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Abstract

We propose a flexible, yet interpretable model for high-dimensional data with time-varying
second-order statistics, motivated and applied to functional neuroimaging data. Our ap-
proach implements the neuroscientific hypothesis of discrete cognitive processes by fac-
torizing covariances into sparse spatial and smooth temporal components. Although this
factorization results in parsimony and domain interpretability, the resulting estimation
problem is nonconvex. We design a two-stage optimization scheme with a tailored spec-
tral initialization, combined with iteratively refined alternating projected gradient descent.
We prove a linear convergence rate up to a nontrivial statistical error for the proposed
descent scheme and establish sample complexity guarantees for the estimator. Empirical
results using simulated data and brain imaging data illustrate that our approach outper-
forms existing baselines.

Keywords: dynamic covariance, structured factor model, alternating projected gradient
descent, time series data, functional connectivity

1. Introduction

We propose and evaluate a model for dynamic functional brain network connectivity, de-
fined as the time-varying covariance of associations between brain regions (Fox and Raichle,
2007). Understanding the variation in brain connectivity between individuals is believed
to be a crucial step towards uncovering the mechanisms of neural information process-

©2022 Katherine Tsai, Mladen Kolar, and Oluwasanmi Koyejo.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0795.html.



A Nonconvex Framework for Structured Dynamic Covariance Recovery

ing (Sakoğlu et al., 2010; Chang et al., 2016), with potentially transformative applications
in understanding and treating neurological and neuropsychiatric disorders (Calhoun et al.,
2014).

In the neuroscience literature, estimators for time-varying covariances range from slid-
ing window methods to hidden Markov models. The commonly used sliding-window sam-
ple covariance estimator is computationally efficient (Preti et al., 2017). However, this
estimate is sensitive to the length of the selected window and spurious correlations may
occur when the underlying window length is not specified correctly (Leonardi and Ville,
2015). Discrete-state hidden Markov models construct interpretable estimates of brain
connectivity in terms of recurring connectivity patterns (Vidaurre et al., 2017), yet fail to
capture the smooth nature of brain dynamics (Shine et al., 2016a,b). These shortcomings
motivate a new approach. Specifically, our proposed approach implements the neuroscien-
tific hypothesis that brain functions are interactions between cognitive processes (Posner
et al., 1988), which we model as weighted combinations of low-rank components (Andersen
et al., 2018). Beyond neuroscientific foundations, high-dimensional data often have a low-
dimensional representation (Udell and Townsend, 2019), and low rank can help prevent
overfitting (Udell et al., 2016). Specifically, we propose a structured and smooth low-rank
time-varying covariance model inspired by the observed sparsity of brain factors (Eavani
et al., 2012), and temporal dynamics of brain activity (Shine et al., 2016a,b). Hence, we
constrain the temporal components to be smoothly varying via projection to a temporal
kernel and restrict the sparsity of the spatial components via hard-thresholding, respec-
tively.

We estimate the parameters of the resulting model using a first-order optimization
scheme that is analogous to a Burer-Monteiro factorization (Burer and Monteiro, 2003,
2005). While the first-order approach reduces computational complexity as compared to
semidefinite programming, the resulting optimization program is nonconvex, and special
care is needed to design and analyze an optimization scheme that avoids converging to bad
local optima. To this end, we build on the growing literature studying matrix estimation
problems (Candès et al., 2015; Chi et al., 2019) using a two-stage algorithm. First, spectral
initialization is used to find an initial point within a local region where the objective
satisfies local regularity conditions. Next, the projected gradient descent is used to refine
the estimate and find a stationary point of the objective.

In summary, our contributions include a novel dynamic covariance model motivated
by neuroscientific models of functional brain connectivity networks. We provide an effi-
cient procedure for the estimation along with convergence analysis and sample complexity.
Specifically, under the assumption that spatial components are shared across time, we de-
velop a structured spectral initialization method, which effectively uses available samples
and provides a better spatial estimate than separate initialization per individual. We prove
linear convergence of the factored gradient method to an estimate with a nontrivial sta-
tistical error and provide a non-asymptotic bound on the statistical error when data are
Gaussian. Experiments show that the model successfully recovers temporal smoothness
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and detects temporal changes induced by task activation. The code to implement our
procedure is available at: https://github.com/koyejo-lab/dynamicCov.git.

2. Background

In this section, we first introduce the notation used throughout the manuscript. Then, we
introduce the problem formulation and related work.

2.1 Notation

The inner product of two matrices is denoted as 〈X,Y 〉 = tr(XTY ). For a matrix X,
σk(X) denotes the kth largest singular value, ‖X‖2F = tr(XTX) denotes the Frobenius
norm, ‖X‖2 = σ1(X) denotes the spectral norm, and ‖X‖∞ = maxi,j |Xi,j | denotes the
maximum norm. For two symmetric matrices X and Y , X � Y means that Y − X is
positive semidefinite. The pseudoinverse of X is denoted by X†. The set of K×K rotation
matrices is denoted as O(K). Let x ∈ R

d, ‖x‖0 =
∑d

i=1 1{xi �=0} denotes the �0 norm and

‖x‖2 = (
∑d

i=1 x
2
i )

1/2 denotes the �2 norm. We use κ(·, ·) to denote a positive definite kernel
function. The function diag : RK → R

K×K converts a K-dimensional vector to a K ×K
diagonal matrix. For scalars a and b, a ∨ b denotes max(a, b) and a ∧ b denotes min(a, b).
We use a � b (a � b) to denote that there exists a constant C > 0 such that a ≥ Cb
(a ≤ Cb). We use a � b to denote a � b and a � b. We use [J ] to denote the index set
{1, . . . , J}.

2.2 Problem Statement

Given samples from N subjects recorded at J time points, denoted x
(n)
j ∈ R

P , n ∈ [N ],

j ∈ [J ], let SN,j = N−1
∑N

n=1 x
(n)
j x

(n)T
j be the sample covariance across subjects at time

j. We assume that the population covariance takes a factorized form as

E(SN,j) = Σ�
j + Ej = V �diag(a�j )V

�T + Ej , j ∈ [J ], (1)

where E(·) denotes the expectation, Σ�
j has a rank that is at most K, Ej is a noise matrix

such that the largest singular value of Ej is strictly smaller than the smallest nonzero
singular value of Σ�

j . This structured assumption allows us to separate the components of
interest Σ�

j from the nuisance components Ej . This factorization employs spatial compo-

nents V � = (v�1, . . . , v
�
K) ∈ R

P×K that are time invariant and column-wise orthonormal.
The matrix V corresponds to the top-K eigenvectors of the set of J covariance matrices:
{E(SN,j)}j∈[J ]. Analogously, A� = (a�1, . . . , a

�
J) ∈ R

K×J represents the temporal compo-
nents. To facilitate the estimation in a high-dimensional setting, we further assume that
the columns of V � are sparse and belong to CV (s�) = {v ∈ R

P : ‖v‖0 ≤ s�, ‖v‖2 = 1}.
Let G ∈ R

J×J be a positive semidefinite kernel matrix whose entries are Gx,y = κ(x, y) for
x, y ∈ [J ], where the kernel κ is known a priori. Denote G† = QΛQT as the eigendecompo-
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sition of G†, the generalized inverse of G, with Q ∈ R
J×J being a matrix with orthonormal

columns and Λ ∈ R
J×J being a diagonal matrix with nonnegative entries. The rows of A�,

denoted A�
k·, k ∈ [K], are smooth, bounded, and belong to CA(c�, γ�) = {α = Qu ∈ R

J :
0 ≤ αj ≤ c�, uTΛu ≤ γ�}. The kernel κ is used to model the temporal smoothness of the
rows of A� and the box constraint ensures that αj ≥ 0, so the covariance model is positive
semidefinite and is upper bounded by a positive constant for j ∈ [J ].

