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Abstract

Metric elicitation is a recent framework for eliciting classification performance metrics
that best reflect implicit user preferences based on the task and context. However,
available elicitation strategies have been limited to linear (or quasi-linear) functions of
predictive rates, which can be practically restrictive for many applications including
fairness. This paper develops a strategy for eliciting more flexible multiclass metrics
defined by quadratic functions of rates, designed to reflect human preferences better. We
show its application in eliciting quadratic violation-based group-fair metrics. Our strategy
requires only relative preference feedback, is robust to noise, and achieves near-optimal
query complexity. We further extend this strategy to eliciting polynomial metrics – thus
broadening the use cases for metric elicitation.

1 Introduction

Given a classification task, which performance metric should the classifier optimize? This
question is often faced by practitioners while developing machine learning solutions. For
example, consider cancer diagnosis where a doctor applies a cost-sensitive predictive model to
classify patients into cancer categories [Yang and Naiman, 2014]. The costs may be based on
known consequences of misdiagnosis, i.e, side-effects of treating a healthy patient vs. mortality
rate for not treating a sick patient. Although it is clear that the chosen costs directly determine
the model decisions and dictate patient outcomes, it is not clear how to quantify the expert’s
intuition into precise quantitative cost trade-offs, i.e., the performance metric.
Indeed, the above is also true for a variety of other domains including fair machine learning
where picking the right metric is a critical challenge [Dmitriev and Wu, 2016, Zhang et al.,
2020]. The issue is exacerbated when the practitioner’s notion of fairness does not exactly
match with any standard fairness criterion. For example, a practitioner may be interested in
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Figure 1: Metric Elicitation [Hiranandani et al., 2019a].

weighting each group discrepancy differently, but may not be able to provide us with the exact
weights or a precise mathematical expression that reflects on the practitioner’s innate fairness
notion.
[Hiranandani et al., 2019a,b, 2020] addressed this issue by formalizing the framework of Metric
Elicitation (ME), whose goal is to estimate a performance metric using preference feedback
from a user. The motivation is that by employing metrics that reflect a user’s innate trade-offs
given the task, context, and population at hand, one can learn models that best capture the
user preferences [Hiranandani et al., 2019a]. As humans are often inaccurate in providing
absolute quality feedback [Qian et al., 2013], [Hiranandani et al., 2019a] propose to use pairwise
comparison queries, where the user (oracle) is asked to compare two classifiers and provide a
relative preference. Using such pairwise comparison queries, ME aims to recover the oracle’s
metric. Figure 1 (reproduced from [Hiranandani et al., 2019a]) depicts the ME framework.
A notable drawback of existing ME strategies is that they only handle linear or quasi-linear
function of predictive rates, which can be restrictive for many applications where the metrics
are non-linear. For example, in fair machine learning, classifiers are often judged by measuring
discrepancies between predictive rates for different protected groups [Hardt et al., 2016].
Similarly, discrepancies among different distributions are measured in distribution matching
applications [Narasimhan, 2018, Esuli and Sebastiani, 2015]. A common measure of discrepancy
in such applications is the squared difference, which is a quadratic metric that cannot be handled
by existing approaches. Quadratic metrics also find use in class-imbalanced learning [Goh et al.,
2016, Narasimhan, 2018] (see Section 2.3 for examples). Motivated by these examples, in this
paper, we propose strategies for eliciting metrics defined by quadratic functions of rates, that
encompass linear metrics as special cases. Our approach also generalizes to eliciting polynomial
metrics, a universal family of functions [Stone, 1948], allowing one to better capture real-world
human preferences.
Our high-level idea is to approximate the quadratic metric with multiple linear functions,
employ linear ME to estimate the individual local slopes, and combine the slope estimates
to reconstruct the original metric. While natural and elegant, this approach comes with
non-trivial challenges. Firstly, we must choose center points for the local-linear approximations,
and the chosen points must represent feasible queries. Secondly, because of the use of pairwise
queries, we only receive slopes (directions) and not magnitudes for the local-linear functions,
requiring intricate analyses to reconstruct the original metric and to deal with multiplicative
errors that result. Despite the challenges, our method requires a query complexity that is only
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linear in the number of unknowns, which we show is near-optimal. To our knowledge, we are
the first to prove such a lower bound for metric elicitation.
We further elaborate on eliciting group-fair metrics. The prior work by Hiranandani et al.
[2020] consider a restricted class of fairness metrics, where the fairness discrepancies are defined
to be the absolute differences between group-specific rates. Moreover, their approach does
not generalize to other families of metrics. In contrast, we are able to handle a more general
family of non-linear fairness metrics defined by quadratic functions of group rate differences
and show how our proposed quadratic ME approach is easily adaptable to elicit such group-fair
quadratic metrics.
In summary, we make the following contributions :

• We propose a novel quadratic ME algorithm for classification problems, which requires only
pairwise preference feedback either over classifiers or predictive rates.

• Specific to group-based fairness tasks, we show how to jointly elicit the predictive performance
and fairness metrics, and the trade-off between them.

• We show that the proposed approach is robust under feedback and finite sample noise and
requires a near-optimal number of queries.

• We empirically validate the proposal for multiple classes and groups on simulated oracles.
• We discuss how our strategy can be generalized to elicit higher-order polynomials by recursively

applying the procedure to elicit lower-order approximations.

