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Abstract

This paper proves a representation theorem regarding sequences of random elements that take values in a Borel space and
are measurable with respect to the sigma algebra generated by an arbitrary union of sigma algebras. This, together with a related
representation theorem of Kallenberg, is used to characterize the set of multidimensional decision vectors in a discrete time
stochastic control problem with measurability and causality constraints, including opportunistic scheduling problems for time-
varying communication networks. A network capacity theorem for these systems is refined, without requiring an implicit and
arbitrarily complex extension of the state space, by introducing two measurability assumptions and using a theory of constructible
sets. An example that makes use of well known pathologies in descriptive set theory is given to show a nonmeasurable scheduling
scheme can outperform all measurable scheduling schemes.

I. INTRODUCTION

Let (Ω,F) and (Γ,G) be two measurable spaces. Let X : Ω → R be a Borel measurable function and let Y : Ω → Γ
be a measurable function. The Doob-Dynkin lemma states that X is σ(Y )-measurable if and only if X = h(Y ) for some

Borel measurable function h : Γ → R [1][2][3]. Suppose we know only that X is σ(H1 ∪ H2)-measurable, where H1 ⊆ F
and H2 ⊆ F are two subsigma algebras on Ω. Is it necessarily true that X = h(Y1, Y2) for some Borel measurable function

h : [0, 1]2 → R and some Borel measurable functions Yi : Ω → [0, 1] such that Yi is Hi-measurable for each i ∈ {1, 2}?

This question motivates the more general question of characterizing all sequences of Borel measurable functions that satisfy

certain measurability constraints. Fix K as a nonempty set that is finite or countably infinite. For each k ∈ K let Xk : Ω → R

be a function. Let J be a nonempty set with arbitrarily large cardinality. For each j ∈ J , let Hj ⊆ F be a given subsigma

algebra on Ω. We characterize all (Xk)k∈K that satisfy

Xk is σ(∪j∈Jk
Hj)-measurable ∀k ∈ K (1)

where Jk are given nonempty sets that satisfy Jk ⊆ J for all k ∈ K . The first result is that (Xk)k∈K satisfies (1) if and only

if

Xk = hk((Yj)j∈J̃k
) ∀k ∈ K (2)

for some Borel measurable functions Yj : Ω → [0, 1] that are Hj -measurable for each j ∈ J , some countable subsets J̃k ⊆ Jk,

and some Borel measurable functions hk : [0, 1]J̃k → R for each k ∈ K . Measurability of each function hk is with respect to

the product sigma algebra on [0, 1]J̃k . Observe that each Xk in (2) draws from the the same collection of functions (Yj)j∈J

(rather than defining variables Yj,k separately for each k). In particular, a single function Yj can be used to represent the

influence of the sigma algebra Hj whenever that influence is required. A special case of this result gives an affirmative answer

to the question posed in the first paragraph. The result (1)-(2) immediately generalizes to allow Xk to be a random element

of any Borel space, such as the space (Rm,B(Rm)) for some positive integer m.

A. Applications to stochastic control

The measurability constraints (1) have applications to stochastic control. For example, consider a discrete time system that

operates over time slots k ∈ {1, 2, 3, . . .} according to some probability triplet (Ω,F , P ). Let Sk : Ω → ΩS be the system state

that can be observed at time k, which is a random element associated with some measurable space (ΩS ,FS) with arbitrary

structure. Every step k the system controller observes Sk and chooses a decision that affects a vector of attributes Xk ∈ R
m,

where m is some fixed positive integer. The vector Xk is required to satisfy the following system constraints

Xk ∈ C(Sk) ∀k ∈ {1, 2, 3, . . .} (3)

where C : Γ → Pow(Rm) is a given set-valued function that maps the observed state Sk to a subset of R
m that consists

of all decision options for Xk (where Pow(Rm) denotes the power set of R
m). The next state Sk+1 can be influenced by

the prior states and decisions according to some model supported by the probability space, such as a Markov chain model.

