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Abstract. Similarity search is a fundamental building block for information
retrieval on a variety of datasets. The notion of a neighbor is often based on
binary considerations, such as the k nearest neighbors. However, considering
that data is often organized as a manifold with low intrinsic dimension, the
notion of a neighbor must recognize higher-order relationship, to capture
neighbors in all directions. Proximity graphs such as the Relative Neighbor
Graphs (RNG), use trinary relationships which capture the notion of direc-
tion and have been successfully used in a number of applications. However,
the current algorithms for computing the RNG, despite widespread use, are
approximate and not scalable. This paper proposes a novel type of graph,
the Generalized Relative Neighborhood Graph (GRNG) for use in a pivot
layer that then guides the efficient and exact construction of the RNG of
a set of exemplars. It also shows how to extend this to a multi-layer hier-
archy which significantly improves over the state-of-the-art methods which
can only construct an approximate RNG.

Keywords: Generalized Realtive Neighborhood Graph · Incremental Index
Construction · Scalable Search

1 Introduction
The vast majority of generated data in our society is now in digital form. As the
data representation has evolved beyond numbers and strings, whose organization
and retrieval are based on cosine similarity in vector spaces through inverted files
(Google, Yahoo, Microsoft, etc.), the notion of organization and retrieval has like-
wise evolved to the use of metric similarity. The task of similarity search, namely,
finding the “neighbors” of a given query, is a fundamental building block in such
application domains as information retrieval (web search engines, e-commerce, mu-
seum collections, medical image processing), pattern recognition, data mining, ma-
chine learning, and recommendation systems.

The notion of a “neighbor” has often been captured simply in terms of distances
to a query. In this sense, given N objects and a query Q, the most common method
for search is finding the k nearest neighbors. A more nuanced notion of “neighbor”
considers that dataset object are generally samples of a manifold of low intrinsic
dimension. In this sense, a notion of a neighbor is no longer binary, but rather
involves higher order interactions, at least triplets.

The structure of the manifold can be captured by embedding it in a low-
dimensional Euclidean world. This would then allow the Euclidean structure for
⋆ The support of NSF award 1910530 is gratefully acknowledged.
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information retrieval. Many previous approaches, such as hashing and quantization,
fall in this category. Another approach is to capture the structure of the manifold
with graphs, such as using the kNN graph [2], where every point is connected to
the k nearest neighbors. Alternatively, there is a class of proximity graphs (also
known as empty neighborhood graphs) which rely on trinary relationships between
points: Two points define a local neighborhood and if no third point falls in this
neighborhood, the two points are neighbors. The two most popular examples are
the Relative Neighborhood Graph (RNG) [9, 15] and the Gabriel Graph (GG) [5].

There are a large number of applications that use the RNG. The RNG is used
in graph-based visualization of large image datasets for browsing and interactive
exploration and is viewed as the smallest proximity graph that captures the local
structure of the manifold [11–13]. In urban planning theory, RNGs have been used
to model topographical arrangements of cities and the road networks. In internet
networks, Escalante et al. [3] found that broadcasting over the RNG network is
superior to blind flooding. De Vries et al. [16] propose to use the RNG to reveal
related dynamics of page-level social media metrics. Han et al. [8] aims to improve
the efficiency of a Support Vector Machine (SVM) classifier by using the RNG to
extract probable support vectors from all the training samples. Goto et al. [6] use
the RNG to reduce a training dataset consisting of handwritten digits to 10% of
its original size. A related and more recent area is the selection of training data
for Convolutional Neural Networks (CNNs) where the RNG is used to reduce the
underlying redundancy of the dataset.

Despite such widespread use of RNG, there is not a large literature on efficient
construction of the RNG. Hacid et al. [7] propose an approximate incremental RNG
construction algorithm for data mining and visualization purposes. The incremental
construction algorithm selects two random query dataset items and establishes a
link between them. Then for each query dataset item, a hypersphere centered at
the query dataset item with a radius proportional to the sum of the distance to the
exact nearest neighbor of this query dataset item plus the distance from the nearest
neighbor to its farthest neighbor is considered. All the dataset items that fall inside
this hypersphere and their previously established links are reconsidered for RNG link
validation/invalidation which provides the local index update. The approximate,
incremental RNG construction algorithm proposed by Rayar et al. [11] first selects
two random dataset items and establishes a link between them. Then for each
query dataset item, a hypersphere centered at the query dataset item with a radius
proportional to the sum of the distance to the exact nearest neighbor of this query
dataset item plus the distance from the nearest neighbor to its farthest neighbor is
considered. All the dataset items that fall inside this hypersphere are assumed to
be candidate RNG neighbors of the query dataset item and hence first the RNG
neighbors of the query dataset item among this set is found and the links between
the query dataset item and its approximate RNG neighbors are established. Then,
the Lth edge neighbors of the query dataset item are retrieved and their previously
established RNG links are reconsidered for RNG link validation/invalidation due to
the introduction of the query dataset item which provides the local index update.
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The premise of this paper is that it is possible to efficiently build an exact RNG
that is scalable to large datasets. The idea is hierarchical, incremental construction
with each layer guiding and facilitating the construction of the layer below. We show
that the construction of RNG in one layer requires the construction of a novel type
of graph, the Generalized Relative Neighborhood Graph (GRNG). The GRNG of
a set of pivots allows for exact, efficient, and scalable construction of a large set of
exemplars. In turn, the construction of this GRNG of pivots can be based on the
GRNG of a coarser set of pivots. This allows for a hierarchical, multi-layer design
that efficiently constructs the exact RNG of a large set of exemplars. We show that
our construction is more efficient than the competing methods of Hacid et al and
Rayar et al. In addition, it is exact compared to brute force construction, in contrast
to these methods which have missing or extra links.

