∈ {0, 1}k for nth data
sample.
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Figure 1: An overview of EMIXER generator framework

The X-ray report Sn contains a sequence of sentences Sn = [sn1 . . . snT ], where the report
length T may vary. Sentence snt consists of sequence of words snt = [an

t,1,a
n
t,2, . . .] where

an
t,j j-th word represented as one-hot vectors in the sentence t of document n.

The dataset, denoted as E is a combination of images In, reports Sn and labels yn denoted
as E = {In,Sn,yn}Nn=1. EMIXER generates synthetic dataset that consists of synthetic X-ray
images În, synthetic report Ŝn conditioned on class labels. We train an end-to-end generative
model which consists of an X-ray image generator G, X-ray image discriminator Dimage,
X-ray report discriminator Dreport, and an X-ray image to report decoder F. Each of these
components is a neural network that are trained jointly to produce paired X-ray images and
clinical reports conditioned on diagnosis labels.

3.2. The EMIXER Model

We describe primary components of EMIXER in this section. As illustrated in Fig. 1, EMIXER is
composed of four different trainable networks: (a) Image generator: This image generator
synthesizes X-ray images from a prior noise distribution conditioned on label information
(b) Image to report decoder: An image to report decoder produces a text report from
X-ray image (c) Image Discriminator: This discriminator is tasked with discriminating
between real and synthetic X-ray images (d) Text Discriminator: This text discriminator
distinguishes between real and synthetic X-ray reports (e) Joint discriminator: The joint
discriminator combines the embedding of X-ray images and text to discriminate between
real and synthetic embeddings.

3.2.1. X-ray Image Generator (G)

An X-ray image generator is a deep neural network that accepts two inputs; a noise vector
z ∈ Rdz and class information y represented as one-hot vector. First, we split the noise
vector z to obtain zspl ∈ R20 vectors.

The vectors zspl is passed through a linear layer to obtain zin, zin = Wlzspl + bl. We
embed the class information y via a linear layer to obtain yemb ∈ R128. zin concatenated
with yemb is passed through three layers of residual-block which applies batch-normalization
with deconvolution operation, resout = res-block(zin,yemb) He et al. (2016). The output
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resout is passed through a self-attention block which applies applies a 1 × 1 convolution
operation with softmax to obtain intermediate feature vectors which are combined with
the original input to compute the att-block, attout = self-att-block(resout). Finally this
output self-att-block is passed through another res-block to obtain the Î as the output of
image generator. Taken together, the generator network can be abstracted as the following
Î = G (z,y). We provide implementation details of res-block, self-att-block blocks in the
supplement.

3.2.2. X-ray Report Generator (F)

The image is fed through an image encoder convolutional neural network(CNN) to obtain
a feature representation. These feature vectors are passed to a sentence decoder RNN to
recurrently generate topic vectors for each sentence. These topic vectors are used by a word
decoder to generate the words for each sentence as Ŝ = F(̂I).

X-ray image encoder Specifically, given an image I, we first extract its features v ∈ R512

from an intermediate layer of a CNN, v = CNN(I). We use a pretrained DenseNet-121 as
the CNN model trained on a different chest X-ray dataset Huang et al. (2017). Note that
this CNN is different from the CNN used in the image discriminator Dimage. The report
generator module is composed of a sentence decoder and word decoder RNN which are
described below.

Sentence decoder RNN: Given the X-ray image features v extracted by the CNN, a
sentence decoder is used generate topic vectors ti. We employ a Long-Short Term Memory
network (LSTM) to compute the hidden state as hi = LSTM(v;hi-1). We use the hidden
states in two ways: First, we project the hidden state hi through a linear layer and logistic
layer to get probability distribution ui over two states CONTINUE = 0, STOP = 1. Second,
we also feed hi through three-layered fully connected network to get a topic vector tifor ith
sentence in the report, ti = Wtohi + bto.

Word decoder RNN: The words for each individual sentence are generated by a
word decoder which is a trainable three-layer LSTM. The sentence topics ti generated by
the sentence decoder are combined with the <START> token as input for the first and
second input to the word LSTM. In subsequent steps, we provide the hidden state of the
last LSTM layer to predict a distribution over the words in the vocabulary. The hidden
state hword ∈ RH of the word LSTM is directly used to predict the distribution over words:
p (word|hword) = softmax (Wouthword) where Wout is the parameter matrix. Finally, after
the word decoder generates the word sequences, we concatenate all the generated sequence
to obtain the final report.

3.2.3. Discriminator (D)

EMIXER uses three discriminators, an image discriminator, a report discriminator and joint
embedding discriminator to ensure image and report consistency of the synthetic data. The
image discriminator measures whether the generated image Î matches the image distribution
of real X-ray images, and the report discriminator Ŝ discriminates between the real and
synthetic X-ray reports.