The eigenvalues of the kernel matrix G may decay quickly, which can result in numer-
ically unstable algorithms when projecting onto the set CA. For example, the eigenval-
ues of a kernel matrix corresponding to the Sobolev kernel decay at a polynomial rate,
while for the Gaussian kernel they decay at an exponential polynomial rate (Schölkopf
and Smola, 2001). Instead of working with the kernel matrix G, we construct a low-
rank approximation, G̃, of G by truncating small eigenvalues. Write Q = (Q̃,Q1), where
the columns of Q̃ are eigenvectors of G corresponding to eigenvalues greater than or
equal to δA, and Λ̃−1 = diag(Λ−1

jj ≥ δA | j ∈ [J ]). Then G̃† = Q̃Λ̃Q̃T . We define

C̃A(c, γ) = {α = Q̃u : 0 ≤ αj ≤ c, uT Λ̃u ≤ γ} and the rank of G̃ is denoted as r(G̃).
Under the model (1), we estimate the parameters Z� = (V �T , A�)T by minimizing the

following objective

min
Z

fN (Z) = min
vk∈CV (s), k∈[K]

Ak·∈C̃A(c,γ), k∈[K]

1

J

J∑
j=1

1

2
‖SN,j − V diag(aj)V

T ‖2F , (2)

where Ak· is the kth row of A. Although fN is nonconvex with respect to Z = (V T , A)T ,
the corresponding covariance loss �N,j(Σj) =

1
2‖SN,j − Σj‖2F is m-strongly convex and L-

smooth with m = L = 1 (Nesterov, 2013). We use alternating projected gradient descent
to update V and A. The selection of tuning parameters of CV and C̃A is discussed in
Section 3.2.

2.3 Related Work

Dynamic covariance models are common for analyzing time series data in applications
ranging from computational finance and economics (Engle et al., 2019) to epidemiology (Fox
and Dunson, 2015) and neuroscience (Foti and Fox, 2019). Dynamic covariance models can
be fully nonparametric with kernel functions encoding the temporal dependencies (Wu and
Pourahmadi, 2003; Chen and Leng, 2016). In practice, however, it is common to impose
an additional structure on the covariance model. For example, one can assume that the
inverse covariance matrix is sparse and furthermore, follows a particular temporal dynamic.
Such an approach is called dynamic graphical modeling as nonzero entries in the inverse
covariance matrix encode the structure of a Markov network when data are Gaussian. In
the dynamic graphical model setting, one can either impose temporal smoothness using
regularization approaches (Kolar et al., 2010b; Kolar and Xing, 2012; Monti et al., 2014;
Hallac et al., 2017; Gibberd and Nelson, 2017; Zhu and Koyejo, 2018; Geng et al., 2019) or
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using kernel smoothing (Song et al., 2009a; Kolar and Xing, 2009; Zhou et al., 2010; Kolar
et al., 2010a; Kolar and Xing, 2011; Wang and Kolar, 2014; Qiu et al., 2016; Lu et al., 2018;
Geng et al., 2020). We emphasize that the methods for dynamic graphical models assume
that the data are sampled independently at different time points but are generated by
related distributions. In contrast, functional graphical models treat the data as multivariate
random functions (Li and Solea, 2018; Qiao et al., 2019; Zhao et al., 2019; Qiao et al., 2020;
Zapata et al., 2021; Zhao et al., 2022, 2021). Wang et al. (2020) focused on the estimation
and inference of a graph that underlies the data from a point process. Another popular
approach to modeling dynamic covariance models is via factor models. Factor models can
encode the temporal structure using latent kernel regularization (Paciorek, 2003; Kastner
et al., 2017). For example, Andersen et al. (2018) encoded smooth temporal dynamics
by introducing a latent Gaussian process prior. Li (2019) also used piecewise Gaussian
process factors to capture combinations of gradual and abrupt changes. Along similar
lines, our approach implements temporal and spatial structure through projection onto
suitable constraint sets.

Our work is also related to dictionary learning (Olshausen and Field, 1997; Mairal et al.,
2010), which can be viewed as a type of factorization where the signal is decomposed into
atoms and coefficients. In this factorization, the sparsity is controlled through a sparse
penalty on the coefficients. Mishne and Charles (2019) extended this approach to encode
temporal data by constructing time-trace atoms with spatial coefficients. In comparison,
our model has shared spatial structure and individual temporal structure.

Autoregressive models have been applied to model dynamic connectivity in fMRI (Song
et al., 2009b; Qiu et al., 2016; Liégeois et al., 2019). Although autoregressive models employ
modeling assumptions different from ours, they can capture smooth temporal dynamics of
signals. However, autoregressive model forecasts can become unreliable in high-dimensional
settings (Bańbura et al., 2010). To this end, various implementations of structured tran-
sition matrices (Davis et al., 2016; Ahelegbey et al., 2016; Skripnikov and Michailidis,
2019) have been proposed and shown to improve computational efficiency and prediction
accuracy.

The optimization problem in (2) is nonconvex and is optimized by alternating mini-
mization. Recent literature has established a linear convergence rate to global optima (Jain
et al., 2013; Hardt, 2014; Gu et al., 2016; Chen et al., 2021; Yu et al., 2020a, 2018; Na et al.,
2021, 2020). In particular, our work builds on Bhojanapalli et al. (2016), who showed linear
convergence in V when the underlying objective function is strongly convex with respect
to X = V V T . Subsequently, Park et al. (2018) and Yu et al. (2020c) proved a linear con-
vergence rate for nonsymmetric matrices. Unlike previous work, our factorization scheme
V diag(aj)V

T imposes additional structure on eigenvalues, which has potential applications
in regularizing graph-structured models (Kumar et al., 2020).

In nonconvex optimization, finding a good initialization in a local region is often useful
to avoid convergence to bad local optima (e.g., Z = 0 is a trivial stationary point in
our model). One common approach is to use the minimizer of a convex relaxation of the
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original problem as a starting point (Yu et al., 2020c). For some problems, spectral methods
also provide good initialization (Chen and Candès, 2015). We employ a problem-specific
spectral approach to develop a novel initialization method. After initialization, a first-order
gradient descent method is sufficient to ensure convergence to the desired optima (Candès
et al., 2015). Combining with structured constraints, Chen andWainwright (2015) provided
a theoretical framework for the projected gradient descent method when the constraint
sets are convex. In our work, the iterates are projected onto a nonconvex set, which might
increase the distance ‖V − V �R‖2F . Therefore, we need a problem-specific analysis to
quantify the expansion coefficient.

3. Methodology

We first introduce the proposed two-stage algorithm. Subsequently, we discuss the selection
of the tuning parameters.

3.1 Two-stage Algorithm

We develop a two-stage algorithm to solve the optimization problem in (2). As the objective
is nonconvex, a local iterative procedure may converge to bad local optima or saddle
points. In the first stage of the algorithm, spectral decomposition is used to find an
initialization point. In the second stage, projected gradient descent is used to locally refine
the initial estimate and find a stationary point that is within the statistical error of the
population parameters. Algorithm 1 summarizes our initialization procedure. Here, the
eigendecomposition of {SN,j}j∈[J ] is performed to obtain initial estimates of V � and A�.
Specifically, the initialization uses the shared spatial structure of {Σ�

j}j∈[J ] to increase the

effective sample size. That is, the initial estimate V 0 is obtained from the eigenvectors
corresponding to the largest K eigenvalues of the covariance matrix pooled over time,
MN = J−1

∑J
j=1 SN,j . The initial estimate of the temporal coefficients, A0, is obtained by

projecting {SN,j}j∈[J ] onto V 0.

