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Abstract

Machine learning (ML) robustness and domain

generalization are fundamentally correlated: they

essentially concern data distribution shifts under

adversarial and natural settings, respectively. On

one hand, recent studies show that more robust

(adversarially trained) models are more generaliz-

able. On the other hand, there is a lack of theoret-

ical understanding of their fundamental connec-

tions. In this paper, we explore the relationship

between regularization and domain transferability

considering different factors such as norm regu-

larization and data augmentations (DA). We pro-

pose a general theoretical framework proving that

factors involving the model function class reg-

ularization are sufficient conditions for relative
domain transferability. Our analysis implies that

“robustness” is neither necessary nor sufficient for

transferability; rather, regularization is a more fun-

damental perspective for understanding domain

transferability. We then discuss popular DA pro-

tocols (including adversarial training) and show

when they can be viewed as the function class reg-

ularization under certain conditions and therefore

improve generalization. We conduct extensive

experiments to verify our theoretical findings and

show several counterexamples where robustness

and generalization are negatively correlated on

different datasets.

1. Introduction
Domain generalization (or domain transferability) is the task

of training machine learning models with data from one or
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more source domains that can be adapted to a target domain,

often via low-cost fine-tuning. Thus, domain generalization

refers to approaches designed to address the natural data
distribution shift problem (Muandet et al., 2013; Rosen-

feld et al., 2021). A wide array of approaches have been

proposed to address domain transferability, including fine-

tuning the last layer of DNNs (Huang et al., 2018), invariant

feature optimization (Muandet et al., 2013), efficient model

selection for fine-tuning (You et al., 2019), and optimal

transport based domain adaptation (Courty et al., 2016).

Understanding domain generalization has emerged as an

important task in the machine learning community.

On the other hand, robust machine learning aims to tackle

the problem of adversarial data distribution shift. Both em-

pirical and certified robust learning approaches have been

proposed, such as empirical adversarial training (Madry

et al., 2018) and certified defenses based on both determin-

istic and probabilistic approaches (Cohen et al., 2019; Li

et al., 2019; 2021; 2020).

Recent studies (Salman et al., 2020; Utrera et al., 2020)

draw a connection between domain transferability and ro-

bustness, and suggest that adversarially robust models (i.e.,

models with good accuracy under adversarial attacks) are

more domain transferable. However, a theoretical analy-

sis of their fundamental connections is still lacking, and

it is unclear whether robustness is necessary or sufficient.

To fill in this gap, this paper aims to answer the following

questions: Is model robustness sufficient or necessary for
domain transferability? What are sufficient conditions for
domain transferability?

To answer the first question, our analysis and experiments

show that adversarial robustness is neither sufficient nor
necessary for domain transferability and they can even be

negatively correlated. To answer the second question, we

first observe that domain transferability is fundamentally a

“relative” concept, as it by definition involves two domains,

i.e., the source/target domain. With the observation, we

propose a general theoretical framework that characterizes

sufficient conditions for the relative domain transferability

from the view of function class regularization. The relative

domain transferability, loosely speaking, is the performance

of the fine-tuned source model on the target domain relative
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Figure 1. Illustration of robustness and domain transferability in different conditions. We study different augmentation and regularization

techniques that can serve as sufficient conditions for domain transferability. We observe that adversarially robust models do not necessarily

achieve a better performance in domain transferability and sometimes they are negatively correlated.

to the performance of the source model on the source do-

main. We then prove an inequality showing that stronger

regularization on the feature extractor (during the source

model training process) implies a better relative domain

transferability. We also discuss what data augmentations

can be viewed as function class regularization generally.

Since adversarial training can be viewed as a regulariza-

tion under some conditions (Roth et al., 2020; El Ghaoui &

Lebret, 1997; Bertsimas & Copenhaver, 2018), our work im-

plies that the regularization effect of adversarial training is a

better and more fundamental explanation for the connection

between adversarial training and domain transferability.

To verify our theory, we conduct extensive experiments

on ImageNet (CIFAR-10 as target domain) and CIFAR-

10 (SVHN as target domain) based on different models.

We show that regularizations such as norm regularization

and certain data augmentations can control the relative and

absolute domain transferability, while the robustness and

domain transferability can be even negatively correlated

with the domain transferability, as illustrated in Fig. 1.

Technical contributions. Our theoretical analysis and em-

pirical findings show that, instead of robustness or adversar-

ial training, regularization is a more fundamental perspective

to understand domain transferability. Concretely,

• We show that improving adversarial robustness is neither

necessary nor sufficient for improving domain transfer-

ability without additional conditions, as shown in Sec-

tion 2.1.

