
Convolutions and Self-Attention: Re-interpreting Relative Positions in
Pre-trained Language Models

Tyler A. Chang1,3, Yifan Xu1, Weijian Xu2, Zhuowen Tu1,2,3

1Department of Cognitive Science
2Department of Computer Science and Engineering

3Halıcıoğlu Data Science Institute
University of California San Diego

{tachang, yix081, wex041, ztu}@ucsd.edu

Abstract

In this paper, we detail the relationship be-
tween convolutions and self-attention in nat-
ural language tasks. We show that relative
position embeddings in self-attention layers
are equivalent to recently-proposed dynamic
lightweight convolutions, and we consider
multiple new ways of integrating convolutions
into Transformer self-attention. Specifically,
we propose composite attention, which unites
previous relative position embedding meth-
ods under a convolutional framework. We
conduct experiments by training BERT with
composite attention, finding that convolutions
consistently improve performance on multi-
ple downstream tasks, replacing absolute posi-
tion embeddings. To inform future work, we
present results comparing lightweight convo-
lutions, dynamic convolutions, and depthwise-
separable convolutions in language model pre-
training, considering multiple injection points
for convolutions in self-attention layers.

1 Introduction

In recent years, Transformer-based language mod-
els have brought dramatic improvements on a wide
range of natural language tasks (Brown et al.,
2020; Devlin et al., 2019). The central innovation
of Transformer architectures is the self-attention
mechanism (Vaswani et al., 2017), which has
grown beyond NLP, extending into domains rang-
ing from computer vision (Dosovitskiy et al., 2021)
and speech recognition (Dong et al., 2018) to rein-
forcement learning (Parisotto et al., 2020; Touvron
et al., 2020).

In computer vision, self-attention and convolu-
tions have been combined to achieve competitive
results for image classification (Bello et al., 2019).
Similarly, researchers in NLP have begun integrat-
ing convolutions into self-attention for natural lan-
guage tasks. Recent work has shown initial success

adding convolutional modules to self-attention in
pre-trained language models (Jiang et al., 2020), or
even replacing self-attention entirely with dynamic
convolutions (Wu et al., 2019). These successes
defy theoretical proofs showing that multi-headed
self-attention with relative position embeddings is
strictly more expressive than convolution (Cordon-
nier et al., 2020). To identify why convolutions
have been successful in NLP, we seek to isolate the
differences between self-attention and convolution
in the context of natural language.

In this work, we formalize the relationship
between self-attention and convolution in Trans-
former encoders by generalizing relative position
embeddings, and we identify the benefits of each
approach for language model pre-training. We
show that self-attention is a type of dynamic
lightweight convolution, a data-dependent convo-
lution that ties weights across input channels (Wu
et al., 2019). Notably, previous methods of en-
coding relative positions (Shaw et al., 2018; Raf-
fel et al., 2020) are direct implementations of
lightweight convolutions. Under our framework,
the benefits of convolution come from an ability to
capture local position information in sentences.

Then, we propose composite attention, which ap-
plies a lightweight convolution that combines previ-
ous relative position embedding methods. We find
that composite attention sufficiently captures the
information provided by many other convolutions.
To validate our framework, we train BERT models
that integrate self-attention with multiple convo-
lution types, evaluating our models on the GLUE
benchmark (Wang et al., 2018). All of our con-
volutional variants outperform the default model,
demonstrating the effectiveness of convolutions in
enhancing self-attention for natural language tasks.
Our empirical results provide evidence for future
research integrating convolutions and self-attention
for NLP.

ar
X

iv
:2

10
6.

05
50

5v
1

 [c
s.C

L]
 1

0
Ju

n
20

21

octopus

used

the used coconutthe ashell as shield

To
ke

n
i

Token j

octopusthe used coconutthe ashell as shield

used β
j-i

α ij

To
ke

n
i

Token j

Attention vector

Convolution
kernel

Figure 1: Generating attention maps using standard self-attention (top) and fixed lightweight convolution (bottom).
Attention weights αij are analogous to convolution kernel weights βj−i.

2 Self-attention and lightweight
convolutions

First, we outline the relationship between self-
attention and convolutions. Specifically, we show
that a self-attention operation can be viewed as a
dynamic lightweight convolution, a depthwise con-
volution that ties weights along channels (Wu et al.,
2019). We then isolate the differences between
self-attention and lightweight convolutions, high-
lighting the benefits of each approach in language
models.

2.1 Self-attention

In a Transformer self-attention layer, inputs
x1, ..., xn ∈ Rd are projected to corresponding
queries, keys, and values by linear transformations
WQ,WK ,W V ∈ Rd×dh for each attention head,
projecting into the head dimension size dh. Output
vectors y1, ..., yn ∈ Rd are linear combinations of
values, concatenating all attention heads. Value
weights (before softmaxing) are determined by:

αij =
(xiWQ)(xjWK)T√

dh
. (1)

Intuitively, αij represents the attention that token i
pays to token j, incorporating the value xjW V into
the resulting vector yi. From the attention scores
between various tokens i and j, an attention map
of αij is produced (see Figure 1).

2.2 Lightweight convolutions

In contrast, a standard one-dimensional convolu-
tion slides a kernel of weights along the input se-
quence; each feature in each output representation
yi is a weighted sum of all features (called “chan-
nels”) in the surrounding xi. To save parameters,
it is common to consider depthwise convolutions
where each channel c in yi is a weighted sum only
of the features in channel c for the surrounding xi.
Formally, each entry of yi can be written as:

yi,c =
∑

−k≤j−i≤k
βj−i,c xj,c (2)

where k is the kernel size in each direction. Each
scalar βj−i,c represents the attention paid to rela-
tive position j− i for channel c. To further simplify
depthwise convolutions for use in language models,
Wu et al. (2019) propose lightweight convolutions,
which tie weights βj−i,c along all channels c. As
a result, the lightweight convolution contains only
2k + 1 weights, one scalar βj−i for each relative
position considered. Then, each yi is a linear com-
bination of surrounding xi:

yi =
∑

−k≤j−i≤k
βj−i xj (3)

Importantly, we can then consider each βj−i as an
attention weight analogous to self-attention, repre-
senting the attention that token i pays to token j.