Set MN = (NJ)−1
∑J

j=1

∑N
n=1 x

(n)
j x

(n)T
j

Set V 0 = (v01, v
0
2, . . . , v

0
k) ← top K eigenvectors of MN

For j = 1 to j = J and k = 1 to k = K
a0k,j ← v0Tk SN,jv

0
k

Set A0 = (a0k,j)k∈[K],j∈[J ]
Output V 0, A0

Algorithm 1: Spectral initialization
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After initialization, we iteratively refine the estimates of V and A using an alternating
projected gradient descent. In each iteration, the iterates V and A are updated using the
gradient of fN , where η denotes the step size. Note that we scale down the step size for
the V update by J to balance the magnitude of the gradient. After a gradient update,
we project the iterates onto the constraint sets CV and C̃A to enforce sparsity in V and
smoothness in A. Details are given in Algorithm 2.

Set V 0, A0 = Spectral initialization({x(n)j }n∈[N ],j∈[J ])
While |fN (Zi−1)− fN (Zi−2)| > ε

Âi ← Ai−1 − η∇AfN (Zi−1)

Ai ← Project rows of Âi to C̃A
V̂ i ← V i−1 − η

J∇V fN (Zi−1)

V i ← Project columns of V̂ i to CV
Output V , A

Algorithm 2: Dynamic covariance estimation

Although CV is a nonconvex set, projection onto this set can be computed efficiently by
picking the top-s largest entries in magnitude and then projecting the constructed vector
to the unit sphere. Despite projecting onto a nonconvex set, we are able to show that
the gradient and projection step jointly result in a contraction (see Appendix A). On the
other hand, the projection onto the convex set C̃A can be computed efficiently via convex
programming: we project onto C̃A by iteratively projecting onto {α ∈ R

J : 0 ≤ αj ≤ c, j ∈
[J ]} and {α = Q̃u : uT Λ̃u ≤ γ}, which gives us a point in the intersection of the sets by
von Neumann’s theorem (Escalante and Raydan, 2011).

3.2 Selection of Tuning Parameters

The parameters of the proposed model include the sparsity level s, the rank K, the kernel
length scale l, the smoothness coefficient γ, the truncation level δA, and the upper bound
c for the constraint. For some kernels, such as the Gaussian kernel, the Matérn five-
half kernel, and other radial basis function kernels, one must also select the length scale
parameter l, which captures the smoothness of the curves (i.e., {A�

k·}k∈[K]); for example, a
Gaussian kernel function is κl(x, y) = σ2 exp{−(x− y)2/(2l2)}, where l affects the slope of
decay of the eigenvalues. We denote such kernel functions as κl rather than κ. Our theory
suggests that δA should be upper bound by the magnitude of minj∈[J ] σ2

K(Σ�
j ) to obtain a

good statistical error. Furthermore, δA is selected for numerical stability. In experiments,
we find that δA = 10−5 is a good empirical choice and satisfies the sufficient conditions. In
principle, we do not want to cut off any important signals, so we choose c as a value greater
than maxj∈[J ] ‖SN,j‖2 and c� = maxj∈[J ] ‖Σ�

j‖2. In terms of estimation performance, we
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observe that the selection of s and K has a greater effect than the selection of γ and l.
Although the underselection of s and K leads to poor evaluation scores, the improper
selection of l and γ has a relatively minor influence. Therefore, we adopt a two-stage
approach to selecting parameters. In the first stage, we perform a grid search on s, K,
γ, l and find the configuration that minimizes the Bayesian information criterion bic =
logN

∑K
k=1 ‖vk‖0−2L̂N , where L̂N is the maximized Gaussian log-likelihood function. We

notice that varying γ and l have a subtle influence on bic. Consequently, in the second
stage, we fix s, K with values selected in the first stage and select γ and l using a 5-fold
cross-validation with the Gaussian log-likelihood, which is motivated by prior work on
nonparametric dynamic covariances (Yin et al., 2010). Empirically, we find that tuning
the length scale parameter l is more effective than tuning γ in producing globally smooth
temporal structures (see Appendix G.5).

4. Theory

We provide theoretical guarantees on the algorithm described in the previous section. We
show that given enough samples, that is, N � KP (logP + log J), the estimate converges
linearly to a statistically good point with high probability. A statistically good point is
one that is close to the population parameters as quantified by the statistical error.

4.1 Preliminaries

Before presenting our main theoretical results, we introduce two tools that will help us
establish the results.

First, we discuss orthogonalization. The spatial component V produced by Algorithm 2
is not necessarily orthonormal. However, V � has full rank, and if minY ∈O(K) ‖V −V �Y ‖22 <
1 is guaranteed at each iteration, then V also has full rank. As a result, the subspace
spanned by columns of V is equal to the subspace spanned by columns of the orthogonalized
version of it. To simplify the analysis of Algorithm 2, we add a QR decomposition step
that orthogonalizes V after projection onto CV . That is, in each iteration, we compute

V i
ortho ← V i(Li)−1 (QR decomposition),

where Li is the upper triangular matrix, with diagonal entries less than or equal to 1.
Note that orthogonalization of V in each iteration of Algorithm 2 is not needed in prac-
tice and is only used to establish theoretical properties. This approach is commonly used
in the literature (Jain et al., 2013; Zhao et al., 2015). We further note that the addi-
tion of QR decomposition only increases the distance of the iterate V i to V �R by a mild
constant (Stewart, 1977; Zhao et al., 2015) (see Appendix A.3). Furthermore, QR decom-
position increases the number of nonzero elements of the iterate V to at most Ks. As we
consider the rank K to be fixed and P � s, the effect of QR decomposition is mild. Our ex-
periments further demonstrate that optimization with and without the QR decomposition
step results in comparable performance.
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Next, we introduce the notion of statistical error, which allows us to quantify the
distance of the population parameters from the stationary point to which the optimization
algorithm converges. Note that the notion of statistical error was used in the context of
M-estimation (Loh and Wainwright, 2015). Let Bt = {v ∈ R

P | ‖v‖0 ≤ t, ‖v‖2 ≤ 1} and

Υ(r, t, h, δA) = {{Δj = V diag(aj)W
T }j∈J | vk ∈ Bt, wk ∈ Bt, A

T
k·G̃

†Ak· ≤ h, k ∈ [r]},

where G̃ is the truncation of G at the level of δA. We define the statistical error as

εstat = εstat(2K, 2s+ s�, 2γ, δA) = max
{Δj}j∈[J]∈Υ(2K,2s+s�,2γ,δA)

∑J
j=1〈∇�N,j(Σ

�
j ),Δj〉(∑J

j=1 ‖Δj‖2F
)1/2

.

The statistical error describes the geometric landscape around the optimum—it quanti-
fies the magnitude of gradient of the empirical loss function evaluated at the population
parameter in the directions constrained to the set Υ.

4.2 Assumptions and Main Results

We begin by stating the assumptions needed to establish the main results. Note that V in
this section is used to denote an iterate in after the QR factorization step.

An upper bound on the step size is required for convergence of Algorithm 2. Let
Z0
j = (V 0T , diag(a0j ))

T , j ∈ [J ], denote the output of Algorithm 1.

Assumption 1 The step size satisfies η ≤ minj∈[J ] J1/2/(64‖Z0
j ‖22).