2 Formulation and Notation
Consider the set of all objects of interest X and let S ⊂ X be a dataset containing N
such objects. Let d (x, y) denote the distance (dissimilarity metric) between x, y ∈
X . Two popular graphs used to model S are the kNN Graph, where each element
is connected to its k nearest neighbors, and the Minimum Spanning Tree (MST)
which is the spanning tree (connected tree involving all nodes) that has the least
cumulative sum of distances over all links.

A proximity graph of S is a graph G(S,E) with nodes x ∈ S and links between
x and y if certain proximity rules are met. For example, a Gabriel Graph (GG) [5]
connects two points x1, x2 ∈ S iff d2 (x3, x1) + d2 (x3, x2) ≥ d2 (x1, x2) , ∀x3 ∈ S.
Geometrically, if X is the Euclidean space, this means that the sphere with x1x2 as
diameter is empty. Another important example is the Relative Neighborhood Graph
(RNG) [9, 15] which connects x1 and x2 ∈ S iff

max (d (x3, x1) , d (x3, x2)) ≥ d (x1, x2) , ∀x3 ∈ S. (1)

Geometrically, if X is the Euclidean space, this means that the lune(x1, x2), namely,
the intersection of the two spheres of radius x1x2 through centers x1 and x2, is
empty. Other proximity graphs of interest include the Delaunay Triangulation (DT)
graph [1] and the β-skeleton graph [10]. Proximity graphs generally require consid-
eration of all members x3 of S for each pair (x1, x2) of S, and as such require O(N3)
for naive construction. Note that 1NN ⊂ MST ⊂ RNG ⊂ GG ⊂ DG. See Figure 1.

The notion of a pivot arises as a way to capture a group of exemplars. Define
the pivot domain, Figure ??, D of pivot pi and domain radius ri as,

D(pi, ri) = {x ∈ S | d (x, pi) ≤ ri} . (2)

While pivots do not need to be members of S, in our nested approach, the set P
of M pivots, P = {p1, p2, ..., pM} ⊂ S. The aim is to have a sufficient number of
pivots to cover S, i.e., S =

⋃M
i=1 D(pi, ri).

Observe that the knowledge of d(x, pi) bounds d(x, y) for y ∈ Si as d(x, pi)−ri ≤
d(y, pi) ≤ d(x, pi) + ri using the triangle inequality. In the absence of an embed-
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Fig. 1: A comparison of graphs for representing both uniformly distrbuted (top) and
clustered data (bottom). (a) Points in 2D, (b) RNG, (c) GG, (d) kNN, k=8, (e)
Tellez [14] b=4, t=4, and (f) NSG [4], R=8.

ding Euclidean structure the triangle inequality is the only constraint available for
relative ranking of distances between triplets of points.
Why the Relative Neighborhood Graph? A graph represents the topology of
a manifold: nodes are samples of a manifold, while links define the topology of the
“tangent plane”, i.e., the immediate neighbors. In this sense, the RNG represents lo-
cal connectivity better than kNN, especially in asymmetric distributed cases, Figure
1. Consider in Figure 2(b-d) how for kNN the connectivity of x is predominantly
with the elements on one side and it is not until k is increased to k = 8 that
neighbors on the other side begin to connect with x. This is of course because the
connection between two elements is solely based on the distance relative to others.
In contrast, the RNG connectivity involves the local distribution of points so that
the local geometry is captured in the graph connectivity from “all sides”. This is also
why kNN graphs are often disconnected with real data whose distribution is often
asymmetric and clustered, bottom row of Figure 1 (b,d), unless k is sufficiently
increased, in which case the graph is unnecessarily dense. In contrast, the RNG
is proven to be a connected graph. Along the same line, kNN can be sensitive to
small perturbations of data as the relative ranking of distances can change due to
perturbation, in contrast to the RNG which is stable in generic configurations.

Another benefit of RNG is that it is parameter free, in contrast to kNN where
“k” has to be specified, Tellez [14] where “b” and “t” have to be defined, and NSG
[4] where “R” has to be defined. It will also be shown later that the out degree of
RNG is dependent on the intrinsic dimension of the manifold and it is generally
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Fig. 2: The kNN connectivity is only based on distance between two elements and
not on geometric distribution, (a) k=5 and (b) k=8. In contrast, the RNG (c)
captures local geometry without regard to distance and requires no parameters. (d)
Pivots (red dots) and associated radii define a pivot domain (red discs).
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significantly smaller than the out degree of the kNN graph, namely, k, where k has
to be sufficiently high to capture the local geometry.

3 Incremental Construction of the RNG
The incremental approach to constructing RNG assumes that RNG(S) is available
and computes RNG(S ∪Q) from it. The query Q is the newest element: (i) Localize
Q within S: finding the RNG Neighbors of Q. The naive approach would consider
for all xi ∈ S whether ∃xj ∈ lune(Q, xi); all xi with empty lunes are RNG neighbors
of Q. Note that this involves O(N2) operations where N = |S|, and this is clearly
not scalable, and (ii) Adding Q to the dataset: When the task is search, the first
step finds the RNG neighbors. If Q needs to be added, additionally all pairs of
existing links between xi and xj need to be validated, whether Q ∈ lune(xi, xj) in
which case xi and xj are no longer RNG neighbors. This operation is on the order
of O(αN) where α is the average out degree of the RNG, typically a small number.
Thus, the localization step is significantly more computationally intensive than the
validation step.

The remedy to indexing complexity is organization. Specifically, when exemplar
groups are represented by pivots, many inferences can take place at the level of pivot
domains without computing distances between Q and exemplars. The basic idea in
this paper is to construct conditions on pivots that have implications for efficient
incremental construction of RNG of exemplars. This is organized in seven stages: i)
In Stages I,II, and III entire pivot domains D(pi, ri) are discarded from considering
RNG neighbor relations with Q by just measuring d(Q, pi); ii Stages IV,V, and VI:
pivots are used in invalidating potential RNG links with the remaining exemplars;
iii Stage VII: pivots are used to exclude entire domains during the RNG validation
process of existing links. What relationship between pi and pj can prevent the
formation of a RNG link between xi and xj?