Paper Organization: For ease of exposition, we first discuss quadratic metric elicitation
in the usual multiclass classification setup without fairness. Section 2 contains the problem
setup and the associated background, and Section 3 describes the proposed quadratic ME
procedure. We then cover ME under the multiclass-multigroup framework in Section 4,
where we additionally have protected group information embedded in the problem setup. In
Section 5, we provide guarantees for our proposed procedures, and in Section 6, we present
our experiments. We discuss related work in Section 7 and provide concluding remarks in
Section 8.
Notations. For k ∈ Z+, we denote [k] = {1, · · · , k} and use Δk to denote the (k − 1)-
dimensional simplex. We denote inner products by 〈·, ·〉 and Hadamard products by �. ‖ · ‖F

represents the Frobenius norm, and αi ∈ R
q denotes the i-th standard basis vector, where the

i-th coordinate is 1 and others are 0.

2 Background

We consider a k-class classification setting with X ∈ X and Y ∈ [k] denoting the input and
output random variables, respectively. We assume access to an n-sized sample {(x, y)i}n

i=1
generated iid from a distribution P(X, Y ). We work with randomized classifiers h : X → Δk

that for any x gives a distribution h(x) over the k classes and use H = {h : X → Δk} to
denote the set of all classifiers.
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Predictive rates: We denote the predictive rates for a classifier h by the vector r(h,P) ∈ R
k,

where the i-th coordinate is the fraction of label-i examples for which the randomized classifier
h also predicts class i:

ri(h,P) := P(h(X) = i|Y = i) for i ∈ [k]. (1)

The probability above is over draw of (X, Y ) ∼ P and the randomness in h. The proposed
setup and solution (discussed later) easily extends to general predictive rates of the form
P(h(X) = j|Y = i) for i, j ∈ [k]. For simplicity, we defer this extension to Appendix E.
Metrics: We consider metrics that are defined by a general function φ : [0, 1]k → R of rates:

φ(r(h,P)).

This includes the (weighted) accuracy φacc(r(h,P)) = ∑
i airi(h,P), for weights ai ∈ R+, the

G-mean, and many more metrics [Sokolova and Lapalme, 2009]. Unless specified, we treat
metrics as utilities, i.e., larger values are better. Since the metric’s scale does not affect the
learning problem [Narasimhan et al., 2015], we allow φ : [0, 1]k → [0, 1].
Feasible rates: We will restrict our attention to only those rates that are feasible, i.e., can be
achieved by some classifier. The set of all feasible rates is given by:

R = {r(h,P) : h ∈ H}.

To avoid clutter in notations, we will suppress the dependence on P and h if it is clear from
the context.

2.1 Metric Elicitation: Problem Setup

We now describe the problem of Metric Elicitation, which follows from [Hiranandani et al.,
2019b]. There’s an unknown metric φ, and we seek to elicit its form by posing queries to an
oracle asking which of two classifiers is more preferred by it. The oracle has access to the
metric φ and responds by comparing its value on the two classifiers.

Definition 1 (Oracle Query). Given two classifiers h1, h2 (equiv. to rates r1, r2 respectively),
a query to the Oracle (with metric φ) is represented by:

Γ(h1, h2 ; φ) = Ω(r1, r2 ; φ) = �[φ(r1) > φ(r2)], (2)

where Γ : H × H → {0, 1} and Ω : R × R → {0, 1}. The query asks whether h1 is preferred to
h2 (equiv. if r1 is preferred to r2), as measured by φ.

In practice, the oracle can be an expert, a group of experts, or an entire user population.
The ME framework can be applied by posing classifier comparisons directly via interpretable
learning techniques [Ribeiro et al., 2016] or via A/B testing [Tamburrelli and Margara, 2014].
For example, in an internet-based application one may perform the A/B test by deploying
two classifiers A and B with two different sub-populations of users and use their level of
engagement to decide the preference over the two classifiers. For other applications, one may
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present visualizations of rates of the two classifiers (e.g., [Shen et al., 2020]), and have the
user provide the preference (see Appendix J for an example). Moreover, since the metrics
we consider are functions of only the predictive rates, queries comparing classifiers are the
same as queries on the associated rates. So for convenience, we will have our algorithms pose
queries comparing two (feasible) rates. Indeed given a feasible rate, one can efficiently find the
associated classifier (see Appendix B.1 for details). We next formally state the ME problem.

Definition 2 (Metric Elicitation with Pairwise Queries (given {(x, y)i}n
i=1) [Hiranandani et al.,

2019a,b]). Suppose that the oracle’s (unknown) performance metric is φ. Using oracle queries
of the form Ω(r̂1, r̂2 ; φ), where r̂1, r̂2 are the estimated rates from samples, recover a metric φ̂

such that ‖φ − φ̂‖ < κ under a suitable norm ‖ · ‖ for sufficiently small error tolerance κ > 0.

The performance of ME is evaluated both by the query complexity and the quality of the elicited
metric [Hiranandani et al., 2019a,b]. As is standard in the decision theory literature [Koyejo
et al., 2015], we present our ME approach by first assuming access to population quantities
such as the population rates r(h,P), then examine estimation error from finite samples, i.e.,
with empirical rates r̂(h, {(x, y)i}n

i=1).