• We propose a theoretical framework to analyze the suffi-

cient conditions for domain transferability from the view

of function class regularization (Section 2.2&2.3). We

prove that shrinking the function class of feature extrac-

tors during training monotonically decreases a tight upper

bound on the relative domain transferability loss. There-

fore, it is reasonable to expect that imposing regularization

on the feature extractor during training can lead to a better

relative domain transferability.

• We provide general analysis on when data augmentations

(including adversarial training) can be viewed as regular-

ization. In particular, we verify analysis based on the data

augmentations of Gaussian noise, rotation, and translation,

as discussed in Section 3.

• We conduct extensive experiments on different datasets

and model architectures to verify our theoretical claims

(Section 4). We also show counterexamples where ad-

versarial robustness is significantly negatively correlated

with domain transferability.

Taken together, our results suggest a more nuanced explana-

tion of the phenomenon that “adversarially trained models

transfer better,” suggesting instead that adversarial training

implies training with regularization, which, in turn, implies

better transferability. As a consequence, although adver-

sarial training implies better adversarial robustness, better

adversarial robustness does not necessarily imply better

transferability.

Related Work. Domain Transferability has been analyzed

in different settings. Muandet et al. (2013) present a general-

ization bound for classification tasks based on the properties

of the assumed prior over training environments. Rosenfeld

et al. (2021) model domain transferability/generalization

as an online game and show that generalizing beyond the

convex hull of training environments is NP-hard. Given

the complexity of domain transferability analysis, recent

empirical studies observe that adversarially trained models

transfer better (Salman et al., 2020; Utrera et al., 2020).

Model robustness is an important topic given recent diverse

adversarial attacks (Goodfellow et al., 2014; Carlini & Wag-

ner, 2017). These attacks may be launched without access

to model parameters (Tu et al., 2019) or even with the model

predictions alone (Chen et al., 2020a). Different approaches

have been proposed to improve model robustness against

adversarial attacks (Yang et al., 2021; Ma et al., 2018; Xiao

et al., 2018). Adversarial training has been shown to be

effective empirically (Madry et al., 2018; Zhang et al., 2019;

Miyato et al., 2018). Some studies have shown that ro-

bustness is related to other model characteristics, such as
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transferability and invertibility (Engstrom et al., 2019; Liang

et al., 2020). A recent work (Deng et al., 2021) theoretically

analyzes how adversarial training helps transfer learning.

Although their proof implicitly depends on regularization,

the authors only focus on adversarial training for linear mod-

els, while we directly focus on regularization for general

models (e.g., DNNs).

2. Sufficient Conditions for Domain
Transferability

In this section, we theoretically analyze the problem of

domain transferability from the view of regularization and

discuss some sufficient conditions for good transferability.

All of the proofs are provided in Section A in the appendix.

Notations. We denote the input space as X ; the feature

space as Z and the output space as Y . Let the fine-tuning

function class be g ∈ G. Given a feature extractor f :
X → Z and a fine-tuning function g : Z → Y , the full

model is g ◦ f : X → Y . We denote PX×Y as the set of

distributions on X × Y . The loss function on Y is denoted

by � : Y ×Y → R+. The population loss function based on

data distribution D ∈ PX×Y and a model g ◦ f is defined as

�D(g ◦ f) := E(x,y)∼D[�(g ◦ f(x), y)].
In the following, we first provide an example to show that

the robustness can be irrelevant to domain transferability

and to illustrate why one might investigate domain transfer-

ability from the view of regularization.

2.1. A Toy Example: Motivation and Intuition

In this subsection, we construct a simple example where

improving adversarial robustness is neither necessary nor

sufficient for improving (relative) domain transferability, yet

stronger regularization sufficiently improves relative domain

transferability. The settings introduced in this subsection

are only applied in this subsection.

We consider the case that X = R
m and Y = R

d. Given an

input x ∈ X , the ground truth target for the source domain

is yS(x) generated by a function yS : Rm → R
d. Similarly,

we define yT for the target domain. In this example, for

simplicity, we neglect the fine-tuning process but directly

consider learning a function f : Rm → R
d with a norm ‖ · ‖

on R
d. We note that the analysis in this subsection holds

with any choice of norm on R
d.

Given the source and target distributions DS ,DT ∈ PX×Y ,

we consider the case that their marginal distributions on

the input space X are both D, while yS and yT could be

different. Moreover, we consider the case that the support

of the input data distribution D lies on a low-dimensional

manifold M ⊂ X = R
m such that for ∀x ∈ M, any

Euclidean ball centered at x has non-empty intersection with

R
m\M. Given the distribution D, we define a norm for

functions f : Rm → R
d as ‖f‖D := Ex∼D[‖f(x)‖], where

we view two functions f1, f2 as the same if ‖f1−f2‖D = 0.