The lightweight convolution produces an attention
map of βj−i as visualized in Figure 1.

Finally, furthering the similarity between
lightweight convolutions and self-attention, Wu
et al. (2019) propose dynamic lightweight convolu-
tions, which dynamically compute relative weights
βj−i based on individual input tokens. In other
words, each row in Figure 1 has relative weights
determined dynamically based on the input token
xi for that row. Because attentions for relative posi-
tions are no longer fixed across rows, the attention
map in Figure 1 achieves similar flexibility to stan-
dard self-attention.

2.3 Self-attention vs. convolution

We have shown that both self-attention and
lightweight convolution compute linear combina-
tions of token representations, but we now isolate
the differences between the two approaches. Per-
haps most importantly, the two methods assign
attention scores αij and βj−i in fundamentally dif-
ferent ways.

Self-attention computes αij based on the dot
product between query i and key j, ignoring the
relative position between i and j. In this way, self-
attention layers model interactions exclusively be-
tween token representations. If the tokens are arbi-
trarily shuffled in a standard self-attention layer, the
output for each token is unchanged. All position in-
formation is injected before the first self-attention
layer in the form of absolute position embeddings.

In contrast, dynamic lightweight convolutions
assign attention scores directly to relative positions.
This allows convolutions to directly integrate rela-
tive position information without relying on abso-
lute positions. Thus, convolutions could be better
at capturing local information in sentences. How-
ever, convolutions alone are limited in their ability
to model interactions between tokens because they
lack the query-key mechanism central to standard
self-attention. In future sections, we consider meth-
ods of integrating the two approaches.

3 Integrating lightweight convolutions

Previous work has sought to integrate local informa-
tion into global self-attention. This can be achieved
by restricting the range of self-attention to nearby
tokens, or by incorporating relative position infor-
mation into attention maps (Hofstätter et al., 2020;
Raganato et al., 2020; Wei et al., 2021). Notably,
Shaw et al. (2018) introduced relative position em-

beddings, which inspired similar embeddings in
models such as Transformer-XL and XLNet (Dai
et al., 2019; Yang et al., 2019). In this section,
we show that several previous methods of encod-
ing relative positions are direct implementations of
lightweight convolutions.

3.1 Relative embeddings as lightweight
convolutions

First, the simplest way to combine self-attention
with lightweight convolution is to generate a stan-
dard attention map, then add the attention map gen-
erated by a lightweight convolution. Given a fixed
lightweight convolution, this results in attention
scores as follows:

αij =
(xiWQ)(xjWK)T√

dh
+ βj−i (4)

This is exactly the relative position term used in T5
(Raffel et al., 2020) and TUPE (Ke et al., 2021).

We further consider a dynamic lightweight con-
volution, where the βj−i weights are computed
by passing the query through a linear feedforward
layer WC ∈ Rdh×(2k+1) (Wu et al., 2019).1 Be-
cause WC is linear, each weight βj−i is equal to
the dot product between the query and the (j − i)
column of WC . We then obtain attention scores:

αij =
(xiWQ)(xjWK)T√

dh
+ (xiWQ)(WC

j−i)
T

If we scale the dynamic lightweight convolution
term according to the head dimension size, we ob-
tain precisely the relative embeddings proposed in
Shaw et al. (2018):

αij =
(xiWQ)(xjWK +WC

j−i)
T

√
dh

(5)

Under this interpretation, Shaw’s relative embed-
dings are essentially identical to the dynamic
lightweight convolutions used in Wu et al. (2019).
In both formulations, relative position weights are
computed as dot products between the query and
a learned relative position embedding. Previous
work has considered relative positions in language
models independently from convolutions, but our
derivations suggest that the underlying mechanisms
may be the same.

1Wu et al. (2019) generate dynamic lightweight convolu-
tions based on the entire query layer (dimension size d). In
our work, we generate convolutions based on queries for in-
dividual attention heads (dimension size dh), to be consistent
with the relative embeddings in Shaw et al. (2018).

Lightweight convolution
type, BERT-small

Params CoLA MNLI-
m

MNLI-
mm

MRPC QNLI QQP RTE SST STS GLUE

No convolution 13.41M 13.9 73.2 71.8 77.9 80.7 74.5 62.0 81.9 79.3 68.4
No convolution + abs position∗ 13.43M 30.8 76.1 75.9 80.4 78.5 74.4 62.2 85.1 76.8 71.1
Fixed (Raffel et al. 2020) 13.42M 42.1 77.2 76.3 83.8 82.7 75.9 64.4 87.1 81.4 74.5
Dynamic (Shaw et al. 2018) 13.43M 39.1 78.4 77.4 83.8 83.4 77.5 64.4 87.3 81.4 74.7
Composite (Equation 6; ours) 13.43M 40.4 78.2 77.4 85.0 83.3 77.7 64.7 87.8 82.1 75.2

Lightweight convolution
type, BERT-base

Params CoLA MNLI-
m

MNLI-
mm

MRPC QNLI QQP RTE SST STS GLUE

No convolution + abs position∗ 108.82M 50.3 82.0 81.2 85.0 84.6 78.6 68.9 91.4 84.9 78.5
Fixed (Raffel et al. 2020) 108.73M 50.0 81.5 80.5 85.6 86.0 78.5 68.9 91.4 84.9 78.6
Dynamic (Shaw et al. 2018) 108.74M 50.9 81.6 80.5 84.6 85.3 78.5 69.5 91.6 84.8 78.6
Composite (Equation 6; ours) 108.74M 50.4 81.6 80.8 85.4 85.1 78.7 69.7 91.2 85.7 78.7

Table 1: GLUE test set performance for models with lightweight convolutions added to self-attention. Columns
indicate scores on individual GLUE tasks; the final GLUE score is the average of individual task scores. ∗ denotes
the default BERT model.