2.2 Linear Metric Elicitation

As a warm up, we overview the Linear Performance Metric Elicitation (LPME) procedure
of [Hiranandani et al., 2019b], which we will use as a subroutine. Here we assume that the
oracle’s metric is a linear function of rates φlin(r) := 〈a, r〉, for some unknown weights a ∈ R

k.
In other words, given two rates r1 and r2, the oracle returns �[〈a, r1〉 > 〈a, r2〉]. Since the
metrics are scale invariant [Narasimhan et al., 2015], without loss of generality (w.l.o.g.), one
may assume ‖a‖2 = 1. The goal is to elicit (the slope of) a using pairwise comparisons over
rates.
When the number of classes k = 2, the coefficients a can be elicited using a one-dimensional
binary search. When k > 2, one can apply a coordinate-wise procedure, performing a binary
search in one coordinate, while keeping the others fixed. The efficacy of this procedure, however,
hinges on the geometry of the set of rates R. Before discussing the geometry, we make a mild
assumption that ensures some signal for non-trivial classification.

Assumption 1. The conditional-class distributions are distinct, i.e., P(Y = i|X) 	= P(Y =
j|X) ∀ i 	= j.

Let ei ∈ {0, 1}k denote the rates achieved by a trivial classifier that predicts class i for all
inputs.

Proposition 1 (Geometry of R; Figure 2(a)). The set of rates R ⊆ [0, 1]k is convex, has
vertices {ei}k

i=1, and contains the rate profile o = 1
k

∑k
i=1 ei in the interior. Moreover, o is

achieved by the uniform random classifier which for any input predicts each class with equal
probability.

Remark 1 (Existence of sphere S). Since R is convex and contains the point o in the interior,
there exists a sphere S ⊂ R of non-zero radius ρ centered at o.
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Figure 2: (a) Geometry of the set of predictive rates R: A convex set enclosing a sphere
S with trivial rates ei ∀ i ∈ [k] as vertices; (b) Geometry of the product set of group rates
R1 × · · · × Rm (best seen in color) [Hiranandani et al., 2020]; Ru ∀ u ∈ [m] are convex sets
with common vertices ei ∀ i ∈ [k] and enclose a sphere S ⊂ R1 ∩ · · · ∩ Rm.

By restricting the coordinate-wise binary search procedure to posing queries from within a
sphere, LPME can be seen as minimizing a strongly-convex function and shown to converge to a
solution â close to a. Specifically, the LPME procedure takes any sphere S ⊂ R, binary-search
tolerance ε, and the oracle Ω (with metric φlin) as input, and by posing O(k log(1/ε)) queries
recovers coefficients â with ‖a − â‖2 ≤ O(

√
kε). The details of the algorithm are provided

in Appendix A for completeness, but the following remark is the most important for our
subsequent discussion.

Remark 2 (LPME Guarantee). Given any k-dimensional sphere S ⊂ R and an oracle Ω with
metric φlin(r) := 〈a, r〉, the LPME algorithm (Algorithm 2, Appendix A) provides an estimate â
with ‖â‖2 = 1 such that the estimated slope is close to the true slope, i.e., ai/aj ≈ âi/̂aj ∀ i, j ∈ [k].

Note that the LPME procedure is closely tied to the scale invariance condition and thus only
estimates the slope (direction) of the coefficient vector a, and not its magnitude. Despite this
drawback, we will discuss how we can elicit quadratic metrics using LPME in Section 3. Also
note the algorithm takes as input an arbitrary sphere S ⊂ R, and restricts its queries to rate
vectors within the sphere. In Appendix B.1, we discuss an efficient procedure [Hiranandani
et al., 2019b] for identifying a sphere of suitable radius.

2.3 Quadratic Performance Metrics

Equipped with the LPME subroutine, our aim is to elicit metrics that are quadratic functions
of rates.

Definition 3 (Quadratic Metric). For a vector a ∈ R
k and a negative semi-definite matrix

B ∈ NSDk with ‖a‖2
2 + ‖B‖2

F = 1 (w.l.o.g. due to scale invariance):

φquad(r ; a, B) = 〈a, r〉 + 1
2rT Br. (3)
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This family trivially includes the linear metrics as well as many modern metrics outlined below:

Example 1 (Class-imbalanced learning). In problems with imbalanced class proportions,
it is common to use metrics that emphasize equal performance across all classes. One
example is Q-mean [Menon et al., 2013], which is the quadratic mean of rates: φqmean(r) =
1 − 1/k

∑k
i=1 (1 − ri)2 .

Example 2 (Distribution matching). In certain binary classification applications, one needs
the proportion of predictions for each class (i.e., the coverage) to match a target distribution
π ∈ Δ2 [Goh et al., 2016, Narasimhan, 2018]. A measure often used for this task is the
squared difference between the per-class coverage and the target distribution: φcov(r) =
1 − 1

2
∑2

i=1
(
covi(r) − πi

)2, where covi(r) = ri + 1 − r �=i. Similar metrics can be found in the
quantification literature where the target is set to the class prior P(Y = i) [Esuli and Sebastiani,
2015, Kar et al., 2016]. We capture more general quadratic distance measures for distributions,
e.g. (cov(r) − π)TQ(cov(r) − π) for Q ∈ NSD2 [Lindsay et al., 2008].

Lastly, we need the following assumption on the metric.

Assumption 2. The gradient of φ at the trivial rate o is non-zero, i.e., ∇φquad(r)|r=o =
a + Bo 	= 0.

The non-zero gradient assumption is reasonable for a concave φquad, where it merely implies
that the optimal classifier for the metric is not the uniform random classifier.

3 Quadratic Metric Elicitation

We now present our procedure for Quadratic Performance Metric Elicitation (QPME). We
assume that the oracle’s unknown metric is quadratic (Definition 3) and seek to estimate
its parameters (a, B) by posing queries to the oracle. Unlike LPME, a simple binary search
based procedure cannot be directly applied to elicit these parameters. Our approach instead
approximates the quadratic metric by a linear function at a few select but feasible rate
vectors and invokes LPME to estimate the local-linear approximations’ slopes. One of the key
challenges is to pick a small number of feasible rates for performing the local approximations
and to reconstruct the original metric just from the estimated local slopes.