X-ray Image discriminator (Dimage): We use a convolutional neural network discrimi-
nator for X-ray images which are fed real and synthetic X-ray images for classification. The
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discriminators use a ResNet architecture where the input image is passed through multiple
layers of ResBlocks, where ResBlocks are composed of 3×3 convolution with ReLU layers He
et al. (2016). This image discriminator can be represented as D(I, y) = crf(D̃(I))+P (D̃(I), y)
where P (ṽ, y) = x̃⊤Wy is a linear layer with weight matrix W applied to to image feature v
and one-hot encoded label y. crf is a linear classifier tasked with detecting if the provided
sample is real or fake.

X-ray Report Discriminator (Dreport): We use a X-ray report discriminator which
classifies a given X-ray report as real or fake. X-ray reports generated from the decoder
and real X-ray reports are passed as input discriminator. We employ a LSTM to to extract
text embeddings from given X-ray report S, p = LSTM(S) Cho et al. (2014). These report
embeddings p are passed through multi-layer linear layers with softmax layer to obtain yr/f .
The report discriminator can be abstracted as to discriminate between real or fake report
embedding as yr/f = Dreport(ê). We provide further details of the implementation in the
supplementary section.

Joint Discriminator for X-ray images and Reports (Djoint): Along with the image
discriminator and report discriminator, we also use a joint embedding discriminator. We
hypothesize that as the X-ray images and reports are dependent upon each other, a joint
multimodal embedding discriminator provides further guidance to the generator network for
generating higher quality images and reports. This joint embedding discriminator is designed
to discriminate real joint embeddings from fake joint embeddings. The joint embedding
discriminator first obtains image features Iemb from the X-ray images using a CNN before
the pooling layer. The text-reports are provided as input to an LSTM. The last hidden vector
of the LSTM is passed through a linear layer to obtain report embedding Semb. The image
feature vector Iemb and report embedding Semb are concatenated together to form the joint
embedding Cjoint. This joint embedding is passed through linear layers to obtain probability
of real or fake embedding. This discriminator can be abstracted as yr/f = Djoint(Ĉjoint).

Learning: Previous works have shown that self-supervision guide the classifier to learn
useful data representation by detecting auxiliary information such as rotation angles. When
applied to image classification, typically images are rotated and the angle of rotation is
provided as the artificial label. In this rotation task, the self-supervised task is to predict
the angle of rotation of an image. We use R = {0, 90, 180, 270} rotation angles. Image I is
rotated by r degrees is denoted as Ir and QDimage (R = r|Ir) is probability distribution over
the rotation angles. The EMIXER framework corresponds to a constrained minimax game
given by where the value function V is given by

V (G,D∗) = Ex1∼pX1

[
− logDimage

(
Î
)]

+ Ez∼pZ [− log (1−Dimage (G(z)))]

+ Ex1∼pX1

[
− logDreport

(
Ŝ
)]

+ Ez∼pZ [− log (1−Dreport(F (G(z)))]

+ Ex1∼pX1

[
− logDjoint

(
Î, Ŝ

)]
+ Ez∼pZ [− log (1−Djoint(F (G(z)) , G(z))]

+ αEx∼PG
Er∼R

[
logQDimage (R = r|Ir)

]
where G, Dimage, Dreport, Djoint, F are the image generator, image discriminator, report

discriminator and image to report decoder, respectively. EMIXER can be trained by back
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propagation with the alternating gradient update steps. The details of the learning algorithm
are given in the supplementary materials.

4. Experiments

In this section, we perform extensive evaluations to measure the effectiveness of EMIXER for
paired chest X-ray images and report generation. We empirically show that (1) our proposed
model can generate high-quality X-ray images and reports (2) EMIXER with self-supervised
loss can match the generated sample quality of the conditional models using an only fraction
of labels (3) EMIXER can be used to augment datasets in limited label settings such as
COVID-19 chest X-ray detection.

4.1. Datasets

We perform experiments on MIMIC-CXR dataset, one of the largest X-ray datasets containing
377,110 X-ray images and corresponding reports Johnson et al. (2019). MIMIC dataset
contains 377,110 chest X-rays associated with 227,827 imaging studies sourced from the Beth
Israel Deaconess Medical Center between 2011-2016. The labels extracted from the reports
include 14 different unique classes. We resize the images to 128× 128× 3 as done in previous
work Miyato and Koyama (2018).

4.2. Evaluation Metrics

We perform quantitative and qualitative experiments: (a) We used accuracy and AUC as
classification metrics for classification experiments. We use CIDEr, BLEU scores for image
captioning experiments Vedantam et al. (2015); Papineni et al. (2002). (b) To evaluate
X-ray image quality, we use the Fréchet Inception Distance (FID) scores. We use a special
pre-trained Inception network on chest X-ray images. We have provided further details in
the supplement. Lower FID scores indicate that model can generate different images per
class so it’s indicative of whether the model is able to generate diverse images. If the model
generates images that are not diverse, the distance of the data distribution will be higher
from the real samples. (c) We qualitatively evaluate the generated X-ray images and reports.
We present randomized pairs of real or synthetic X-ray images and reports to clinical experts
for evaluation (they do not know if the presented sample is real or synthetic). The clinical
experts were asked to provide a numerical quality score between 1-10 (10 being the best) for
each sample.