Theorem 1. Consider exemplars xi ∈ D(pi, ri) and xj ∈ D(pj , rj). Then{
d (pk, pi) < d (pi, pj)− (2ri + rj)

d (pk, pj) < d (pi, pj)− (ri + 2rj)
⇒ max(d(pk, xi), d(pk, xj)) < d(xi, xj) (3)

This theorem, whose proof is in the supplementary appendix, states that a pivot
pk that falls in a lune defined by the intersection of the sphere at pi with radius
d (pi, pj) − (2ri + rj) and the sphere at pj with radius d (pi, pj) − (ri + 2rj) also
falls in the RNG lune of xi and xj , thereby invalidating the potential RNG link
between xi and xj , without computing d(pk, xi) and d(pk, xj)! This is a proximity
relationship between pi, pj , and pk, which effectively defines a novel type of graph.

Definition 1. (Generalized Relative Neighborhood Graph (GRNG)): Two pivots
pi, pj ∈ P have a GRNG link iff no pivots pk ∈ P can be found inside the generalized
lune defined by, {

d (pk, pi) ≥ d (pi, pj)− (2ri + rj) (4a)
d (pk, pj) ≥ d (pi, pj)− (ri + 2rj) . (4b)
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Observe that GRNG(P) is just the RNG when ri = 0, ∀i, thus it is a generalization
of it, Figure 3. Also, note that GRNG(P) is a superset of RNG(P) since lune(pi, pj)
is larger than the generalized-lune(pi, pj), abbreviated as G-lune(pi, pj). This implies
that the larger ri and rj are, the denser the graph is, until it is effectively the
complete graph. This places a constraint on how large ri and rj can be. Furthermore,
it is easy to show that GRNG(P) is a connected graph. In practice, all pivots share
the same uniform radius, i.e., ri = r, ∀i. The single parameter r is the minimum for
which the union of all pivot domains cover S. Thus, the number of pivots M and r
are inversely related. In what follows d(Q, pi), i = 1, 2, . . . ,M is computed.
Stage I: Pivot-Pivot Interaction: The most important implication of the
GRNG(P) via Theorem 1, is that a lack of a GRNG link between pi and pj in-
validates all potential links between their constituents. Stage I therefore begins by
locating the pivot parents of Q in P, Equation 2. If Q has no parents, Q is added
to the set of pivots P and GRNG(P) is updated. Otherwise, Q can only have RNG
links with the common GRNG neighbors of all of Q’s parents. See Figure 4.
Stage II: Query-Pivot Interaction: Stage I removes entire pivot domains from
interacting with Q, namely, those exemplars in the domain of pivots that do not have
GRNG links to all parents of Q. Note, however, that the GRNG lune is significantly
reduced in size due to the increased radii, in comparison with RNG, i.e., by 2ri +
rj , ri +2rj on each side. This stage enlarges the G-lune by considering Q itself as a
virtual parent pivot with rQ = 0.

Proposition 1. If pk is in the G-lune of (pi, ri) and (Q, rQ = 0), i.e.,

{
d (Q, pk) < d (Q, pi)− ri (5a)
d (pi, pk) < d (Q, pi)− 2ri. (5b)

Then, pk is also in the RNG lune(Q, xi) ∀xi ∈ D(pi, ri), thereby invalidating it, i.e.,
max (d (pk, Q) , d (pk, xi)) < d (Q, xi).

The proof is in the supplementary. Note that since Q is not really a pivot, we
cannot simply lookup GRNG neighbors of it. Rather, Equations 5 must be explic-
itly checked for all pivots pi that survive the elimination round of Stage I. Thus,
additional entire pivot domains are eliminated, Figure 4.
Stage III: Pivot-Exemplar Interaction: This stage is symmetric with Stage II
by enlarging the G-lune, but instead of using Q as a virtual pivot, an exemplar is
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Fig. 3: GRNG of a set of 200 points in [−1, 1]2 where all ri = r and for different
selection of r: (a) r = 0, (b) r = 0.01, (c) r = 0.02, (d) r = 0.04, and (e) r = 0.419.
When r exceeds 1

6 the maximum distance between points it is the complete graph
(e).
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Fig. 4: The savings achieved from Stages I-VI for different number of pivots for a
dataset of 10,000 uniformly distributed points in [−1, 1]2 where the green area shows
remaining exemplars after each stage. (f),(g),(i), and (j) are zoomed in.

used a a virtual, zero-radius pivot. These exemplar are constituents xj of surviving
pivots pj .

Proposition 2. If a pivot pk falls in the G-lune of a parent (pi, ri) of Q and
(xj , rj = 0), i.e., {

d (pk, pi) < d (pi, xj)− 2ri (6a)
d (pk, xj) < d (pi, xj)− ri, (6b)

then max (d (pk, Q) , d (pk, xj)) < d (Q, xj) and Q cannot have a RNG link with xj.

The proof is in the supplementary appendix. In Stage III, then, for all parents of Q,
(pi, ri), and each exemplar xj of the remaining pivots pj , Equations 6 are checked
which if valid rule out the exemplar xj . Note that once a pk is found that eliminates
xj , the process stops, so it is judicious to pick pk in order of distance to pi as closer
pivots are more likely to fall in the G-lune of pi and xj , Figure 4.
Stage IV: Pivot-Mediated Exemplar-Exemplar Interactions: The aim of
the next three stages is to prevent brute-force examination of all exemplars xk

potentially invalidating RNG link(Q,xi) by falling in lune(Q, xi). In Stage IV only
pivots are checked, i.e., whether pivot pk satisfies

max (d (pk, Q) , d (pk, xi)) < d (Q, xi) , k = 1, 2, ...,M . (7)

Observe that only pk for which d(pk, Q) < d(Q, xi) need to be considered, and for
those d(pk, xi) < d(Q, xi) is checked. Note that if one pk satisfies this, link(Q, xj)
is invalidated and the process is stopped, Figure 4.
Stage V: Exemplar-Mediated Exemplar-Exemplar Interactions: In this
stage, all the exemplars xk which may invalidate the potential RNG link between
Q and xi are explored by checking
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max (d (Q, xk) , d (xi, xk)) < d (Q, xi) . (8)

Observe that since the process stops if one xk falls in the lune, so it is judicious to
begin with a select group of xk that would more likely fall in the lune(Q, xi). First,
the closest neighbors of xi can be found by consulting the RNG neighbors of xi

and neighbors of neighbors, and so on until d(xi, xk) exceeds d(Q, xi). Second, since
some distances d(Q, xk) have been computed and cached for other purposes, these
can be rank-ordered and these xk can be explored until d(Q, xk) exceeds d(Q, xj),
Figure 4.
Stage VI: RNG Link Verification: If the potential RNG link(Q, xi) is not in-
validated by the select group of exemplars xk, the entire remaining set of xk must
exhaustively be considered to complete the verification. Note, however, that exem-
plars xk in pivot domain pk can be excluded from this consideration and without
the costly computation of d(Q, xk) if the entire pivot domain is fully outside the
lune(Q, xi):

Proposition 3. No exemplar xk of pivot domain pk can fall in lune(Q,xi) if

max(d (Q, pk)− δmax(pk), d (xi, pk)− δmax(pk)) ≥ d(Q, xi), (9)

where δmax(pk) = max∀xk,d(xk,pk)≤rk d (pk, xk) is the maximum distance of exemplar
xk ∈ D(pk, rk) from pk.

The proof can be found in the supplementary appendix. For the remaining pivot
domains, the computation of d(Q, xk) can still be avoided for some exemplar xk:

Proposition 4. Any exemplar xk in the pivot domain of pk for which

max(d (Q, pk)− d (xk, pk) , d (xi, pk)− d (xk, pk)) ≥ d(Q, xi) (10)

falls outside lune(Q, xi). Proof is in the supplementary appendix.

Any exemplar xk which is not ruled out by Proposition 3 and 4 must now be
explicitly considered. If none are in the lune(Q, xi), then link(Q, xi) is validated.
Stage VII: Existing RNG Link Validation: The above six stages locate Q in
the RNG and identify its RNG neighbors. This is sufficient for a RNG search query.
However, if the dataset S is to be augmented with Q, a final check must be made
as to which existing RNG links would be removed by the presence of Q. While this
is a brute force O(αN) operation, it is important to avoid computing d(Q, xi) for
all xi ∈ S. Observe that Q does not threaten links that are "too far" from it. This
notion can be implemented if two parameters are maintained, one for exemplars
and one for pivots:

µ̄max (xi) = max
xj∈RNG (xi)

d (xi, xj) , µmax (pi) = max
d(xi,pi)≤ri

[µ̄max (xi) + d(xi, pi)] . (11)
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Fig. 5: Stage-by-stage distance computations for construction (a) and search (b)
with N=102,400 exemplars uniformly distributed in 2D.

Proposition 5. A query Q does not invalidate RNG links at xi if d(Q, xi) ≥
µ̄max(xi). A query Q does not invalidate any RNG link of any exemplars xi ∈
D(pi, ri), if d(Q, pi) > µmax(pi).

The proof is in the supplementary. This proposition suggests a three-step procedure:
(i) remove entire pivot domains if d(Q, pi) ≥ µmax(pi); (ii) remove all exemplars in
the remaining pivot domains for which d(Q, xi) ≥ µ̄max(xi); (iii) check the RNG
condition explicitly for the remaining xi and any xj it links to. This completes the
incremental update of S to S ∪ {Q}.

Experimental Results The improvements due to this two-layer GRNG-RNG
configuration are examined in experiments by varying dimensions and number of
exemplars. Figure 5 examines the number of distance computations required for
construction and search per stage as a function of the number of pivots. Observe that
the first stage cost increases exponentially while the remaining stages experience an
exponential drop. This is also observed for search distances per query. The total
cost thus has an optimum for each. Since construction is offline while search is
online, the number of pivots is optimized for the latter. Figure 5(c) examines the
search costs for different dimensions. It is clear that search time rises exponentially
with increasing dimension. Observe from Figure 5(b) that additional pivots would
have enjoyed the exponential drop in all stages except for Stage I which involves
GRNG Construction. If the cost of this stage as a function of M can be lowered, the
overall cost will be decreased dramatically. The next section proposes a two-layer
scheme for constructing GRNG using a coarser GRNG in the same way the RNG
construction was guided by a GRNG.

4 Incremental Construction of the GRNG
The question naturally arises whether the construction of the GRNG of the pivot
layer itself can benefit from a two-layer pivot-based indexing approach similar to
the construction of the same for the RNG of the exemplars. Formally, let P̄ ={
(p̄ī, r̄ī)|i = 1, 2, . . . , M̄

}
denote pivots obtained from the previous section; refer

to these as fine-scale pivots to distinguish them from the coarse-scale pivots P =
{(Pi, ri)|i = 1, 2, . . . ,M}. The idea is for each coarse-scale pivot pi to represent a
number of fine-scale pivots p̄ī. Define the Relative Pivot Domain D(pi, ri) as the
set of all fine-scale domain pivots (p̄ī, r̄ī) whose entire exemplar domain is within a
radius of ri, i.e., d(pi, p̄ī) ≤ ri − r̄ī. In this scenario, a query Q is either a fine-scale
pivot for now with rQ matching that of other fine-scale pivots, or it can be considered
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a fine-scale pivot with zero radius. The query computes d(Q, pi), i = 1, 2, . . . ,M and
if d(Q, pi) < ri − rQ, pi is a parent of Q. The question then arises as to what kind
of graph structure for the coarse-scale pivots can efficiently locate a query in the
GRNG of the fine-scale pivots. The following shows that the GRNG of coarse-scale
pivots can accomplish this:
Stage I: “Coarse-Scale Pivot” - “Coarse-Scale Pivot” Interactions:

Theorem 2. Consider two fine-scale pivots (p̄ī, r̄ī) ∈ D(pi, ri) and (p̄j̄ , r̄j̄) ∈ D(pj , rj).
Then, if (pi, ri) and (pj , rj) do not share a GRNG link, (p̄ī, r̄ī) and (p̄j̄ , r̄j̄) cannot
have a GRNG link either. The proof is in the supplementary appendix.

This theorem, in analogy to Theorem 1 of the previous section, allows for the efficient
localization of a query Q for search in stating that the fine-scale GRNG neighbors
of Q are only among children of coarse-scale GRNG neighbors of Q’s parents, thus,
removing entire pivot domains of non-neighbors, see Figure 6.
Stage II: Query - “Coarse-Scale Pivot” Interactions:

In this stage, (Q, rQ) is considered as a virtual pivot.

Proposition 6. The query Q does not form GRNG links with any children (p̄ī, r̄ī)
of those coarse-scale pivots (pi, ri) that do not form a GRNG link with Q when con-
sidered as a virtual pivot with rQ = 0. The proof is in the supplementary appendix.

Stage III: “Coarse-Scale Pivot” – “Fine-Scale Pivot” Interactions:
This stage is mirror symmetric to Stage II, except that instead of treating Q as

a virtual coarse-scale pivot, a specific fine-scale pivot (p̄j̄ , r̄j̄) is considered a virtual
pivot.

Proposition 7. If (p̄j̄ , r̄j̄) does not form a coarse-scale GRNG link with a parent
(pi, ri) of Q, then (p̄j̄ , r̄j̄) does not form a fine-scale GRNG link with (Q, rQ).
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Fig. 6: The savings achieved from Stages I-VI for a dataset of 10,000 uniformly
distributed points in [−1, 1]2 where the green area shows remaining exemplars after
each stage. (f),(g),(i), and (j) are zoomed in.



Generalized Relative Neighborhood Graph (GRNG) for Similarity Search 11

The proof is simply an application of Theorem (2) with (p̄j̄ , r̄j̄) considered as both
a fine-scale and a coarse-scale pivot. This third stage rules out all the remaining
fine-scale pivots which are not a GRNG neighbor of all Q’s parents, Figure 6.
Stage IV: “Coarse-Scale Pivot”–Mediated “Fine-Scale Pivot” Interactions:

All the GRNG links between the remaining fine-scale pivots and Q must now
be investigated. In Stage IV only coarse-scale pivots are considered as potential
occupiers of the G-lune by probing

{
d (pk, Q) < d

(
Q, p̄j̄

)
−

(
2r̄Q + r̄j̄

)
(12a)

d
(
pk, p̄j̄

)
< d

(
Q, p̄j̄

)
−

(
r̄Q + 2r̄j̄

)
. (12b)

Since d(Q, p̄j̄)−(2rQ+r̄j̄) is a known value, only pivots pk closer to Q than this value
need to be considered. Similarly, for d(p̄j̄ , r̄j̄) ∈ D(pj , rj), observe that d(pk, p̄j̄) ≥
d(pk, pj) − (rj − r̄j̄), so that if d(pk, pj) ≥ d(Q, p̄j̄) − (rQ + 2r̄j̄) + (rj − r̄j̄), then
Equation (12b) does not hold and there is no need to consider such pk. Thus, very
few pk are actually considered, Figure 6.
Stage V: “Fine-Scale Pivot” – Mediated “Fine-Scale Pivot” Interactions:
Those links between Q and p̄j̄ that survive the pivot test must now test against
occupancy of G-lune(Q, p̄j̄) by exemplars p̄k̄. In this stage, a select group of p̄k̄,
namely those close to Q and p̄j̄ which are more likely to be in G-lune(Q, p̄j̄) are
considered, leaving the rest to Stage VI. Specifically, these are the k = 25 nearest
neighbors of Q and p̄j̄ , Figure 6.
Stage VI: “Fine-Scale Pivot” “Fine-Scale Pivot” Interactions: Very few
fine-scale pivots p̄j̄ remain at this stage. These need to be validated with all other
fine-scale pivots p̄k̄. However, the following proposition prevents consideration of a
majority of them. Define

δmax (pk) = max
∀p̄k̄, d(pk,p̄k̄)≤(rk−r̄k̄)

d(pk, p̄k̄). (13)

Proposition 8. All fine-scale pivots (p̄k̄, r̄k̄) ∈ D(pk, rk) satisfying

{
d (Q, pk)− δmax(pk) ≥ d

(
Q, p̄j̄

)
−
(
2r̄Q + r̄j̄

)
(14a)

d
(
p̄j̄ , pk

)
− δmax(pk) ≥ d

(
Q, p̄j̄

)
−
(
2r̄j̄ + r̄Q

)
(14b)

fall outside the G-lune(Q, p̄j̄), for a query (Q, r̄Q) and a fine-scale pivot (p̄j̄ , r̄j̄).

Proof is in the supplementary appendix. This proposition excludes entire pivot
domains from the validation process. The following proposition further restricts the
remaining sets.