3.2 Composite attention and lightweight
convolution experiments

To validate lightweight convolutions in combina-
tion with self-attention, we pre-trained and evalu-
ated BERT-small models (Devlin et al., 2019; Clark
et al., 2020) that incorporated lightweight convolu-
tions.

Pre-training To maximize similarity with De-
vlin et al. (2019), we pre-trained models on the
BookCorpus (Zhu et al., 2015) and WikiText-103
datasets (Merity et al., 2017) using masked lan-
guage modeling. Small models were pre-trained
for 125,000 steps, with batch size 128 and learn-
ing rate 0.0003. Full pre-training and fine-tuning
details are outlined in Appendix A.1.2

Evaluation Models were evaluated on the GLUE
benchmark, a suite of sentence classification tasks
including natural language inference (NLI), gram-
maticality judgments, sentiment classification, and
textual similarity (Wang et al., 2018). For each task,
we ran ten fine-tuning runs and used the model with
the best score on the development set. We report
scores on the GLUE test set. Development scores
and statistics for all experiments are reported in
Appendix A.2.

Models We trained two baseline models, a de-
fault BERT-small with standard absolute position
embeddings, and a BERT-small with no position
information whatsoever. Then, we trained models
with fixed lightweight convolutions (Equation 4;

2Code is available at https://github.com/
mlpc-ucsd/BERT_Convolutions, built upon the
Huggingface Transformers library (Wolf et al., 2020).

Raffel et al. 2020), and dynamic lightweight convo-
lutions that generated convolution weights based on
each query (i.e. using relative embeddings, Equa-
tion 5; Shaw et al. 2018).

Finally, we propose composite attention, which
simply adds dynamic lightweight convolutions to
fixed lightweight convolutions, resulting in atten-
tion scores αij as follows:

(xiWQ)(xjWK)T√
dh︸ ︷︷ ︸

Self-attention

+
(xiWQ)(WC

j−i)
T

√
dh︸ ︷︷ ︸

Dynamic convolution
(relative embeddings)

+ βj−i︸︷︷︸
Fixed

convolution

(6)
Intuitively, composite attention has the flexibility
of dynamic lightweight convolutions, while still
allowing models to incorporate relative positions
directly through fixed lightweight convolutions. Al-
ternatively, composite attention can be interpreted
as adding a fixed bias term to relative position em-
beddings.

All of our experiments used a convolution ker-
nel size of 17, or eight positions in each direction,
a mid-range value that has been found to work
well for both relative positions and convolution in
language models (Huang et al., 2020; Jiang et al.,
2020; Shaw et al., 2018). As in Shaw et al. (2018),
relative embeddings WC

j−i shared weights across
heads. Unless stated otherwise, models used no
absolute position embeddings.

For completeness, we also considered dynamic
lightweight convolutions based on the key (as op-
posed to the query). In contrast to query-based

https://github.com/mlpc-ucsd/BERT_Convolutions
https://github.com/mlpc-ucsd/BERT_Convolutions

lightweight convolutions, key-based convolutions
allow each token to dictate which relative posi-
tions should pay attention to it, rather than dic-
tating which relative positions it should pay at-
tention to. Referring to the visualization in Fig-
ure 1, key-based dynamic convolutions correspond
to columns instead of rows. These key-based dy-
namic lightweight convolutions are the same as
the relative embeddings proposed in Huang et al.
(2020), but they are now formulated as dynamic
lightweight convolutions.

3.3 Lightweight convolution results

GLUE test set results are presented in Table 1.

Lightweight convolutions consistently im-
proved performance. Notably, even the fixed
lightweight convolution was sufficient to replace
absolute position embeddings, outperforming the
default BERT-small model. This indicates that
even naı̈ve sampling from nearby tokens can be
beneficial to language model performance.

Dynamic convolutions provided further im-
provements. When the lightweight convolutions
were generated dynamically based on token queries,
the models outperformed the default model by
even larger margins. This improvement over fixed
lightweight convolutions suggests that different to-
kens find it useful to generate different lightweight
convolutions, paying attention to different relative
positions in a sentence.

Composite attention performed the best.
Combining fixed lightweight convolutions with dy-
namic lightweight convolutions proved an effective
strategy for encoding relative positions. Although
composite attention is simply a combination of
Shaw et al. (2018) and Raffel et al. (2020)’s relative
position embeddings, it validates convolution as
a viable method of encoding relative positions in
self-attention.

Key-based dynamic convolutions provided no
additional benefit. When we generated an ad-
ditional lightweight convolution based on keys, the
model performed worse than composite attention
alone (GLUE 74.0 compared to 75.2). This result
clarifies the findings of Huang et al. (2020), who
reported only small improvements from query and
key-based relative position embeddings for a subset
of the GLUE tasks.

Figure 2: Learned convolution kernel weights βj−i for
the fixed lightweight convolution (Equation 4).

Grammaticality judgments were particularly
sensitive to position information. On the CoLA
task (the corpus of linguistic acceptability;
Warstadt et al. 2019), there was a dramatic per-
formance drop when absolute position embed-
dings were removed. However, when any type of
lightweight convolution was added, performance
improved even over the baseline established by ab-
solute positions. The pronounced effects of local
position information on the CoLA task support the
intuitive hypothesis that local dependencies are par-
ticularly important for grammaticality judgments.
This result also suggests that convolutions could
be beneficial to more local tasks (e.g. token-level
tasks) along with sentence classification tasks.

