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Abstract

This paper presents the Brown Pedestrian Odometry
Dataset (BPOD) for benchmarking visual odometry algo-
rithms on data from head-mounted sensors. This dataset
was captured with stereo and RGB streams from RealSense
cameras with rolling and global shutters in 12 diverse in-
door and outdoor locations on Brown University’s cam-
pus. Its associated ground-truth trajectories were gener-
ated from third-person videos that documented the recorded
pedestrians’ positions relative to stick-on markers placed
along their paths. We evaluate the performance of canoni-
cal approaches representative of direct, feature-based, and
learning-based visual odometry methods on BPOD. Our
finding is that current methods which are successful on
other benchmarks fail on BPOD. The failure modes cor-
respond in part to rapid pedestrian rotation, erratic body
movements, etc. We hope this dataset will play a significant
role in the identification of these failure modes and in the
design, development, and evaluation of pedestrian odome-
try algorithms.

1. Introduction

Visual Odometry (VO) is the process of measuring ego-
motion using image data. Specifically, VO uses visual data
to recover a navigating agent’s path relative to its posi-
tion at an earlier time. This is in contrast to odometry
based on other sensory data such as wheel sensors, step
counters, global positioning system (GPS), inertial mea-
surement units (IMUs), sonar, infrared, radio frequency
(RF) receivers, laser range finders (LIDAR), RGB-D cam-
eras, and others [1, 2]. Visual odometry has become pre-
dominant given the versatility and relatively low cost of
cameras [3, 4]. Challenges of ambiguous scale, motion
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blur during rapid rotations, low or repeated texture, and
large dynamic range have encouraged the fusion of vi-
sual odometry with low-cost and versatile IMUs, result-
ing in visual-inertial odometry (VIO) [5, 6]. Applica-
tions of visual odometry are vast and span planetary explo-
ration, unmanned aerial vehicles (drones or MAVs), [7, 8],
autonomous driving [9, 10], augmented reality applica-
tions [11], mobile mapping [12], service robotics [13], si-
multaneous localization and mapping (SLAM) [14], etc.
A significant application of VO is tracking ground-level
pedestrian trajectories, critical in a number of scenarios: (i)
navigation for the visually impaired, (ii) monitoring elderly
people navigating in indoor and outdoor environments [15],
(iii) tracking first responders [16], (iv) passive guided shop-
ping in supermarkets and large stores, (v) indoor navigation
guidance in airports, train stations, and hospitals [17], (vi)
personalized guided tours in exhibitions, museums, and gal-
leries [18], and (vii) pandemic contract tracing [19, 20].
The key to advancing the state of the art in VO is
the availability of challenging, high-quality, broadly rep-
resented, and task-driven benchmarks. A case in point is
the rapid development resulting from the introduction of
KITTI [10] and a number of other datasets [21, 22, 23] for
the task of autonomous driving. The utility of each bench-
mark, however, is necessarily limited to the application for
which it was designed. For example, autonomous driv-
ing benchmarks contain paths that are planar and mostly
straight, with a small number of turns that have limited ac-
celerations and radii of curvature. In contrast, other agents
such as drones and pedestrians exhibit rapid rotations, high
acceleration, and more general paths of motion [24]. The
introduction of drone datasets such as EuRoc [25] has led
to rapid development of algorithms for drone odometry.
However, there has not been a dataset targeting pedestri-
ans, who in particular rotate very rapidly, leading to blur
in images, Figure 2, and move more erratically than cars
and drones. Pedestrian ground-level tracking is an ap-
plication for which VO datasets are not available to the
best of our knowledge. Existing datasets are commonly



Figure 1: BPOD spans a diverse set of indoor and outdoor
scenes ranging from texture-rich historic buildings to mod-
ern construction.

vehicle-mounted [10, 26, 27], Segway-mounted [28], MAV-
mounted [25, 29], or hand-held [30, 31, 32, 33]. The rare
exception is one sequence (Campus-run) obtained from a
head-mounted Velodyne LIDAR, but not from visual cam-
eras. The inclusion of this sequence was to highlight the
added importance of the IMU in head-mounted situations
which depict erratic movements [34]. As such, the proposed
dataset, the Brown Pedestrian Odometry Dataset (BPOD),
fills a gap in a significant application area. Our dataset
shows that VO techniques which are largely successful on
existing datasets, Table 1, do not perform well on BPOD.
The new dataset enables the identification of areas where
existing techniques fail, thereby paving the way for the
development of VO techniques for capturing ground-level
pedestrian trajectories.