The m components of Xk can represent rewards, prices, power expenditures, and so on, associated with time slot k, and can

also include values that affect the next state. This work is motivated by the application of opportunistic scheduling, where
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(Sk)
∞
k=1 are independent and identically distributed (i.i.d.) random channel states that are sequentially observed in a wireless

communication system at the start of each slot k, Xk is a vector of transmission rates over m different channels, and C(Sk)
is the set of all possible transmission rate vectors that can be supported on slot k when the observed channel state is Sk.

Consider causal and measurable decision policies that are constrained to make decisions that yield valid random variables

and are based only on observations of the past. Assume the decisions can be stochastic, so they can be informed by an external

source of randomness that is represented by some sigma algebra G ⊆ F on Ω. For example, G might be the sigma algebra

generated by an infinite sequence of i.i.d. random elements in some arbitrary measurable space and whose values are selected

by an independent computing device at time 0 (before any control decisions are made). Then we require:

Xk is σ(σ(S1) ∪ · · · ∪ σ(Sk) ∪ G)-measurable ∀k ∈ {1, 2, 3, . . .} (4)

where σ(Si) is the sigma algebra generated by the random element Si. Under any such causal and measurable decision policy

the result (2) implies

Xk = hk(Y1, . . . , Yk, R) ∀k ∈ {1, 2, 3, . . .} (5)

for some Borel measurable functions hk, some G-measurable random variable R that takes values in [0, 1], and some σ(Si)-
measurable random variables Yi that take values in [0, 1]. It is interesting that the same random variables R, {Yi}

∞
i=1 can be

used to construct Xk for all time steps k. In particular:

• While the observed random elements Si are associated with an arbitrarily complex measurable space (ΩS ,FS) where ΩS

has arbitrary cardinality, it suffices to boil these random elements down to real-valued random variables Yi : Ω → [0, 1]
where each Yi is a measurable function of Si.

• While the external source of randomness is from an arbitrarily complex sigma algebra G on Ω, it suffices to boil it down

to a single draw of a random variable R : Ω → [0, 1] that is G-measurable.

The constraint Xk ∈ C(Sk) seems to require knowledge of the full value of Sk, while the form (5) says this constraint

must be sustained only by observing the “boiled” variables Y1, . . . , Yk, R (all of which take values in [0, 1]). In particular, all

policies that satisfy (3)-(4) are characterized according to the following choices:

1) Choose a single G-measurable random variable R : Ω → [0, 1].
2) Choose Borel measurable functions θk : ΩS → [0, 1] from which Yk = θk(Sk) are defined for all k ∈ {1, 2, 3, . . .}.

3) For each k ∈ {1, 2, 3, . . .}, define a Borel measurable function hk : [0, 1]k+1 → R
m such that

hk(θ1(S1(ω)), θ2(S2(ω)), . . . , θk(Sk(ω)), R(ω)) ∈ C(Sk(ω)) ∀ω ∈ Ω (6)

If the constraint (6) is impossible to meet, then no causal decision policy that meets the required measurability constraints

exists. Sufficient conditions for (6) are given in Section IV using two measurability assumptions that include the existence of

a measurable choice function. Measurable choice is a classical problem in descriptive set theory and conditions for existence

in certain cases are found in the selection theorems of [4][5][6][7][8][9][10]. In particular, the works [6][7][8] use measurable

choice to establish cost minimizing policies for economics and dynamic programming applications. Our work gives a simple

application to the multidimensional capacity region in the opportunistic scheduling problem. A theory of constructible sets

from [11], together with measurable choice, is used to refine the capacity results of [12][13][14]. We also apply classical

pathological cases from descriptive set theory to show an example where a nonmeasurable policy produces significantly larger

time averages in comparison to any measurable policy.