3.4 Interpreting lightweight convolutions
To better understand how lightweight convolu-
tions improve language models, we visualized the
learned lightweight convolution kernel weights in
Figure 2. Qualitatively, the kernels exhibited spe-
cific types of patterns:

• Paying particular attention to the previous or
next token.

• Paying graded attention either to past or future
tokens, dictated by how far the target token is
from the present token.

These observations support the assumption that
nearby tokens are relevant to the interpretation of
the current token. They also align with the findings

of Voita et al. (2019), who identified “positional”
attention heads that focus primarily on the next or
previous token. From this perspective, lightweight
convolutions allow language models to explicitly
represent nearby tokens’ positions.

Interestingly, we also found that some kernels
paid fairly uniform attention to all tokens, even
decreasing attention to nearby and adjacent tokens.
It is likely that these attention heads focused on
more global information, relying on the query-key
attention mechanism rather than the convolution.

3.5 BERT-base models

To thoroughly assess the impact of composite at-
tention on pre-trained language models, we trained
full-sized BERT models for 1M steps each, repli-
cating our BERT-small experiments. Pre-training
details are outlined in Appendix A.1.

Results are presented in Table 1. Differences be-
tween models decreased substantially for full sized
models, and the relative performances of different
approaches varied across tasks. Our results suggest
that relative position information is more useful
for smaller or more data-limited models; extending
the benefits of convolutions robustly from small
models to larger models is an important direction
for future research. That said, even in the larger
models, composite attention slightly outperformed
the other position embedding methods in overall
GLUE score. Our results demonstrate that convo-
lutions can perform at least on par with absolute
position embeddings even in larger models.

4 Non-lightweight convolutions

The previous section found that lightweight convo-
lutions consistently improved pre-trained language
model performance. Next, we investigated whether
the additional flexibility of non-lightweight convo-
lutions could provide additional benefits. Specifi-
cally, we considered convolutions that were fixed
but non-lightweight. In other words, convolution
weights were fixed regardless of the input query,
but weights were not tied across channels, equiv-
alent to a standard depthwise convolution. We
only considered fixed depthwise convolutions be-
cause under existing frameworks, dynamic depth-
wise convolutions would introduce large numbers
of parameters.

To implement depthwise convolutions, we added
a convolution term identical to the fixed lightweight
convolution in Equation 4, except that βj−i was

Figure 3: Learned convolution kernel weights βj−i,c

(Equation 7) for the depthwise convolution in the deep-
est attention layer. Channels correspond to the 256 fea-
tures in each token representation. Channels are sorted
such that kernels differentiating the previous and next
token are grouped together.

learned separately for each feature channel:3

αij,c =
(xiWQ)(xjWK)T√

dh
+ βj−i,c (7)

This is equivalent to adding a depthwise convo-
lution of the token values to the standard self-
attention output.

4.1 Non-lightweight convolution experiments

We ran experiments using the same setup as the
lightweight convolution experiments in Section
3.2. To compare the effects of dynamic lightweight
convolutions (e.g. composite attention) and non-
lightweight (depthwise) convolutions, we trained
models using each possible combination of the two
convolutions. Results are presented in Table 2.

Depthwise convolutions were less effective than
lightweight convolutions. As with lightweight
convolutions, the depthwise convolutions effec-
tively replaced absolute position embeddings, out-
performing the default model. However, fixed
depthwise convolutions performed worse than fixed
lightweight convolutions on the majority of tasks.
This indicates that flexibility across channels is not
critical to the success of convolutions in language
models.

3For computational efficiency, we applied the softmax
to the attention scores prior to adding the convolution term
βj−i,c, to avoid computing softmax scores separately for each
individual channel. Softmax is not commonly applied in depth-
wise convolutions.

Convolutions Params CoLA MNLI-
m

MNLI-
mm

MRPC QNLI QQP RTE SST STS GLUE

No convolution + abs position∗ 13.43M 30.8 76.1 75.9 80.4 78.5 74.4 62.2 85.1 76.8 71.1
Composite (Equation 6) 13.43M 40.4 78.2 77.4 85.0 83.3 77.7 64.7 87.8 82.1 75.2
Fixed depthwise 13.47M 36.9 77.6 76.1 80.6 81.9 76.4 64.5 87.5 79.7 73.5
Fixed depthwise + composite 13.48M 38.0 77.4 76.3 82.8 83.7 77.7 65.3 87.3 82.3 74.5

Table 2: GLUE test set performance for BERT-small models with added depthwise convolutions and composite
attention. ∗ denotes the default BERT-small model.

No composite attention

Query/Key Value Params GLUE
Linear Linear 13.43M ∗71.1
Convolution Linear 13.53M 71.9
Linear Convolution 13.47M 73.4
Convolution Convolution 13.58M 72.0

+Composite attention

Query/Key Value Params GLUE
Linear Linear 13.43M 75.2
Convolution Linear 13.54M 74.5
Linear Convolution 13.48M 73.9
Convolution Convolution 13.59M 74.0

Table 3: BERT-small performance on the GLUE test set when replacing queries, keys, and values with depthwise-
separable convolutions for half of the attention heads. ∗ denotes the use of absolute position embeddings in the
default BERT-small model.

Composite attention already provided the nec-
essary flexibility. Composite attention outper-
formed the fixed depthwise convolutions; even
when composite attention was combined with
depthwise convolutions, there was no overall im-
provement over composite attention alone. This
suggests that in the context of language, dynamic
lightweight convolutions efficiently encode any lo-
cal position information provided by depthwise
convolutions.