3.1 Local Linear Approximation
We will find it convenient to work with a shifted version of the quadratic metric, centered at
the point o, the uniform random rate vector (see Proposition 1):

φquad(r; a, B) = 〈d, r − o〉 + 1
2(r − o)T B(r − o) + c

= φ(r; d, B) + c, (4)

where d = a + Bo and c is a constant independent of r, and so the oracle can be equivalently
seen as responding with the shifted metric φ(r; d, B).

7



Note that, due to the scale invariance condition in Definition 3, the largest singular value of B
is bounded by 1. This is because ‖B‖2 ≤ ‖B‖F ≤ 1. Thus the metric φquad is 1-smooth and
implies that it is locally linear around a given rate. To this end, let z be a fixed point in R,
then the metric can be closely approximated by its first-order Taylor expansion in a small
neighborhood around z, for a constant c′ as follows:

φ(r; d, B) ≈ 〈d + B(z − o), r〉 + c′. (5)

So if we apply LPME to the metric φ with the queries (r1, r2) to the oracle restricted to a
small ball around z, the procedure effectively estimates the slope of the vector d + B(z − o) in
the above linear function (up to a small approximation error).
We exploit this idea by applying LPME to small neighborhoods around selected points to elicit
the coefficients a and B for the original metric in (3). For simplicity, we will assume that the
oracle is noise-free and later show robustness to noise and the query complexity guarantees in
Section 5.

3.2 Eliciting Metric Coefficients
We outline the main steps of Algorithm 1 below. Please see Appendix C for the full derivation.
Estimate coefficients d (Line 1). We first wish to estimate the linear portion d of the
metric φ in (4). For this, we apply the LPME subroutine to a small ball So ⊂ S of radius � < ρ
around the point o (Fig. 2(a) illustrates this). Within this ball, the metric φ approximately
equals the linear function 〈d, r〉 + c′ (see (5)), and so the LPME gives us an estimate of
the slope of d. From Remark 2, the estimates f0 = (f10, . . . , fk0) approximately satisfy the
following (k − 1) equations:

di

d1
= fi0

f10
∀ i ∈ {2, . . . , k}. (6)

Estimate coefficients B (Lines 2–4). Next, we wish to estimate each column of the matrix
B of the metric φ in (4). For this, we apply LPME to small neighborhoods around points
in the direction of standard basis vectors αj ∈ R

k, j = 1, . . . , k. Note that within a small
ball around o + αj, the metric φ is approximately the linear function 〈d + B:,j, r〉 + c′, and
so the LPME procedure when applied to this region will give us an estimate of the slope
of d + B:,j. However, to ensure that the center point we choose is a feasible rate, we will
have to re-scale the standard basis, and apply the subroutine to balls Szj

of radius � < ρ
centered at zj = o + (ρ − �)αj. See Figure 2(a) for the visual intuition. The returned estimates
fj = (f1j, . . . , fkj) approximately satisfy:

di + (ρ − �)Bij

d1 + (ρ − �)B1j

= fij

f1j

∀ i ∈ {2, . . . , k}, j ≤ i. (7)

Now note that since we are only eliciting slopes using LPME, we always lose out on one degree
of freedom. However, the matrix B is symmetric, thus we have k(k + 1)/2 − 1 equations.
There are k(k + 1)/2 + k unknown entities in a and B, and to estimate them we need 1 more
equation besides the normalization condition. For this, we apply LPME to a sphere S−z1 of
radius � around rate −z1 as shown in Figure 2(a). The returned slopes f−

1 = (f−
11, . . . , f−

k1)
approximately satisfy:
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Algorithm 1: QPM Elicitation
Input: S, Search tolerance ε > 0, Oracle Ω with metric φ

1: f0 ← LPME(So, ε, Ω) with So ⊂ S and obtain (6)
2: For j ∈ {1, 2, . . . , k} do
3: fj ←LPME

(
Szj , ε, Ω

)
with Szj ⊂ S and obtain (7)

4: f−
1 ← LPME

(S−z1 , ε, Ω
)

with S−z1 ⊂ S and obtain (8)
5: â, B̂ ← normalized solution dervied from (9)
Output: â, B̂

d2 − (ρ − �)B21

d1 − (ρ − �)B11
= f−

21
f−

11
. (8)

Putting it together (Line 5). By combining (6), (7) and (8), and denoting Fi,j,l = fil/fjl

and F −
i,j,l = f−

il /f−
jl , we express each entry of B in terms of d1 as follows:

Bij =
(

Fi,1,j(1 + Fj,1,1) − Fi,1,jFj,1,0d1 − Fi,1,0

+ Fi,1,j
F −

2,1,1+F2,1,1−2F2,1,0

F −
2,1,1−F2,1,1

)
d1. (9)

Using d = a + Bo and the fact that the coefficients are normalized, i.e., ‖a‖2
2 + ‖B‖2

F = 1, we
can obtain estimates for B and a independent of d1. Note that the derivation so far assumes
d1 	= 0. This is based on Assumption 2 that at least one coordinate of d is non-zero, which
w.l.o.g. we take to be d1. In practice, we can identify a non-zero coordinate using q trivial
queries of the form (�αi + o, o), ∀i ∈ [k].
Technical novelty. We emphasize that a key difference from [Hiranandani et al., 2019a,b]
is that they rely on a boundary point characterization which may not hold for general
nonlinear metrics. Instead, we use structural properties of the metric to estimate local-linear
approximations. While this may be a convenient approach (given LPME), as discussed in
Section 1, implementing it involves non-trivial challenges, such as: (a) working with only slopes
for the local-linear functions, (b) ensuring that the center points for the approximations are
feasible, and (c) handling multiplicative errors in the analysis (see Section 5).