B. Related work

The Doob-Dynkin lemma is proven on page 603 in [1] (see also Lemma 1.13 in [2], and [3]). Recent discussion of this lemma

is in [15]. The Doob-Dynkin lemma can be used to directly characterize all σ(H1 ∪ H2)-measurable functions X : Ω → R

in the special case when Hi = σ(Yi) for some random variables Yi for i ∈ {1, 2}. In that special case the Doob-Dynkin

lemma implies X = h(Y1, Y2). The difficulty is that the sigma algebras H1 and H2 can be arbitrarily complex, including

sigma algebras that cannot be generated by any real-valued random variable. An early version of this question was addressed

by the author on StackExchange in [16] using Dynkin’s multiplicative class theorem (see Theorem 18.51 in [17]) together with

several techniques that are refined and generalized in the current paper.1 Rather than using a multiplicative class argument, the

current paper establishes a related sigma algebra fact that is of interest in its own right.

For the probability space (Ω,F , P ) used in the stochastic control problem, consider the special case when we are given

some measurable space (ΩQ,FQ) and we are told G = σ(Q) for some random element Q : Ω → ΩQ that is measurable with

respect to (Ω,F) and (ΩQ,FQ). The causal and measurable constraint (4) is thus equivalent to

Xk is σ(σ(S1) ∪ · · · ∪ σ(Sk) ∪ σ(Q))-measurable ∀k ∈ {1, 2, 3, . . .}

1The question of X being σ(H1∪H2)-measurable was posed by the author as a StackExchange question in [16]. Users initially conjectured the representation
X = h(Y1, Y2) was generally impossible but suggested proving a weaker representation by a monotone class argument; the strong result was eventually
proven by the author using Dynkin’s multiplicative class theorem [17].
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from which the Doob-Dynkin lemma immediately implies

Xk = hk(S1, S2, . . . , Sk, Q) ∀k ∈ {1, 2, 3, . . .} (7)

for some measurable function hk : Ωk
S ×Ω → R. However, the reason (5) is stronger (and nontrivial) is that the G-measurable

random variable R : Ω → [0, 1] takes values only in [0, 1] regardless of the complexity of the random element Q that generates

G; Similarly each Yj is Hj -measurable and takes values on [0, 1].
An important representation theorem related to (5) is given by Kallenberg in Proposition 5.13 of [2]: There it is shown that

if X is a random element of a Borel space and S is a random element of an arbitrary measurable space, and if the probability

space is extended (using standard product space concepts) to include a random variable U that is uniformly distributed over

[0, 1] and that is independent of everything else, then X = g(S,W ) almost surely, where g is some measurable function and

W is some random variable that is uniformly distributed over [0, 1] and independent of S. It is not difficult to strengthen

this result to surely rather than almost surely (this is done in Section IV-A for completeness). When applied to the stochastic

control problem, if we assume (Ω,F , P ) is the already-extended space and G = σ(U), the result immediately implies

Xk = gk(Sk,Wk) ∀k ∈ {1, 2, 3, . . .}

where for each k ∈ {1, 2, 3, . . .}, gk is a Borel measurable function and Wk is a random variable that is uniformly distributed

over [0, 1] and independent of Sk. However, the gk functions cannot be viewed as defining a control policy because the value

Wk and its structure within the gk function can depend on the realizations of S1, . . . , Sk−1.

Selection theorems for measurable choice are developed by Blackwell and Ryll-Nardzewski [4], Kuratowski and Ryll-

Nardzewski [5], and Von Neumann [9] (see also [10][18]). Measurable choice for economics and dynamic programming are

considered by Maitra [7], Aumann [8], and Dubins and Savage [6]. For example, [7] considers a set S for current states and

a set A for action choices, where S is a Borel subset of a Polish space and A is a compact metric space, and shows (see also

[6]) that if u is a bounded upper semi-continuous function on S × A then there is a measurable choice function ψ : S → A
such that

u(s, ψ(s)) = max
a∈A

u(s, a) ∀s ∈ S

Continuous time control with measurable choice is in [19].