Therefore, given a model f , for the source domain and the

target domain we consider the respective loss functions as

�DS
(f) = Ex∼D[‖f(x)− yS(x)‖] = ‖f − yS‖D,

�DT
(f) = Ex∼D[‖f(x)− yT (x)‖] = ‖f − yT ‖D.

The toy example serves two purposes: (1) supporting the

“neither necessary nor sufficient” claim; and (2) motivating

the perspective of regularization. For the first purpose, the

main intuition is that we can construct a setting where the do-

main transferability is only evaluated on a low-dimensional

manifold while the adversarial robustness is only evaluated

off the manifold. In such cases, a model having better ad-

versarial robustness does not imply it has better domain

transferability, and similarly a model having better domain

transferability does not imply it has better adversarial ro-

bustness. For the second purpose, as illustrated in Figure 2,

regularization is related to the domain transferability in this

toy example. This motivates the general study of the rela-

tionship between regularization and domain transferability

in Section 2.2.

Robustness is neither necessary nor sufficient for domain
transferability. We may see the relation between adver-

sarial robustness and domain transferability in this example

as follows. Given a source model fDS : Rm → R
d, we

consider the adversarial loss on an input x ∈ M, i.e.,

�adv(x; f
DS ) := max

δ:‖δ‖2≤ε
�(fDS (x+ δ), yS(x)), (1)

as an indicator of its robustness on the input x on the source

domain. The lower the adversarial loss, the better the ro-

bustness. We can see that both the regular loss functions

�DS
(fDS ) and �DT

(fDS ) only evaluate fDS on the low-

dimensional manifold M. Therefore, an adversarial pertur-

bation δ ∈ R
m could make x + δ /∈ M if the loss value

is sufficiently high in {x+ δ | ‖δ‖2 ≤ ε}\M. As a result,

in such cases the adversarial loss �adv(x; f
DS ) could be

arbitrarily high without affecting either the source domain

performance �DS
(fDS ) or the target domain performance

�DT
(fDS ), i.e., without affecting their transferability. This

implies that improving adversarial robustness is neither nec-

essary nor sufficient for improving domain transferability.

The toy example illustrates that robustness can be irrelevant

to domain transferability, and then the question one may nat-

urally ask is “what may have a stronger relevance to domain

transferability?” To provide the intuition that regularization

may be the key, we make the following analysis using the

same toy example.

Intuition on why regularization matters. Denoting a

function space F = {f : Rm → R
d | ‖f‖D < ∞}, we
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Figure 2. The left figure illustrates the example in the function space F given a regularization parameter c. The right figure shows the

relations between domain transferability and the c. In this example, the stronger the regularization effect (smaller c) is, the lower the

relative domain transferability loss is (violet arrow), and the better the relative domain transferability is.

assume yS , yT ∈ F such that we can compare f, yS , yT in

the same space. Therefore, given c > 0 as a regularization

parameter, we define the domain transferability problem as:

Learning a source model:

fDS
c ∈ argmin

f∈F
�DS

(f), s.t. ‖f‖D ≤ c; (2)

Testing on a target domain: �DT
(fDS

c ),

where the minimizer is fDS
c := yS min{1, c

‖yS‖D
}, the

source domain loss is �DS
(f) = ‖f − yS‖D, and the target

domain loss is �DT
(f) = ‖f − yT ‖D. We prove in Proposi-

tion 2.1 that fDS
c is indeed a minimizer of equation 2.

Considering the relation between (relative) domain trans-

ferability and the regularization parameter c, we have an

interesting finding. An illustration of the finding is shown

in Figure 2, and a more formal statement is provided in

Proposition 2.1. As we can see, the relation between regu-

larization and domain transferability is clear if we consider

the domain transferability in a “relative” way, i.e., the loss

value on the target domain minus the loss value on the source

domain. A formal definition of the relative transferability

loss is deferred to Definition 2.2 in the next subsection.

Proposition 2.1. Given the toy example problem defined in
Section 2.1, fDS

c is a minimizer of equation 2. If c ≥ c′ ≥ 0,
then the relative domain transferability loss �DT

(fDS
c ) −

�DS
(fDS

c ) ≥ �DT
(fDS

c′ )− �DS
(fDS

c′ ).