Depthwise convolutions differentiated previous
and next tokens. In previous sections, we found
that lightweight convolution kernels often pay at-
tention specifically to adjacent tokens. As can be
seen in Figure 3, this result was even more pro-
nounced in depthwise convolutions, with individ-
ual channels focusing on the previous or next token.
Interestingly, other channels specifically directed
attention away from adjacent tokens. This indicates
that the relevant information about next and previ-
ous tokens can be compressed into a subset of the
feature channels, freeing other channels to consider
more distant or position-independent information.

5 Convolutional queries, keys, and values

Improvements over the non-convolutional base-
lines indicate that convolutions are beneficial to lan-
guage model pre-training, serving as replacements
for absolute position embeddings. Our previous
experiments applied different types of convolutions
to self-attention values. To take this result one step

further, we replaced the linear query, key, and value
projections themselves with convolutional layers.

Intuitively, applying convolutions before self-
attention induces even more mixing of token rep-
resentations. If convolutions are built into every
query, key, and value, then it becomes impossible
for a token i to pay attention to a single token j
without also incorporating information about to-
kens surrounding token j.

5.1 Convolutional Q, K, V experiments

As in Sections 3.2 and 4.1, we ran experiments on
BERT-small. We replaced the query, key and value
projections with depthwise-separable convolutions
in half of the self-attention heads.4 This aligns
with previous work in which only half of the output
dimensions for each token were generated using
convolutions (Jiang et al., 2020). Indeed, our initial
explorations found that it was more effective to
replace the linear projections in only half, not all,
the attention heads.

Then, we considered whether convolutions from
previous experiments provided additional benefits
over convolutional queries, keys, and values. To
test this, we trained BERT-small models with com-
posite attention (Equation 6), adding convolutional
queries, keys, and values.

4Depthwise-separable convolutions are a common way
to save convolution parameters. A depthwise convolution is
applied first, applying an independent convolution for each
channel. Then, a pointwise convolution (i.e. a feedforward
layer) mixes the channels to produce the final output.

5.2 Convolutional Q, K, V results

Results are presented in Table 3. Similar to our pre-
vious convolution experiments, all convolutional
replacements successfully outperformed the default
model. These results strongly support the conclu-
sion that convolutions are a viable method of en-
coding positional information for language tasks.

However, all convolutional replacements for
queries, keys, and values slightly decreased the
performance of models using composite attention.
Convolutional values in particular were effective
in models without composite attention, but they
slightly decreased performance in models that al-
ready incorporated such lightweight convolutions.
We conclude that although convolutions can benefit
models by adding local position information, there
is a limit to how much local mixing should be done.
It is sufficient to apply convolutions to token values
on top of self-attention; additional convolutional
layers applied before the self-attention map enforce
unnecessary mixing of token representations.

6 Discussion

Our results demonstrate that convolutions provide
consistent benefits to pre-trained language models.
Our proposed composite attention mechanism com-
bines previous relative position embedding meth-
ods, showing that convolutions can effectively com-
pensate for the lack of local position information
in Transformer models.

6.1 Related work

Our work unites and builds upon previous work
using convolutions and relative positions in Trans-
formers. We adopted the relative embeddings
from Shaw et al. (2018) and Huang et al. (2020),
showing that these embeddings are equivalent to
the dynamic lightweight convolutions in Wu et al.
(2019). Combining these dynamic lightweight
convolutions with fixed lightweight convolutions
(equivalent to the relative position terms in Raffel
et al. 2020), we studied relative embeddings under
the framework of convolution integrated with self-
attention. As far as we are aware, our work is the
first to holistically compare relative positions, con-
volutions, and self-attention in language models.

Building upon dynamic lightweight convolu-
tions, recent work has incorporated both depthwise-
separable and dynamic lightweight convolutions in
pre-trained language models. Jiang et al. (2020)
proposed ConvBERT, which adds a convolutional

module alongside the standard self-attention mech-
anism in BERT. ConvBERT’s convolutional mod-
ule consists of a depthwise-separable convolution
combining with a query to generate a dynamic
lightweight convolution. Under our integrated
framework, this is analogous to the model which
uses depthwise-separable convolutions for queries
and keys, using composite attention as a query-
based dynamic lightweight convolution (see Table
3). To make this comparison concrete, we trained
a ConvBERT-small model using the same setup as
our experiments. Indeed, the analogous model un-
der our framework outperformed ConvBERT-small
(GLUE score 74.5 compared to 70.3). Details for
the ConvBERT comparison can be found in Ap-
pendix A.3.

Finally, recent work has proved theoretical rela-
tionships between self-attention and convolution.
Cordonnier et al. (2020) showed that given enough
self-attention heads, self-attention weights can ex-
press any convolution; in fact, they showed that
self-attention layers often learn such convolutional
structures when trained on vision tasks. How-
ever, this theoretical equivalence does not explain
convolution-based improvements for Transformers
in language tasks. To clarify the relationship be-
tween self-attention and convolution in language,
our work characterizes self-attention as a type of
dynamic lightweight convolution. By establishing
a per-parameter equivalence between relative po-
sition embeddings and Wu’s dynamic lightweight
convolutions, we provide a concrete foundation
where self-attention and convolution are used to-
gether in practice.

7 Conclusion

In this work, we formalized the relationship be-
tween self-attention and convolution. We proposed
composite attention, which combines self-attention
with lightweight convolution, uniting previous ap-
proaches to relative positions. Our formulation and
empirical results demonstrate that convolutions can
improve self-attention by providing local position
information in sentences, capable of replacing ab-
solute position embeddings entirely.