Benchmarking is an elusive task with numerous sub-
tleties. VO techniques can generally be classified into
three categories, namely, feature-based methods [40], direct
methods [4, 41], and deep learning methods [42, 43, 44, 45].
Certain datasets can be more suitable for one or the other.
Textured, feature-rich scenes favor feature-based methods,
while textureless scenes with large homogeneous areas fa-
vor direct methods. Illumination variation (e.g., the require-
ment to illuminate darker environments like those found
underground or underwater) impacts the photometric in-
variance assumption of direct methods [33]. Similarly, a
dataset whose images have not been photometrically cal-
ibrated (i.e., where exposure times, the camera response
function, and lens vignetting have been measured) disfa-
vors direct methods. These and other nuances have led to an
abundance of benchmarks with varying targets [35, 25, 38,
39, 36, 28, 29]. Benchmarks are inherently task-oriented
and must be constructed carefully to satisfy the requirement
of the application at hand.

The main contribution of this paper is the design and de-
velopment of a dataset to benchmark algorithms recovering
ground-level pedestrian trajectories. The dataset does not
document ground-truth camera pose, which would be wel-
come in AR/VR applications, but would also require laser
odometry or a complex network of cameras, which is un-
necessarily complicated and would limit the range and ex-
tent of environments for which the trajectory of a pedes-
trian can be observed. Rather, the application mentioned
above requires a pedestrian’s ground-level location. The

Figure 2: From left to right, typical turning sequences from
vehicle-mounted, hand-held, and head-mounted cameras
demonstrate the potential for severe blur in head-mounted
sequences.

choice of a head-mounted camera as a surrogate for a pro-
jected ground-level body-center position necessarily intro-
duces some errors. However, these errors are acceptable
for pedestrian odometry, where avoiding long-term drift is
more important than achieving centimeter-scale accuracy
at any given time. In fact, our results show that all three
types of canonical odometry methods fail to capture pedes-
trian ground-level trajectories to any reasonable level of ac-
curacy. We measure the quality of our ground-truth data
through (i) consistency over multiple traversals of the same
path, and (ii) comparison with successful SfM reconstruc-
tions (see supplementary material for cases where SfM re-
construction instead fails).

The creation of a VO-focused dataset like BPOD re-
quires several components: (i) A sensory platform for data
acquisition: we selected two synchronized stereo cameras,
one with a rolling shutter and one with a global shutter
mounted on a helmet. Embedded within the latter is an
IMU. Note that we do not provide hardware synchroniza-
tion between the rolling shutter and stereo shutter cameras;
synchronization between cameras uses a clapperboard-like
method (see Section 4). In addition, one camera can acquire
depth images, although the current version of BPOD omits
these in favor of higher resolution images and higher frame
rates. (ii) Video sequences: ours are obtained from indoor
and outdoor scenes by a pedestrian wearing the helmet fol-
lowing a path annotated on the ground by small markers.
Additional diversity is introduced by including both for-
ward and backward traversal of the same path. An auxiliary
camera records the pedestrian’s movement. (iii) Data pro-
cessing to correlate pedestrian position to a map of markers
to generate ground-truth trajectory data. (iv) Experiments
to evaluate the performance of VO algorithms: we tested
three classes of odometry approaches on BPOD. The BPOD
dataset is curated by the Brown University Library and is

currently available for public use'.

2. Related Odometry Datasets

Datasets focused on a variety of settings have been
proposed to evaluate the performance of visual odome-

Ihttps://repository.library.brown.edu/studio/item/bdr:p52vqgte/



Table 1: A comparison of representative related datasets.