As we can see from this toy example, robustness is neither

necessary nor sufficient to characterize domain transferabil-

ity. However, there is a monotone relation between the reg-

ularization strength and the relative domain transferability

loss. Although the above proposition is derived specifically

for the toy example, similar behavior is also observed in our

experiments. Naturally, these findings motivate the study

of the connections between the regularization of the train-

ing process and domain transferability in general, as we

consider next.

2.2. Upper Bound of Relative Domain Transferability

In this subsection, we consider the general transferability

problem with fine-tuning. We prove that there is a monotone

decreasing relationship between the regularization strength

and a tight upper bound on the relative domain transfer-

ability loss. Given a training algorithm A, it takes a data

distribution D and outputs a feature extractor fD
A ∈ FA

chosen from a function class FA as well as a fine-tuning

function gDA ∈ G. First, we formally define the relative

domain transferability loss.

Definition 2.2 (Relative Domain Transferability Loss).
Given the training algorithm A and a pair of distributions

DS ,DT ∈ PX×Y , the relative domain transferability loss

between DS ,DT is defined to be the difference of fine-tuned

losses, i.e.,

τ(A;DS ,DT ) := inf
g∈G

�DT
(g ◦ fDS

A )− �DS
(gDS

A ◦ fDS

A ).

As we can see, when �DS
(gDS

A ◦ fDS

A ) is the same, smaller

τ(A;DS ,DT ) means the better performance on the target

domain.

Another perspective of Definition 2.2 is that infg∈G �DT
(g ◦

fDS

A ) = �DS
(gDS

A ◦ fDS

A ) + τ(A;DS ,DT ). From this per-

spective, the transferred loss is the source loss plus an ad-

ditional term to be upper bounded by a certain distance

metric between the source and target distributions – as is

common in the literature of domain adaptation (e.g., (Ben-

David et al., 2007; Zhao et al., 2019)). The key question of

the “distance metric” remains unanswered. To this end, we

propose the following.

Definition 2.3 ((G,F)-pseudometric). Given a fine-tuning

function class G, a feature extractor function class F and

distributions DS ,DT ∈ PX×Y , the (G,F)-pseudometric

between DS ,DT is

dG,F (DS ,DT ) := sup
f∈F

| inf
g∈G

�DS
(g ◦ f)− inf

g∈G
�DT

(g ◦ f)|.

Since the fine-tuning function class is usually simple and

fixed, we will use dF as an abbreviation when G is clear.
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It can be easily verified that dG,F is a pseudometric that

measures the distance between two distributions, as shown

in the following proposition.

Proposition 2.4. dG,F (·, ·) : PX×Y × PX×Y → R+ satis-
fies the following properties.

1. (Symmetry) dG,F (DS ,DT ) = dG,F (DT ,DS).

2. (Triangle Inequality) For ∀D′ ∈ PX×Y , we have
dG,F (DS ,DT ) ≤ dG,F (DS ,D′) + dG,F (D′,DT ).

3. (Weak Zero Property) For ∀D ∈ PX×Y : dG,F (D,D) =
0.

The motivation of the (G,F)-pseudometric comes from the

following observations. We want to study what factors affect

how a source model transfers to the target domain. The

obvious factor is the difference between the two domains.

But the function class where the model is trained from is also

an important factor (e.g., the example in Section 2.1). Note

that the proposed (G,F)-pseudometric is both a complexity

measure of the model function class and a distance measure

of two distributions. Given a certain fixed function class, the

(G,F)-pseudometric can serve as a distance measure related

to the Wasserstein distance or the total variance distance. In

proposition A.3 in the appendix, we show that, if the loss

function class is Lipschitz, then the (G,F)-pseudometric

between DS and DT is upper bounded by the product of

the Lipschitz constant and the Wasserstein distance between

DS and DT . Moreover, in proposition A.4 in the appendix,

we show that the total variation distance upper bounds the

(G,F)-pseudometric if we are working in the realm of multi-

class classification and the loss function is the 0-1 loss.

The major difference of the (G,F)-pseudometric with ex-

isting metrics for domain transfer (Ben-David et al., 2010;

Mansour et al., 2009; Acuna et al., 2021; Zhao et al., 2019)

is that the proposed (G,F)-pseudometric is more general.

Concretely, the aforementioned work only considers the

distributions on the input space X , while we consider both

the input space and the output space, i.e, X ×Y . This differ-

ence enables us to consider the fine-tuning process, which

is important and widely applied in practice.

In this section, we consider a fixed fine-tuning function

class G and feature extractor function class FA given by the

training algorithm A. Thus, we denote dG,F as dFA
for the

remainder of the paper. With the definition of dFA
, we can

derive the following result which provides justification for

the regularization perspective.