Note that the step size depends on the initial estimate, but remains constant throughout
the iterations. Let β = 1 − η/(4Jξ2) < 1, χ = 4β1/2(1 − 2I0/

√
J)−2(1 + 32‖A�‖2∞), and

τ = J−1{9/2 + (1/2 ∨K/8)}, where

I20 =

{
1

16ξ2
1

(1 + ‖A�‖2∞J−1)
∧ J

4

}
, ξ2 = max

j∈[J ]

⎧⎨⎩ 16

σ2
K(Σ�

j )
+

(
1 +

8c

σK(Σ�
j )

)2
⎫⎬⎭ . (3)

We also require that the tuning parameters be selected appropriately.

Assumption 2 We have c ≥ c�, γ ≥ γ�, s ≥ [{4(1/χ− 1)−2 +1} ∨ 2]s�. The matrix G̃ is
obtained with the truncation level δA ≤ (16γ�)−1minj∈[J ] σ2

K(Σ�
j ).

Note that the condition on δA is mild. It guarantees that we do not truncate too much of
the signal. Finally, we require an assumption on the statistical error.

Assumption 3 We have ε2stat ≤ JI20{(β1/2 − β)/(τη) ∧minj∈[J ] 3‖Z�
j ‖22}.
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Assumption 3 is essentially a requirement on the sample size N , since for a sufficiently
large N the assumption will be satisfied with high probability. Note that as the sample
size increases, the statistical error becomes smaller, while the radius of the local region
of convergence, I0, remains constant. Furthermore, if Assumption 3 is not satisfied, this
implies that the initialization point is already close enough to the population parameters
and that the subsequent refinement by Algorithm 2 is not needed.

With these assumptions, we are ready to state the main result, which tells us how
far the estimate obtained by Algorithms 1 and 2 is from the population parameter. Let
ΣI
j = V Idiag(aIj )(V

I)T , j ∈ [J ], denote the estimate of the population covariance after the
Ith iteration.

Theorem 4 Suppose Assumptions 1—3 are satisfied and J ≥ 4. Furthermore, for a suf-
ficiently large constant C0, suppose that there are N = C0KP log(PJ/δ0) independent

samples such that ‖x(n)j ‖22 ≤ P‖A�‖∞ almost surely, j ∈ [j], with zero mean and covari-
ance as in (1). Then, with probability at least 1− δ0, the estimate obtained by Algorithm 1
and Algorithm 2 satisfies

J∑
j=1

‖ΣI
j − Σ�

j‖2F ≤ βI/2(4μ2ξ2)

J∑
j=1

‖Σ0
j − Σ�

j‖2F +
2τμ2η

β1/2 − β
ε2stat + 2Kγ�δA, (4)

where μ = maxj∈[J ](17/8)‖Z�
j ‖2.

The first term on the right-hand side of (4) corresponds to the optimization error, and we
observe a linear convergence rate. The second and third terms of (4) correspond to the
statistical and approximation errors due to the truncation of the kernel matrix, respectively.
From the bound we observe a trade-off between εstat and the truncation error δA: if δA
decreases, εstat increases.

The proof of Theorem 4 is given in two steps. First, we establish the convergence
rate of the iterates obtained by Algorithm 2 when the initial points V 0 and A0 lie in a
neighborhood around V � and A� (see §4.3). Subsequently, we show in Theorem 7 that
Algorithm 1 provides suitable V 0 and A0 with high probability (see §4.5).

To give an example of Theorem 4, we consider the case where data are generated from
a multivariate Gaussian distribution and for a Gaussian kernel.

Proposition 5 Let x
(n)
j ∈ R

P be independent Gaussian samples with mean zero and co-
variance as in (1) with J ≥ 4 and N � K(P +log J/δ0). Suppose that G is a Gaussian ker-
nel matrix whose eigenvalue decays at the rate exp(−l2j2) for some length scale l > 0. Let
δA � (γ�lN)−1{log(γ�lN)}1/2. Suppose that Assumptions 1—2 hold, s� log(P/s�) < PJ
and maxj∈[J ] ‖Ej‖2 � I0. Then after I � log(1/δ1) iterations of Algorithm 2, with proba-
bility at least 1− δ0, we have

J∑
j=1

‖ΣI
j − Σ�

j‖2F � δ1 +
1

N

[
K

{
1

l
(log γ�lN)1/2 + s� log

P

s�

}
+ log δ−1

0

]
+ J max

j∈[J ]
‖Ej‖22.
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Condition s� log(P/s�) < PJ is mild, since s� � P , and condition maxj∈[J ] ‖Ej‖2 � I0
is mild, since ‖Ej‖2 < σK(Σ�

j ), j ∈ [J ]. Under the Gaussian distribution, the sample
complexity is improved to N � K(P + log J) from N � KP (logP + log J) in Theorem 4.
Proposition 5 provides an explicit bound on the estimator that can be obtained under an
assumption on the eigenvalue decay. The statistical error is comprised of two terms that
correspond to errors when estimating smooth temporal components and sparse spatial
components. In our choice of δA, the truncation error is in the same order as the statistical
error induced by the smooth temporal components.

4.3 Linear Convergence

We establish the linear convergence rate of Algorithm 2 when it is appropriately initialized.
Recall that the rows of A� belong to CA(c�, γ�) ⊆ CA(c, γ), while the projected gradient
descent is implemented on the set C̃A(c, γ) ⊂ CA(c, γ). Let

Ã� = argmin
Bk·∈C̃A(c,γ),k∈[K]

‖B −A�‖2F ,

be the best approximation of A� in C̃A(c, γ). See Appendix E for details on the construction
of Ã�. We define Σ̃�

j = V �diag(ã�j )V
�T , j ∈ [J ], and Z̃�T = (V �T , Ã�). With these

definitions, we establish the linear rate of convergence of the iterates to Σ̃�
j and Z̃�. The

convergence rate in Theorem 4 will then follow by combining the results with the truncation
error.

Observe that the covariance factorization is not unique since, for any R ∈ O(K), we
have Σj = V diag(aj)V

T = V RjRj
Tdiag(aj)RjRj

TV T , j ∈ [J ]. By the triangle inequality,
we have

J∑
j=1

‖Σj − Σ̃�
j‖2F ≤

J∑
j=1

αV,j‖V − V �R‖2F + αA‖diag(aj)−RTdiag(ã�j )R‖2F , (5)

where αV,j = 3{‖V diag(aj)‖22 + ‖V �diag(ã�j )‖22}, j ∈ [J ], and αA = 3‖V �‖22‖V ‖22. This

implies that if ‖V −V �R‖2F +‖diag(aj)−RTdiag(ã�j )R‖2F is small for some rotation matrix
R and every j ∈ [J ], then the left-hand side will also be small. To this end, our goal is to
show that the following distance metric contracts in each iteration of Algorithm 2. Let

R = argmin
Y ∈O(K)

‖V − V �Y ‖2F , dist2(Z, Z̃�) =

J∑
j=1

d2(Zj , Z̃
�
j ); (6)

d2(Zj , Z̃
�
j ) = ‖V − V �R‖2F + ‖diag(aj)−RTdiag(ã�j )R‖2F ,

where ZT
j = (V T , diag(aj)) and Z̃�T

j = (V �T , diag(ã�j )). The metric first finds the rotation
matrix that aligns two subspaces and then computes the transformation of diag(ã�j ) along

11
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the rotation R. This metric is similar to the distance metric commonly used in matrix
factorization problems (Anderson and Rubin, 1956; ten Berge, 1977), but in our model the
choice of R depends only on V .

To show the convergence of dist2(Z, Z̃�), we need the following assumptions.