4.3. Models

JointGAN: JointGAN trains multiple generators and a single softmax-based critic, all
jointly trained via adversarial learningPu et al. (2018) to generate joint data distributions.
CoGAN: CoGAN learns separate generators for two different domains with tied weights on
the first few layers for shared latent representations Liu and Tuzel (2016). Single Modal
Image GAN with text decoder(SM-GAN) In this setup, we use a GAN model to
generate X-ray images. These X-ray images are passed to a text decoder which produces text
reports corresponding to the synthetic chest X-rays. EMIXER: We compare these baselines
against which is a self-supervised generative model with multiple discriminators for each
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modality. The final loss for our discriminator is the combination of adversarial loss of both
the generators and joint embedding.

4.4. Experimental Results and Discussion

Our experiments aim to answer the following questions.

• Can EMIXER generate high-quality X-ray images?
• Can EMIXER generate high-quality pairs of X-ray images and reports?
• Can EMIXER learn a high-quality generative model from limited samples?
• Can EMIXER be used to improve COVID X-ray classification?

4.4.1. Image quality evaluation: Is EMIXER capable of generating high-quality
X-ray images?

One of the primary applications of generative models is data augmentation to increase sample
size and improve downstream model performance. We use the baselines and EMIXER to
augment the real X-ray images and evaluate the improved quality of the datasets by using
these augmented datasets for X-ray image classification.

X-ray image classification setup: We trained two separate X-ray image classification
models on real X-ray images and synthetic X-ray images. We hypothesize that good
generative models can generate images that resemble real data and can be used to train
a classification model. These classification models are evaluated on held out real X-ray
images. This setup evaluates the performance of the classification model for five different
classes of diseases related to the X-ray images. In this experiment, we report accuracy and
AUC for classification scores in Table 1, where we increase the dataset size by augmenting
the real data with generated X-ray images. We use 100k real X-ray images and gradually
increase the augmented dataset size by adding synthetic X-ray images up to 600k. We notice
improved performance of these image classification model by up to 5.94% compared to real
X-ray images, and 3.6% improvement compared to the best baseline. This highlights that
EMIXER can generate synthetic X-ray images that can augment the real dataset to improve
the classification performance.

4.5. Joint Image and Text Evaluation: Can EMIXER generate high quality pairs of
image and reports?

One of the primary advantages of EMIXER is the ability to jointly generate paired X-ray
images and reports. We performed two different experiments to understand the effectiveness
of EMIXER towards generating paired images and reports.

Report Generation Task: X-ray report generation is one of the key tasks in radiology
clinical workflow Schwartz et al. (2011). We validate the effectiveness of augmented paired
image and report datasets for report generation task. In this setup, we train report generation
models on real data and a combination of real and synthetic data. These trained models
are evaluated on held-out real paired datasets. We present the results of these experiments
in Table 1. In this setup, we vary the amount of synthetic data added to the real dataset.
We present the performance of real and augmented datasets for report generation task in
terms of natural language processing metrics such as CIDEr, BLEU-1 Vedantam et al. (2015);
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Table 1: Comparison of X-ray report generation model performance with real and augmented
image dataset; In this table R indicates real data samples, S indicates synthetic data samples

Image Classification Report Generation

Dataset Method AUC ACC CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4

Only real data R 100k .824± 0.0034 .846± 0.0041 .712± 0.0014 .253± 0.0024 .198± 0.0034 .095± 0.0041 .074± 0.0012

JointGAN

R100k + S50k .798± 0.0012 .814± 0.0023 .719± 0.0023 .259± 0.0019 .201± 0.0024 .098± 0.0025 .079± 0.0031
R100k + S100k .812± 0.0013 .835± 0.0021 .725± 0.0019 .261± 0.0014 .207± 0.0029 .114± 0.0022 .081± 0.0034
R100k + S300k .826± 0.0018 .839± 0.0011 .748± 0.0017 .272± 0.0015 .213± 0.0021 .129± 0.0029 .085± 0.0051
R100k + S600k .831± 0.0009 .846± 0.0019 .773± 0.0022 .313± 0.0011 .224± 0.0041 .134± 0.0021 .093± 0.0021

CoGAN

R100k + S50k .827± 0.0034 .843± 0.0019 .703± 0.0019 .231± 0.0022 .192± 0.0012 .082± 0.0019 .073± 0.0031
R100k + S100k .829± 0.0011 .854± 0.0021 .692± 0.0014 .214± 0.0023 .187± 0.0012 .073± 0.0022 .067± 0.0033
R100k + S300k .831± 0.0013 .857± 0.0024 .724± 0.0015 .241± 0.0024 .211± 0.0012 .091± 0.0041 .076± 0.0025
R100k + S600k .837± 0.0011 .849± 0.0023 .734± 0.0022 .251± 0.0021 .236± 0.0012 .114± 0.0032 0.081± 0.0019