Theorem 2.5. Given a training algorithm A, for
∀DS ,DT ∈ PX×Y we have

τ(A;DS ,DT ) ≤ dFA
(DS ,DT ), or equivalently,

inf
g∈G

�DT
(g ◦ fDS

A ) ≤ �DS
(gDS

A ◦ fDS

A ) + dFA
(DS ,DT ).

Interpretation: As we can see, the above theorem pro-

vides sufficient conditions for good domain transferabil-

ity. There is a monotone relation between the regular-

ization strength and dFA
(DS ,DT ), i.e., the upper bound

on the relative domain transferability loss τ(A;DS ,DT ).
More explicitly, if a training algorithm A′ has FA′ ⊆ FA,

then dFA′ (DS ,DT ) ≤ dFA
(DS ,DT ). Moreover, small

dFA
(DS ,DT ) implies good relative domain transferability.

From this perspective, we can see that we need both small

dFA
(DS ,DT ) and small source loss �DS

(gDS

A ◦ fDS

A ) to

guarantee good absolute domain transferability. Note that

there is a possible trade-off, i.e., with FA being smaller,

dFA
(DS ,DT ) decreases but possibly �DS

(gDS

A ◦ fDS

A ) in-

creases due to the limited power of FA. On the other hand,

there may not be such trade-off if DS and DT are close

enough such that dFA
(DS ,DT ) is small.

To make the upper bound more meaningful, we need to

study its tightness.

Theorem 2.6. Given any source distribution DS ∈ PX×Rd ,
any fine-tuning function class G where G includes the
zero function, we assume the training algorithm A is op-
timal, i.e., �DS

(gDS

A ◦ fDS

A ) = infg∈G,f∈FA
�DS

(g ◦ f).
We assume some properties of the loss function � : Rd ×
R

d → R+: it is differentiable and strictly convex w.r.t.
its first argument; �(y, y) = 0 for any y ∈ R

d; and
limr→∞ infy:‖y‖2=r �(�0, y) = ∞, where �0 is the zero vec-
tor. Then, given any distribution DX on X , there exist some
distributions DT ∈ PX×Rd with its marginal on X being
DX such that

τ(A;DS ,DT ) = dFA
(DS ,DT ), or equivalently,

inf
g∈G

�DT
(g ◦ fDS

A ) = �DS
(gDS

A ◦ fDS

A ) + dFA
(DS ,DT ).

Interpretation: In the above theorem, we show that given

any A,DS , and the marginal DX , there exist some condi-

tional distributions of y|x such that by composing it with

the given DX we have a distribution DT where the equal-

ity holds in Theorem 2.5. The optimality assumption on

the training algorithm is mild, as it is common for modern

neural networks to achieve considerably low loss. Nonethe-

less, a generalized version of the theorem is provided as

Theorem A.7 in the appendix which works with any train-

ing algorithm. Alternative form of the tightness analysis is

discussed immediately after the proof of Theorem A.7.

Therefore, we prove that stronger regularization on the fea-

ture extractor implies a decreased tight upper bound on the

relative transferability loss. For a cleaner presentation, the

analysis so far does not consider the potential influence from

finite samples which for sure affects domain generalization.

In the next subsection, we investigate the proposed theory

on relative transferability with finite samples.
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2.3. Generalization Upper Bound of the Relative
Domain Transferability

For a distribution D ∈ PX×Y , we denote its empirical

distribution with n samples as D̂n. That being said,

�
̂Dn(g ◦ f) = E(x,y)∼ ̂Dn [�(g ◦ f(x), y)]

= 1
n

∑n
i=1 �(g ◦ f(xi), yi),

where (xi, yi) are i.i.d. samples from D. Therefore, given

two distributions DS ,DT ∈ PX×Y , the empirical (G,F)-

pseudometric between them is dG,F (D̂n
S , D̂n

T ).

Note that dG,F is not only a pseudometric of distributions,

but also a complexity measure, and we will first connect it

with the Rademacher complexity.

Definition 2.7 (Empirical Rademacher Complexity (Bartlett

& Mendelson, 2002; Koltchinskii, 2001)). Denote the loss

function class induced by G,F as

LG,F := {hg,f : X × Y → R+ | g ∈ G, f ∈ F},

where hg,f (x, y) := �(g ◦ f(x), y).
Given an empirical distribution D̂n (i.e., n data samples),

the Rademacher complexity of it is

Rad
̂Dn(LG,F ) :=

1

n
Eξ

[
sup

h∈LG,F

n∑
i=1

ξih(xi, yi)

]
,

where ξ ∈ R
n are Rademacher variables, i.e., each ξi is i.i.d.

uniformly distributed on {−1, 1}.