Dataset Mounting Environment | Shutter Type Image Ground Truth
KITTI [35] Car Outdoors Global Stereo/Auto Exposure GPS
EuRoc [25] MAV Indoors Global Stereo/Auto Exposure Motion Capture
TUM [36] Hand-held Indoors Global Mono./Auto Exposure Motion Capture

ICL-NIUM [37] Synthetic Synthetic Synthetic Mono./Synthetic Synthetic
UMA-VI [38] Hand-held Mix Global Stereo/Auto Exposure SftM

PennCOSY [39] Hand-held Mix Mix Stereo/Auto Exposure Fiducial/StM
ADVIO [32] Hand-held Mix Rolling Mono/ Auto Exposure MU
BPOD (Ours) Head-mount Mix Mix Stereo/Mix Exposure Marker

try systems. Perhaps the most well-known is KITTI [35],
which focuses on outdoor car-mounted stereo imaging,
with ground-truth trajectories obtained via GPS. While this
dataset showcases a diverse set of driving scenes, it is inher-
ently limited by its outdoor, vehicle-focused setting. The
EuRoC MAV dataset [25] provides stereo images from a
drone in an indoor environment. Its ground truth is captured
by an external motion capture system and a laser tracker.
While this provides high-quality ground-truth trajectories,
the necessary equipment requires a controlled environment,
which prevents the creation of a large-scale dataset for in-
door environments. The TUM RGB-D dataset [46] was
one of the first datasets focused on hand-held cameras. It
features a large set of hand-held video sequences, but the
ground-truth time-stamps are not well aligned with the cam-
era. The ground truth of this dataset is also captured by an
external motion capture system, so this dataset only cov-
ers a limited range of scenes. Additionally, the motion of
the hand-held camera is slow and smooth, which is ap-
propriate for hand-held scanning applications, but not for
pedestrian ego-motion estimation. Fiducial markers have
been used to create ground-truth trajectories in a number
of datasets [39] in order to overcome the limitations of ex-
ternal motion capture systems. However, these prominent
markers generate extra feature correspondences within the
scene (note that the markers used for our ground truths
are non-invasive). Several datasets have used SfM to gen-
erate ground-truth camera trajectories, e.g., [38] and [47]
use COLMAP and Pix4D, respectively, to generate their
ground-truths. However, unlike these carefully constructed
hand-held and MAV datasets, our dataset contains rapid
blur and generate feature-less segments that make SfM-
based ground truth generation infeasible. Other datasets
omit ground-truth trajectories entirely, instead relying on
loop closure. For example, the TUM MonoVO [36] dataset,
which features a large set of hand-held, photometrically cal-
ibrated, monocular footage, proposes an evaluation metric
based on loop closure to evaluate VO without ground-truth
trajectories.

In the face of these difficulties in generating ground

truths for real cameras, synthetic datasets have also been
devised for VO development. The ICL-NUIM dataset [37]
consists of 8 sequences of photorealistic synthetic indoor
scenes in a monocular setting. However, it is hard for these
synthetic datasets to simulate features of real scenes, such
as motion blur, erratic movements and pedestrian head bob-
bing. A summary of representative datasets is listed in Ta-
ble 1.

3. BPOD Sensory Platform

The camera mount most appropriate for pedestrian vi-
sual odometry is a head mount, since cameras with chest-
mounted or hand-held configurations are often occluded by
the subject’s arms or the presence of other pedestrians. The
BPOD camera rig is a ski helmet outfitted with a standard
GoPro mount. Figure 3 shows the frame we designed and
3D-printed to attach cameras to the helmet.

Figure 3: Two views of the camera assembly designed and
3D-printed, shown together with CAD drawings and ap-
proximate inter-camera measurements.

Camera selection was guided by several constraints, re-
quiring (i) synchronized stereo cameras to compare monoc-
ular and stereo configurations for pedestrian odometry;
(ii) high image quality, resolution, and frame rate; (iii) ex-
posure control to allow for precise photometric calibration
and to allow for comparison to auto exposure; (iv) both
rolling shutter and global shutter cameras for comparison;
(v) a universal driver for compatibility with a variety of de-
vices; (vi) an IMU; and, (vii) consumer-level pricing.