SMGAN

R100k + S50k .818± 0.0013 .832± 0.0013 .713± 0.0031 .251± 0.0019 .203± 0.0034 .093± 0.0021 .077± 0.0014
R100k + S100k .823± 0.0035 .831± 0.0014 .723± 0.0032 .258± 0.0031 .207± 0.0034 .098± 0.0022 .079± 0.0019
R100k + S300k .821± 0.0021 .847± 0.0019 .731± 0.0033 .263± 0.0018 .212± 0.0034 .106± 0.0032 .089± 0.0036
R100k + S600k .842± 0.0029 .859± 0.0018 .752± 0.0039 .275± 0.0011 .236± 0.0034 .125± 0.0031 .096± 0.0025

EMIXER

R100k + S50k .835± 0.0015 .857± 0.0024 .731± 0.0031 .276± 0.0034 .204± 0.0027 .112± 0.0032 .078± 0.0021
R100k + S100k .842± 0.0021 .864± 0.0024 .752± 0.0024 .297± 0.0041 .216± 0.005 .132± 0.0019 .083± 0.0024
R100k + S300k .853± 0.0019 .869± 0.0028 .763± 0.0035 .324± 0.0042 .229± 0.0014 .145± 0.0014 .097± 0.0031
R100k + S600k .873± 0.0025 .884± 0.0026 .783± 0.0043 .346± 0.0022 .247± 0.0019 .169± 0.0018 .132± 0.0052

Table 2: Comparative evaluation of phenotype classification via joint embedding with real
and augmented data

Method Dataset AUC Acc

Only Real Real [100k ] .849± 0.0025 .868± 0.0021
JointGAN R100k + S300k .869± 0.0023 .905± 0.0023
CoGAN R100k + S300k .871± 0.0014 .896± 0.0019
SMGAN R100k + S300k .883± 0.0016 .902± 0.0015
EMIXER R100k + S300k .905 ±0.0019 .924 ±0.0012

Papineni et al. (2002). We show that EMIXER improves up to 6.9% compared to models
trained only on real datasets. This highlights the fact that EMIXER can be used to augment
and improve report generation models.

Multimodal joint embeddings of X-ray images and reports: The multimodal
embeddings learned can be used for classification tasks. We perform an experiment to evaluate
the joint quality of images and generated text. In table 2, we compare the result of varying
combinations of real and synthetic data on the joint modeling task. In this joint modeling
task, we combine features from X-ray images and text reports together for downstream
classification. We classify different disease phenotypes using these joint embeddings. We
find that adding a synthetic dataset to the real dataset for this joint embedding significantly
improves the performance of the classification model.

4.5.1. Limited label setup: Can we learn a high quality generative model
from limited data?

Machine Learning applications in clinical domains are often limited by the amount of available
data and labels. Since generative models require large amounts of data and labels to train, it
is a challenge in clinical tasks to learn a high-quality generative models. We show in the
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Table 3: Comparison of generative models with limited labels

Method Acc BLEU-1 FID

CoGAN(full) 0.827± 0.0011 0.247± 0.0023 15.23± 0.0015
JointGAN(full) 0.813± 0.0014 0.221± 0.0031 16.58± 0.0019
SM-GAN(full) 0.813± 0.0021 0.221± 0.0028 16.58± 0.0021
EMIXER (30%) 0.838± 0.0013 0.258± 0.0021 12.84± 0.0021
EMIXER (50%) 0.842± 0.0008 0.269± 0.0024 11.73± 0.0023
EMIXER (100%) 0.845± 0.0024 0.271± 0.0014 11.31± 0.0028

following experiments that we can employ self-supervision to overcome the label limitations.
We explore the limits of usage of labels by varying the percentage of labels used in the
models. In this experiment, we use limited labels ranging from 30%, 50% to compare with
100% label usage. We show that even with limited labels EMIXER can perform competitively.
We compare existing baselines to our model which uses self-supervision to able to generate
images from limited labels. Table 3 shows that EMIXER outperforms the baselines in terms of
image generation diversity as measured by FID.

4.5.2. Case Study: COVID-19 X-ray data augmentation experiment

In this task, we use EMIXER to augment chest X-ray images to improve COVID-19 detection.
We use COVID-19 Radiography Database Chowdhury et al. (2020) which contains 10912
normal, 3616 COVID-19 positive cases, 6012 lung opacity and 1345 viral pneumonia cases.
Currently, COVID X-rays classification includes four classes: normal, bacterial pneumonia,
viral pneumonia and COVID-19. In this experiment, we evaluate if EMIXER generated
synthetic data can augment chest X-ray image samples for the COVID-19 classification task.
Specifically, we compare two different models: model trained on COVID-19 dataset, model
trained on combined data of COVID-19 data and EMIXER generated synthetic data. We
show that augmenting real datasets with EMIXER generated samples improves the overall
performance in Table 4.