4 Eliciting Fairness Metrics
Having understood the QPME procedure, we now discuss how our proposal can be applied
to quadratic metric elicitation for algorithmic fairness. Like [Hiranandani et al., 2020],
we consider eliciting a metric that trades-off between predictive performance and fairness
violation [Kamishima et al., 2012, Chouldechova, 2017, Menon and Williamson, 2018]. However,
unlike [Hiranandani et al., 2020], we handle general quadratic fairness violations and show how
QPME can be easily employed to elicit group-fair metrics.

4.1 Fairness Preliminaries

The fairness setting is the same as the one in Section 3 except that we additionally have m
groups in the data and use g ∈ [m] to denote the group membership. The groups are assumed
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to be disjoint, fixed, and known apriori [Agarwal et al., 2018]. We will work with a separate
(randomized) classifiers hg : X → Δk for each group g, and use Hg = {hg : X → Δk} to denote
the set of all classifiers for g.
Group predictive rates: Similar to (1), we denote the group-conditional rates for hg by rg(hg,P) ∈
R

k, where the i-th entry is additionally conditioned on group g:

rg
i (hg,P) := P(hg = i|Y = i, G = g) ∀ i ∈ [k]. (10)

Analogous to the general setup, we denote the set of feasible rates for group g by Rg =
{rg(hg,P) : hg ∈ Hg}.

Example 3 (Fairness violation). A popular criterion for group fairness is the equal opportunity
criterion of [Hardt et al., 2016], which for a binary classification setup with m protected
groups, would require that ru

1 = rv
1 for each pair of groups (u, v). This can be formulated

as constraints |ru
1 − rv

1 | ≤ ε, for some slack ε for all pairs (u, v) [Agarwal et al., 2018],
or more generally as a regularization term in the learning objective [Bechavod and Ligett,
2017, Hardt et al., 2016], by measuring the squared difference between the group rates:
φEOpp((r1, . . . , rm)) =

(
m
2

)−1 ∑
v>u(ru

1 −rv
1)2. Another popular criterion is equalized odds, which

requires equal rates across different protected groups [Bechavod and Ligett, 2017]. This again
can be specified as a quadratic objective: φEO((r1, . . . , rm)) = [k

(
m
2

)
]
−1 ∑

v>u

∑k
i=1 (ru

i − rv
i )2.

Other fairness criteria that can be expressed as quadratic metrics include balance for the
negative class, which for a binary classification problem is given by φBN((r1, . . . , rm)) =(

m
2

)−1 ∑
v>u(ru

2 − rv
2)2 [Kleinberg et al., 2017], and the error-rate balance φEB((r1, . . . , rm)) =(

m
2

)−1 1
2

∑
v>u(ru

1 − rv
1)2 + (ru

2 − rv
2)2 [Chouldechova, 2017] and their weighted variants.

In the next section, we introduce a general family of metrics that trades-off between an error
term and a quadratic fairness violation term, for which we will need to define the rates for the
overall classifier.
Rates for overall classifier: We construct the overall classifier h : (X , [m]) → Δk by predicting
with classifier hg for group g, i.e. h(x, g) := hg(x). We will be interested in both the fairness
violation and predictive performance of the overall classifier. For the former, we will need the
m group-specific rates, represented together as a tuple:

r1:m := (r1, . . . , rm) ∈ R1 × · · · × Rm =: R1:m.

For the latter, we will measure the overall rates for h as described in (1). The overall rates can
also be written in terms of group-specific rates as: r = ∑m

g=1 τ g �rg, where τ g is just a constant
vector whose i-th entry denote the prevalence of group g within class i, i.e., P(G = g|Y = i).

4.2 Fair Quadratic Metric Elicitation

We seek to elicit a metric that trades-off between predictive performance (a linear function of
overall rates r) and fairness violation (a quadratic function of group rates r1:m). For simplicity,
we will denote the fairness metric in cost form, i.e., lower values are better.
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Figure 3: Eliciting Fair Quadratic Metrics for two groups. We formulate a k-dimensional
elicitation problem and use a variant of QPME (Algorithm 1).

Definition 4. (Fair Quadratic Performance Metric) For misclassification costs a ∈ R
k, a ≥ 0,

fairness violation costs B = {Buv ∈ PSDk}m
u,v=1,v>u, and a trade-off parameter λ ∈ [0, 1], we

define:

φfair(r1:m; a,B, λ) := (1 − λ)〈a, 1 − r〉 + λ
1
2

(∑
v>u

(ru − rv)T Buv(ru − rv)
)

, (11)

where w.l.o.g. the parameters a and Buv’s are normalized: ‖a‖2 = 1, 1
2

∑m
v>u ‖Buv‖F = 1.

The coefficients a, Buv’s are separately normalized so that the predictive performance and
fairness violation are in the same scale, and we can additionally elicit the trade-off parameter
λ. Analogous to Definitions 1–2, the problem of Fair Quadratic Metric Elicitation is as follows:
given access to pairwise oracle queries of the form Ω(r̂1:m

1 , r̂1:m
2 ), recover a metric φ̂fair = (â, B̂, λ̂)

such that ‖φfair − φ̂fair‖ < κ under a suitable norm ‖ · ‖ for small κ > 0.
Similar to Section 2.2, we study the space of feasible rates R1:m under the following mild
assumption.