Given these constraints, we chose a pair of Intel Re-
alSense cameras [48] whose specifications are outlined in



Table 2: The streams we recorded for each sensor.

Frame Sensor Focal Shutter
Camera Sensors Resolution Rate (Hz) | Aspect Ratio Length FOV | Baseline Type
Color 1280 x800 30 16:10 1.88mm 77°
D455 —Siereo Monochrome 1280 x800 30 85 93mm | 1006° | omm | Global
Color 1920 x1080 30 16:9 1.88mm 77° .
D415 Stereo Monochrome 1280 %720 30 16:9 1.88mm 77° SSmm Rolling

Table 2. An additional advantage of this choice is the ability
to capture depth maps, although we chose not to incorporate
this feature into this first version of BPOD, mainly to meet
data transfer bandwidth constraints.
Intrinsic and Extrinsic Camera Calibration: Calibration
of a multi-camera system’s intrinsic and extrinsic param-
eters is very important in building a dataset. We use the
Kalibr calibration package [49] to calibrate the intrinsic and
the extrinsic parameters of our rolling shutter and global
shutter cameras. The 6 x 6 calibration pattern used with
Kalibr is shown in Figure 4.
Photometric and Vignette Calibration: We calibrated the
photometric parameters, and vignette parameters for each
camera independently. For each camera, we captured two
calibration sequences: (i) a static scene with sweeping ex-
posure for photometric calibration, and (ii) An image se-
quence with an ArUco tag [50] for vignette calibration, as
shown in Figure 4. We estimated the photometric and vi-
gnette parameters using the code provided by [36].
IMU Calibration: While our dataset and evaluation focus
on visual odometry, we recognize the importance of IMU
data in recent works. Our dataset includes the raw IMU
outputs. The intrinsic parameters and the noise analysis is
generated using Intel’s IMU calibration tool [51] and the
IMU noise analysis tool [52], while the extrinsic parameters
are extracted from the factory calibrated extrinsic values.
The sequences used to create the aforementioned camera
and IMU calibrations are included in the published dataset.

Figure 4: Left to right: A sample Kalibr calibration pattern
image, an image in the sweep exposure set, and a sample
vignette image used for calibration.

4. Data Acquisition Protocol

Scene Selection: One of BPOD’s goals is to capture a di-
verse set of images ranging from texture-rich to textureless,
well-illuminated to dimly illuminated, illuminated by natu-

Figure 5: Laser-cut templates and color stick-on markers
are used to generate ground-truth trajectories. A: Markers
placed using the straight path segment, with a key marker
magnified. B: Markers placed using the arc segment, with
an intermediate marker magnified. C: CAD drawings of the
templates used to place markers. Indentations for marker
placement, which are spaced 30 inches apart, are high-
lighted and shown in detail views. D: Two laser-cut compo-
nents for an arc template.

ral light or by artificial light, in simple to complex scenes,
etc. Campus buildings, which vary in construction date and
architectural style, provide an ideal setting to generate a di-
verse selection of imagery. We selected twelve scene tra-
jectories from buildings on Brown University’s campus and
recorded forward and backward traversals of each path with
both fixed and automatic exposure, for a total of four se-
quences per trajectory, Table 3.

Defining Trajectories: We used sequences of sticker mark-
ers to define intended trajectories for our video sequences.
We placed these markers at 30-inch intervals using two
laser-cut templates as shown in Figure 5. The first template
is a 120-inch straight template with slots for four markers.
The second template is a 90-degree circular arc template
with a 95.9 inch radius and slots for five markers. Our tra-
jectories are closed loops, which allows the subject to tra-



Table 3: A summary of the BPOD dataset. The four columns represent four sequences: (i) forward, auto exposure; (ii)
forward, fixed exposure; (iii) backward, auto exposure; (ii) backward, fixed exposure. Entries marked x represent unusable

sequences.
Location (Abbrev.) Sequence Length (sec.) Trajectory Length (m)

Applied Math Building (APMA) 86 86 84 84 68.4 68.4 68.4 68.3

85 Waterman St. (BERT) 102 96 106 100 78.4 78.4 784 784
Brown Design Workshop (BDW) 109 113 110 109 1252 1252 1252 1252
CIC Office Balcony (CIC) 122 141 140 145 125.4 125.4 125.4 125.4