Our findings provide a solid foundation from
which to study convolutions and self-attention in
language tasks. The spatially-oriented nature of
convolutional neural networks translates directly
into positional information in language. As vision
and language researchers strive towards common

deep learning architectures, it is important to rec-
ognize how architectures for vision tasks can be
adapted to linguistic domains.

Acknowledgments

This work is funded by NSF IIS-1717431.
Zhuowen Tu is also funded under the Qualcomm
Faculty Award. Tyler Chang is partially supported
by the UCSD HDSI graduate fellowship.

References
Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon

Shlens, and Quoc Le. 2019. Attention augmented
convolutional networks. In International Confer-
ence on Computer Vision.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of the 34th Conference on Neural Infor-
mation Processing Systems.

Kevin Clark, Minh-Thang Luong, Quoc Le, and
Christopher Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In Proceedings of the International Con-
ference on Learning Representations.

Jean-Baptiste Cordonnier, Andreas Loukas, and Mar-
tin Jaggi. 2020. On the relationship between self-
attention and convolutional layers. In Proceedings
of the International Conference on Learning Repre-
sentations.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988, Florence, Italy.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Linhao Dong, Shuang Xu, and Bo Xu. 2018. Speech-
transformer: a no-recurrence sequence-to-sequence
model for speech recognition. In IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing, pages 5884–5888.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image is
worth 16x16 words: Transformers for image recog-
nition at scale. In Proceedings of the International
Conference on Learning Representations.

Sebastian Hofstätter, Hamed Zamani, Bhaskar Mitra,
Nick Craswell, and Allan Hanbury. 2020. Local
self-attention over long text for efficient document
retrieval. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, New York, NY, USA.
Association for Computing Machinery.

Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xi-
ang. 2020. Improve transformer models with bet-
ter relative position embeddings. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 3327–3335, Online. Association for
Computational Linguistics.

Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng
Chen, Jiashi Feng, and Shuicheng Yan. 2020. Con-
vBERT: Improving BERT with span-based dynamic
convolution. In Proceedings of the 34th Conference
on Neural Information Processing Systems.

Guolin Ke, Di He, and Tie-Yan Liu. 2021. Rethinking
positional encoding in language pre-training. In Pro-
ceedings of the International Conference on Learn-
ing Representations.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In Proceedings of the Fifth International Confer-
ence on Learning Representations.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pas-
canu, Caglar Gulcehre, Siddhant Jayakumar, Max
Jaderberg, Raphaël Lopez Kaufman, Aidan Clark,
Seb Noury, Matthew Botvinick, Nicolas Heess, and
Raia Hadsell. 2020. Stabilizing transformers for re-
inforcement learning. In Proceedings of the Interna-
tional Conference on Machine Learning.

Jason Phang, Thibault Févry, and Samuel Bowman.
2018. Sentence encoders on STILTs: Supple-
mentary training on intermediate labeled-data tasks.
arXiv preprint arXiv:1811.01088.

https://openaccess.thecvf.com/content_ICCV_2019/papers/Bello_Attention_Augmented_Convolutional_Networks_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Bello_Attention_Augmented_Convolutional_Networks_ICCV_2019_paper.pdf
https://proceedings.neurips.cc//paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=HJlnC1rKPB
https://openreview.net/pdf?id=HJlnC1rKPB
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://ieeexplore.ieee.org/document/8462506
https://ieeexplore.ieee.org/document/8462506
https://ieeexplore.ieee.org/document/8462506
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1145/3397271.3401224
https://doi.org/10.1145/3397271.3401224
https://doi.org/10.1145/3397271.3401224
https://doi.org/10.18653/v1/2020.findings-emnlp.298
https://doi.org/10.18653/v1/2020.findings-emnlp.298
https://papers.nips.cc/paper/2020/file/96da2f590cd7246bbde0051047b0d6f7-Paper.pdf
https://papers.nips.cc/paper/2020/file/96da2f590cd7246bbde0051047b0d6f7-Paper.pdf
https://papers.nips.cc/paper/2020/file/96da2f590cd7246bbde0051047b0d6f7-Paper.pdf
https://openreview.net/forum?id=09-528y2Fgf
https://openreview.net/forum?id=09-528y2Fgf
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://openreview.net/pdf?id=Byj72udxe
https://openreview.net/pdf?id=Byj72udxe
http://proceedings.mlr.press/v119/parisotto20a/parisotto20a.pdf
http://proceedings.mlr.press/v119/parisotto20a/parisotto20a.pdf
https://arxiv.org/abs/1811.01088
https://arxiv.org/abs/1811.01088

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Alessandro Raganato, Yves Scherrer, and Jörg Tiede-
mann. 2020. Fixed encoder self-attention patterns
in transformer-based machine translation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 556–568, Online. Associ-
ation for Computational Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. 2020. Training data-efficient image trans-
formers and distillation through attention. arXiv
preprint arXiv:2012.12877.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st Conference on
Neural Information Processing Systems.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Wei Wei, Zanbo Wang, Xianling Mao, Guangyou Zhou,
Pan Zhou, and Sheng Jiang. 2021. Position-aware
self-attention based neural sequence labeling. Pat-
tern Recognition, 110.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin,
and Michael Auli. 2019. Pay less attention with
lightweight and dynamic convolutions. In Proceed-
ings of the Seventh International Conference on
Learning Representations.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ Salakhutdinov, and Quoc Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In 2015 IEEE International Con-
ference on Computer Vision, pages 19–27.

A Appendix

Hyperparameter Small Base
Layers 12 12
Hidden size 256 768
Intermediate hidden size 1024 3072
Attention heads 4 12
Attention head size 64 64
Embedding size 128 768
Vocab size 30004 30004
Max sequence length 128 128
Mask proportion 0.15 0.15
Learning rate decay Linear Linear
Warmup steps 10000 10000
Learning rate 3e-4 1e-4
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Attention dropout 0.1 0.1
Dropout 0.1 0.1
Weight decay 0.01 0.01
Batch size 128 256
Train steps 125K 1M

Table 4: Pre-training hyperparameters.