Assumption 3. For all g ∈ [m], the conditional distributions P(Y = j|X, G = g), j ∈ [k], are
distinct, i.e., there is some signal for non-trivial classification for each group.

Proposition 2 (Geometry of R1:m; Figure 2(b)). For each group g, a classifier that predicts
class i on all inputs results in the same rate vector ei. The rate space Rg for each group
g is convex and so is the intersection R1 ∩ · · · ∩ Rm, which also contains the rate profile
o = 1

k

∑k
i=1 ei (achieved by the uniform random classifier) in the interior.

Remark 3 (Existence of sphere S). There exists a sphere S ⊂ R1 ∩ · · · ∩ Rm of radius ρ
centered at o. Thus, a rate s ∈ S is feasible for each of the m groups, i.e., s is achievable by
some classifier hg for each group g ∈ [m].

Because we allow a separate classifier for each group, Remark 3 implies that any rate r1:m =
(s1, . . . , sm) for arbitrary points s1, . . . , sm ∈ S is achievable for some choice of group-specific
classifiers h1, . . . , hm. This observation will be key to the elicitation algorithm we describe
next.

4.3 Eliciting Metric Parameters (a,B, λ)
We present a strategy for eliciting fair metrics by adapting the QPME algorithm. For simplicity,
we focus on the m = 2 case and extend our approach for m > 2 in Appendix D.
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Observe that for a rate profile r1:2 = (s, o), where the first group is assigned an arbitrary
point in S and the second group is assigned the uniform random classifier’s rate o, the fair
metric (11) becomes:

φfair((s, o); a, B12, λ) := (1 − λ)〈a, 1 − (τ 1 � s + τ 2 � o)〉 + λ

2 (s − o)T B12(s − o)

:= 〈d, s − o〉 + 1
2(s − o)T B(s − o)

:= φ(s; d, B), (12)

where d = −(1 − λ)τ 1 � a and B = λB12, and we use τ 1 + τ 2 = 1 (the vector of ones)
for the second step. The metric φ above is a particular instance of the quadratic metric
in (4). We can thus apply a slight variant of the QPME procedure in Algorithm 1 to solve the
quadratic metric elicitation problem over the sphere S ′ = {(s, o) | s ∈ S} with the modified
oracle Ω′(r1, r2) = Ω((r1, o), (r2, o)).
The only change needed for the algorithm is in line 5, where we need to account for the changed
relationship between d and a and need to separately (not jointly) normalize the linear and
quadratic coefficients. With this change, the output of the algorithm directly gives us the
required estimates. Specifically, from step 1 of Algorithm 1 and (6), we have d̂i = −(1 − λ)τ 1

i âi.
By normalizing d, we get â = d

‖d‖ for the linear coefficients. Similarly, steps 2-4 of Algorithm 1
and (9) allow us to express B̂ij = λB̂12

ij in terms of â1. After normalizing we directly get
estimates B̂12 = B̂/‖B̂‖F for the quadratic coefficients.
Finally, because the linear and quadratic coefficients are separately normalized, the estimates
â, B̂12 are independent of the trade-off parameter λ. Given estimates B̂12

ij and â1, we can now
additionally estimate the trade-off parameter λ̂. See Appendix D for details and Figure 3 for
an illustration.

5 Guarantees

We discuss guarantees for the QPME procedure under the following practically relevant
feedback model. The fair metric elicitation guarantees follow as a consequence.

Definition 5 (Oracle Feedback Noise: εΩ ≥ 0). Given rates r1, r2, the oracle responds correctly
iff |φquad(r1) − φquad(r2)| > εΩ and may be incorrect otherwise.

In words, the oracle may respond incorrectly if the rates are close as measured by the
metric. Since eliciting the metric involves offline computations of ratios, we make a regularity
assumption ensuring that all components are well defined.

Assumption 4. For the shifted quadratic metric φ in (4), the gradients at the rate profiles o,
−z1, and {z1, . . . , zq}, are non-zero vectors. Additionally, ρ > � � εΩ.

Theorem 1. Given ε, εΩ ≥ 0, and a 1-Lipschitz metric φquad (Def. 3) parametrized by a, B,
under Assumptions 1, 2, and 4, after O

(
k2 log 1

ε

)
queries, Algorithm 1 returns a metric φ̂quad =

(â, B̂) with ‖a − â‖2 ≤ O
(√

k(ε +
√

� + εΩ/�)
)

and ‖B − B̂‖F ≤ O
(

k
√

k(ε +
√

� + εΩ/�)
)

.
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(a) (b) (c)

(d) (e)

Figure 4: Average elicitation error over 100 metrics as a function of number of classes k and
groups m for quadratic metrics in Definition 3 (a–b) and fairness metrics in Definition 4 (c–e).
See Table 1 in Appendix H for the number of queries needed.

The proof of Theorem 1 uses the guarantee for LPME only as an intermediate step, and
substantially builds on it to take into account the smoothness of the non-linear metric, the
multiplicative errors in the slopes, and the feedback noise. We also provide a finite sample
version of Theorem 1 in Corollary 1 (Appendix G), which states that the above result holds
with high probability as long as (i) the hypothesis class of classifiers has finite capacity, and
(ii) the number of samples used to estimate the rates is large enough.

Theorem 2. (Lower Bound) For any ε > 0, at least Ω(k2 log(1/(k
√

kε))) pairwise queries
are needed to to elicit a quadratic metric (Def. 3) to an error tolerance of k

√
kε.

Theorem 1 shows that the QPME procedure is robust to noise and its query complexity depends
only linearly in the number of unknowns. Theorem 2 shows that the inherent complexity of the
problem depends on the number of unknowns, thus our query complexity is optimal (barring
the log term). So the Õ(k2) complexity is merely an artifact of our setup in Definition 3 being
very general (with O(k2) unknowns). Indeed, with added structural assumptions on the metric,
our proposal can be modified to considerably reduce the query complexity. For example, if
we know that the matrix B is diagonal, then each LPME subroutine call needs to estimate
only one parameter, which can be done with a constant number of queries, requiring a total of
only Õ(k) queries. We also stress that despite eliciting a more complex (non-linear) metric,
the query complexity is still linear in the number of unknowns, which is same as prior linear
elicitation methods [Hiranandani et al., 2019a,b].

6 Experiments

We evaluate our approach on simulated oracles. Here we present results on a synthetically
generated query space and in Appendix H.2 include results on real-world datasets.
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Eliciting quadratic metrics. We first apply QPME (Algorithm 1) to elicit quadratic metrics
in Definition 3. Like [Hiranandani et al., 2020], we assume access to a k-dimensional sphere S
centered at rate o with radius ρ = 0.2, from which we query rate vectors r. The trends that
we will discuss are robust to the sphere radius parameter ρ. Recall that in practice, Remark 1
guarantees the existence of such a sphere within the feasible region R. We randomly generate
quadratic metrics φquad parametrized by (a, B) and repeat the experiment over 100 trials
for varying numbers of classes k ∈ {2, 3, 4, 5}. We run the QPME procedure with tolerance
ε = 10−2. In Figures 4(a)–4(b), we show box plots of the 	2 (Frobenius) norm between the
true and elicited linear (quadratic) coefficients. We generally find that QPME is able to elicit
metrics close to the true ones. This holds for varying k, showing the effectiveness of our
approach in handling multiple classes. The average number of queries we needed for elicitation
over the 100 trials is provided in Table 1 in Appendix H. Note that the number of queries
is Õ(d) for eliciting a quadratic metric with d = k2 unknowns, which clearly matches the
lower bound in Theorem 2. See Appendix F for a discussion on the practicality of posing the
requisite number of queries.
Eliciting fairness metrics. We next apply the elicitation procedure in Figure 3 with tolerance
ε = 10−2 to elicit the fairness metrics in Definition 4. We randomly generate oracle metrics φfair

parametrized by (a,B, λ) and repeat the experiment over 100 trials and with varied number of
classes and groups k, m ∈ {2, 3, 4, 5}. Figures 4(c)–4(e) show the mean elicitation errors for the
the three parameters. For the linear predictive performance, the error ‖a − â‖2 increases only
with the number of classes k and not groups m, as it is independent of the number of groups.
For the quadratic violation term, the error ∑

u,v ‖Buv − B̂uv‖F increases with both k and m.
This is because the QPME procedure is run (m

2
) times for eliciting (m

2
) matrices {Buv}v>u, and

so the elicitation error accumulates with increasing q. Lastly, the elicited trade-off λ̂ is seen to
be close to the true λ as well.
Real-world datasets. In App. H.2, we evaluate how well the elicited metric from QPME
ranks a set of candidate classifiers trained on real-world datasets. We find that despite incurring
elicitation errors, QPME achieves near-perfect ranking; whereas, the baseline metrics fail to do
so.

7 Related Work

[Hiranandani et al., 2019a] formalized the problem of ME for binary classification with (quasi-
)linear metrics and later extended it to the multiclass setting [Hiranandani et al., 2019b]. Unlike
them, we elicit more complex quadratic metrics, and also provide an information-theoretic
lower bound on the query complexity (Theorem 2). Prior works on ME offer no such lower
bound guarantees. Learning linear functions passively using pairwise comparisons is a mature
field [Joachims, 2002, Peyrard et al., 2017], but unlike their active learning counter-parts
[Settles, 2009, Kane et al., 2017], these methods are not query-efficient. Studies such as [Qian
et al., 2015] provide active linear elicitation strategies but with no guarantees and also work
with a different query space. We are unaware of prior work that provably elicit a quadratic
function, either passively or actively using pairwise comparisons. Our work is thus a significant
first step towards active, nonlinear metric elicitation.
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The use of metric elicitation for fairness is relatively new, with some work on eliciting individual
fairness metrics [Ilvento, 2020, Mukherjee et al., 2020]. [Hiranandani et al., 2020] is the only
work we are aware of that elicits group-fair metrics, which we extend to handle more general
metrics. [Zhang et al., 2020] elicit the trade-off between accuracy and fairness using complex
ratio queries. In contrast, we jointly elicit the predictive performance, fairness violation, and
trade-off using simpler pairwise queries. Lastly, there has been work on learning fair classifiers
under constraints [Zafar et al., 2017, Agarwal et al., 2018]. We take the regularization view of
fairness, where the fairness violation is included in the objective [Kamishima et al., 2012].
Our work is also related to decision-theoretic preference elicitation, however, with the following
key differences. We focus on estimating the utility function (metric) explicitly, whereas prior
work such as [Boutilier et al., 2006, Benabbou et al., 2017] seek to find the optimal decision via
minimizing the max-regret over a set of utilities. Studies that directly learn the utility [Perny
et al., 2016] do not provide query complexity guarantees for pairwise comparisons. Formulations
that consider a finite set of alternatives [Boutilier et al., 2006] are starkly different from ours,
because the set of alternatives in our case (i.e. classifiers or rates) is infinite. Most of the papers
in this literature focus on linear or bilinear [Perny et al., 2016] utilities except for [Braziunas,
2012] (GAI utilities) and [Benabbou et al., 2017] (Choquet integral); whereas, we focus on
quadratic metrics which are useful for classification tasks, especially, fairness. We are not
aware of any decision-theory literature that provably elicits quadratic (or polynomial) utility
functions using pairwise comparisons.
Eliciting performance metrics bears similarities to learning reward functions in the inverse
reinforcement learning literature [Wu et al., 2020, Abbeel and Ng, 2004, Levine et al., 2011,
Sadigh et al., 2017] and the Bradley-Terry-Luce model with features in the learning-to-rank
literature [Shah et al., 2015, Niranjan and Rajkumar, 2017]. However, in summary, these
studies focus on either eliciting linear utilities or passively learning utility functions. Our work
is substantially different from them as we are tied to the geometry of the space of classification
error statistics, and elicit quadratic utility functions using only pairwise comparisons, and
particularly, in an active learning fashion. Moreover, we also provide query complexity bounds
along with a lower bound. We further elaborate on the specific differences from these papers
in Appendix I.