Center of Information Technology (CIT 2nd Floor) 75 73 80 80 78.2 77.5 78.3 78.3
Center of Information Technology (CIT 4th Floor) 91 91 96 94 84.1 84.1 84.1 84.1
Lobby of Engineering Research Center (ERC) 109 110 X X 108.8 108.8 X X

Lobby of Friedman Hall (Friedman) 95 97 99 98 95.7 95.7 95.7 95.7

Lobby of MacMillan Hall (MacMillian) 95 90 96 93 86.2 86.2 86.2 86.2
Science Library (SciLiTables) 68 67 69 74 89.7 89.7 89.7 89.7

Science Library (SciLiShutters) 84 82 100 84 723 723 723 723
Smith-Buonanno Hall (SmithBuonanno) 98 92 106 96 105.7 105.7 105.7 105.7

verse them multiple times in succession, usually 2-3 times.
Mapping Trajectories: We used fixed pairwise distance
measurements between sequential and co-visible markers
in conjunction with trilateration and gradient-descent-based
optimization to construct two-dimensional trajectory maps.
We partitioned the markers into key markers and interme-
diate markers. Key markers used a distinct sticker color
and were placed at the ends of templates, while intermedi-
ate markers filled the templates’ middle slots. From each
key marker, we recorded distance measurements to all other
non-occluded key markers using a hand-held Bosch Blaze
Pro GLM165-40 laser distance measurement device. Typi-
cally, about half of the other key markers were visible. We
then constructed the ground-truth trajectory as detailed in
the supplementary material. Figure 6 shows the errors be-
tween measured distances and final optimized distances in
our trajectories. These are generally below 1 cm, demon-
strating that our ground truth does not suffer from drift over
large distances.

8 mm
6 mm
4 mm

2 mm

0 mm

Figure 6: A representative example of post-optimization
measurement errors for the SciLiShutters location’s ground
truth map. Grid cells are two meters across.

Extracting the data: Each sequence produces two distinct
Robot Operating System (ROS) bag files, one per camera.
We used a Docker container running an Ubuntu image with
ROS to extract PNG images, camera calibration parameters,
and IMU data along with the corresponding timestamps.

Capturing video sequences: We captured four videos for

each trajectory along two axes of variation: forward vs.
backward trajectory traversal and fixed vs. auto exposure.
Each trajectory follows a loop that is traversed 2 to 3 times.
The idea of varying exposure is to probe the performance of
various methods on scenes with a very high dynamic range
of illumination. For example, the sequence “4th floor of
Brown” transitions between a brightly lit atrium with sky-
lights and a dimly lit set of hallways. We noted that the
default setting of the auto-exposure mode is set relatively
low, mainly because it is intended to work with a laser pro-
jector. For the manually set exposure, we chose settings to
balance overexposed (blown-out) regions and underexposed
(completely black) regions.

The subject is captured on a third-person video which
is primarily aimed at the subject’s feet but has some of the
background as well. The subject is localized with respect to
the location on the trajectory on each video frame.

Why Markers? The generation of ground-truth trajectory
is the most difficult challenge in creating a dataset. The use
of the more complex external trackers [36] or a collection
of video camera limits the scope of navigation. Our use of
a single video camera to capture the ground-truth location
with respect to a set of easily installed fiducials is a com-
promise of temporal accuracy for flexibility, generality and
diversity of navigation paths. This temporal loss in accu-
racy can be justified considering the goal is to measure drift
over long sequences.

Image Position Annotation: Our third-person smartphone
videos allow us to identify the subject’s location with re-
spect to the marker-defined map at each point in time. We
annotated the times at which the subject crosses individual
markers and synchronized the resulting timestamps times
with the two cameras’ video streams. To synchronize the
stereo cameras with the third-person captures used to gener-
ate our ground truth, we recorded the snap of a hand from all
cameras at the beginning of each sequence. This technique
is similar in principle to the use of clapperboards for syn-
chronizing video and audio in filmmaking. We measured
this technique to be accurate within one frame (1/30 sec-



ond), which we believe is sufficiently accurate given our
emphasis on measuring long-term drift. The cameras fur-
ther provide microsecond-scale timestamps for each frame
and IMU data point; a comparison with the snap timestamps
suggests that these are aligned.