A.1 Pre-training and fine-tuning details

BERT models (Devlin et al. 2019; Clark et al.
2020) were pre-trained on the BookCorpus (Zhu
et al., 2015) and WikiText-103 datasets (Merity

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/2012.12877
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.1162/tacl_a_00290
https://doi.org/https://doi.org/10.1016/j.patcog.2020.107636
https://doi.org/https://doi.org/10.1016/j.patcog.2020.107636
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://research.fb.com/wp-content/uploads/2019/04/Pay-less-attention-with-Lightweight-and-Dynamic-Convolutions.pdf
https://research.fb.com/wp-content/uploads/2019/04/Pay-less-attention-with-Lightweight-and-Dynamic-Convolutions.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11

Hyperparameter Value
Learning rate decay Linear
Warmup steps 10% of total
Learning rate 1e-4 for QNLI or base-size

3e-4 otherwise
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.999
Attention dropout 0.1
Dropout 0.1
Weight decay 0
Batch size 128 for MNLI/QQP

32 otherwise
Train steps 10 epochs for RTE/STS

4 epochs for MNLI/QQP
3 epochs otherwise

Table 5: Fine-tuning hyperparameters. We used inter-
mediate task training for RTE, STS, and MRPC, initial-
izing from a checkpoint fine-tuned on the MNLI task
(Clark et al. 2020; Phang et al. 2018).

et al., 2017) using masked language modeling. Pre-
training examples were formatted as sentence pairs
without the next sentence prediction objective. In
total, our dataset consisted of 31M unique sentence
pairs.5 Sentences were tokenized by training an un-
cased SentencePiece tokenizer (Kudo and Richard-
son, 2018), and input and output token embeddings
were tied during pre-training. Models were evalu-
ated on the GLUE benchmark (Wang et al., 2018).
Including ten fine-tuning runs for each GLUE task,
each BERT-small model took about 24 hours to
train on two Titan Xp GPUs. Each BERT-base
model took about 16 days to train on 8 GPUs. Pre-
training hyperparameters are listed in Table 4, and
fine-tuning hyperparameters are listed in Table 5.
Hyperparameters are based on those used in Clark
et al. (2020) and Devlin et al. (2019).

A.2 GLUE development results

Results for each model on the GLUE development
set are reported in Table 6. We report averages
over ten fine-tuning runs for each task, including
standard errors of the mean. Each overall GLUE
score was computed as the average of individual
task scores; we computed GLUE score averages
and standard errors over ten GLUE scores, cor-
responding to the ten fine-tuning runs. We note
that development scores were generally higher than
test scores due to differences between the test and

5Because BERT-small models were only trained for
125,000 steps with batch size 128, small models were trained
on 16M sentence pairs.

training distributions (Wang et al., 2018).

A.3 Detailed ConvBERT comparison
ConvBERT adds a convolutional module alongside
the standard self-attention mechanism in BERT
(Jiang et al., 2020). ConvBERT uses half the num-
ber of standard self-attention heads, using convolu-
tional modules for the other half. In each convolu-
tional module, a depthwise-separable convolution
is multiplied pointwise with the query in the cor-
responding self-attention head. This convolutional
query is fed into a linear layer to generate a dy-
namic lightweight convolution.

Under our framework, the analogous model re-
places half of the queries and keys with depthwise-
separable convolutions and uses composite atten-
tion (a query-based dynamic lightweight convolu-
tion; see Table 3 in the full paper). In both models
(ConvBERT and our own), half of the attention
heads use a convolutional query. Additionally, in
both models, the convolutional query is used to
generate a dynamic lightweight convolution.

However, in our model, the dynamic lightweight
convolution (in this case, composite attention) is
used for all attention heads, not just the convolu-
tional heads. Furthermore, our convolutional heads
still use a self-attention mechanism along with the
dynamic lightweight convolutions, by generating
convolutional keys. In this way, our model adds
convolutions to ConvBERT’s self-attention heads,
and adds self-attention to ConvBERT’s convolu-
tional heads.

Then, we investigated whether the separate self-
attention and convolutional modules in ConvBERT
provide any benefit over our integrated convolu-
tion and self-attention. We trained a ConvBERT-
small model using the same pre-training setup as
our BERT-small experiments, comparing perfor-
mance to the analogous model under our frame-
work. Results are shown in Table 7. Indeed,
integrated convolutions and self-attention outper-
formed ConvBERT-small, using only 3% more pa-
rameters.

Convolution type, BERT-small Params CoLA MNLI-m MNLI-mm MRPC QNLI
No convolution 13.41M 7.0± 2.4 73.0± 0.1 73.0± 0.1 80.9± 0.4 80.1± 0.2

No convolution + abs position∗ 13.43M 33.5± 0.4 75.8± 0.1 76.1± 0.1 83.3± 0.4 78.2± 0.3

Fixed lightweight (Raffel et al. 2020) 13.42M 38.3± 0.8 77.2± 0.1 77.2± 0.1 84.0± 0.5 82.1± 0.1

Dynamic lightweight (Shaw et al. 2018) 13.43M 38.4± 0.7 77.9 ± 0.1 77.6± 0.1 85.6± 0.5 82.8± 0.1

Composite (Equation 6) 13.43M 40.9 ± 0.7 77.9 ± 0.1 78.0± 0.1 86.2± 0.3 83.0± 0.1

Composite + key-based dynamic 13.44M 40.0± 0.6 77.9 ± 0.1 77.7± 0.1 86.3 ± 0.3 83.3± 0.1