Fundamental optimality properties for dynamic programming with general state and action sets are in [20][21][7][22]. For

example, Blackwell in [20] considers one step of a finite stage dynamic program with Borel spaces A,S,H where A is the set

of possible actions, S the set of current states, and H the set of historical states from the past (see also [6]). The one-step goal

is to observe s ∈ S and h ∈ H and choose an action a ∈ A to maximize a utility u(s, a) (so the utility depends only on the

current state and action). Mild conditions imply that for any policy that chooses a as a measurable function of both s and h,

and for any ǫ > 0, there is a measurable memoryless strategy that chooses a ∈ A based only on the current state s that achieves

utility at most ǫ worse (for almost all a, h defined in a probabilistic sense). However, [20] also gives a counter-example to show

this is impossible without the mild conditions. This counter-example is similar in spirit to the example in Section V-A of the

current paper. However, the structure of our example is different: It treats the infinite horizon opportunistic scheduling problem;

It uses a different pathological set from descriptive set theory than the one used in [20]; It compares a nonmeasurable policy

to all possible measurable policies, rather than comparing a measurable policy of two variables to all possible measurable

policies in one variable. Optimality of stationary policies in multi-step dynamic programs over Borel spaces is considered in

[21][7] and related nonstationary problems are in [22]. Nonmeasurable gambling strategies are treated in [6].

Tassiulas and Ephremides establish the capacity region for a class of time-varying networks in [14] and prove that a max-

weight rule stabilizes the network whenever possible. Capacity regions for more general systems that choose Xk ∈ C(Sk) are

treated in [13][12][23], see also related problems of network utility maximization [24][25][26][27] and energy minimization

[28]. The general result in [12] makes implicit assumptions regarding measurability and probability space extension. The

current paper refines a capacity theorem from [12] without extending the space by introducing two measurability assumptions,

including a measurable choice assumption, together with a property of constructible sets from [11].

The field of descriptive set theory was initiated in the classic works of Souslin [29] and Lusin [30]. Souslin showed existence

of a two dimensional Borel set that has a non-Borel projection onto the first dimension. Examples of multidimensional Borel

sets that do not contain a measurable choice function are developed by Blackwell [31], Novikoff [32], Sierpiński [33], and

Addison [34] (see also Example 5.1.7 in [10]). In [35] Sierpiński constructs a subset of [0, 1] that has inner measure 0 and

outer measure 1 (see also [36][37]). These classic pathological examples are used in Section V to show examples where

nonmeasurable decisions can be used in the opportunistic scheduling problem to enable time averages that are superior to

those achieved by any measurable policy.

II. PRELIMINARIES

A. Terminology

Let N = {1, 2, 3, . . .} denote the natural numbers, R the real numbers, and B(R) the standard Borel sigma algebra on R.

For A ∈ B(R) define B(A) = {B ∈ B(R) : B ⊆ A}. A measurable space is a pair (Ω,F) where Ω is a nonempty set and F
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is a sigma algebra on Ω. Suppose (Ω1,F1) and (Ω2,F2) are two measurable spaces. Let H ⊆ Ω1 be another sigma algebra

on Ω1. With respect to the measurable space (Ω2,F2), a function g : Ω1 → Ω2 is said to be H-measurable if

g−1(A) ∈ H ∀A ∈ F2

where g−1(A) = {ω ∈ Ω1 : g(ω) ∈ A}. With respect to the two measurable spaces (Ω1,F1) and (Ω2,F2), a function

g : Ω1 → Ω2 is said to be measurable if it is F1-measurable. Two measurable spaces (Ω1,F1) and (Ω2,F2) are isomorphic

if there is a bijective function b : Ω1 → Ω2 that is measurable and has a measurable inverse; such a function is called an

isomorphism. A measurable space (Ω,F) is called a Borel space if it is isomorphic to (A,B(A)) for some A ∈ B([0, 1]). If

(Ω2,F2) is a Borel space then a measurable function g : Ω1 → Ω2 is sometimes referred to as a Borel measurable function

as a reminder that the target space is a Borel space.