Assumption 6 Suppose that Z0
j satisfies d2(Z0

j , Z
�
j ) ≤ I20 , for j ∈ [J ], where I0 is defined

in (3). Assume that ‖V 0−V �R‖2F ≤ I20/J and ‖diag(a0j )−RTdiag(a�j )R‖2F ≤ (J −1)I20/J .

Since d2(Z0
j , Z̃

�
j ) ≤ d2(Z0

j , Z
�
j ) for j ∈ [J ], Assumption 6 ensures that the distance between

initial estimates and the population parameters is bounded within the ball of radius I0.
Furthermore, I20 ≤ J ensures that ‖V − V �R‖2 ≤ 1, so that V is full-rank. Intuitively,
we assume that the squared distance for V is 1/(J − 1) times smaller than the squared
distance for A, because we have J times more samples to estimate V compared to A.

Theorem 7 Assume that Assumptions 1—3, and Assumption 6 hold. After I iterations
of Algorithm 2, we have

dist2(ZI , Z̃�) ≤ βI/2dist2(Z0, Z̃�) +
τηε2stat
β1/2 − β

.

Theorem 7 establishes a linear rate of convergence in dist2(Z, Z̃�). The second term on the
left-hand side denotes the constant multiple of the statistical error, which depends on the
distribution of the data and the sample size. Combining with (5) gives us a linear rate of
convergence in

∑J
j=1 ‖Σj − Σ̃�

j‖2F .

4.4 Statistical Error

Theorem 7 shows the linear convergence of the algorithm to a region around the population
parameters characterized by statistical error. One may wonder how large the statistical
error can be. While Assumption 3 provides a condition under which convergence is guaran-
teed, this bound is loose, as it does not depend on the sample size. We establish a tighter
bound under the Gaussian distribution.

Proposition 8 (Statistical Error for Gaussian Data) Let x
(n)
j ∈ R

P be independent
Gaussian samples with mean zero and covariance as in (1). Then, with probability at least
1− δ,

εstat(2K, (2m+ 1)s∗, 2m′γ�, δA) ≤ (ν ∨ ν2) +
√
J max

j∈[J ]
‖Ej‖2,

where

ν =
‖A�‖∞

e0

[
1

N

{
log

1

δ
+Kr(G̃) +Ks� log

P

s�

}] 1
2

,

m,m′ are positive integers, e0 is an absolute constant depending on m and m′, and r(G̃)
is the rank of the δA-truncated kernel matrix G̃.

12
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We interpret εstat as follows. The first term corresponds to the error in estimating
the low-rank matrix, while the second term corresponds to the essential error incurred
from approximating the covariance matrix by a low-rank matrix. The low-rank matrix
can be estimated with the rate that converges to zero as [K{r(G̃) + s� logP}/N ]−1/2,
which corresponds to the rate of convergence of temporal and spatial components. We
also highlight that truncation of G simplifies the statistical analysis because we can view
the projection to C̃A as restricting rows of A to a subset of a r(G̃)-dimensional smooth
subspace with r(G̃) much smaller than J , the original dimension.

4.5 Sample Complexity of Spectral Initialization

We discuss the sample complexity required to satisfy Assumption 6. That is, we char-
acterize the sample size needed for Algorithm 1 to give a good initial estimate, so that
Algorithm 2 outputs a solution characterized in Theorem 7. We consider a general case of
a bounded distribution.

Theorem 9 (Sample Complexity of Spectral Initialization) Let x
(n)
j ∈ R

P be inde-

pendent zero mean samples with ‖x(n)j ‖22 ≤ P‖A�‖∞ almost surely, n ∈ [N ], j ∈ [J ], J ≥ 4.

Let M� = J−1
∑J

j=1 E(SN,j) and g = σK(M�) − σK+1(M
�) > 0 be the eigengap. Then,

with probability at least 1− δ,

dist2(Z0, Z�) ≤ φ(g,A�)

{
KJP 2

N2

(
log

4JP

δ

)2

+
KJP

N
log

4JP

δ

}
; (7)

φ(g,A�) = 4‖A�‖2∞
{
5(1 + 16ϕ2‖A�‖2∞)

g2J
∨ 8ϕ2

}
,

where ϕ2 = maxj∈[J ]{1 + 4
√
2‖A�‖∞/σK(Σ�

j )}.
From (7) we note that if N � P log(PJ/δ), then Assumption 6 will be satisfied with

high probability. The eigengap g must be greater than 0 for the bound in (7) to be
nontrivial. Moreover, since g ≤ ‖A�‖∞, the first term of φ(g,A�) dominates when J is
small. Combining results from (5), Theorem 7, and Theorem 9, we can establish Theorem 4.

5. Simulations

We evaluate the algorithm described in Section 3 using the metric in (6) and the average
log-Euclidean metric (Arsigny et al., 2006) over a variety of temporal dynamics. Table 1
collects competing methods.

We generate synthetic samples from the following Gaussian distribution: x
(n)
j ∼ N (0,Σ�

j+

σI), n ∈ [N ], j ∈ [J ], where Σ�
j =

∑K
k=1 a

�
k,jv

�
kv

�T
k and σI is additive noise. Unless

stated otherwise, we use the Matérn five-half kernel (Minasny and McBratney, 2005) as
the smoothing kernel for all simulations.
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Method Model low-rank smooth A sparse V

M1 Sliding window principal component analysis � � �

M2 Hidden Markov model � � �

M3 Autoregressive hidden Markov model (Poritz, 1982) � � �

M4 Sparse dictionary learning (Mairal et al., 2010) � � �

M5 Bayesian structured learning (Andersen et al., 2018) � � �

M6 Lasso and kernel regularization (Daubechies et al., 2010) � � �

M7 Slinding window shrunk covariance (Ledoit and Wolf, 2004) � � �

MS Spectral initialization (Algorithm 1) � � �

MR Proposed model with random initialization (Algorithm 2) � � �

M** Proposed model (Algorithm 1—2) � � �

MQ** Proposed model (Algorithm 1—2) with QR decomposition � � �

Table 1: List of competing methods. The implementation details of M6 and MR are
presented in Appendix G.1 and Appendix G.2.

5.1 Ground-truth recovery and linear convergence

We demonstrate the performance of the proposed algorithm under different smooth tem-
poral structures. The tuning parameters are selected as described in Section 3.2. Figure 1
shows the temporal dynamics of the ground truth together with the results. The upper
row corresponds to the setting of mixing temporal weights, where we have sine functions, a
constant function, and a ramp function. The bottom row corresponds to the setting with
different sine functions. Figure 2 shows how distance dist2(Z,Z�) changes with the num-
ber of subjects N ∈ {1, 5, 15, 200}. We see linear convergence of the distance up to some
statistical error, which decreases as the sample size increases, as predicted by Theorem 7.

To compare with other methods, we use the average log-Euclidean metric (Arsigny
et al., 2006): J−1

∑J
j=1 ‖ log(Σj) − log(Σ�

j )‖F , where log(Σj) = Uj log(Λj)U
T
j , U is the

matrix of eigenvectors, and Λ is the diagonal matrix of eigenvalues of Σj . In practice, we
truncate the eigenvalues whose magnitude is less than 10−5 to maintain the stability of the
evaluation. Table 2 reports the average log-Euclidean metric, while Table 3 reports the
average running time over 20 independent runs. The simulations under discrete switching
dynamics are presented in Appendix G.3 and simulations with varying K are presented in
Appendix G.4.
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Figure 1: Covariance recovery with K = 4, P = 20, J = 50 and σ = 0. The left two
columns show the ground truth and the right two columns show the recovery with N = 15.
The results indicate good spatial and temporal recovery.

Mixing waveform Sine waveform
Method N = 1 N = 5 N = 10 N = 1 N = 5 N = 10

M1 0.45± 0.01 0.40± 0.01 0.38± 0.01 0.67± 0.03 0.63± 0.01 0.63± 0.01
M2 6.58± 0.31 0.68± 0.02 0.62± 0.01 6.22± 1.02 0.82± 0.01 0.80± 0.01
M3 6.91± 1.39 0.75± 0.02 0.65± 0.01 7.36± 0.24 0.87± 0.02 0.80± 0.01
M4 0.46± 0.01 0.43± 0.02 0.39± 0.02 0.64± 0.01 0.58± 0.03 0.54± 0.04
M5 0.41± 0.01 0.36± 0.01 0.34± 0.00 0.58± 0.01 0.54± 0.01 0.53± 0.01
M6 0.51± 0.03 0.39± 0.02 0.37± 0.02 0.67± 0.03 0.58± 0.02 0.57± 0.03
MS 0.89± 0.05 0.41± 0.01 0.38± 0.01 0.94± 0.06 0.58± 0.02 0.57± 0.01
MR 0.42± 0.01 0.41± 0.02 0.41± 0.00 0.62± 0.00 0.62± 0.00 0.62± 0.00
M** 0.41± 0.03 0.29± 0.03 0.30± 0.04 0.59± 0.02 0.51± 0.03 0.50± 0.02
MQ** 0.37± 0.02 0.31± 0.03 0.29± 0.03 0.58± 0.02 0.56± 0.02 0.56± 0.01

Table 2: Log-Euclidean metric averaged over 20 independent runs. Temporal dynamics
are given in Figure 1 with K = 4, P = 20, J = 50 and σ = 0.5. For M1, we set the window
length as W = 20. For both task cases, M** and MQ** outperform the competing methods
under varying sample size. When N = 1, M2 and M3 have sufficiently large average log-
Euclidean. This is because M2 and M3 are not designed to be low-rank models, whereas
the ground truth is low-rank. Hence, when the estimated covariance matrices are not low-
rank, they have many small trailing nonzero eigenvalues, which results in large average
log-Euclidean metric.
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Figure 2: Convergence rate for different sample sizes with K = 4, P = 20, J = 50 and
σ = 0. The data generating mechanism is given in Figure 1. Irrespective of the sample
size, we observe linear convergence of the algorithm up to a neighborhood of the population
parameters. The radius of the neighborhood is characterized by the statistical error, which
depends on the sample size.

16



A Nonconvex Framework for Structured Dynamic Covariance Recovery

Number of subjects (N)
Method 1 5 10

Mixing
waveform

M1 0.5 ± 0.1 0.4 ± 0.0 0.6 ± 0.0
M2 300.0 ± 4.0 790.0 ± 10.0 1000.0 ± 40.0
M3 190.0 ± 30.0 2840.0 ± 10.0 2450.0 ± 70.0
M4 60.0 ± 30.0 520.0 ± 290.0 1080.0 ± 510.0
M5 350.0 ± 80.0 360.0 ± 130.0 380.0 ± 60.0
M6 620.0 ± 50.0 630.0 ± 40.0 620.0 ± 60.0
MS 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0
MR 90.0 ± 3.7 220.0 ± 0.0 220.0 ± 3.5
M** 8.2 ± 1.6 4.5 ± 0.2 5.9 ± 0.6
MQ** 18.1 ± 2.2 14.0 ± 0.6 13.4 ± 0.3

Sine
waveform

M1 0.5 ± 0.1 0.4 ± 0.0 0.5 ± 0.0
M2 30.0 ± 4.0 800.0 ± 10.0 830.0 ± 7.9
M3 180.0 ± 20.0 2840.0 ± 20.0 290.0 ± 4.1
M4 70.0 ± 30.0 320.0 ± 150.0 780.0 ± 330.0
M5 350.0 ± 80.0 360.0 ± 110.0 380.0 ± 90.0
M6 570.0 ± 30.0 570.0 ± 30.0 570.0 ± 30.0
MS 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0
MR 73.9 ± 11.4 35.9 ± 3.2 42.9 ± 2.0
M** 6.7 ± 1.7 4.5 ± 0.8 4.3 ± 1.2
MQ** 15.3 ± 2.4 12.9 ± 0.8 12.0 ± 0.6

Table 3: Running time (×10−2s) averaged over 20 independent runs. Temporal dynamics
are given in Figure 1 with K = 4, P = 20, J = 50 and σ = 0.5. For M1, we set the
window length as W = 20. When P is small, MS is the most efficient method as it only
computes eigendecomposition once. M1 computes eigendecomposition multiple times and,
as a result, is slower. The running time of M* is composed of the running time of MS and
the running time of Algorithm 2. MQ** is slower than M** because it requires additional
QR decomposition at each step.
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Number of subjects (N)
Method 1 5 15 200 1000

M
ix
in
g

w
av
ef
o
rm

MS 208.12± 41.82 45.22± 2.62 15.15± 1.10 1.17± 0.10 0.23± 0.01

MR 29.67± 0.39 29.16± 0.21 28.86± 0.12 28.68± 0.04 28.43± 0.06

M** 18.99± 5.00 6.72± 2.14 2.22± 1.13 0.19± 0.05 0.04± 0.01

S
in
e

w
av
ef
o
rm

MS 477.54± 95.10 103.24± 9.64 36.64± 3.39 3.53± 1.08 1.53± 1.46

MR 95.60± 0.63 94.05± 0.36 92.86± 0.26 91.39± 0.12 90.85± 0.12

M** 51.06± 12.28 22.27± 5.99 9.85± 4.38 2.41± 3.22 1.44± 2.13

Table 4: Average dist2(Z,Z�) over 20 independent runs. The data generating mechanism
is given in Figure 1 with K = 4, P = 20, J = 50 and σ = 0. M** performs the best
under varying sample sizes. MR outperforms MS for small sample sizes. However, MS
outperforms MR in the large sample size settings.
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5.2 Importance of Spectral Initialization

We compare the spectral initialization method in Algorithm 1 (MS), random initialization
method with iterative refinement (MR) (see Appendix G.1 for details), and the proposed
model (M**) to demonstrate the importance of proper initialization and iterative refine-
ment. The data are generated as in the previous experiment. For each setting, we run the
simulation 20 times with N ∈ {1, 5, 15, 200, 1000} and average dist2(Z,Z�) at convergence.
Table 4 indicates that the error of the MS decreases with increasing sample size, which
corresponds to the result of Theorem 9. We further observe that M** outperforms MR and
MS, indicating that the two-stage algorithm works better than the single-stage algorithms
(MR or MS) under varying sample sizes. Figure 3 shows that the MR method converges to
poor local optima that correspond to large dist2(Z,Z�). We also visually observe that the
recovered temporal dynamics is far from the population ground truth. When the sample
size is small, both MR and M** outperform MS, implying that iterative refinement helps
improve estimation in addition to spectral initialization. When the sample size is larger,
that is, N ∈ {15, 200, 1000}, MS outperforms MR, implying that spectral initialization is
a better option than random initialization.

5.3 Simulations with increasing P and K

We increase both the dimension of the data P and the number of components K to demon-
strate the effectiveness of the proposed algorithm in a high-dimensional setting. For the
data generation process, we randomly generate a sparse orthogonal matrix V � ∈ R

P×K .
Specifically, we generate a diagonal block matrix, denoted Ṽ �, with four blocks, and the
size of each block is �K/4�. Each block matrix is generated as a random sparse matrix
where the probability that an entry is nonzero is 0.4 and each nonzero entry is drawn from
unif([0, 1]). Finally, we obtain V � from the QR decomposition of Ṽ � = QR as V � = Q.
Note that the spatial components are partially overlapping in this setting, unlike in the
previous setting, making the task more challenging. We generate the temporal components
Ak· as follows. We select 6 knots uniformly at random in [0, T ] and draw the corresponding
y value from unif([0, 1]). These values are interpolated with a cubic spline function.

Table 5 reports the results withN = 100 and J = 100, while P ∈ {50, 100, 150, 200, 300}
andK ∈ {10, 20, 30, 40, 50}. The results indicate that with a fixed N , the distance increases
with rank, which can be expected since there are more parameters to estimate. Moreover,
we also find that dimension P has a small influence on performance.

We compare our algorithm with competing methods in a setting where P = 100, since
some of the other methods are not scalable to higher-dimensional problems. We set J =
100, K = 10, and the noise level to σ = 0.5. Results for σ ∈ {0.1, 0.2} are reported
in Appendix G.5. For all methods, we set the number of components to estimate as 10,
that is, all methods know the true number of components in the data generation process.
For the Bayesian model (M5), we draw 30 samples from the posterior distribution and
compute the estimated covariance. We report the results averaged over 20 independent
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Figure 3: Performance of random initialization method (MR). The data generating mech-
anism is given in Figure 1. The left two columns in the top row correspond to recovery
of mixing waveform, while the right two columns correspond to recovery of sine waveform.
The bottom row displays the convergence with respect to the number of iterations.
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simulation runs. Table 6 summarizes the results. The proposed algorithm performs the
best compared to the alternatives. We also observe that the log-Euclidean metric decreases
as the number of samples increases for M**, which is predicted by the results of Theorem 4
and Proposition 8. When comparing MS and M**, we see a decrease in the log-Euclidean
metric resulting from Algorithm 2. The results of M** and MQ** are similar, implying that
the QR decomposition does not affect the estimation much, supporting the theory that V
and Vortho span the same subspace. Our method delivers performance comparable to M5,
although M5 uses variational inference in a Bayesian framework. This can be expected, as
the underlying models are similar. Table 7 reports the running times for different methods.
The running time of the proposed method remains relatively stable as the number of
subjects increases. On the other hand, the running time of the M2, M3, and M4 methods
increases as N increases. Our method remains efficient even in a high-dimensional setting,
while many other methods become slow as the dimension increases. Finally, although
the M5 and M6 methods make the same structural assumptions and achieve comparable
performance, our method is more computationally efficient. In particular, when the sample
size N increases, our method provides the best practical choice.

5.4 Selections of kernel functions

We vary the number of knots to see how the choice of kernel length scale affects the esti-
mation. Moreover, we investigate the effect of the kernel function. We average simulation
results over 20 independent runs with N = 50, K = 10, P = 100, J = 100 and σ = 0.5. The
components are generated by the same data generation process described in Section 5.3
and we only vary the number of knots. Table 8 shows that as the number of knots in-
creases, indicating that the temporal signal fluctuates more intensively, the optimal choice
of length scale decreases. This behavior is observed with all three kernel functions.

6. Experiment on neuroimaging data

To investigate the proposed model on real data, we focus on (i) the interpretability of
the model and (ii) the out-of-sample prediction. We use motor task data from the Human
Connectome Project functional magnetic resonance imaging (fMRI) data (Van Essen et al.,
2013). Data are preprocessed using the existing pipeline (Van Essen et al., 2013), and an
additional high-pass filter with a cutoff frequency 0.015Hz to remove physiological noise
as recommended by Smith et al. (1999). The data consist of five motor tasks: tapping the
right hand, tapping the left foot, wagging the tongue, tapping the right foot, and tapping
the left hand. During a session, each task is activated twice. See the activation sequence
in Figure 4.

For the model interpretation experiment, we select N = 20 subjects. For each subject,
the preprocessed time series of length J = 284 were extracted from P = 375 cortical and
subcortical parcels, following (Shine et al., 2019). The regions include 333 cortical parcels
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Figure 4: The activation map for the Human Connectome Project motor data set (Van
Essen et al., 2013). The activation time of each task is partially overlapping with the other
tasks.

(161 and 162 regions from the left and right hemispheres, respectively) using the Gordon
atlas (Gordon et al., 2014), 14 subcortical regions from the Harvard–Oxford subcortical
atlas (bilateral thalamus, caudate, putamen, ventral striatum, globus pallidus, amygdala,
and hippocampus), and 28 cerebellar regions from the SUIT atlas 54 (Diedrichsen et al.,
2009).

The goal is to analyze the corresponding dynamic connectivity. To investigate the
temporal and spatial components, we compute the correlation of each weight Ak· with the
onset task activation, and select the component that has the highest correlation. Figure 5
shows the results for three tasks: tapping the left foot, wagging the tongue, and tapping
the left hand. Figure 12 in Appendix G.6 shows the results for tapping the right foot
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Figure 5: The left column shows the temporal components (blue solid lines) whose corre-
lations are the largest with respect to the task activation (black dotted lines). The right
column shows the corresponding brain connectivity patterns (spatial components) for the
tasks. The red lines denote positive connectivity and blue lines denote negative connectiv-
ity.

23



A Nonconvex Framework for Structured Dynamic Covariance Recovery

Dimension (P)
Rank (K) 50 100 150 200 300

K = 10 0.35± 0.01 0.35± 0.02 0.41± 0.02 0.35± 0.01 0.34± 0.03
K = 20 0.66± 0.02 0.66± 0.02 0.69± 0.02 0.66± 0.03 0.66± 0.01
K = 30 0.82± 0.01 0.82± 0.01 0.82± 0.02 0.80± 0.01 0.79± 0.01
K = 40 0.97± 0.01 0.93± 0.01 0.93± 0.01 0.88± 0.01 0.87± 0.01
K = 50 1.11± 0.01 1.10± 0.01 1.04± 0.01 0.99± 0.01 0.99± 0.01

Table 5: Log-Euclidean metric averaged over 20 independent simulation runs (σ = 0.5).
The data generating mechanism is described in Section 5.3. For a fixed sample size and
increasing K increases, the log-Euclidean metric increases due to large number of param-
eters that need to be estimated. The log-Euclidean metric is only mildly affected by the
dimension P , which is due to the number of nonzero entries being the same for different
values of P .

L R
L R

Task:Right Hand Tapping
L R

L R

Task:Left Foot Tapping

L R
L R

Task:Tongue Wagging
L R

L R

Task:Right Foot Tapping

L R
L R

Task:Left Hand Tapping

Figure 6: Each connectome is the superposition of the top three spatial components. The
spatial hubs in the connectivity matrices closely match with the expected motor regions
(hands, feet, tongue) as defined in the cortical homunculus (Marieb and Hoehn, 2018).

24



A Nonconvex Framework for Structured Dynamic Covariance Recovery

Number of subjects (N)
Methods 10 20 30 40 50

M1 0.49± 0.01 0.46± 0.01 0.45± 0.01 0.45± 0.01 0.44± 0.01
M2 1.22± 0.01 1.04± 0.01 1.00± 0.01 0.98± 0.01 0.97± 0.01
M3 71.50± 6.46 1.90± 0.26 1.12± 0.01 1.14± 0.01 1.12± 0.01
M4 0.94± 0.03 0.46± 0.01 0.41± 0.01 0.39± 0.01 0.38± 0.01
M5 0.51± 0.01 0.46± 0.01 0.43± 0.01 0.42± 0.01 0.41± 0.01
M6 0.43± 0.01 0.41± 0.01 0.40± 0.01 0.40± 0.01 0.39± 0.01
MS 0.43± 0.01 0.40± 0.01 0.40± 0.01 0.39± 0.01 0.39± 0.01
M** 0.42± 0.03 0.35± 0.05 0.36± 0.04 0.33± 0.04 0.32± 0.02
MQ** 0.40± 0.04 0.40± 0.01 0.35± 0.04 0.32± 0.03 0.32± 0.02

Table 6: Log-Euclidean metric averaged over 20 independent simulation runs. The data
generating mechanism is described in Section 5.3 and σ = 0.5. For M1, we set the window
length to be W = 20.