We can see that if there is a F ′ ⊆ F , then Rad
̂Dn(LG,F ′) ≤

Rad
̂Dn(LG,F ). With the above definitions, we have the

following lemma connecting the (G,F)-pseudometric to

Rademacher complexity.

Lemma 2.8. Assuming the loss function � : Y × Y →
[0, c], given any distribution D ∈ PX×Y and ∀δ > 0, with
probability ≥ 1− δ we have

dG,F (D, D̂n) ≤ 2Rad
̂Dn(LG,F ) + 3c

√
ln(4/δ)

2n
.

Therefore, denoting again dFA
as dG,FA

, the empirical ver-

sion of Theorem 2.5 is as follows.

Theorem 2.9. Assuming the loss function � : Y×Y → [0, c],
given ∀DS ,DT ∈ PX×Y , for ∀δ > 0 with probability
≥ 1− δ we have

τ(A; D̂n
S ,DT ) ≤ dFA

(D̂n
S , D̂n

T ) + 2Rad
̂Dn
T
(LG,FA

)

+ 4Rad
̂Dn
S
(LG,FA

) + 9c

√
ln(8/δ)

2n
.

Interpretation: We can see that a smaller feature extrac-

tor function class FA implies both a smaller dFA
and the

Rademacher complexity. Therefore, the monotone relation

between the regularization strength and the upper bound on

the relative domain transferability loss also holds for the

empirical settings.

The proposed theoretical analysis suggests that regulariza-

tion may be a fundamental perspective to understand domain

transferability. Other than explicit regularization, empiri-

cally we find that the transferability is also related to the use

of certain data augmentation and adversarial training. Can

we explain such phenomena from the view of regularization

again? We discuss this question in the next section.

3. When Can Data Augmentation be Viewed as
Regularization?

In this section, we discuss the connections between data

augmentation (DA) and regularization. We present the re-

sults and their interpretation in this section, while deferring

the detailed discussion and comparisons with related work

to Section B in the appendix.

General settings. We consider the fine-tuning function

g : Rd → R as a linear layer, which will be concatenated to

the feature extractor f : Rm → R
d. Given a model g ◦ f ,

we use the squared loss �(g ◦ f(x), y) = (g ◦ f(x) − y)2,

and accordingly apply second-order Taylor expansion to the

objective function to study the effect of data augmentation.

DA categories. We discuss two categories of DA, the

feature-level DA and the data-level DA. The feature-level

DA (Wong et al., 2016; DeVries & Taylor, 2017) requires

the transformation to be performed in the learned feature

space: given a data sample x ∈ R
m and a feature ex-

tractor f , the augmented feature is W�f(x) + b� where

W� ∈ R
d×d, b� ∈ R

d are sampled from a distribution.

On the other hand, the data-level DA requires the trans-

formation to be performed in the input space: given a

data sample x, the augmented sample is W�x + b� where

W� ∈ R
m×m, b� ∈ R

m are sampled from a distribution.

Intuition on sufficient conditions. For either the feature-

level or the data-level DA, the intuitions given by our analy-

sis are similar. Our results (Theorem B.1&B.2) suggest that

the following conditions indicate regularization effects of

a data augmentation: 1) EW� [W�] = I; 2) Eb� [b�] = �0; 3)

W� and b� are independent, where I is the identity matrix

and �0 is the zero vector; 4) W� is not a constant if it is the

feature-level DA; 5) DA is of a small magnitude if it is the

data-level DA.

Empirical verification. Combining with Theorem 2.9, it

suggests that DA satisfying the conditions above may im-

prove the relative domain transferability. In fact, it matches
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the empirical observations in Section 4. Concretely, 1)
Gaussian noise satisfies the four conditions, and empiri-

cally the Gaussian noise improves domain transferability

while robustness decreases a bit (Figure 5); 2) Rotation,

which rotates input image with a predefined fixed angle with

predefined fixed probability, violates EW�
[W�] = I, and

empirically the rotation barely affects domain transferability

(Figure 7); 3) Translation, which moves the input image for

a predefined distance along a pre-selected axis with fixed

probability, violates Eb� [b�] = �0, and empirically the trans-

lation distance barely co-relates to the domain transferability

(Figure 7).

Adversarial training. It is known that adversarial training,

a special kind of data augmentation, can be viewed as regu-

larization in some scenarios (Roth et al., 2020). We further

prove that, under certain conditions, adversarial training re-

duces the size of the feature extractors function class during

training (see Section C for details). Therefore, our theoreti-

cal analysis implies that adversarial training helps domain

transferability from its regularization effect.