Fixed depthwise 13.47M 38.0± 0.6 76.9± 0.0 76.8± 0.1 82.8± 0.5 81.9± 0.1

Composite + fixed depthwise 13.48M 40.4± 0.7 77.2± 0.1 77.4± 0.1 85.0± 0.3 83.3± 0.1

Convolutional QK 13.53M 33.4± 0.4 76.3± 0.1 76.4± 0.1 83.3± 0.2 81.3± 0.2

Convolutional value 13.47M 34.7± 0.9 76.2± 0.0 76.6± 0.1 83.4± 0.4 82.4± 0.1

Convolutional QKV 13.58M 31.9± 0.7 76.3± 0.1 76.3± 0.1 83.7± 0.4 80.4± 0.2

Composite + convolutional QK 13.54M 39.3± 0.8 77.4± 0.1 77.2± 0.1 85.4± 0.3 81.9± 0.1

Composite + convolutional value 13.48M 37.9± 0.7 77.8± 0.1 78.1 ± 0.1 85.6± 0.4 83.6 ± 0.1

Composite + convolutional QKV 13.59M 38.2± 1.0 77.4± 0.1 77.3± 0.1 85.3± 0.4 82.8± 0.1

ConvBERT 13.09M 33.3± 1.5 76.7± 0.1 76.8± 0.1 83.9± 0.5 77.1± 0.8

Convolution type, BERT-base
No convolution + abs position∗ 108.82M 57.6± 0.6 82.0 ± 0.1 81.9 ± 0.1 88.4 ± 0.2 84.7± 0.3

Fixed lightweight (Raffel et al. 2020) 108.73M 58.9 ± 0.5 81.9± 0.1 81.6± 0.1 87.7± 0.3 86.2 ± 0.1

Dynamic lightweight (Shaw et al. 2018) 108.74M 58.4± 0.5 81.8± 0.1 81.8± 0.1 86.7± 0.4 85.6± 0.2

Composite (Equation 6) 108.74M 58.5± 0.5 81.9± 0.1 81.6± 0.1 86.0± 1.2 85.0± 0.3

Convolution type, BERT-small QQP RTE SST STS GLUE
No convolution 84.4± 0.1 61.0± 0.5 80.9± 0.9 83.7± 0.1 69.3± 0.3

No convolution + abs position∗ 84.9± 0.0 64.4± 0.5 85.0± 0.2 82.4± 0.1 73.7± 0.1

Fixed lightweight (Raffel et al. 2020) 86.2± 0.0 64.7± 0.9 86.9± 0.2 85.2± 0.1 75.7± 0.2

Dynamic lightweight (Shaw et al. 2018) 87.2± 0.0 65.1± 0.9 86.8± 0.2 85.6± 0.1 76.3± 0.1

Composite (Equation 6) 87.3± 0.0 66.1± 0.7 86.9± 0.1 85.9± 0.1 76.9 ± 0.1

Composite + key-based dynamic 87.4± 0.0 66.3 ± 0.4 86.5± 0.3 86.1± 0.2 76.8± 0.1

Fixed depthwise 86.1± 0.1 64.2± 0.7 87.2± 0.2 84.4± 0.1 75.4± 0.1

Composite + fixed depthwise 87.3± 0.0 63.5± 0.8 87.1± 0.2 86.1± 0.1 76.4± 0.1

Convolutional QK 85.1± 0.1 63.0± 1.0 86.1± 0.2 84.5± 0.1 74.4± 0.1

Convolutional value 86.6± 0.0 65.2± 0.7 87.2± 0.3 85.0± 0.1 75.2± 0.1

Convolutional QKV 84.6± 0.2 66.1± 0.9 86.4± 0.1 84.4± 0.1 74.4± 0.1

Composite + convolutional QK 86.7± 0.0 64.0± 0.9 87.5 ± 0.2 85.7± 0.1 76.1± 0.1

Composite + convolutional value 87.5 ± 0.0 65.1± 0.5 87.5 ± 0.1 86.4 ± 0.1 76.6± 0.1

Composite + convolutional QKV 87.0± 0.0 64.9± 0.8 86.9± 0.1 85.9± 0.1 76.2± 0.2

ConvBERT 85.1± 0.1 64.6± 0.5 86.3± 0.3 84.0± 0.2 74.2± 0.3

Convolution type, BERT-base
No convolution + abs position∗ 88.7± 0.0 69.9± 0.5 90.4± 0.1 88.4 ± 0.1 81.0± 0.2

Fixed lightweight (Raffel et al. 2020) 88.8 ± 0.0 70.9± 0.7 90.8± 0.1 88.1± 0.1 81.3 ± 0.2

Dynamic lightweight (Shaw et al. 2018) 88.7± 0.0 70.6± 0.6 91.1 ± 0.1 87.7± 0.3 81.1± 0.2

Composite (Equation 6) 88.7± 0.0 71.0 ± 0.7 90.5± 0.1 88.4 ± 0.1 81.2± 0.2

Table 6: GLUE development set scores for each model described in the main paper, reporting averages and standard
errors of the mean over ten fine-tuning runs for each task. ∗ denotes the default BERT model.

Model, BERT-small Params CoLA MNLI-
m

MNLI-
mm

MRPC QNLI QQP RTE SST STS GLUE

ConvBERT 13.1M 25.5 75.4 73.9 79.7 76.0 74.7 64.3 85.6 77.9 70.3
Integrated convolutions and
self-attention (ours)

13.5M 37.9 77.5 76.6 83.7 83.1 76.6 65.3 88.7 81.1 74.5

Table 7: Comparison between ConvBERT-small and the analogous model under our framework, reporting GLUE
test set results.