Verification of the ground truth: We used COLMAP [53]
to verify our ground-truth trajectories. COLMAP has been
previously been used to generate ground-truth trajectories
for datasets in Table 1, e.g. [39, 38]. Unfortunately, due to
our dataset’s erratic and drastic pedestrian movement, nei-
ther COLMAP nor Pix4D can reliably reconstruct complete
sequences (see the supplementary material for more de-
tails). Nevertheless, in four sequences, COLMAP suceeded
after downsampling by a factor of 10 to 3 frames per second,
Figure 7. For these four sequences, our ground-truth trajec-
tories can be compared to the ground-level projections of
COLMAP generated trajectories, showing remarkable sim-
ilarity, about 0.12m point-to-point average distance when
the length of the trajectories is on the order of 95m. In fact
a detailed observation of the trajectories makes it clear that
our ground-truth tracks are more consistent with the sec-
ond and third traversal of the loop than COLMAP’s. The
COLMAP reconstructions are also noisy, while the BPOD
ground-truth is smoother and more structurally consistent
with true trajectories.

Figure 7: A comparison between our ground-truth scheme
(circles) and COLMAP trajectories (lines) for a selection
of sequences where COLMAP is successful. Grid cells are
two meters across. Note that these sequences are plotted
together for compactness although they are from separate
real-world locations.

5. Experiments

In this section, we present the performance of three
canonical categories of visual odometry algorithms on

BPOD. We select a representative algorithm for each cat-
egory: ORB-SLAM3 [54] for feature-based approaches,
DSO [55] for direct approaches, and TrianFlow [45]
(trained on the TUM-RGBD dataset) for deep learning ap-
proaches. We use the authors’ original implementations of
their respective odometry algorithms for all experiments.
Note that both TrianFlow and DSO are restricted to monoc-
ular inputs, so that we compare these with the monocular
mode of ORB-SLAM.

The evaluation of monocular odometry must address the
inherent scale ambiguity in the resulting reconstructions:
metric ambiguity in reconstruction and pose implies that
scale as well as translation and rotation need to be matched
optimally to compare two trajectories, i.e. two trajectories
must by aligned under a similarity transformation. Note
that the ground truth of BPOD is in 2D while the computed
odometry paths are in 3D, though fairly planar. However,
there are small pseudo-sinusoidal depth variations that cor-
respond to the bobbing head movements inherent in pedes-
trian motion. Figure 8 compares the BPOD ground-truth
trajectory to the reconstructed paths for each of the three
approaches under the optimal similarity alignment using
Horn’s Method. Qualitatively, ORB-SLAM performs well
on some sequences, but loses tracks on the others; DSO
results suffer from quite severe scale drifting; and Trian-
Flow performs poorly. More results, including quantifica-
tion using the standard absolute trajectory error (ATE) met-
ric, are shown in the supplementary material. A quantita-
tive characterization of these results is shown in Table 4.
We use three quantitative measurements to evaluate the per-
formance of the three methods. Endpoint Distances: A
global evaluation metric d. measures the distance between
the ground-truth and the estimated trajectories’ endpoints.
Observe that only three of twelve locations are completed
by ORB-SLAM, while DSO completes over 85% of the lo-
cations and TrianFlow completes all; the endpoint error, d_,
however, is quite high for DSO and TrianFlow. A closer
look at the reconstructed path reveals that scale drift is a
significant issue, especially for DSO. This implies that a
single scaling of the reconstruction path will lead to a large
endpoint difference d., even though the shape is correctly
estimated.