Fix J as a nonempty set (possibly uncountably infinite). Let (Ωj ,Fj) be measurable spaces for each j ∈ J . Define

×j∈JΩj = {(xj)j∈J : xj ∈ Ωj ∀j ∈ J}

Define C as the collection of subsets of ×j∈JΩj of the form ×j∈JAj for some sets Aj that satisfy: (i) Aj ∈ Fj for all j ∈ J ;

(ii) Aj = Ωj for all but at most one index j ∈ J . Define the product sigma algebra on ×j∈JΩj , also called the cylindrical

sigma algebra, as

⊗j∈JFj = σ(C)

where σ(C) denotes the sigma algebra generated by the collection of sets C. For a given measurable space (Ω,F) define

ΩJ = ×j∈JΩ and define its product sigma algebra as ⊗j∈JF . A special case of interest is [0, 1]J with product sigma algebra

⊗j∈JB([0, 1]) (this measurable space is a Borel space whenever J is a finite or countably infinite set).

A probability space is a triplet (Ω,F , P ) where (Ω,F) is a measurable space and P : F → [0, 1] is a probability measure.

A random variable is a measurable function X : Ω → R. A random element is a measurable function S : Ω → ΩS where

(ΩS ,FS) is some given measurable space. By U ∼ U [0, 1] we mean that U : Ω → [0, 1] is a random variable that is uniformly

distributed over [0, 1].

B. Standard results

Lemma 1: There is an isomorphism φ : [0, 1] → [0, 1]N. [See Theorem A.47 in [38] and Chapter 13 of [39].]

Lemma 2: If D is an uncountably infinite Borel measurable subset of a Borel space then there is an isomorphism b : D →
[0, 1]. [This is a result of Kuratowski in [40], see also statement and proof in Theorem 3.3.13 of [10].]

Lemma 3: Let J be a nonempty set (possibly uncountably infinite). Let (Ω,F) and (Ωj ,Fj) for j ∈ J be measurable

spaces. Then [see similar Lemmas 1.7, 1.8 in [2]]:

• Composition: If f : Ω1 → Ω2 and g : Ω2 → Ω3 are measurable functions, the composition g ◦ f is measurable.

• Multidimensional expansion: Let Yj : Ω → Ωj be measurable functions for each j ∈ J . The function Y : Ω → ×j∈JΩj

given by Y = (Yj)j∈J is measurable with respect to (Ω,F) and (×j∈JΩj ,⊗j∈JFj). In particular, if Hj is another sigma

algebra on Ω for each j ∈ J , and if Yj is Hj-measurable, then Y is σ(∪j∈JHj)-measurable.

III. REPRESENTATION OF BOREL MEASURABLE FUNCTIONS

Throughout this section assume: (Ω,F) is a measurable space; J is a nonempty set (possibly uncountably infinite); Hj ⊆ F
is a subsigma algebra on Ω for each j ∈ J .

Proposition 1: Define C as the set of functions X : Ω → [0, 1] of the form X = h(~Y ) where h : [0, 1]J → [0, 1] is

measurable, ~Y = (Yj)j∈J , and Yj : Ω → [0, 1] is Hj -measurable for each j ∈ J . Define Z as the following collection of

subsets of Ω:

Z = {X−1(B) ⊆ Ω : B ∈ B([0, 1]), X ∈ C}

Then

a) Z is a sigma algebra on Ω.

b) σ(∪j∈JHj) = Z .

c) X : Ω → [0, 1] is σ(∪j∈JHj)-measurable if and only if X ∈ C.

Proof: (Part (a) of Proposition 1) We show Z satisfies the three properties of a sigma algebra on Ω:

1) To show Ω ∈ Z , define the measurable functions h = 0, Yj = 0 for all j ∈ J , and X = h(~Y ) = 0 ∈ C. Define

B = [0, 1] ∈ B([0, 1]). Then Ω = X−1(B) ∈ Z .

2) Fix A ∈ Z . We want to show Ac ∈ Z . Since A ∈ Z there exists X ∈ C and B ∈ B([0, 1]) such that A = X−1(B). Then

Ac = X−1(Bc) ∈ Z .
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3) Let {An}
∞
n=1 be an infinite sequence of sets in Z . We want to show ∪∞

n=1An ∈ Z . It suffices to show ∩∞
n=1A

c
n ∈ Z .