Table 4: Comparison of performance for COVID-19 classification

Type Phenotype Precision Recall F1-score

COVID samples

Normal 0.904± 0.0021 0.895± 0.0013 0.899± 0.0024
Lung Opacity 0.866± 0.0026 0.853± 0.0014 0.859± 0.0018
Viral Pneumonia 0.898± 0.0016 0.887± 0.0024 0.892± 0.0018
COVID-19 0.865± 0.0019 0.884± 0.0023 0.852± 0.0019

COVID samples+ EMIXER (50k Samples)

Normal 0.928± 0.0021 0.916± 0.0019 0.921± 0.0018
Lung Opacity 0.912± 0.0020 0.878± 0.0023 0.894± 0.0021
Viral Pneumonia 0.927± 0.0018 0.903± 0.0022 0.914± 0.0021
COVID-19 0.892± 0.0019 0.901± 0.0014 0.896± 0.0019

4.5.3. Evaluation by Radiologists

We perform a qualitative evaluation of the generated X-ray images and reports. In this
task, we present randomized X-ray images and reports to expert doctors. Two radiologists
provide a rating between 1-10 for each pair of images and reports. We have shown the results

11



EMIXER: End-to-end Multimodal X-ray Generation via Self-supervision

of this evaluation task in figure 2. The scores for real and synthetic X-rays samples were
7.825± 1.17 and 7.34± 1.321. The inter-rater agreement was 0.832 measured using cohen’s
kappa. The comments provided by the doctors indicate that synthetic samples were similar
to real examples, with some language incoherence in X-ray reports.

There is no evidence of 
complication. No 
pneumothorax is present. 
The radiograph is normal. 
Cardiac size is normal. 

No definitive pneumothorax is 
seen.  Right basal opacity appears 
to be slightly improved since the 
prior study.  Heart size and
mediastinum are unchanged.

Real Sample Synthetic Sample

Figure 2: Qualitative evaluation. (a) User study Results (b) Comparative real and synthetic
samples

5. Discussion

This paper addresses the challenging multimodal paired x-ray image and report generation
task by proposing a novel self-supervised multimodal generative model called EMIXER. EMIXER
successfully uses a multimodal generative model to learn to generate paired x-ray images
and reports. We use self-supervision to guide EMIXER to learn from limited samples which
are very applicable in the medical domain as the number of labels is often limited. We also
use multiple discriminators to guide the process of image generation, and report decoding.
We show via extensive experiments that EMIXER can augment real x-ray image datasets
to improve downstream classification tasks. Finally, in a timely case-study, we show that
EMIXER can also improve COVID-19 x-ray classification.

Limitations There are a few limitations of our proposed method. Our proposed method
uses disease labels for conditioning the generation process. In real world, there are many
more controls which affect the x-ray images such fluid, heart shape and size etc. We do not
account for those control parameters for X-ray image generation. Another shortcoming of
our proposed method is that sometimes there are few blurry or floating images among the
generated X-ray images. These images do not affect final classification performance in image
augmentation settings.
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Appendix A. Supplementary

A.1. Preliminaries: Generative Adversarial Networks

The Generative Adversarial Network (GAN) involves a Generator (G) and a Discrimi-
nator (D) network. The purpose of Generator (G) is to map random noise to samples,
while the Discriminator (D) classifies real and generated samples. The generator builds a
mapping function from a prior noise distribution pz(z) to data space as G(z) to learn
a generator distribution pg, while the discriminator D(x) outputs a single scalar rep-
resenting the probability that x came form training data rather than pg where pdata
is the real data distribution. The basic GAN objective function seeks a Nash equilib-
rium to the following two player min-max problem where value function is defined as
minGmaxD V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))] Goodfellow et al.
(2014) where z ∈ Rdz is a latent variable drawn from distribution p(z) such as the unit
Gaussian N (0, I) or the unit uniform U [−1, 1]. Generative adversarial networks can be
extended to conditional versions if the generators and discriminators are conditioned on
label information y Mirza and Osindero (2014). The condition information y and p(z)
are combined in the joint representation of the generator. The discriminator is provided
with generated samples and labels y as inputs. The objective function can be modified as
minGmaxD V (D,G) = Ex∼pdata (x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))]

A.2. EMIXER: Architecture Details

A.2.1. Notations Table

We used these notations to describe different modules. The notations are described in table
4.

Symbol Definition and description

In Notation for X-ray Images
Sn Notation for sentences in the X-ray report
În Generated X-ray images
Ŝn Generated X-ray reports
E Dataset consisting of images, reports and labels
yn. Notation for labels associated with images
wNs Words in the sentences of X-ray report
z Noise vector for the generator

G(. ) Generator Neural Network
Dimage(. ) X-ray image discriminator Neural Network
Dreport(.) Discriminator Neural Network
Djoint(.) Discriminator Neural Network
F(. ) Report Generator Network

Table 5: Notations used in EMIXER
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A.2.2. EMIXER Model

In this section, we provide further description of the different neural networks within in
EMIXER.