4. Evaluation
4.1. Experimental Setting

Source model training. We train our model on two source

domains: CIFAR-10 and ImageNet. Unless specified, we

will use the training settings as follows1. For CIFAR-10, we

train the model with 200 epochs using the momentum SGD

optimizer with momentum 0.9, weight decay 0.0005, an

initial learning rate 0.1 which decays by a factor of 10 at the

100-th and 150-th epoch. For ImageNet, we train the model

with 90 epochs using the momentum SGD optimizer with

momentum 0.9, weight decay 0.0001, an initial learning rate

0.1 which decays by a factor of 10 at the 30-th and 60-th

epoch. We use the standard cross-entropy loss denote as

LCE(hs, x, y), where hs = gs ◦ f is the trained model and

x, y are the input and label respectively. For both tasks, we

use ResNet-18 as the model architecture. We provide results

of other model structures in Appendix D.3.

Model robustness evaluation. To evaluate the model ro-

bustness on the source domain, we will show the model

accuracy under adversarial attack. We follow the evalua-

tion setting in (Ilyas et al., 2019) and perform the PGD

attack with 20 steps using ε = 0.25. This empirical robust

accuracy reflects how well the model performs under adver-

sarial attack, which is the adversarial loss as in equation 1

if we view �(·, ·) as the 0-1 loss between prediction and

ground truth. We also provide robustness evaluation with

1These settings are inherited from the standard training algo-
rithms for CIFAR-10 (https://github.com/kuangliu/
pytorch-cifar) and ImageNet (https://github.com/
pytorch/examples/tree/master/imagenet).

Figure 3. Relationship between robustness and transferability un-

der different norms of last layer, via training with last-layer regu-

larization (LLR) and last-layer orthogonalization (LLOT)

AutoAttack in Appendix D.4.

Domain transferability. We evaluate the transferability

from CIFAR-10 to SVHN and from ImageNet to CIFAR-

10. For the ImageNet, we focus on CIFAR as the target

domain, since it is the domain that is the most positively

correlated with robustness as shown in (Salman et al., 2020).

We evaluate the fixed-feature transfer where only the last

fully-connected layer is fine-tuned following our theoretical

framework. We fine-tune the last layer with 40 epochs using

SGD with momentum 0.9, weight decay 0.0005, an initial

learning rate 0.01 which decays by a factor of 10 at the

20-th and 30-th epoch. To mitigate the impact of benign

accuracy, we evaluate the relative domain transfer accuracy
(DT Acc) as follows. Let accsrc and acctgt be the accuracy

of the fine-tuned model on the source and target domain,

and accvsrc and accvtgt be the accuracy of vanilla model (i.e.,
models trained with standard settings) on source and target

domain, then the relative DT accuracy is defined as:

DT Acc = (acctgt − accsrc)− (accvtgt − accvsrc).

Note that by definition, we can directly use acctgt − accsrc
as the relative accuracy. We use a relative score (accvtgt −
accvsrc) so that the positive/negative values reflect the com-

parison with the vanilla-trained model. We also provide the

results of absolute DT accuracy in Appendix D.1.

4.2. Relationship between Robustness and
Transferability Under Controllable Conditions

We train the model under different controllable conditions to

validate our analysis. In particular, we train the methods by

controlling different regularization or data augmentations

to evaluate the model robustness and transferability. We
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Figure 4. Relationship between robustness and transferability

when we regularize the feature extractor with Jacobian Regulariza-

tion (JR) and weight decay (WD).

emphasize that our goal is to identify conditions for domain

transferability, rather than proposing methods to achieve

the state-of-the-art transferable models. Nevertheless, we

do show in Appendix D.2 that with basic regularization the

model can achieve better absolute transferability than vanilla

trained or adversarially trained models in some cases.

Controlling the last-layer norm. As shown in our theory,

(relative) domain transferability is related to the regulariza-

tion of feature extractors. Here we regularize the transfer-

ability by controlling the last-layer norm gs. Intuitively,

when we force the norm of gs to be big during training, the

corresponding norm of f will be regularized to be small.

We use two approaches to control the last-layer norm:

• Last-layer regularization (LLR): we impose a strong

l2-regularizer with parameter λl specifically on the

weight of gs and therefore our training loss becomes:

LLLR(hs, x, y) = LCE(hs, x, y) + λl · ||gs||F , where

||gs||F is the frobenius norm of the weight matrix of gs.

• Last-layer orthogonal training (LLOT): we directly con-

trol the l2-norm of gs with orthogonal training ((Huang

et al., 2020)). The orthogonal training will enforce the

weight to become a 1-norm matrix and we multiply a

constant to obtain the desired norm ||gs||2.

The result of LLR and LLOT are shown in Figure 3. We

observe that when we regularize the norm of the last layer to

be large (i.e. smaller λ in LLR and larger ||gs||2 in LLOT),

the relative domain transferability will increase while the

model robustness will decrease (their negative correlation

is significant with Pearson’s coefficient around −0.9). This

is because the larger last layer norm will produce a feature

Figure 5. Relationship between robustness and transferability

when we use Gaussian noise (Gauss) and posterize (Pos) as data

augmentations.

extractor f with a smaller norm, which, according to our

analysis, leads to a better relative domain transferability. On

the other hand, the model gs ◦ f will have a larger norm and

therefore becomes less robust under adversarial attacks.

Controlling the norm of feature extractor. We directly

regularize the feature extractor f and check the impact on

the (relative) domain transferability. We implement two

regularization as follows:

• Jacobian regularization (JR): we follow the approach in

(Hoffman et al., 2019) to apply JR on the feature extractor.

Given model hs = gs ◦ f , the training loss becomes:

LJR(gs ◦f, x, y) = LCE(gs ◦f, x, y)+λj · ||J(f, x)||2F ,

where J(f, x) denotes the Jacobian matrix of f on x and

|| · ||F is the frobenius norm.

• Weight Decay (WD): we impose weight decay with factor

λw on the feature extractor f during training. This is

equivalent to imposing l2-regularizer with factor λw on

the feature extractor (excluding the last layer).

The results under JR and WD are shown in Figure 4. We

observe that with larger regularization on the feature extrac-

tor, the model shows higher relative domain transferability,

which matches our analysis. Meanwhile, the robustness de-

creases significantly with a large regularizer. This is because

a large regularization will harm the model performance on

the source domain and lead to low model robustness.

Noise-dependent data augmentation. As shown in Sec-

tion 3, certain data augmentation can be viewed as a type

of regularization during training and thus affects the (rela-

tive) domain transferability. Here we consider both noise
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Figure 6. Relationship between robustness and transferability on

ImageNet when we use rescale and blur as data augmentations.

dependent and independent data augmentations. For the

noise-dependent case, We include two augmentations:

• Gaussian Noise data augmentation (Gauss): we add zero-

mean Gaussian noise with variance σ2 to the input image.

• Posterize (Pos): we truncate each channel of one pixel

value into b bits (originally they are 8 bits).

The results of Gauss and Pos are shown in Figure 5. We

observe that the relative domain transferability of the trained

models improves with greater data augmentation, matching

our theory. The robustness also benefits from a small data

augmentation but decreases when it becomes large.

Resolution-related (noise-independent) data augmenta-
tion. Specifically, for ImageNet to CIFAR-10 transferability,

we consider two resolution-related data augmentations. The

intuition is that when the target domain has a lower res-

olution than the source domain (ImageNet is 224 × 224
while CIFAR-10 is 32 × 32), the data augmentations that

down-sample the inputs during the training on the source

domain will help transferability. We consider the below

resolution-related augmentations:

• Rescale: we rescale the input to be m times smaller (i.e.,
shape ImageNet as (224/m)×(224/m)) and then rescale

them back to the original size.

• Blur: we apply Gaussian blurring with kernel size k on

the input. The Gaussian kernel is created with a standard

deviation randomly sampled from [0.1, 2.0].

The corresponding results are shown in Figure 6. The ex-

periments are evaluated only for ImageNet to CIFAR-10,

and we include the results of both ResNet18 (the default

Figure 7. Relationship between robustness and transferability

when we use rotation and translation as data augmentations, which

violate the sufficient condition for regularization. We cannot see

any obvious trend for such augmentations.

model) and WideResNet50. We can see that the data aug-

mentations help with relative domain transferability to the

target domain, although the robustness on the source do-

main decreases since these augmentations do not relate to

robustness operations

4.3. Other Data Augmentations

In addition, we study rotation and translation, the two data

augmentations that violate the sufficient condition for regu-

larization as we discussed in Section 3. The result is shown

in Figure 7. We observe that these augmentations do not

have an obvious impact on domain transferability, which is

consistent with our theoretical analysis.

5. Conclusions
In this work, we theoretically analyze the sufficient condi-

tions for (relative) domain transferability based on the view

of function class regularization. We also conduct experi-

ments to verify our claims and observe some counterexam-

ples that show negative correlations between robustness and

domain transferability. These results would contribute to a

better understanding of the domain generalization.
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