For each positive integer n there exists Xn ∈ C and Bn ∈ B([0, 1]) such that An = X−1
n (Bn) and so Ac

n = X−1
n (Bc

n).
Let φ : [0, 1] → [0, 1]N be an isomorphism (recall Lemma 1). Define

X = φ−1 ((Xn)
∞
n=1) (8)

B = φ−1 (×∞
n=1B

c
n)

Since φ−1 maps measurable sets to measurable sets we have B ∈ B([0, 1]). Then:

∩∞
n=1A

c
n = {ω ∈ Ω : Xn(ω) ∈ Bc

n ∀n ∈ N}

=
{

ω ∈ Ω : φ−1 ((Xn(ω))
∞
n=1) ∈ φ−1 (×∞

n=1B
c
n)
}

= X−1(B)

Considering the structure of set Z , it remains to show that X ∈ C. Fix n ∈ N. Since Xn ∈ C we have

Xn = h(n)(~Y (n)) (9)

for some measurable function h(n) : [0, 1]J → [0, 1] and some ~Y (n) = (Y
(n)
j )j∈J such that Y

(n)
j : Ω → [0, 1] is

Hj-measurable for all j ∈ J . For each j ∈ J define Wj : Ω → [0, 1] by

Wj = φ−1(Y
(1)
j , Y

(2)
j , Y

(3)
j , . . .) (10)

Note that Wj is a composition of the measurable function φ−1 : [0, 1]N → [0, 1] with the Hj-measurable function Z : Ω →

[0, 1]N given by Z(ω) = (Y
(1)
j (ω), Y

(2)
j (ω), Y

(3)
j (ω), . . .) and hence Wj is itself Hj-measurable (recall Lemma 3). Write

function φ according to its components φ = (φ1, φ2, φ3, . . .) and note that each component function φn : [0, 1] → [0, 1]
is measurable. For each j ∈ J we have from (10)

(Y
(1)
j , Y

(2)
j , Y

(3)
j , . . .) = φ(Wj)

= (φ1(Wj), φ2(Wj), φ3(Wj), . . .)

and so Y
(n)
j = φn(Wj) for all j ∈ J, n ∈ N, that is,

~Y (n) = (φn(Wj))j∈J

Substituting the above equality into (9) yields

Xn = h(n)((φn(Wj))j∈J ) (11)

Define the function α(n) : [0, 1]J → [0, 1] for each x = (xj)j∈J by

α(n)(x) = h(n)((φn(xj))j∈J )

Define ~W = (Wj)j∈J . Using this and the definition of α(n) in (11) gives:

Xn = α(n)( ~W ) (12)

Define the function h : [0, 1]J → [0, 1] by

h(x) = φ−1(α(1)(x), α(2)(x), α(3)(x), . . .) ∀x ∈ [0, 1]J

The functions α(n) and h are formed by compositions and multidimensional expansions of measurable functions and so

they are themselves measurable (recall Lemma 3). By definition of h it holds that

h( ~W ) = φ−1(α(1)( ~W ), α(2)( ~W ), α(3)( ~W ), . . .)

(a)
= φ−1(X1, X2, X3, . . .)

(b)
= X

where (a) holds by substituting (12); (b) holds by definition of X in (8). Thus, X ∈ C.

Proof: (Part (b) of Proposition 1) To show that Z ⊆ σ(∪j∈JHj), fix A ∈ Z . By definition of Z , there exists B ∈ B([0, 1])

and X ∈ C such that A = X−1(B), where X = h(~Y ) for some measurable function h : [0, 1]J → [0, 1] and some vector-valued

function ~Y = (Yj)j∈J composed of Hj-measurable functions Yj : Ω → [0, 1] for each j ∈ J . Thus

A = X−1(B)

= {ω ∈ Ω : h(~Y ) ∈ B} (13)
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Lemma 3 ensures that h(~Y ) is σ(∪j∈JHj)-measurable, and so the right-hand-side of (13) is a set in σ(∪j∈JHj), which implies

the desired conclusion A ∈ σ(∪j∈JHj).

We now show σ(∪j∈JHj) ