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Abstract

This paper proves a representation theorem regarding sequences of random elements that take values in a Borel space and
are measurable with respect to the sigma algebra generated by an arbitrary union of sigma algebras. This, together with a related
representation theorem of Kallenberg, is used to characterize the set of multidimensional decision vectors in a discrete time
stochastic control problem with measurability and causality constraints, including opportunistic scheduling problems for time-
varying communication networks. A network capacity theorem for these systems is refined, without requiring an implicit and
arbitrarily complex extension of the state space, by introducing two measurability assumptions and using a theory of constructible
sets. An example that makes use of well known pathologies in descriptive set theory is given to show a nonmeasurable scheduling
scheme can outperform all measurable scheduling schemes.

I. INTRODUCTION

Let (©2,F) and (T',G) be two measurable spaces. Let X : & — R be a Borel measurable function and let Y : @ — T’
be a measurable function. The Doob-Dynkin lemma states that X is o(Y')-measurable if and only if X = h(Y) for some
Borel measurable function h : T' — R [1][2][3]. Suppose we know only that X is o(#; U H2)-measurable, where H; C F
and Ho C F are two subsigma algebras on €. Is it necessarily true that X = h(Y7,Ys) for some Borel measurable function
h:[0,1]> — R and some Borel measurable functions Y; : 2 — [0, 1] such that Y; is H;-measurable for each i € {1,2}?

This question motivates the more general question of characterizing all sequences of Borel measurable functions that satisfy
certain measurability constraints. Fix K as a nonempty set that is finite or countably infinite. For each £ € K let X; : Q@ — R
be a function. Let J be a nonempty set with arbitrarily large cardinality. For each j € J, let #; C F be a given subsigma
algebra on 2. We characterize all (X )rek that satisfy

Xy is 0(Uje g, H;j)-measurable Vk € K (1)

where J), are given nonempty sets that satisfy J, C J for all kK € K. The first result is that (X )rex satisfies (1) if and only
if
X = hk((yj)jefk) Vk e K 2)

for some Borel measurable functions Y; : 2 — [Q, 1] that are ‘H ;-measurable for each j € J, some countable subsets jk C Jg,
and some Borel measurable functions hy, : [0, 1]7* — R for each k € K. Measurability of each function hy, is with respect to
the product sigma algebra on [0, 1]7+. Observe that each X} in (2) draws from the the same collection of functions (Y;);jecs
(rather than defining variables Y; . separately for each k). In particular, a single function Y; can be used to represent the
influence of the sigma algebra 7 ; whenever that influence is required. A special case of this result gives an affirmative answer
to the question posed in the first paragraph. The result (1)-(2) immediately generalizes to allow X} to be a random element
of any Borel space, such as the space (R™, B(R™)) for some positive integer m.

A. Applications to stochastic control

The measurability constraints (1) have applications to stochastic control. For example, consider a discrete time system that
operates over time slots k € {1,2,3, ...} according to some probability triplet (2, F, P). Let Sy : Q — Qg be the system state
that can be observed at time k, which is a random element associated with some measurable space (g, Fs) with arbitrary
structure. Every step k the system controller observes Si and chooses a decision that affects a vector of attributes X; € R™,
where m is some fixed positive integer. The vector X}, is required to satisfy the following system constraints

XkGC(Sk) Vk€{1,2,3,...} 3)

where C' : I' - Pow(R™) is a given set-valued function that maps the observed state Sy to a subset of R™ that consists
of all decision options for X (where Pow(R™) denotes the power set of R™). The next state Si41 can be influenced by
the prior states and decisions according to some model supported by the probability space, such as a Markov chain model.
The m components of X} can represent rewards, prices, power expenditures, and so on, associated with time slot k, and can
also include values that affect the next state. This work is motivated by the application of opportunistic scheduling, where



(Sk)52, are independent and identically distributed (i.i.d.) random channel states that are sequentially observed in a wireless
communication system at the start of each slot k, X}, is a vector of transmission rates over m different channels, and C(S})
is the set of all possible transmission rate vectors that can be supported on slot £ when the observed channel state is S.

Consider causal and measurable decision policies that are constrained to make decisions that yield valid random variables
and are based only on observations of the past. Assume the decisions can be stochastic, so they can be informed by an external
source of randomness that is represented by some sigma algebra G C F on (). For example, G might be the sigma algebra
generated by an infinite sequence of i.i.d. random elements in some arbitrary measurable space and whose values are selected
by an independent computing device at time 0 (before any control decisions are made). Then we require:

Xy is o(0(S1) U---Uo(Sg) UG)-measurable Vk € {1,2,3,...} “4)

where o(S;) is the sigma algebra generated by the random element S;. Under any such causal and measurable decision policy
the result (2) implies
Xk:hk(}/l,...,yk,R) Vk€{1,2,3,...} &)

for some Borel measurable functions Ay, some G-measurable random variable R that takes values in [0, 1], and some o(S;)-
measurable random variables Y; that take values in [0, 1]. It is interesting that the same random variables R, {Y;}?°; can be
used to construct X}, for all time steps k. In particular:

o While the observed random elements S; are associated with an arbitrarily complex measurable space (Qg, Fs) where Qg
has arbitrary cardinality, it suffices to boil these random elements down to real-valued random variables Y; : Q — [0, 1]
where each Y; is a measurable function of S;.

« While the external source of randomness is from an arbitrarily complex sigma algebra G on (), it suffices to boil it down
to a single draw of a random variable R : 2 — [0, 1] that is G-measurable.

The constraint X € C(S;) seems to require knowledge of the full value of Sy, while the form (5) says this constraint
must be sustained only by observing the “boiled” variables Y7, ..., Yy, R (all of which take values in [0, 1]). In particular, all
policies that satisfy (3)-(4) are characterized according to the following choices:

1) Choose a single G-measurable random variable R : Q — [0, 1].
2) Choose Borel measurable functions 6y, : Qg — [0, 1] from which Yj, = 0 (Sk) are defined for all k € {1,2,3,...}.
3) For each k € {1,2,3,...}, define a Borel measurable function Ay, : [0, 1]**1 — R™ such that

hi(01(51(w)), 62(S2(w)), ..., 0k (Sk(w)), R(w)) € C(Sk(w)) YweQ (6)

If the constraint (6) is impossible to meet, then no causal decision policy that meets the required measurability constraints
exists. Sufficient conditions for (6) are given in Section IV using two measurability assumptions that include the existence of
a measurable choice function. Measurable choice is a classical problem in descriptive set theory and conditions for existence
in certain cases are found in the selection theorems of [4][S][6][7]1[8][9]1[10]. In particular, the works [6][7][8] use measurable
choice to establish cost minimizing policies for economics and dynamic programming applications. Our work gives a simple
application to the multidimensional capacity region in the opportunistic scheduling problem. A theory of constructible sets
from [11], together with measurable choice, is used to refine the capacity results of [12][13][14]. We also apply classical
pathological cases from descriptive set theory to show an example where a nonmeasurable policy produces significantly larger
time averages in comparison to any measurable policy.

B. Related work

The Doob-Dynkin lemma is proven on page 603 in [1] (see also Lemma 1.13 in [2], and [3]). Recent discussion of this lemma
is in [15]. The Doob-Dynkin lemma can be used to directly characterize all o(#H; U Hz)-measurable functions X : Q2 — R
in the special case when H; = o(Y;) for some random variables Y; for ¢ € {1,2}. In that special case the Doob-Dynkin
lemma implies X = h(Y7,Y2). The difficulty is that the sigma algebras #; and Ho can be arbitrarily complex, including
sigma algebras that cannot be generated by any real-valued random variable. An early version of this question was addressed
by the author on StackExchange in [16] using Dynkin’s multiplicative class theorem (see Theorem 18.51 in [17]) together with
several techniques that are refined and generalized in the current paper.! Rather than using a multiplicative class argument, the
current paper establishes a related sigma algebra fact that is of interest in its own right.

For the probability space (2, F, P) used in the stochastic control problem, consider the special case when we are given
some measurable space (g, Fg) and we are told G = o(Q) for some random element () : Q — {2 that is measurable with
respect to (2, F) and (Q2g, Fg). The causal and measurable constraint (4) is thus equivalent to

X is o(o(S1) U---Uo(Sk) Uo(Q))-measurable Vk € {1,2,3,...}

I'The question of X being (1 UH2)-measurable was posed by the author as a StackExchange question in [16]. Users initially conjectured the representation
X = h(Y1,Y2) was generally impossible but suggested proving a weaker representation by a monotone class argument; the strong result was eventually
proven by the author using Dynkin’s multiplicative class theorem [17].



from which the Doob-Dynkin lemma immediately implies
Xkth(Sl,Sg,...,Sk,Q) Vk€{1,2,3,...} 7

for some measurable function Ay, : Q’g x {1 — R. However, the reason (5) is stronger (and nontrivial) is that the G-measurable
random variable R : @ — [0, 1] takes values only in [0, 1] regardless of the complexity of the random element () that generates
G; Similarly each Y is #;-measurable and takes values on [0, 1].

An important representation theorem related to (5) is given by Kallenberg in Proposition 5.13 of [2]: There it is shown that
if X is a random element of a Borel space and S is a random element of an arbitrary measurable space, and if the probability
space is extended (using standard product space concepts) to include a random variable U that is uniformly distributed over
[0,1] and that is independent of everything else, then X = ¢(S, W) almost surely, where g is some measurable function and
W is some random variable that is uniformly distributed over [0, 1] and independent of S. It is not difficult to strengthen
this result to surely rather than almost surely (this is done in Section IV-A for completeness). When applied to the stochastic
control problem, if we assume (€2, F, P) is the already-extended space and G = o(U), the result immediately implies

Xi = gu(Sk, Wi) VEke{1,2,3,...}

where for each k € {1,2,3,...}, gi is a Borel measurable function and W}, is a random variable that is uniformly distributed
over [0, 1] and independent of .Sj,. However, the g, functions cannot be viewed as defining a control policy because the value
Wi and its structure within the g; function can depend on the realizations of Sy, ..., Sk_1.

Selection theorems for measurable choice are developed by Blackwell and Ryll-Nardzewski [4], Kuratowski and Ryll-
Nardzewski [5], and Von Neumann [9] (see also [10][18]). Measurable choice for economics and dynamic programming are
considered by Maitra [7], Aumann [8], and Dubins and Savage [6]. For example, [7] considers a set S for current states and
a set A for action choices, where S is a Borel subset of a Polish space and A is a compact metric space, and shows (see also
[6]) that if u is a bounded upper semi-continuous function on S x A then there is a measurable choice function ¢ : S — A
such that

u(s,¥(s)) = r;leai(u(s, a) Vse S

Continuous time control with measurable choice is in [19].

Fundamental optimality properties for dynamic programming with general state and action sets are in [20][21][7][22]. For
example, Blackwell in [20] considers one step of a finite stage dynamic program with Borel spaces A, S, H where A is the set
of possible actions, S' the set of current states, and H the set of historical states from the past (see also [6]). The one-step goal
is to observe s € S and h € H and choose an action a € A to maximize a utility u(s,a) (so the utility depends only on the
current state and action). Mild conditions imply that for any policy that chooses a as a measurable function of both s and h,
and for any € > 0, there is a measurable memoryless strategy that chooses a € A based only on the current state s that achieves
utility at most e worse (for almost all a, h defined in a probabilistic sense). However, [20] also gives a counter-example to show
this is impossible without the mild conditions. This counter-example is similar in spirit to the example in Section V-A of the
current paper. However, the structure of our example is different: It treats the infinite horizon opportunistic scheduling problem;
It uses a different pathological set from descriptive set theory than the one used in [20]; It compares a nonmeasurable policy
to all possible measurable policies, rather than comparing a measurable policy of two variables to all possible measurable
policies in one variable. Optimality of stationary policies in multi-step dynamic programs over Borel spaces is considered in
[21][7] and related nonstationary problems are in [22]. Nonmeasurable gambling strategies are treated in [6].

Tassiulas and Ephremides establish the capacity region for a class of time-varying networks in [14] and prove that a max-
weight rule stabilizes the network whenever possible. Capacity regions for more general systems that choose X € C(Sy) are
treated in [13][12][23], see also related problems of network utility maximization [24][25][26][27] and energy minimization
[28]. The general result in [12] makes implicit assumptions regarding measurability and probability space extension. The
current paper refines a capacity theorem from [12] without extending the space by introducing two measurability assumptions,
including a measurable choice assumption, together with a property of constructible sets from [11].

The field of descriptive set theory was initiated in the classic works of Souslin [29] and Lusin [30]. Souslin showed existence
of a two dimensional Borel set that has a non-Borel projection onto the first dimension. Examples of multidimensional Borel
sets that do not contain a measurable choice function are developed by Blackwell [31], Novikoff [32], Sierpinski [33], and
Addison [34] (see also Example 5.1.7 in [10]). In [35] Sierpiniski constructs a subset of [0, 1] that has inner measure 0 and
outer measure 1 (see also [36][37]). These classic pathological examples are used in Section V to show examples where
nonmeasurable decisions can be used in the opportunistic scheduling problem to enable time averages that are superior to
those achieved by any measurable policy.

II. PRELIMINARIES
A. Terminology

Let N = {1,2,3,...} denote the natural numbers, R the real numbers, and B(R) the standard Borel sigma algebra on R.
For A € B(R) define B(A) = {B € B(R) : B C A}. A measurable space is a pair (2, F) where € is a nonempty set and F



is a sigma algebra on €. Suppose (21, F1) and (€9, F2) are two measurable spaces. Let H C {27 be another sigma algebra
on {2;. With respect to the measurable space (2, F2), a function g : 1 — Qs is said to be H-measurable if

g A eEH VAEF

where g71(A4) = {w € Q : g(w) € A}. With respect to the two measurable spaces (Q1,F;) and (2, F2), a function
g: Q1 — Qo is said to be measurable if it is F;-measurable. Two measurable spaces (01, F1) and (Qo, F2) are isomorphic
if there is a bijective function b : 3 — ), that is measurable and has a measurable inverse; such a function is called an
isomorphism. A measurable space (2, F) is called a Borel space if it is isomorphic to (A, B(A)) for some A € B([0,1]). If
(Q9, F2) is a Borel space then a measurable function g : Q1 — (25 is sometimes referred to as a Borel measurable function
as a reminder that the target space is a Borel space.

Fix J as a nonempty set (possibly uncountably infinite). Let (€2;, 7;) be measurable spaces for each j € J. Define

XjesQ ={(zj)jes :x; €Q; VjeJ}

Define C as the collection of subsets of x ;< s§; of the form X jcsA; for some sets A; that satisty: (i) A; € F; for all j € J;
(ii) A; = Q; for all but at most one index j € J. Define the product sigma algebra on x jc ;€);, also called the cylindrical

sigma algebra, as
®jesFj=0o(C)

where o(C) denotes the sigma algebra generated by the collection of sets C. For a given measurable space (2, F) define
Q7 = xc;Q and define its product sigma algebra as ®;c;F. A special case of interest is [0, 1]/ with product sigma algebra
®;esB([0,1]) (this measurable space is a Borel space whenever J is a finite or countably infinite set).

A probability space is a triplet (2, F, P) where (2, F) is a measurable space and P : F — [0, 1] is a probability measure.
A random variable is a measurable function X : Q — R. A random element is a measurable function S : 2 — g where
(Qg, Fg) is some given measurable space. By U ~ U[0, 1] we mean that U : Q@ — [0, 1] is a random variable that is uniformly
distributed over [0, 1].

B. Standard results

Lemma 1: There is an isomorphism ¢ : [0,1] — [0, 1], [See Theorem A.47 in [38] and Chapter 13 of [39].]
Lemma 2: If D is an uncountably infinite Borel measurable subset of a Borel space then there is an isomorphism b : D —
[0,1]. [This is a result of Kuratowski in [40], see also statement and proof in Theorem 3.3.13 of [10].]
Lemma 3: Let J be a nonempty set (possibly uncountably infinite). Let (€2, F) and (€;,F;) for j € J be measurable
spaces. Then [see similar Lemmas 1.7, 1.8 in [2]]:
o Composition: If f: Q) — Q9 and g : 23 — 3 are measurable functions, the composition g o f is measurable.
o Multidimensional expansion: Let Y; : {2 — €2; be measurable functions for each j € J. The function Y : Q@ — x;c;Q;
given by Y = (Y});es is measurable with respect to (€2, F) and (X jcsQ;, ®;jecsF;). In particular, if 7{; is another sigma
algebra on € for each j € J, and if Y; is H;-measurable, then Y is o(U;c ;H;)-measurable.

III. REPRESENTATION OF BOREL MEASURABLE FUNCTIONS

Throughout this section assume: (€2, F) is a measurable space; J is a nonempty set (possibly uncountably infinite); 7; C F
is a subsigma algebra on 2 for each j € J.

Proposition 1: Define C as the set of functions X : Q — [0,1] of the form X = h(Y) where h : [0,1]7 — [0,1] is
measurable, ¥ = (Yj)jes, and Y; : Q — [0,1] is Hj-measurable for each j € J. Define Z as the following collection of
subsets of {2:

Z={X"YB)cQ:BeB(0,1]),X €C}

Then

a) Z is a sigma algebra on (.

b) O'(UjeJHj) =Z.

¢) X :Q—[0,1] is 0(Uje;H;)-measurable if and only if X € C.

Proof: (Part (a) of Proposition 1) We show Z satisfies the three properties of a sigma algebra on 2:

1) To show 2 € Z, define the measurable functions h = 0, Y; = 0 for all j € J, and X = h(}7) = 0 € C. Define
B=10,1] € B([0,1]). Then Q@ = X ~}(B) € Z.

2) Fix A € Z. We want to show A¢ € Z. Since A € Z there exists X € C and B € B([0, 1]) such that A = X ~(B). Then
A= X"YB° € 2.



3) Let {A,}>2, be an infinite sequence of sets in Z. We want to show U2, A4, € Z. It suffices to show NS, A% € Z.
For each positive integer n there exists X,, € C and B,, € B([0,1]) such that A,, = X '(B,) and so AS = X, 1(BS).
Let ¢ : [0,1] — [0,1]N be an isomorphism (recall Lemma 1). Define

X = ¢ (Xn)ol) ®)
B = ¢! (x32,BL)
Since ¢! maps measurable sets to measurable sets we have B € B([0, 1]). Then:
N A ={we: X, (w) € B VYneN}
={weQ: 7 (Xn(W))ily) € 071 (X721 B1)}
=X"Y(B)
Considering the structure of set Z, it remains to show that X € C. Fix n € N. Since X,, € C we have
X, = hMW(yY ™) €))
for some measurable function h(™ : [0,1]7 — [0,1] and some Y (") = (Yj("))jeJ such that Yj(n) : Q — [0,1] is
H ;-measurable for all j € J. For each j € J define W, : Q — [0, 1] by
Wj — ¢_1(Y}(1)7 Y;-(Q), }/}(3)7 . ) (10)
Note that W; is a composition of the measurable function ¢! : [0, 1] — [0, 1] with the H j-measurable function Z : Q2 —

[0, 1] given by Z(w) = (Yj(l)(w) Y‘(Q)(w), Y‘(3)(w), ...) and hence Wj is itself 7 ;-measurable (recall Lemma 3). Write

» j
function ¢ according to its components ¢ = (¢1, ¢2, ¢3,...) and note that each component function ¢, : [0, 1] — [0, 1]

is measurable. For each j € J we have from (10)
1) (2) ) _
= (¢1(W;), 92(W;), d3 (W), ...)
and so Yj(n) = ¢n(W;) for all j € J,n € N, that is,

Y = ((bn(Wj))jeJ

Substituting the above equality into (9) yields
Xy = b ((¢n(W)))je) (1D
Define the function o™ : [0,1]7 — [0, 1] for each = = (x;);c. by
o™ (z) = h™ ((¢n(2;))je)
Define W = (W;)jes. Using this and the definition of a™ in (11) gives:
X, = o™ (W) (12)
Define the function h : [0,1]7 — [0, 1] by
h(z) = ¢~ (aV(z),a® (x),a®(z),...) Vze[0,1]’

The functions o™ and h are formed by compositions and multidimensional expansions of measurable functions and so
they are themselves measurable (recall Lemma 3). By definition of A it holds that

h(W) = ¢~ (oD (W), al? (W),a® (W), ...)

(;) ¢_1(X17X27X37 .. )

©x
where (a) holds by substituting (12); (b) holds by definition of X in (8). Thus, X € C.

U
Proof: (Part (b) of Proposition 1) To show that Z C o(U;csH,;), fix A € Z. By definition of Z, there exists B € B([0, 1])
and X € C such that A = X ~1(B), where X = h(Y) for some measurable function  : [0, 1]/ — [0, 1] and some vector-valued

function Y = (Y});ecs composed of #;-measurable functions Y; :  — [0,1] for each j € J. Thus

A=X"4B)

={weQ:nY) e B} (13)



Lemma 3 ensures that h(Y') is 0(U;esH;)-measurable, and so the right-hand-side of (13) is a set in o(U;¢ s H,;), which implies
the desired conclusion A € o(Ujc H;).

We now show o(U;csH;) C Z. Fix m € J. Let A, be a subset of {2 such that A,, € H,,. Define Y = (¥;);es by ¥; =0
if j # m and

(1 ifwe Ay
Ym(w)_{ 0 else

It is clear that Y; is Hj-measurable for all j € J. Define the measurable function h : [0,1]7 — [0,1] by h((x})jes) = Tim.-
Define B = {1} € B([0, 1]). Then .
Ap ={w e Q:h(Y(w)) € B}

so by definition of Z we have A,, € Z. This holds for all m € J and A,, € H,, so
UjesH; € Z
Taking the sigma algebra of both sides gives
o(Ujes M) € o(2)

Part (a) implies that o(Z) = Z, which completes the proof. O
Proof: (Part (c) of Proposition 1) Suppose X € C. Then X = h(Y) for some measurable h and for ¥ = (Y;)jes with
Y; : Q@ — [0,1] being H j-measurable for all j € J. Lemma 3 implies that X is o(U;c s ;)-measurable.
Now suppose X : Q — [0,1] is 0(U;csH;)-measurable. It is well known that X is the pointwise limit of simple functions
X, so that

X(w)= lim X,,(w) YweQ (14)
m—r o0
where for each positive integer m the function X,,, : 2 — [0, 1] has the form
k"n
X =Y Viml{xer, .} (15)
i=1
where k,,, is some positive integer; I1 . I2m, - - -, Ig,, m are some disjoint sets in B([0,1]) whose union is [0,1]; 14 is an
indicator function that is 1 if event A is true and 0 else; v; ,, are some real numbers in [0, 1] for each i € {1,...,kn}.
Since X is o(U;csH;)-measurable, we have for each positive integer m and each ¢ € {1,..., k,, }:

{X S Ii,m} S U(UngHj) =Z
where the final equality holds by part (b). It follows by definition of Z that

{X € Ii,m} = {o.) eN: Xi7m(w) S Bi,m} (16)
for some B, € B([0,1]) and some X ,,, € C. Substituting (16) into (15) and using (14) we obtain
k"n
X = h;nj;lop; Vi;m (X, ,n€Bim} an

where we have used the fact that the limit exists and so must be equal to the lim sup.
By definition of C, each function X; ,,, € C has the form
Xim = hO™ (V™) ) (18)

J

for measurable functions (»™) : [0,1]7 — [0,1] and some H ;-measurable functions Yj(i’m) : Q — [0,1] for j € J. Let L
be the (countably infinite) set of all indices (i,m) such that m € N and i € {1,...,kp}. Let ¢ : [0,1] — [0,1]" be an
isomorphism. For each j € J define W; = ¢_1((}/j(1’m))(i7m)€ ). Since W; is the composition of the measurable function
¢! with the multidimensional expansion of 7 ;-measurable functions, it is itself H;-measurable (recall Lemma 3). Define

®i.m as the (i, m) component of the ¢ function for each (i,m) € L. Then from (18)
Xign = h™ ((im (W) je)
Define W = (W;)jes. Then
(Xism)imyer. = (W) (19)

where « : [0,1]7 — [0,1]% is the measurable function defined for = (x;)jcs by component functions ; () for each
(¢,m) € L by ‘
i (@) = hE™ ($1m(25))je)



Define the measurable function g : [0, 1]% — [0,1] for each @ = (%,m ) (i,m)eL by
k"n
g(x) = limsup Z Vim {2, m€Bsm)

where we observe the limsup is in the set [0, 1] because for each m, all v; ,,, values are in [0, 1] and at most one term in the
sum is nonzero. It follows that

(@)
X = g((Xim)@,myer)

© g(a())

where (a) holds by (17); (b) holds by (19). We can now define the measurable function h : [0,1]7 — [0, 1] by h(z) = g(a(x))
and we see that X = h(W), where W = (W;)jeq for W, : Q@ — [0, 1] being H,-measurable for all j € J. It follows that X
has the required form for inclusion in the set C. O
Now fix K as a finite or countably infinite set. For each k € K let (V4, Fj) be a Borel space. We consider measurable
functions X, : Q — V;..
Proposition 2: Fix J as a nonempty set (possibly uncountably infinite). For each j € J, let H{; C F be a sigma algebra on
Q. Fix functions Xy, : Q — Vj, for k € K, where (V}, Fy) are given Borel spaces. For each k € K, fix J; C J. Then

X 18 0(Uje g, Hj)-measurable Vk € K (20)

if and only if for each k € K we have
Xy = he((Y5)e.5,) @1

where hy : [0,1] — Vj is some measurable function, Y; : Q — [0, 1] are some H ;-measurable functions for each j € J, and
jk is a finite or countably infinite subset of Jj for each k € K.

Proof: For the reverse direction, it is clear from Lemma 3 that if (Xj)kex has the given form Xy = hy((Yj),c 7, ) then
(20) holds. To prove the forward direction, suppose that (20) holds. Fix k& € K. Since (V}, Fy) is a Borel space, there is a
set Dy € B([0,1]) and an isomorphism by, : Vi, — Dj. Define Zj : Q — [0,1] by Zx = bx(Xx). Lemma 3 implies that Zj is

0(Uje, H;)-measurable. By Proposition 1 we have Z = g(*) ((Yj(k))jEJ,c with Yj(k) : 2 — [0, 1] being H ;-measurable for

all j € J, and g™ :[0,1]”* — [0,1] is measurable. For every such real-valued measurable function g™®), there is a countable
subset Jj, € Jj, for which the function only depends on the variables y; for j € Jj [§ee, for example, related Exercise 1.1.22
in [41] and Section 3.13d in [3]]. Thus, we modify the ¢(*) functions to f(*) : [0,1]’¢ — [0, 1] measurable for which

k
Let ¢ : [0,1] — [0,1]¥ be an isomorphism. For each j € J define
Yy = 07 rerc)

Since each function Yj(k) is Hj-measurable, Y; is also H;-measurable (recall Lemma 3). For each k£ € K let ¢; denote the
kth component of ¢. Then
ou(¥y) = ¥,

which gives by substitution into (22):
Z = 19 (@ 07);e,)
=a® ((%);e5,) 23)
where o) : [0, 1]jk — [0,1] is defined as the measurable function for each = = (z;),. 7, by
oM (@) = F® ((0n(w;)),e,)
Substituting the definition Z) = by (X} ) into the left-hand-side of (23) gives
bi(Xp,) = a® ((Yj)jejk)

Taking b, ' () of both sides gives
Xy = bl:1 (O‘(k) ((}/J)Jefk))



This holds for all k£ € K and has the desired form Xj = hy ((Yj)jejk

defined by hy(z) = by, ' (a'®)(z)) for all z € [0, 1) O
Corollary 1: Let (V, Fy) be a Borel space. Let J be a nonempty set and let (€2, F;) be measurable spaces for each j € J.
If f:x;esQ; — V is a measurable function with respect to (X ;e 82, ®,;csF;) and (V, Fy) and w = (w;),es then

fw) = h((05(wi)jei) Yo € Xjes

where J C J is a finite or countably infinite set, 6; : ©; — [0, 1] is a measurable function for each j € j, and h : X_jefQj -V
is some measurable function with respect to (X ;. 78;, ®;esF;) and (V, Fy).

Proof: Define S; : Q — Q; by Sj(w) = w; for j € J. Define H; = o(S;). Then f is 0(UjesH;)-measurable and
Proposition 2 implies f = h((Yj)je j) for a countable subset J C J, a measurable function h, and for Y; being o(S;)
measurable for each j € J. The Doob-Dynkin lemma implies Y; = 0;(S;) = 0;(w;) for j € J. O

) when the measurable function hy, : [0, l]j F— Vi is

IV. STOCHASTIC CONTROL

Throughout this section we fix a probability triplet (2, F, P). Let (Qg, Fs) be a measurable space and let (Qx,Fx) be
a Borel space. Consider a discrete time system that evolves over time slots k& € {1,2,3,...}. Let (Sk)72, be a sequence of
random elements of the form S}, : Q@ — Qg. The value S; represents a system characteristic or state at time k. Let G C F
be a sigma algebra on €2 that is used as a source of randomness to facilitate stochastic decisions. Let (X})?2; be a sequence
of random elements of the form X : Q — Qx. Each X}, represents a decision that is made at time k based on observing

S1,...,Sk. Assume decisions for each step k are made to ensure
X is 0(0(S1) U+ -+ Uo(Sk) UG)-measurable 24)
X € C(Sk) 25)

where C' : Qg — Pow({lx) is a set-valued map and Pow(§2x) is the set of all subsets of Q2x. Constraint (24) is the causal
and measurable constraint. Constraint (25) is a system constraint that restricts the X, value to a set that depends on Sj,. Values
of Si4+1 are determined by some probability rule on the system and are possibly dependent on Sy,...,S; and Xq,..., Xj.
A special case is when S} represents the state of a discrete time Markov chain and there is some transition probability kernel
that specifies the conditional distribution of Sj; given Sj, and Xj.

Decisions X}, can be vector valued with components that represent power expenditures, costs, or rewards incurred or earned
by different parts of the system at time k. We want to characterize all decision elements (X3)72, that satisfy (24)-(25).
Proposition 2 ensures that if (24)-(25) hold then

Xk th(Yl,...,Yk,R) EC(Sk) Vk e N

for some Borel measurable functions hy : Q& x [0,1] — Qx, some G-measurable random variable R : Q — [0, 1], and some
random variables Y3, = 0(S)) for some measurable functions 0y, : Qg — [0, 1]. It immediately follows that

Xk = gr(S1,...,5, R) € C(Sx) VkeN (26)
where gi, : Q% x [0,1] — Qx is defined

gr(s1,- - 88,7) = hp(01(s1), - .-, Ok(sk),7)

Consider the following additional assumptions:

Assumption 1: There is a deterministic measurable choice function ¢ : Qg — Qx such that ¢(s) € C(s) for all s € Qg.

Assumption 2: {(s,x) € Qg x Qx :x € C(s)} € Fs @ Fx

Both assumptions hold if {2g is a finite or countably infinite set, F5 = Pow({2g), and C(s) is a nonempty subset of Fx for
each s € (0g. Assumptions 1-2 also hold in the case when a vector of resources P, € R® (such as power allocations) is chosen
on each slot k € N and affects a vector of rewards R, € R? (such as transmission rates over links of a communication system)
via Ry = f(Sk, Px), where a, b are given positive integers, Qp is a given Borel measurable subset of R?, f : Qg x Qp — R
is a given measurable function, and

C(s) ={(p, f(s,p)) ER"P:pe Qp} Vse Qg 27)

Indeed, Assumption 1 holds for (27) because 1(s) = (0, f(s,0)) is a deterministic measurable choice function; Assumption
2 can be seen to hold for (27) by defining the measurable function g : Q5 x Qp x R® — R® by g(s,p,7) = r — f(s,p)
and observing that g~!({0}) is measurable. More general sufficient conditions for existence of a deterministic measurable
choice function are given in the selection theorems of Blackwell and Ryll-Nardzewski [4], Kuratowski and Ryll-Nardzewski
[5], Dubins and Savage [6], Maitra [7], Aumann [8], Schil [42], Von Neumann [9], Srivastava [10], and Cascales, Kadets,
Rodriguez [18].



Lemma 4: Suppose Assumptions 1 and 2 hold. The sequence (Xj)72 ; of Borel measurable random elements of the form
X : Q — Qx satisfies (24)-(25) if and only if there are measurable functions vy : Q’g x [0,1] — Qx for each k € N such
that

ve(s1,. .., 85,7) € O(sk) V(s1,...,8k,7) € Q’; x [0,1] (28)

and a G-measurable random variable R : 2 — [0, 1] such that

Xk:vk(Sl,...,Sk,R) Vk € N (29)
Proof:  Suppose (X})5°, satisfy (24)-(25). Then (26) holds for some measurable functions gj : Q% x [0,1] — Qx and
some G-measurable random variable R :  — [0, 1]. Define vy, : Q% x [0,1] — Qx by

Sy Sk, if ooy 8g,T) EC
OB (1, -y Sy T) :{ 9k(:911/}(5k)s;C r) if gi(s1 efsi ) (sk)

Assumptions 1, 2, and measurability of g imply that v, is measurable. Since 1(s) € C(s) for all s € Qg, function vy, satisfies
(28). By (26) and definition of v we obtain (29).

Conversely, suppose there are v, functions and a random variable R that satisfy (28)-(29). Properties (28)-(29) imply
X € C(Sk) for all k, while measurability of vi and the structure X, = vi(S1,...,Sk, R) ensure (by the Doob-Dynkin
lemma) that X}, is 0(S1, ..., Sk, R)-measurable. Since o(R) C G it holds that X}, is o(c(S1) U - --Uo(Sk) U G)-measurable,
so that (24)-(25) hold. O

The vy, functions and the random variable R : Q — [0, 1] in the above result completely specify a causal and measurable
control policy: At time 0, generate a G-measurable random variable R : Q@ — [0, 1]. At each step k € {1,2,3,...}, observe
(S1,...,S5%) and make the decision X} = vi(Si,...,Sk, R). The above lemma ensures that, if Assumptions 1-2 hold, all
policies that satisfy (24)-(25) can be specified in this way.

A. Another representation

The following representation theorem from Kallenberg [2] bears some resemblance to (26) and uses the concept of a
randomization variable U.

Theorem 1: (Proposition 5.13 in [2]) Fix (Q, F, P) as a probability triplet and let X : Q@ — Qx and S : @ — Qg be
random elements where ({2x,Fx) is a Borel space and (Q2g, Fs) is a measurable space. Suppose there is a random variable
U ~ U[0,1] that is independent of (S, X) (U is called a randomization variable). Then

X = f(S,R) almost surely

for some measurable function f : Qg x [0,1] — Qx and some random variable R ~ /[0, 1] that is independent of .S. Further,
R is o(S5, X, U)-measurable.

The next simple corollary changes “almost surely” to “surely.”

Corollary 2: Under the same assumptions as Theorem 1 we can ensure X = g(S, W) surely for some measurable function
g: Qs x [0,1] = Qx and some random variable W ~ [0, 1] that is independent of S and that is o(S, X, U)-measurable.

Proof: First consider the case when )y is an uncountably infinite set. Theorem 1 implies X = f(.5, R) almost surely for
some measurable f and some random variable R ~ U/[0, 1] that is independent of S. Let C' be an uncountable Borel measurable
subset of [0, 1] that has measure 0, such as the Cantor set. Let b : C' — Qx be an isomorphism (recall Lemma 2). Define the
random variable W : Q — [0, 1] by

b—1(X) else

Since P[X = f(S,R)] =1 and P[R ¢ C] = 1 we have that P[W = R] = 1 and so W is also uniformly distributed over
[0,1] and independent of S. By definition of W we have

W¢C = (W=Rand X = f(S,R)) (30)
WelC = W=>b"X) (31)

W_{ R if X=f(S,R)and R¢ C

Define the measurable function g : Qg x [0,1] — Qx by

[ fsw) fwgC
9(s,w) = { b(w) else
It remains to show X = g(S,W). If W ¢ C then by definition of g we have
9(S, W) = f(S,W)

(@) X



where (a) holds by (30). If W € C' then by definition of g we have
g(S, W) =b(W) =b(b~"(X)) = X

where we have used (31). The case when )x is finite or countably infinite is similar and proceeds by defining C' as a subset
of [0, 1] with the same cardinality as Qx. O

Corollary 3: If random elements (Sx)52, and (Xj)72, satisfy X € C(Sk) for all k € N (where each X}, : Q — Qx is
measurable with respect to the Borel space (Q2x, Fx); each Si :  — Qg is measurable with respect to the general measurable
space ({g, Fg)), and if there is a random variable U ~ /[0, 1] that is independent of (Sk, Xx)72 ;. then

a) For all k € N we (surely) have X}, = gx(Sk, Wi) € C(Sk) for some measurable function g : Qg x [0,1] — Qx and
some random variable Wy, ~ 1[0, 1] that is independent of Sj.

b) If Assumptions 1-2 hold then for all ¥ € N there is a measurable function v : Qg x [0,1] — Qx that satisfies
vi(s,r) € C(s) for all (s,r) € Qg x [0,1] such that

Xk = vk (Sk, W) (32)

where the random variables W}, are the same as in part (a).
Proof: Part (a) follows immediately from Corollary 2. To prove (b), fix k& € {1,2,3,...} and define

v(s,7) = { g(s,r) if gu(s,r) € C(s)

P(s) else
where gy, is from part (a). Assumptions 1 and 2 and measurability of g, ensure measurability of vy. Since ¢(s) € C(s) for
all s € Qg, it is clear that vi(s,7) € C(s) for all (s,r) € Qg x [0, 1]. By part (a) it holds that X}, = v (Sk, Wi). O

The equality (32) has a simpler structure than (29). However, the v; functions in (29) completely specify a causal and
measurable control policy. In contrast, the v, functions in (32) do not specify a control policy because each W; may have
some unknown dependence on St,...,Sk_1 as well as on additional sources of (potentially noncausal) randomness.

B. Opportunistic scheduling

The following special case is of interest in the area of wireless networks. Fix m € N and let (R™, B(R™)) be the measurable
space for the decision elements X},. There are m different wireless links that can change over time according to states (Sk)52 ;,
where S), describes the state of all channels on slot k. At the start of each slot k¥ € N we observe S, and then choose a
transmission rate vector X € C(Sk), where C(Sx) C R™ is the set of all transmission rate options available when the
channel state is Sy, (different rate options arise, for example, from different modulation and coding choices). This is called an
opportunistic scheduling system because the state Sy is known before X, is decided. Control strategies for such systems consider
network stability [14][23], utility maximization [13][12][24][25][26][27], and energy minimization [28]. Assume (Sj)52, are
identically distributed random elements associated with a measurable space (€2s, Fg) and a distribution A : Fg — [0, 1]:

AA) = P[S, € A] VA€ Fg

The full sequence (Sy)72, is “chosen by nature” at time 0. In a causal decision scenario, on step k the controller only knows
the values of Si,..., Sy before choosing X}, € C'(Sy). In a noncausal scenario the full (Sj)7°, sequence is known. Assume
G C F is a subsigma algebra independent of o((Sk)%2 ) that is used as a source of randomness to facilitate stochastic
decisions. Assume there is a random variable U ~ U[0, 1] that is G-measurable.

The work [12] defines the network rate region I' as the set of all expectations of X; that can be achieved on the first
slot, shows this set is the same for all slots, and determines the fundamental capacity region (see also [14][23]) when such a
transmission system is used for single and multi-hop queueing networks.?> The argument in [12] implicitly allows expanding
the probability space to ensure the sigma algebra G is complex enough to emulate an independent virtual system with identical
stochastics over any number of virtual slots before the slot 1 decision on the actual system is made. The next results do not
require expanding the probability space and allow G to be as simple as G = o(U).

Assumption 3: For the function C : Qg — Pow(R™), there is a bounded subset D C R™ such that C(s) is nonempty and
C(s) C D for all s € Qg.?

Definition 1: Given a distribution A : Fg — [0, 1] and a function C' : Qg — Pow(R™) that satisfies Assumption 3, define
the rate region I' C R™ as the set of all expectation vectors E [v(S,U)] that can be achieved by some measurable function
v: Qg xR — R™ that satisfies v(s,w) € C(s) for all s € Qg and w € R, and on a probability space with independent
random elements .S and U such that S has distribution A and U ~ U[0, 1].

Define T as the closure of the set I'. Using Corollary 3b, it is straightforward to show that Assumptions 1, 2, 3 imply that T" is
nonempty, bounded, and convex, while T is nonempty, compact, and convex. It can be shown the definition of T is unchanged

2For 1-hop networks the capacity region is the set of all vectors that are dominated by a vector in the closure of I". For multi-hop networks the capacity
region depends on all possible multi-hop flow allocations available on graphs associated with points in the closure of I" [23][13][43].
3 Assumption 3 is mainly for convenience and can be replaced by the weaker assumption that expectations of random vectors Xy, € C(Sy) are finite.



if one allows U to be a random variable of any distribution, provided that U and S are independent. The next lemma shows
that T captures all time average expectations of X}, that can be achieved at any time k by a measurable decision policy for
choosing X, € C(Sk), regardless of whether or not the policy is causal. Sample path time averages are also considered in the
lemma using a theory of constructible sets [11]. Counter-examples in Section V show that time averages can be far outside
the set I if the controller can make nonmeasurable decisions.

Proposition 3: Suppose Assumptions 1, 2, 3 hold for the opportunistic scheduling problem with identically distributed
random elements (S;)5>; with some distribution A. Let (X)%2, be a sequence of (Borel measurable) random vectors that
satisfy X, € C(Sk) surely for each k¥ € N. Then

a) For all k € N we have E[X;] € Tand 1 % E[X,] eT.

b) If (Sk)p2, is i.i.d. and Sy is independent of (X1,...,X;—1) for all k € {2,3,4,...} then for all k € N

E[Xg|Hi] €T  almost surely

where Hy = o(X1,...,Xk—1) for k > 2 and H; = {¢, Q}.
¢) If (Sk)52, is i.i.d. and Sy is independent of (X7,..., Xj—1) for all k € {2,3,4,...} then

limy_y oo dist (% Zle X, f) =0 almost surely

where dist(z,T') is the Euclidean distance between a point z € R™ and the compact and convex set T’ C R™.

Proof: Without loss of generality, for parts (a)-(b) we can assume existence of a random variable U ~ U[0, 1] of the form
U :Q — [0,1] that is independent of (S, X%)52 . Indeed, if this does not hold then we can extend the probability space to
a new space (2, F, P) such that

Q=0x[0,1], F=FeB(0,1]), P=Pou

where p is the standard Borel measure on Borel subsets of [0,1]. Each outcome of the new sample space has the form
@ = (w,t) where w € Q and ¢t € [0,1]. Then define Si : Q@ — Qg and X : @ — R™ by

Sp(w,t) = Sp(w) , Xp(w,t) = Xp(w)

Also define U : Q — [0,1] by U(w,t) = t and observe that U ~ U[0,1] and U is independent of (Xj,S,)?°,. Then
(Xk, S’k)z‘;l on the extended probability space has the same distribution as (X}, Sk)72, on the original space. Thus, X} and
X, have the same expectation (useful for part (a)); f(X1,...,Xxr—1) and f(X1,..., Xk—1) have the same distribution for any
measurable function f (useful for part (b)).

To prove (a), suppose there is a sequence of random vectors (X)2, that satisfy X; € C(Sy) surely for each k €
{1,2,3,...}. Assuming existence of U ~ U/[0, 1] that is independent of (Sj, X%)7> ,, apply Corollary 3b to obtain

Xi = vk (Sk, W) (33)

for some measurable function vy, : Qg x [0,1] — R™ that satisfies vg(s,v) € C(s) for all s € Qg,t € [0,1] and some random
variable Wy, ~ U[0, 1] that is independent of Sj;. By definition of T it holds that E[X}] € T'. This holds for all £ € N.
Convexity of I ensures that + Zle E[X)] €T for all k € N.

To prove (b), assume (Sk)>, are iid. and fix k € {2,3,4,...}. Let Z be a version of E [X|#H]. Since I is a closed
subset of R™ it is Borel measurable and {Z ¢ I'} is an event. Suppose P[Z ¢ I'| > 0 (we reach a contradiction). Since I is
compact and convex it is constructible, meaning it is the countable intersection of closed half-spaces (see Proposition 7.5.6 in
(11D):

T=n2{zeR™:a]z <b;} (34)

for some a; € R™ and b; € R for j € N. Then
P[Z ¢T] = PlU,{a, Z > b;}]
Since the above probability is positive, there must be an index i € N for which Pla; Z > b;] > 0. Define the event

A = {a/ Z > b;}. Then P[A] > 0. Since Z is a version of E [X|Hy] it is Hj-measurable and A € Hj. By the defining
property of a conditional expectation it holds that

E[Z14] = E [X)14]

and so
Ela] Z14]  a]E[Xj14]
PlA]— Pl4]
Since U ~ U[0,1] is independent of the random element (Sk,14) € Qg x {0,1} we have by Corollary 3b

Xk = U(Sk, 1A,W)




for some random variable W ~ [0, 1] that is independent of (Sj,14), and for some measurable function v : Qg x {0,1} x
[0,1] — R™ such that
v(s,b,w) € C(s) Vs e€Qg,be{0,1},we[0,]1]

Then
E[af Z14] _ alE[v(Sk, 14, W)14] (35)
P[4] P[A]
= o] B [o(Sy, 1,1)/4] 0
— aJE[o(Sk. 1, 1)) e

where we have used the fact that (S, W) is independent of A (recall that W is independent of (S, 14) and Sy, is independent
of the Hy-measurable random variable 14, so that Sy, W,14 are mutually independent). Defining y = E [v(Sk, 1, W), it
follows by definition of I" that y € I' C I' and so al-Ty < b; (recall (34)). Thus

E [a] Z1,4]

Py = b

and so
E[(a] Z = b;)14] <0 (38)

By definition of event A = {a] Z > b;}, the random variable (a; Z — b;)14 is nonnegative, so (38) implies
(af Z —b;)14 =0 almost surely

However, (a; Z — b;)14 > 0 if and only if 14 > 0, which contradicts the fact that P[A] > 0.

To prove (c), define M; = X; — E[X;] and define M), = Xj — E [Xi|Hi] for £ € {2,3,4,...}. Then {M;}°, is a
zero mean sequence of bounded random vectors in R™ where each component forms a martingale difference, and so the law
of large numbers for martingale differences implies that % Zle M; converges to 0 almost surely [44]. Thus, %Zle X; —
1 Zle E [X%|H] converges to 0 almost surely. However, part (b) implies E [X}|#H] € T almost surely, and convexity of T'
implies + S E[Xi|Hi) € T almost surely. O

Conversely, if (Si)7, is identically distributed with distribution A\ and U ~ U0, 1] is independent of (S%)7 ;, then for
any € [ it is straightforward to see there is a causal and measurable decision policy that chooses X} € C(Sk) to ensure:

. k
limy oo 7 2o E[XG] =2
and if (S)72, are ii.d. then we can further ensure
limp o0 3 Zle X; =z almost surely

This is done by first mapping the random variable U ~ U[0, 1] to a sequence of i.i.d. U[0, 1] random variables (U1, Uz, Us, . . .)
by using the bits corresponding to the binary expansion of U. Then fix any sequence of points z; € I' that satisfy z;, —
and define X = vy (Sk, Uy) for k € N where vy, is the corresponding measurable function in the definition of I" that ensures
Xy € C(Sk) and E[X] =z, for all £ € N,

V. COUNTER-EXAMPLES

This section considers pathological cases for the opportunistic scheduling problem with i.i.d. channel states (S;)5; and
only m = 1 channel. We use (Qs, Fs) = ([0, 1], B([0, 1])) throughout.

A. Nonmeasurable policies

This example gives an opportunistic scheduling system for which a nonmeasurable policy produces larger time averages
in comparison to any measurable policy. It is similar in spirit to the example given by Blackwell in [20] which shows that
a single decision at one step of a finite stage dynamic program can bring arbitrarily more utility if it makes a measurable
decision based on both the current state and memory, rather than only on the current state (even if the utility function depends
only on the current state and the current decision). However, the structure of that example is different from ours and compares
two measurable policies rather than a nonmeasurable policy in comparison to any measurable decision.

Define

0=

1 F = @kenB([0,1]), P = Qrenp

)

[0, 1],
where p is the standard Borel measure on [0, 1]. Each outcome has the structure w = (wg, w1, w2, ...). Define U : Q@ — [0, 1]
and Sy, :  — [0, 1] by U(w) = wp and Si(w) = wy, for k € {1,2,3,...}. Then (S)32, are i.i.d. [0, 1] variables; U ~ U[0, 1]
is independent of (Sj)32 ;.



Fix A C [0, 1] as a set with inner measure 0 and outer measure 1 (such sets exist under the Axiom of Choice [35][36][37]). In
particular, neither A nor its complement A¢ = [0, 1]\ A contains a Borel subset of positive measure. Define C' : [0,1] — Pow(R)

by
[ {0,1} ifseA
Cls) = { {0,2} ifse A

A measurable choice function for this system is (s) = 0 for all s € [0,1] and so Assumption 1 holds. However, it can be
shown that Assumption 2 fails.

Consider any decision policy that is measurable, meaning that it produces valid random variables (X})$2, that satisfy
X € C(Sk) surely for all k € N. For each fixed k € N define the set

Dk:{WGQZwkEA}

It turns out that every JF-measurable subset of Dy has measure 0, and every F-measurable subset of Dj also has measure 0
(proof postponed to the next paragraph). Since X}, is a valid random variable we know { X} = 1} and {X; = 2} are valid
events (i.e., in F). Since X} € C(Sk) we have { Xy = 1} C Dy, and so P[X} = 1] = 0. Likewise, { X} = 2} C D and so
P[X) = 2] = 0. It follows that X = 0 almost surely for all £ € N and so lim_, %Zle X; = 0 almost surely. On the
other hand, the (nonmeasurable) policy that chooses X = 1 if Sk € A and X = 2 otherwise surely yields X € C(Si) and
Xp > 1 forall k€N, so liminfy o + S°F X, > 1 surely.

It remains to show that every J-measurable subset of Dy has probability O (the corresponding proof for Dj, is similar). Let
Z be a F-measurable subset of Dy. Let 7, (Z) be the projection of Z onto the dimension k. Then 7 (Z) C A. Since Z € F,
Z can be viewed as a Borel measurable subset of the Polish space [0,1]", and since the projection onto one dimension is a
continuous function, the set 7;(Z) is an analytic subset of [0,1] and hence a Lebesgue measurable subset of [0, 1] [10]. It
follows that 7, (Z) = BU R where B is a Borel set and R is a subset of a Borel set R with (R) = 0. Since B C mx(Z) C A
we have p(B) = 0 (recall that all Borel measurable subsets of A have measure 0). Therefore

P[Z]gP[weQ:wkeBUR
= WBUR)
< u(B) + p(R) =0

B. Randomization without deterministic measurable choice

This example shows a probability space with random elements X € C(Sy) for all k¥ € N, so that a form of randomized
choice exists, without the measurable choice assumption (Assumption 1). Famous examples in the field of descriptive set theory
by Blackwell [31], Novikoff [32], Sierpifiski [33], and Addison [34] prove existence of a Borel measurable set A C [0, 1]2
with a projection 71 (A) onto the first component that satisfies 71 (A) = [0, 1] and such that there is no measurable function
¥ : [0,1] — [0, 1] that satisfies (x, 9 (x)) € A for all x € [0, 1] (see also Example 5.1.7 in [10]). Define

C(s)={y:(s,y) € A} Vse]0,1]

Assumption 2 holds for this system because {(s,z) € [0,1]? : € C(s)} = A is a Borel set, while Assumption 1 fails because
there is no measurable choice function t(s). Nevertheless a probability space can have i.i.d. random vectors (Sk, Xj)5
that satisfy X, € C(Sy) surely for all k& € N as follows: Let (Uy)32, be i.i.d. [0, 1] variables. Since A is an uncountably
infinite Borel measurable subset of R?, there is an isomorphism b : [0,1] — A. Define (Sk, Xx) = b(Uy) for all k € N.
Then (S, X%)52, are indeed i.i.d. random vectors and (Sk, Xj) € A and so X € C(Sk) surely for all k£ € N. Fix k € N.
Using randomization variable Uy with Corollary 2 implies Xy = hy(Sk, W) for some Borel measurable function hj and
some random variable W, ~ 1[0, 1] that is independent of Sj. Since Assumption 2 holds, any probability space that contains
a random element (.S, W) with the same distribution as (S, W) yields

Plhi(S, W) € C(S)] =1

VI. CONCLUSION

This paper considers sequences of Borel measurable functions where each function X} is constrained to be measurable
with respect to the sigma algebra generated by the union of an arbitrary number of sigma algebras associated with index
k. Specifically, each X, is o(U;e, H,)-measurable, where Ji, is an arbitrary index set and #; is a sigma algebra for each
J € Jg. It is shown that each X}, can be expressed as the composition of a Borel function hj with some real-valued measurable
functions Y} for j € Jj, each Y; being measurable with respect to the sigma algebra #;. The same Y} functions can be used
to represent the influence of #; for all indices k£ in which j € Ji. For applications to stochastic control, this enables
functional representations of all possible decision vectors that satisfy causality and measurability constraints. This leads to
a refined theorem on network capacity for opportunistic scheduling in time-varying wireless networks. The theorem uses



two measurability assumptions, including an assumption on existence of a measurable choice function. By utilizing classical
pathological counter-examples in the field of descriptive set theory, an example opportunistic scheduling system is developed
for which a nonmeasurable policy yields significantly better time averages in comparison to any measurable policy.
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