Number of subjects (N)
Methods 10 20 30 40 50

M1 0.8 ± 0.4 0.5 ± 0.3 1.2 ± 0.6 1.5 ± 0.5 1.8 ± 0.5
M2 151.9 ± 17.9 222.6 ± 51.0 376.7 ± 53.6 498.8 ± 40.0 635.5 ± 58.2
M3 422.0 ± 33.3 729.7 ± 161.6 1154.4 ± 53.6 1427.4 ± 64.4 1751.7 ± 52.0
M4 267.0 ± 112.1 378.4 ± 148.5 846.2 ± 358.8 872.0 ± 440.8 1841.5 ± 697.2
M5 2243.8 ± 33.3 2263.3 ± 38.4 2273.7 ± 36.0 2259.8 ± 34.2 2278.9 ± 35.1
M6 84.9 ± 37.5 195.2 ± 62.6 201.8 ± 31.9 191.6 ± 51.6 218.3 ± 15.6
MS 0.1 ± 0.0 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
M** 1.2 ± 0.6 1.3 ± 0.7 2.9 ± 1.4 3.9 ± 0.8 3.6 ± 0.7
MQ** 2.2 ± 1.3 1.4 ± 0.7 2.5 ± 1.0 3.8 ± 0.7 3.5 ± 0.6

Table 7: Running time in seconds averaged over 20 independent simulation runs. The data
generating mechanism is described in Section 5.3 and σ = 0.5. For M1, we set the window
length to be W = 20.

and tapping the right hand. Our results show that the temporal fluctuations of the top
components coincide with the task activation. Following the hypothesis that neural activity
is the consequence of multiple components rather than a single component (Posner et al.,
1988), for each task, we select three components with the highest correlations and plot the
connectivity patterns in Figure 6. The spatial hubs in the connectivity matrices closely
match the expected motor regions as defined in the cortical homunculus (Marieb and
Hoehn, 2018). Thus, the results indicate that the proposed algorithm can separate and
identify the components of each task and that each task has a unique connectivity pattern.

As the ground truth is unknown and motivated by the hypothesis that each task has
a different activation pattern, we design a classification task as a surrogate experiment to
evaluate the algorithm. Previous work also indicated that task fMRI data share similar
connectivity patterns among test subjects (Zalesky et al., 2012; Calhoun et al., 2014).
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Number of knots in J = 100
Methods 5 10 15 20

Radial-basis function (l = 5) 0.16± 0.04 0.26± 0.05 0.52± 0.07 0.91± 0.17
Radial-basis function (l = 10) 0.12± 0.04 0.18± 0.05 0.33± 0.07 0.69± 0.18
Radial-basis function (l = 50) 0.09± 0.04 0.16± 0.05 0.76± 0.09 1.17± 0.11
Radial-basis function (l = 200) 0.08± 0.04 0.30± 0.05 0.84± 0.08 1.27± 0.16

Matérn five-half (l = 5) 0.15± 0.04 0.23± 0.05 0.44± 0.06 0.80± 0.18
Matérn five-half (l = 10) 0.13± 0.04 0.20± 0.05 0.36± 0.06 0.70± 0.18
Matérn five-half (l = 50) 0.10± 0.04 0.15± 0.05 0.31± 0.06 0.59± 0.12
Matérn five-half (l = 200) 0.09± 0.04 0.14± 0.05 0.31± 0.07 0.62± 0.19

Rational quadratic (l = 5) 0.14± 0.04 0.24± 0.05 0.51± 0.07 0.89± 0.18
Rational quadratic (l = 10) 0.17± 0.04 0.29± 0.05 0.61± 0.07 1.03± 0.18
Rational quadratic (l = 50) 0.10± 0.04 0.13± 0.05 0.43± 0.07 1.07± 0.18
Rational quadratic (l = 200) 0.08± 0.04 0.22± 0.05 0.81± 0.08 1.26± 0.16

Table 8: Average distance dist2(Z,Z�)/J over 20 independent runs with σ = 0.5. Results
are comparable for different kernel functions when the number of knots is smaller than
J = 15. When J = 20, Matérn five-half kernel function is more effective in capturing the
temporal smoothness compared to the other two kernels.

Therefore, if we can recover the functional connectivity patterns of the training subjects,
then similar patterns exist in the test subjects. We partition 103 subjects in the Human
Connectome Project motor task data set (Van Essen et al., 2013) randomly into a training
and testing set. The duration of each task is identical, 27 time points for each activation,
and 2 activations in each session. Since each task partially overlaps with others (see
Figure 4), we predict the task based on activation blocks rather than on a single time
point. We group the estimated covariances {Σj}j∈[J ] and the test data based on the task
activation map and perform a nearest-neighbor search. Clustered covariances are denoted
as Σtask,i, where task ∈ {tapping the right hand, tapping the left foot, wagging the tongue,
tapping the right foot, tapping the left hand} and i ∈ [54]. The task score for each test
data block is defined as

scoretask({xi}i∈[54]) =
54∑
i=1

‖xixTi − Σtask,i‖2F ,

where {xi}i∈[54] is a block of test data. We predict the task of the block data by choosing
the task with the minimum score. We repeat the experiment 10 times. In each run, we
randomly split the data into a training and testing set. We select the number of training
subjects to be N ∈ {10, 20, 30, 40, 50} and set the remaining subjects as test sets. The
results are shown in Table 9. Note that the Markov model (M2) performs worst even if
we increase the number of states to 60. The dictionary learning model (M4) performs
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similarly to our model when the sample size is large, but our model performs better with
small sample sizes.

7. Discussion

Several directions are worthy of further investigation. We plan to explore a more flexible
spatial structure. Previous work (Gibberd and Nelson, 2017; Hallac et al., 2017) applied
fused graphical lasso and group graphical lasso to encourage similar sparse structures for
time-varying graphical models. These approaches did not restrict the spatial components
to be identical but only similar, and thus are more flexible compared to the proposed
model. To this end, one idea is to build factor models that encourage similar, but not
identical, spatial structures while retaining low rank. Our work has focused on modeling
data sampled at fixed intervals. We also plan to explore models with samples obtained at
irregular time intervals (Tank et al., 2019; Qiao et al., 2020), as this setting is common
in multimodal data (Tsai et al., 2022). Finally, our work has focused on the estimation
of parameters in a flexible covariance model, while the question of how to quantify the
statistical uncertainty remains open. There has been a growing literature on inference for
parameters in high-dimensional models, including linear models (Zhang and Zhang, 2014;
van de Geer et al., 2014; Javanmard and Montanari, 2014; Zhao et al., 2014; Bradic and
Kolar, 2017; Dai and Kolar, 2021; Wang et al., 2021), nonparametric models (Kozbur,
2021; Lu et al., 2020), and graphical models (Ren et al., 2015; Wasserman et al., 2014;
Janková and van de Geer, 2015, 2017; Barber and Kolar, 2018; Wang and Kolar, 2016; Yu
et al., 2016, 2020b; Xia et al., 2015; Kim et al., 2021). The model considered in our paper
is comprised of a sparse spatial and a smooth nonparametric temporal component that will
require the development of new inferential techniques.
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