X-ray Image Generator(G): Figure 3 shows the architecture of the image generator.
X-ray image generator accepts two inputs: (a) noise vector z ∈ R120 (b) class information y
represented as one-hot vector. We embed the class information y via a linear layer to obtain
vector yemb ∈ R128. It has been shown generators can use the latent space to influence
features at different resolutions by providing direct connections from noise vector to different
layers of the generator. We split the noise vector z to obtain different smaller vectors
zspl ∈ R20 (https://pytorch.org/docs/master/generated/torch.split.html). The vectors zspl
is passed through a linear layer to obtain zin, zin = fc(zspl). We concatenate zin with yemb

which is passed through three layers of Res-block-up He et al. (2016). We have provided the
details of this convolution block in table 6. We use h, w to denote input height and width and
ci, co are input and output channels for the Res-block-up. The output from the previous layer
and the concatenated vector from zin, yemb is provided as input to each of the residual block.
The final residual output resout is passed through a self-attention block which applies applies
a 1× 1 convolution operation with softmax to obtain intermediate feature vectors which are
combined with the original input to compute the att-block, attout = self-att-block(resout).
Finally this output self-att-block is passed through another res-block to obtain the Î as the
output of generator.

Figure 3: Architectural layout of EMIXER image generator G
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Table 6: Details of Res-block-up for generator

Layer Kernel Output
Shortcut [1,1,1] 2h× 2w × co
condBN,ReLU − h× w × ci
Conv [3,3,1] 2h× 2w × co
condBN,ReLU − 2h× 2w × co
Conv [3,3,1] 2h× 2w × co
Addition − 2h× 2w × co

Table 7: Details of Res-block-Down for discriminator.

Layer kernel Output
Shortcut [1,1,1] h/2× w/2× co
ReLU − h× w × ci
Conv [3,3,1] h× w × co
ReLU − h× w × co
Conv [3,3,1] h/2× w/2× co
Addition − h/2× w/2× co

Generator component dimensions: Residual block

• Conv 2D operation 1: kernel size = (3, 3), stride= (1, 1), padding= (1, 1), in channel
= 1024, out channel = 1024

• Conv 2D operation 2: kernel size = (3, 3), stride= (1, 1), padding= (1, 1), in channel
= 1024, out channel = 1024

• Conv 2D operation 3: kernel size= (1, 1), stride= (1, 1), in channel = 1024, out channel
= 1024

• Batch Normalization: in channels: 1024, out=2014

Components of neural network

• Split function: This Split function splits input vector into multiple smaller chunks.
As described in figure 3, noise vector z is split into smaller chunks and combined
with class embeddings to be passed to residual blocks. We use the split opera-
tion in PyTorch library which splits the input vector along the specified dimen-
sion(https://pytorch.org/docs/stable/generated/torch.split.html).

• Residual block up (res-block-up): A residual block used to up sample the provided
input. This is a combination of convolution blocks with conditional batch normalization
layers.

X-ray Image Discriminator (Dimage): Figure 4 shows the architecture of the X-ray
image discriminator. X-ray image discriminator is used to distinguish between real and fake
X-ray images. The discriminator takes an X-ray image I ∈ R128×128×3 as an input. Image
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I is passed through multiple layers of residual convolutional blocks Res-block-Down. We
have provided the details of the convolution block in table 7. We use h, w to denote input
height and width and ci, co are input and output channels for the Res-block-Down. In each
residual convolutional block the number of channels is doubled to process the previous layers
input. The intermediate feature vector obtained from the residual blocks is passed through a
pooling layer and ReLU activation layer. Finally we combine it with the projected condition
vector and pass there through a linear layer to obtain the final output.

Figure 4: Architectural layout of EMIXER image generator DImage

X-ray Report Generator (F): We describe the architecture of the X-ray report
generation module in Figure 5. The report generation component contains three different
sub-components: (a) Image encoder CNN (b) Sentence LSTM (c) Word LSTM. The image
encoder CNN takes an X-ray image as input and produces feature vectors. This CNN model
is pre-trained on X-ray images I using a DenseNet model. The sentence LSTM produces
topic vectors ti which are used as input for word LSTMs to produce the words. After the
word LSTM produces all the words, the words are combined to create the final report S.

Figure 5: Architectural layout of EMIXER report generator F

X-ray Report Discriminator (Dreport): As we show in the figure 6, the X-ray report
S is passed as input to the LSTM. LSTMs have been used to represent paragraphs and
sentences to produce context vectors. We use the final representation obtained from the
LSTM and pass that to a linear layer. This is finally passed through a softmax layer to
obtain the probability of real or fake.

Joint Discriminator (Djoint) As shown in figure 7, the X-ray report S and image I
are used to create a joint embedding. X-ray images I is passed through CNN to obtain an
X-ray image feature vector fv. X-ray report S is passed through a LSTM to obtain the final
representation of the report fs. The feature vectors are concatenated together to obtain a
joint embedding Cjoint. This is finally passed through a linear layer and softmax layer to
obtain the probability of embedding being real or fake.
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Figure 6: Architectural layout of EMIXER text discriminator DReport

Figure 7: Architectural layout of EMIXER image generator DJoint

A.3. Appendix B Experimental Details

A.3.1. Dataset Details

We used MIMIC-CXR dataset consisting of X-ray images and reports Johnson et al. (2019).
This data set was collected from Beth Israel Deaconess Hospital. We apply pre-processing
to remove duplicated samples from this dataset. The Radiology reports typically contain
an impression and findings section. We extracted the finding section from the report for
training our models. We apply tokenization and only keep tokens with at least 6 occurrences
in the corpus for training purposes.

A.3.2. Architecture and hyperparameters

We use Adam optimizer with a learning rate of 5 ·10−5 for the generative model and 2 ·104 for
the discriminators for training EMIXER Kingma and Ba (2014). We staggered discriminator
steps and generator steps in 2:1 ratio which led to 400k (800k) generator (discriminator)
steps. This helps the discriminator improve it’s parameter update process faster compared
to a generator. We fix our batch size at 512 while training. We use a noise vector of 120
dimensions as input for the generator. We also use spectral normalization for the layers in
the generator and discriminator in the training process. All the models generate 128×128×3
X-ray images. We obtain partially labeled data sets for the self-supervised experiments by
randomly selecting 30% of the samples from each class. We rotate the images and use the
rotation angles as labels for self-supervision Gidaris et al. (2018).

A.3.3. Evaluation Metrics

Fréchet Inception Distance (FID score): We first pass real data and generated samples
embedded in a specific layer of special pre-trained Inception network on chest X-ray images
instead of ImageNet Heusel et al. (2017). Then, a multivariate Gaussian is fit to the data
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and the distance computed as FID(x, g) = ∥µx − µg∥22 +Tr
(
Σx +Σg − 2 (ΣxΣg)

1
2

)
where

µ and Σ denote the empirical mean, covariance and subscripts x and g denote the real and
generated data respectively.

A.4. Results

A.4.1. Phenotype Classification from X-ray Images with augmented data

We report the performance of EMIXER and the baseline models for different phenotype
detection from chest X-ray images. The setup for this experiment is similar where we train
two models on real X-ray images and generated X-ray images. These trained models are
evaluated on held-out X-ray images. The performance of the test X-ray images are reported
in Table 8

Table 8: Performance of X-ray image classification using synthetic X-ray

Dataset Method Cardiomegaly Consolidation Pleural Effusion Pneumothorax Pulmonary Edema

MIMIC

Real data [100k images] 0.812 0.847 0.753 0.735 0.732
CoGAN [100k images] 0.741 0.817 0.708 0.713 0.682
JointGAN [100k images] 0.732 0.785 0.724 0.681 0.713
EMIXER [100k images] 0.784 0.734 0.728 0.715 0.718

A.4.2. Performance comparison of augmented data to real data

We performed an experiment to evaluate augmented datasets in comparison to real datasets
of similar size. In this setup, we keep the total size of the dataset constant at 100k and change
the ratio of real and synthetic images. We present the results of this experiment in Table 9.
This experiment evaluates the performance of augmented datasets where the total dataset
size is low. We show that even when we use 80% fewer real images, augmented datasets only
show 6% decrease in performance. This shows that even with low-data availability, synthetic
data augmentation can perform competitively compared to models trained only on real X-ray
images.

A.4.3. Additional generated data samples

In figures 8 and 9, we show additional generated X-ray image,report pairs in comparison to
real X-ray image and report pairs. Figure 10 and 11 show comparison of real X-ray images
to synthetic X-ray images. Finally, figure 12 shows more synthetic X-ray images.
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Table 9: X-ray image classification performance comparison with EMIXER augmented data.
Dataset size at 100k while reducing the amount of real images in the augmented dataset. In
this table, R indicates Real data and S indicate Synthetic data.

Method Data AUC Acc

Only Real R100k .824 .846

JointGAN

R90k + S10k .796 .813
R80k + S20k .778 .801
R60k + S40k .745 .764
R20k + S80k .717 .732

CoGAN

R90k + S10k .784 .808
R80k + S20k .771 .796
R60k + S40k .736 .757
R20k + S80k .712 .746

SMGAN

R90k + S10k .794 .812
R80k + S20k .764 .783
R60k + S40k .742 .763
R20k + S80k .723 .742

EMIXER

R90k + S10k .808 .828
R80k + S20k .792 .821
R60k+ S40k .773 .796
R20k + S80k .756 .774
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Again seen is a tiny right apical 
pneumothorax, similar to the prior film. 
Also again seen is subcutaneous 
emphysema in the right 
supraclavicular/right  neck and right flank 
regions. Again seen is minimal patchy  
opacity at both lung bases, with slight 
blunting of both costophrenic angles

Real Sample Synthetic Sample

The cardiac silhouette is mildly enlarged.  
There is increased opacity at the right 
lung base. No pleural effusion or 
pneumothorax.

Lung volumes are low. There is 
improved  aeration of the left 
base. There is a small right pleural 
effusion with  associated 
compressive atelectasis. 

There is bibasilar atelectasis. The aortic 
knob is calcified. Cardiac silhouette is 
stable. The colon is seen beneath the 
right hemidiaphragm. Chain sutures 
project over  the right upper lung. 
Known right hilar mass and hilar 
lymphadenopathy. No pneumothorax.

There is bibasilar  atelectasis. The 
aortic knob is calcified.  The cardiac 
silhouette is stable. The colon is seen 
beneath the right hemidiaphragm.  
Chain sutures project over  the right 
upper lung. Known right hilar mass 
and hilar lymphadenopathy. No 
pneumothorax.

Atelectasis are seen at the left base. 
The right base is
clear.  No vascular congestion or 
acute focal pneumonia.
Right IJ catheter again extends to 
the lower portion of the SVC.

There is no evidence of 
complication. No 
pneumothorax is present. The 
radiograph is normal. Cardiac 
size is normal. 

No definitive pneumothorax is 
seen.  Right basal opacity appears 
to be slightly improved since the 
prior study.  Heart size and
mediastinum are unchanged.

Real Sample Synthetic Sample

Elevation of the right hemidiaphragm, 
caused by slightly distended right bowel 
loops.  Atelectasis at the right lung bases 
and mild parenchymal opacities in the 
lateral parts of the right upper lobe base.  
These have not substantially changed as 
compared to the prior image.  Moderate 
cardiomegaly with moderate tortuosity of 
the thoracic aorta.  No pleural effusions.

Cardiac and mediastinal silhouettes 
are stable with the cardiac
silhouette top-normal to mildly 
enlarged although likely exaggerated 
by relatively low lung volumes. Heart 
is mildly enlarged. 

Heart size is normal. Mediastinum 
is normal. The res interval 
improvement of  the right upper 
lung opacification after the right 
upper lobe wedge resection
with stable appearance of the 
postsurgical changes.  Left lung is 
clear.

Lung volumes have increased, likely 
reflecting a deeper inspiration. The 
evidence of lymphadenopathy has 
decreased, the hilar structures are 
better defined and less dense than 
on the previous exam. The size of 
the cardiac silhouette has slightly 
decreased. 

Figure 8: Comparison of Real X-ray image and report pairs with generated X-ray images,
reports pairs
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Again seen is a tiny right apical 
pneumothorax, similar to the prior film. 
Also again seen is subcutaneous 
emphysema in the right 
supraclavicular/right  neck and right flank 
regions. Again seen is minimal patchy  
opacity at both lung bases, with slight 
blunting of both costophrenic angles

Real Sample Synthetic Sample

The cardiac silhouette is mildly enlarged.  
There is increased opacity at the right 
lung base. No pleural effusion or 
pneumothorax.

Lung volumes are low. There is 
improved  aeration of the left 
base. There is a small right pleural 
effusion with  associated 
compressive atelectasis. 

There is bibasilar atelectasis. The aortic 
knob is calcified. Cardiac silhouette is 
stable. The colon is seen beneath the 
right hemidiaphragm. Chain sutures 
project over  the right upper lung. 
Known right hilar mass and hilar 
lymphadenopathy. No pneumothorax.

There is bibasilar  atelectasis. The 
aortic knob is calcified.  The cardiac 
silhouette is stable. The colon is seen 
beneath the right hemidiaphragm.  
Chain sutures project over  the right 
upper lung. Known right hilar mass 
and hilar lymphadenopathy. No 
pneumothorax.

Atelectasis are seen at the left base. 
The right base is
clear.  No vascular congestion or 
acute focal pneumonia.
Right IJ catheter again extends to 
the lower portion of the SVC.

There is no evidence of 
complication. No 
pneumothorax is present. The 
radiograph is normal. Cardiac 
size is normal. 

No definitive pneumothorax is 
seen.  Right basal opacity appears 
to be slightly improved since the 
prior study.  Heart size and
mediastinum are unchanged.

Real Sample Synthetic Sample

Elevation of the right hemidiaphragm, 
caused by slightly distended right bowel 
loops.  Atelectasis at the right lung bases 
and mild parenchymal opacities in the 
lateral parts of the right upper lobe base.  
These have not substantially changed as 
compared to the prior image.  Moderate 
cardiomegaly with moderate tortuosity of 
the thoracic aorta.  No pleural effusions.

Cardiac and mediastinal silhouettes 
are stable with the cardiac
silhouette top-normal to mildly 
enlarged although likely exaggerated 
by relatively low lung volumes. Heart 
is mildly enlarged. 

Figure 9: Comparison of Real X-ray image and report pairs with generated X-ray images,
reports pairs
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Figure 10: figure
Real X-ray images

Figure 11: figure
Synthetic X-ray images
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Figure 12: Samples of Synthetic X-ray images
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