8 Discussion

We have provided an efficient quadratic metric elicitation strategy with application to fairness,
and with a query complexity that has the same dependence on the number of unknowns as
that for linear metrics.
Higher Order Polynomials: We next show how our approach can be extended to elicit
higher-order polynomial metrics. Thus our work not only increases the use-cases for ME but
also opens the door for non-linear metric elicitation in other fields such as active learning.
Consider, e.g., a cubic polynomial:

φcubic(r) :=
∑

i

airi + 1
2

∑
i,j

Bijrirj + 1
6

∑
i,j,l

Cijlrirjrl,
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where B and C are symmetric, and ∑
i a2

i + ∑
ij B2

ij + ∑
ijl C2

ijl = 1 (w.l.o.g., due to scale
invariance). A quadratic approximation to this metric around a point z is given by:

1
2

⎛
⎝∑

i,j

Bijrirj +
∑
i,j,l

Cijl(ri − zi)(rj − zj)zl

⎞
⎠ +

∑
i

airi + c,

where c is a constant not affecting the oracle responses. We can estimate the parameters
of this approximation by applying the QPME procedure from Algorithm 1 with the metric
centered at an appropriate point, and its queries restricted to a small neighborhood around
z. Running QPME once using a sphere around the point zl = o + (� − �′)αl, where �′ < �
will elicit one face of the tensor C[:,:,l] upto a scaling factor. Thus, it will require us to run
the QPME procedure k times around the basis points zl = o + (� − �′)αl ∀l ∈ [k]. Since
we elicit scale-invariant quadratic approximation, we would need additional run of QPME
procedure around the point S−z1 to elicit all the coefficients. Thus, we can recover the metric
φ̂cubic = (â, B̂, Ĉ) with as many queries as the number of unknowns, i.e, Õ(k3) in the cubic
case.
For a d-th order polynomial, one can recursively apply this procedure to estimate (d − 1)-th
order approximations at multiple points, and similarly derive the polynomial coefficients from
the estimated local approximations.
Handling large number of classes: For applications where k is very large, the parameteri-
zation discussed in Section 2 may not be applicable in its current form. For example, when
k = 1000, the quadratic metric in (3) would use O(10002) parameters, an exorbitantly high
number to elicit in practice. Note that the presence of k2 unknowns is an artifact of the
problem formulation, and not of our proposed procedure. Moreover, as shown in Theorem 2,
it is theoretically impossible to estimate k2 unknowns with fewer than Õ(k2) queries. While
our QPME procedure does indeed match this lower bound, in practice, we do not expect it
to be applied to estimate such an over-parameterized metric. Instead, for such large-scale
settings, we recommend making reasonable assumptions on the metric to reduce the number of
unknowns, e.g., by having multiple classes share the same parameter, and the query complexity
of QPME would then only depend linearly on the reduced number of unknowns. For instance,
in Table 4 (Appendix H.2), we show that by simplifying the metric with structural assumptions,
one can use fewer queries in practice to get comparable results.
Advantages: Our proposal comes with many practical advantages: (a) Fairness: we are aware
of no prior work that can elicit fair quadratic metrics, particularly with provable guarantees;
(b) Transportability: our method is independent of the population P, which allows any metric
that is elicited using one dataset or model class to be applied to other applications, as long
as the expert believes the tradeoffs to be the same; and (c) Feasibility: we ensure that the
rates are feasible throughout the elicitation (i.e., are achievable by classifiers), which allows
the flexibility to deploy systems that either compare classifiers or compare rates.
Limitations: Limitations of our work include the assumption that the metric has a parametric
form, which can be restrictive in some cases, and not providing a concrete answer to who the
oracles should be. One should also be cautious in applying ME to eliciting fairness metrics, as
failures here could exacerbate the adverse effects on protected groups.
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Future Work: To thoroughly answer the above questions, we are actively conducting user
studies on collecting preference feedback using intuitive visualizations of rates [Shen et al.,
2020, Beauxis-Aussalet and Hardman, 2014] or classifiers [Ribeiro et al., 2016] . Please see
Appendix J to take a peek into the future work, where we discuss findings from a preliminary
user study.
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