We also propose two local metrics to decouple the er-
ror caused by scale drift from the error in reconstructing
the shape of the path which works specifically for our 2D
ground truth. Figure 9 illustrates the idea: consider the sam-
ples along each path. Aligning the first two samples adjusts
the local scale of the estimated path to be that of the ground
truth. Then the local difference of the third point can be de-
composed into two parts: the angular difference between
the bearing vectors, 6, reveals the performance on local ro-
tational estimation and the difference between the actual
positions d;, reveals the local performance on scale estima-
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Figure 8: A comparison of estimated camera trajectories for four sample sequences, with ground truth markers shown in
black. Grid cells are two meters across, and sequences are aligned using Horn’s Method.

tion. Note that these metrics are similar in principle to rela-
tive pose error (RPE) used by [39, 35], while being adapted
to ground-truth data without rotational information.

In addition to the metrics presented, we also calculate
absolute trajectory error (ATE) on our monocular image se-
quences. Adapting the conventions of [39] to translation-
only trajectories, we calculate the ATE between ground-
truth trajectories qp.ny in world coordinate frame W and
odometric trajectories pi.n in world coordinate frame W',
Since our ground-truth trajectories are two-dimensional, we
define q4:; by concatenating each point value with z = 0.
To calculate ATE, we use Horn’s Method [56] to find a
transformation S that optimally aligns (via translation, ro-
tation, and scaling) p1.x and qi.y. We then compute the
root mean square of the resulting pose errors f; = Sp; — q;,
i€ {l,---, N}, weighted by the time At; between poses 4
and ¢ — 1.

. 1/2
ATE(f1.n) = (TZAtinHZ)
i=1

We match the trajectory point pairs (p;,q;) using a
temporal threshold of 0.1 seconds. Because our non-
interpolated ground truth trajectories are temporally sparse
(with values appearing roughly every 0.5 seconds), non-
deterministic behavior in the odometry algorithms we tested
can impact the number of matches and the quality of the re-
sults. To address this problem, we ran each sequence sev-
eral times and report average ATE values across exposure
settings (auto vs. fixed) and walking directions (forward
vs. backward). Note that because we omit failed runs with
fewer than 20 matches (N < 20) along the trajectories from
our results, the actual number of trials over which we aver-
age each result is in practice lower. Our ATE values are
shown in Table 5.

The conclusions include (i) ORB-SLAM is the most ac-
curate in reconstructing a trajectory, but it frequently fails to
do so; this is due to fast rotations that cause motion blur and
the subsequent loss of feature tracking. (ii) DSO frequently
completes the trajectory but suffers from scale drift despite
accurate calibration and use of global shutter cameras; and
for some sequences, DSO recovers the direction of the local
motion with a high accuracy, i.e., lower local angular er-
ror; (iii) TrianFlow completes all trajectories but is the least
accurate.

Unaligned Trajectories 9 > '
__.g—80—®e
o__~
Aligned Trajectories 5 |
I, 4 d,
‘.7' ° \ 'l

Figure 9: An illustration of our local error metrics.

Our experiments all used global shutter images, as the
odometry results are generally better with these. Figure 10
compares ORB-SLLAM3’s estimated trajectories for global
and rolling shutter images. This significant difference high-
lights the need for explicit models for rolling shutter cam-
eras [57] and the usefulness of BPOD to evaluate the effec-
tiveness of such explicit models.




Table 4: Local error metric results. X indicates a lost track; — indicates that the estimated trajectory is too short for analysis.

Locations ORB-SLAM w/o LC ORB-SLAM w/ LC DSO TrianFlow
de(m) | 6C/s) [ ditm/s) | de(m) | 6C/s) | dim/s) | de(m) [ 0C/s) | di(m/s) | de(m) | 6C/s) | di(m/s)
APMA X 144 0.09 X 115 009 | 373 | 413 027 | 420 | 880 043
BDW X — — X — — 762 | 323 022 | 648 | 627 0.42
BERT X 0.83 0.12 X 0.52 002 | 425 | 142 0.69 720 | 7.5 053
CIC Balcony X 6.3 0.63 X 7.00 199 | 433 | 8.64 0.11 521 | 822 0.67
CIT 2nd Floor X — — X — — 702 | 3.88 0.68 886 | 587 0.40
CIT 4th Floor 650 | 4.15 0.18 0.05 | 1.07 022 | 779 | 178 0.21 782 | 3.5 0.30
ERC X 6.02 0.18 X 5.96 0.18 | 695 | 3.00 048 873 | 562 041
Friedman Hall X 455 0.23 X 5.04 0.23 X 453 045 992 | 1077 | 054
MacMillan X — — X — — X 557 057 | 987 | 8.8 0.57
SciLiShutters 3.74 0.72 0.11 0.15 0.54 0.06 5.90 3.57 0.50 4.22 5.10 0.56
SciLiTables 139 | 040 0.06 0.09 | 041 0.06 534 | 080 0.14 | 545 | 2.3 0.41
SmithBuonanno 323 | 1022 | 0.62 015 | 599 0.24 627 | 979 | 0332 | 570 | 115 044
Mean 382 | 365 0.24 011 | 285 0.36 502 | 526 0.39 697 | 7.05 048