Proposition 9. All fine-scale pivots (p̄k̄, r̄k̄) ∈ D(pk, rk) satisfying

{
d (Q, pk)− d (pk, p̄k̄) ≥ d

(
Q, p̄j̄

)
− (2r̄Q + r̄j̄) (15a)

d
(
p̄j̄ , pk

)
− d (pk, p̄k̄) ≥ d

(
Q, p̄j̄

)
− (r̄Q + 2r̄j̄), (15b)

falls outside the GRNG-lune(Q, p̄j̄) for a query (Q, r̄Q) and a fine-scale pivot (p̄j̄ , r̄j̄).
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Proof is in the supplementary appendix. After the majority of fine-scale pivots
(p̄k̄, r̄k̄) have been eliminated, the remaining ones must test the two GRNG condi-
tions. For efficiency, if first condition d(Q, p̄k̄) < d(Q, p̄j̄ − (2r̄Q + r̄j̄) does not hold,
the second condition d(p̄j̄ , p̄k̄) < d(Q, p̄j̄ − (r̄Q + 2r̄j̄) need not be tested, Figure 6.
Stage VII: “Coarse-Scale Pivot” – “Fine-Scale Pivot” Validations: The
incremental construction requires checking which existing GRNG links may be in-
validated by the addition of Q. Define first,

µ̄max (p̄ī) = max
p̄j̄ ,GRNG(p̄ī)

[
d
(
p̄ī, p̄j̄

)
− (2r̄ī + r̄j̄)

]
(16a)

µmax (pi) = max
∀(p̄ī,r̄ī)∈D(pi,ri)

[µ̄max (p̄ī) + d(pi, p̄ī)] . (16b)

Proposition 10. The insertion of Q does not invalidate any GRNG links involving
fine-scale pivot p̄ī for which

d(Q, p̄ī) ≥ µ̄max(p̄ī). (17)

Furthermore, the insertion of Q does not interfere with the GRNG link involving
fine-scale pivots (p̄ī, r̄ī) ∈ D(pi, ri) if

d(Q, pi) ≥ µmax(pi). (18)

Proof is in the supplementary appendix. The proposition suggests a three-step ap-
proach to examining existing links: (i ) Remove all coarse-scale pivot domains pi
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Fig. 7: Stage by stage analysis for GRNG-GRNG hierarchy for M̄ = 102, 400 uni-
formly distributed fine-scale pivots in 2D as a function of M , the number of coarse-
scale pivots. The number of distance computations for construction (a) and search
(b) show Stage I is increasing with M while the other stages exponentially decay-
ing with an optimum for each in total. The improvements of GRNG-GRNG with
respect to brute-force as a function of M for construction (c) and search (d) dis-
tances is significant (e). The monotonically increasing Stage I in (a-b) suggest using
a multi-layer hierarchy.
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Fig. 8: The index construction and search distance computations of a standard,
brute force algorithm, and multilayer hierarchical GRNG networks compared as a
function of N .

satisfying Equation 18; (ii ) Remove all fine-scale pivot domains (p̄ī, r̄ī) satisfying
Equation 17; (iii) For any remaining fine-scale pivot (p̄ī, r̄ī) connecting with (p̄j̄ , r̄j̄),
if Q is in the G-lune(p̄ī, p̄j̄), then the link needs to be removed.
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Fig. 9: The construction distance increases as a function of number of exemplars
and dimensions (sublinear) for uniformly distributed data. However, with clustered
data, even with outliers, both construction costs and search distances increase much
less rapidly.

5 Experiments
We first explore the effectiveness of the GRNG Hierarchy on synthetic data. Figure
9d shows the results for optimal multi-layer hierarchies on uniform and clustered
data. We also evaluate on several real-world datasets, namely, COREL, MNIST, and
LA. For MNIST, a neural network trained using triplet loss was used to reduce the
784D Euclidean representation into 64D. The results are shown in Table 1. These
results show that our method is significantly more efficient while also producing the
exact RNG.
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6 Supplementary Material

Fig. 10: A few examples illustrating the similarity between the lune (xi, xj) and the
lune (pi, pj), where xi and xj are both fairly close to pi and pj , respectively, relative
to d(xi, xj) but otherwise unconstrained. Lune(xi, xj) is shown in red, lune(pi, pj)
is shown in green, and generalized-lune(pi, pj) is shown in blue. Note how much
smaller the generalized lune is compared to the RNG lunes.

Proposition 11. Let Q, pj, and pk satisfy{
d (Q, pk) < d (Q, pj)− rj (19a)
d (pj , pk) < d (Q, pj)− 2rj . (19b)

Then, for all points xj in the pivot domain of pj of radius rj, i.e., d (xj , pj) ≤ rj,
we have

max (d (pk, Q) , d (pk, xj)) < d (Q, xj) , (20)

i.e., the pivot pk prevents the formation of an RNG link between Q and all xj,
constituents of pivot pj.

Proof. Apply Theorem 1 with pi = Q, pj = pj and pk = pk with radii ri = rQ = 0.
The conditions of the theorem is then{

d (pk, Q) < d (Q, pj)− (2rQ + rj) (21a)
d (pk, pj) < d (Q, pj)− (rQ + 2rj) , (21b)

which are Equations 19 and thus holds by assumption. The consequence of the
theorem is then max (d (pk, xi) , d (pk, xj)) < d (xi, xj), for any xi and xj in the
pivot domains of Q and pj , respectively. Since the only member of the pivot Q is
Q, then max (d (pk, Q) , d (pk, xj)) < d (Q, xj).

Proposition 12. Consider an exemplar xj and a pivot (pi, ri). Then if there is a
pivot pk satisfying {

d (pk, pi) < d (pi, xj)− 2ri (22a)
d (pk, xj) < d (pi, xj)− ri, (22b)
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then all Q in the pivot domain of pi are prevented from forming an RNG link with
xj, i.e.,

max (d (pk, Q) , d (pk, xj)) < d (Q, xj) . (23)

Proof. Apply Theorem 1 with xj as pj with radii rj = 0. Then, the condition of
Theorem 1 is {

d (pk, pi) < d (pi, xj)− (2ri + 0) (24a)
d (pk, xj) < d (pi, xj)− (ri + 0) , (24b)

which is the premise of the proposition. Then by Theorem 1 using Q as an exemplar
in the pivot domain of pi, and xj as the sole exemplar in the pivot domain of xj

gives Equation 23.

Proposition 13. In considering a potential link between the query Q and exemplar
xj, if a pivot pk satisfy either one of the following

{
d (Q, pk)− δmax(pk) ≥ d (Q, xj) (25a)
d (xj , pk)− δmax(pk) ≥ d (Q, xj) , (25b)

where
δmax(pk) = max

∀xk,d(xk,pk)≤rk
d (pk, xk) , (26)

then none of the exemplars in the pivot domain of pk can interfere with the formation
of the RNG link (Q, xj).

Proof. Let xk be in the pivot domain of pk. Then
d (Q, xk) ≥ d (Q, pk)− d(pk, xk) ≥ d (Q, pk)− max

∀xk,d(xk,pk)≤rk
d (pk, xk) ≥ d(Q, xj) (27a)

d (xj , xk) ≥ d (xj , pk)− d(pk, xk) ≥ d(xj , pk)− max
∀xk,d(xk,pk)≤rk

d (pk, xk) ≥ d(Q, xj), (27b)

or max (d (Q, xk) , d (xj , xk)) ≥ d (Q, xj), which puts xk outside the lune(Q, xj).

Proposition 14. In considering the RNG link between a query Q and exemplar
xj, an exemplar xk in the pivot domain of pk satisfying either one of the following
inequalities {

d (Q, pk)− d (xk, pk) ≥ d (Q, xj) (28a)
d (xj , pk)− d (xk, pk) ≥ d (Q, xj) , (28b)

does not interfere with the formation of the RNG link.

Proof. {
d (Q, xk) ≥ d (Q, pk)− d (xk, pk) ≥ d(Q, xj) (29a)
d (xj , xk) ≥ d (xj , pk)− d (xk, pk) ≥ d(Q, xj), (29b)

or max (d (Q, xk) , d (xj , xk)) ≥ d (Q, xj), which puts xk outside the lune(Q, xj).
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Proposition 15. A query Q will not invalidate RNG links ending at xi if d(Q, xi) ≥
µ̄max (xi),

µ̄max (xi) = max
xj∈RNG neighbors of xi

d (xi, xj) . (30)

Proof. The query Q lies outside lune(xi, xj) because

max (d (Q, xi) , d (Q, xj)) ≥ d (Q, xi) ≥ µ̄max (xi) ≥ d (xi, xj) . (31)

Proof. The query Q lies outside lune(xi, xj) for any RNG neighbors of xi because

max (d (Q, xi) , d (Q, xj)) ≥ d (Q, xi) ≥ µ̄max (xi) ≥ d (xi, xj) . (32)
Similarly,

d(Q, xi) ≥ d(Q, pi)− d(pi, xi) ≥ µmax (pi)− d(pi, xi) ≥ µ̄max (xi) + d(xi, pi)− d(pi, xi) ≥ µ̄max (xi).
(33)

Now by the first proposition Q does not invalidate RNG links at xi.
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Fig. 11: More stats from Figure 12 (a)Radius Giving number of pivots. (b) memory
use, (c) average degree of GRNG.
.

Proposition 16. The query Q does not form GRNG links with any children (p̄i, r̄i)
of coarse-scale pivots (pi, ri) that it does not form a GRNG link with.

Proof. The condition that (Q, rQ) is not a GRNG neighbor of (pi, ri) means that
∃pk coarse-scale pivot such that{

d (Q, pk) < d (Q, pi)− (2r̄Q + ri) (34a)
d (pi, pk) < d (Q, pi)− (r̄Q + 2ri) . (34b)

Since the GRNG of coarse-scale pivots does not include Q, this condition must be
explicitly tested, i.e., Q should be added (at least virtually), to the GRNG(P).
When this is completed, by Theorem 2, since (Q, rQ) does not form a GRNG link
with (pi, ri) then its children, i.e., (Q, rQ) itself cannot form GRNG links with
(p̄ī, r̄ī) ∈ D(pi, ri).
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Table 2: Average number of distances computations for finding the RNG Neighbors
of 100 queries in an optimal 2-Layer GRNG Hierarchy.

N 2D 3D 4D 5D 6D
3,200 438.62 962.96 1,280.44 1,574.04 2,060.78
6,400 635.36 1,603.13 2,181.42 2,593.77 3,404.45
12,800 899.11 2,111.74 4,046.77 4,423.54 5,609.44
25,600 1,335.19 3,204.82 6,601.08 7,154.21 9,382.17
51,200 1,812.09 4,166.68 10,826.40 11,937.50 15,737.00
102,400 2,602.51 5,956.77 16,239.10 20,612.60 27,001.40
204,800 3,672.50 8,139.86 21,761.10 34,464.20 47,338.70
409,600 5,183.30 11,352.70 31,196.90 56,880.80
819,200 7,379.43 15,616.50 42,211.30

1,638,400 10,543.70 21,802.80
3,276,800 14,864.20 30,049.30

Table 3: Ratio between dataset size N and average number of search distances.
Represents the savings.

N 2D 3D 4D 5D 6D
3,200 7.30 3.32 2.50 2.03 1.55
6,400 10.07 3.99 2.93 2.47 1.88
12,800 14.24 6.06 3.16 2.89 2.28
25,600 19.17 7.99 3.88 3.58 2.73
51,200 28.25 12.29 4.73 4.29 3.25
102,400 39.35 17.19 6.31 4.97 3.79
204,800 55.77 25.16 9.41 5.94 4.33
409,600 79.02 36.08 13.13 7.20
819,200 111.01 52.46 19.41

1,638,400 155.39 75.15
3,276,800 220.45 109.05

Table 4: Average time (ms) for finding the RNG Neighbors of 100 queries in an
optimal 2-Layer GRNG Hierarchy.

N 2D 3D 4D 5D 6D
3,200 0.412 0.861 2.068 2.852 6.066
6,400 0.638 1.245 3.408 6.562 36.385
12,800 0.915 2.195 10.252 9.988 35.918
25,600 1.796 4.131 10.521 39.948 55.921
51,200 2.780 5.084 18.185 61.121 110.866
102,400 5.214 9.062 31.183 104.685 203.889
204,800 7.490 14.185 49.818 188.756 419.997
409,600 13.933 20.437 77.360 293.748
819,200 22.334 33.326 137.406

1,638,400 39.275 42.544
3,276,800 96.146 78.418
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Table 5: Time (hr) to incrementally construct the 2-Layer GRNG Index for uni-
formly distributed data.

N 2D 3D 4D 5D 6D
3,200 2.631E-04 8.808E-04 2.626E-03 1.028E-02 1.816E-02
6,400 7.207E-04 2.346E-03 8.770E-03 1.952E-02 0.134
12,800 1.884E-03 7.390E-03 4.213E-02 4.720E-02 0.214
25,600 6.581E-03 2.496E-02 7.253E-02 0.218 0.558
51,200 1.928E-02 6.775E-02 0.246 0.583 1.538
102,400 7.37E-02 0.180 0.718 2.195 4.434
204,800 0.195 0.555 2.198 6.155 16.497
409,600 0.678 1.424 6.254 18.583
819,200 2.101 4.338 18.445

1,638,400 7.381 11.439
3,276,800 34.513 41.779

Table 6: Total distance computations to incrementally construct the 2-Layer GRNG
Index for uniformly distributed data.

N 2D 3D 4D 5D 6D
3,200 1,930,920 10,067,708 10,473,370 4,991,140 5,620,782
6,400 5,331,485 30,859,620 42,420,322 15,924,752 21,869,207
12,800 13,406,458 93,836,003 175,916,012 47,096,101 69,837,894
25,600 34,086,261 247,336,100 575,258,091 206,262,745 228,199,077
51,200 91,931,558 653,653,274 1,757,804,446 752,666,633 727,327,667
102,400 243,241,773 1,648,937,181 4,901,713,631 2,723,494,366 2,311,395,377
204,800 653,721,994 4,003,268,824 13,049,444,992 8,920,116,049 7,446,547,400
409,600 1,773,737,263 9,644,102,006 33,181,379,037 27,996,266,271
819,200 4,796,775,610 23,309,124,834 81,589,547,397

1,638,400 13,341,696,766 57,073,630,261
3,276,800 36,741,205,495 139,223,206,018

Table 7: Memory use (GB) during the incremental construction of the 2-Layer
GRNG Hierarchy.

N 2D 3D 4D 5D 6D
3,200 7.931E-03 1.199E-02 2.223E-02 3.510E-02 6.544E-02
6,400 1.330E-02 2.141E-02 4.180E-02 7.115E-02 0.152
12,800 2.345E-02 3.904E-02 8.70E-02 0.147 0.306
25,600 4.389E-02 7.50E-02 1.76E-01 0.318 0.684
51,200 7.663E-02 1.46E-01 0.347 0.690 1.487
102,400 1.50E-01 0.291 0.712 1.532 3.297
204,800 0.296 0.576 1.473 3.273 7.175
409,600 0.591 1.153 3.010 7.083
819,200 1.174 2.326 6.180

1,638,400 2.362 4.738
3,276,800 4.709 10.172
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Table 8: Average out degree of the GRNG for optimal 2-Layer GRNG Hierarchy on
data of uniform distribution.

N 2D 3D 4D 5D 6D
3,200 57.95 225.70 537.90 755.87 1,215.23
6,400 64.19 258.39 683.46 955.18 1,799.90
12,800 66.55 303.87 884.89 1,122.68 2,300.27
25,600 67.53 338.29 1,060.78 1,633.40 2,954.72
51,200 72.16 378.26 1,263.93 2,099.24 3,623.84
102,400 75.10 412.30 1,466.11 2,705.52 4,367.13
204,800 77.57 442.66 1,681.82 3,305.78 5,209.58
409,600 80.12 473.60 1,905.11 4,008.62
819,200 80.85 500.25 3,305.78

1,638,400 83.44 528.95
3,276,800 83.88 551.76

Table 9: Optimal number of pivots for optimal 2-Layer GRNG Hierarchies in data
of uniform distribution.

N 2D 3D 4D 5D 6D
3,200 236 466 611 763 1,217
6,400 342 680 861 967 1,804
12,800 468 1,012 1,282 1,139 2,307
25,600 642 1,440 1,795 1,699 2,970
51,200 917 2,079 2,552 2,251 3,653
102,400 1,281 2,997 3,573 3,032 4,417
204,800 1,784 4,255 5,013 3,922 5,293
409,600 2,499 6,010 6,998 5,085
819,200 3,416 8,541 9,705

1,638,400 4,823 12,137
3,276,800 6,610 17,091
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Fig. 12: Analyzing the cost, in distances computations, of each stage as a function
of number of pivots, M = |P|, for 2D uniformly distributed exemplar of N=102,400.
(a-g) Stages I-VII, (h) Total Index Construction, (i) Average Search.
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Fig. 13: Analyzing the cost, in time, of each stage as a function of number of pivots,
M = |P|, for 2D uniformly distributed exemplar of N=102,400. (a-g) Stages I-VII,
(h) Total Index Construction, (i) Average Search.