Table 5: Absolute trajectory error (ATE) results. Each cell contains a mean value along with a standard deviation and number
of successful (N > 20) trials in parentheses. We run ORB-SLAM3 and DSO for a total of 5 trials per sequence and TrianFlow
for a total of 2 trials per sequence to account for variance introduced by the sparsity of their outputs, then average across all
trials (with varying exposures and path directions) at each location.

Friedman_Hall
MacMillan
SciLiShutters
SciLiTables

SmithBuonanno

2.792 (1.546, 20)
5.240 (1.343, 20)
3.679 (0.299, 20)
2.766 (0.911, 20)
4.336 (0.711, 14)

0.889 (0.877, 5)
2.645 (2.673, 9)
0.118 (0.022, 20)
0.120 (0.012, 19)
0.722 (0.528, 12)

0.380 (0.289, 4)
1.573 (1.666, 6)
0.776 (0.600, 20)
0.633 (0.929, 19)
3.136 (1.612, 12)

Location DSO ORB-SLAM3 (Loop Closure) ORB-SLAM3 (No Loop Closure) TrianFlow
APMA 4.129 (0.844, 14) 2.150 (2.158, 10) 4.897 (2.162, 7) 3.829 (0.275, 8)
BDW 4.787 (0.633, 20) 0.154 (0.016, 16) 1.110 (1.338, 12) 4.574 (0.527, 4)
BERT 3.250 (1.010, 12) 3.718 (0.626, 6) 3.522 (1.061, 5) 3.009 (0.839, 8)
CIC_Balcony 4.461 (0.152, 20) 0.745 (1.112, 19) 0.990 (1.178, 15) 4.330(0.264,7)
CIT 20d_Floor 4.242 (0.898, 19) 4.620 (1.322, 23) 4.807 (0.961, 18) 4.896 (0.876, 8)
CIT 4th_Floor 4.248 (0.642, 15) 0.642 (0.848, 19) 1.066 (1.114, 18) 4.430 (0.629, 6)

ERC 6.621 (0.384, 10) 0.581 (0.846, 10) 1.247 (1.814, 10) 3.233(0.942, 4)

4.260 (0.956, 8)
3.413 (0.861, 8)
2.900 (0.599, 8)
3.361 (1.114, 8)
4.887 (0.104, 4)

—— e O\

@

—— Global Shutter
Rolling Shutter

Figure 10: A comparison of ORB-SLAM3’s performance
on equivalent global and rolling shutter sequences in the
SciLiTables location, with ground-truth markers shown.
Grid cells are two meters across. The rolling shutter path’s
perceived misalignment occurs due to errors in the Z axis.

6. Conclusion

We present a novel ground-level pedestrian trajectory
dataset based on 12 locations that cover a diverse set of
scenes and illumination conditions. The dataset contains
calibrated synchronized stereo data from both rolling shut-
ter and global shutter cameras, enabling a comparison of
the two for future algorithm development, and is also sup-
plemented with IMU data. Tests on three representative
feature-based, direct, and deep learning methods reveal that
the dataset contains challenges not previously addressed by
existing datasets. This reveals that pedestrian odometry is
beyond the reach of the state-of-the-art algorithms. We hope
that the BPOD dataset will facilitate the identification of
failure modes of each algorithm and motivate the develop-
ment of more reliable and accurate odometry methods to
address the unique challenges of head-mounted pedestrian
odometry.
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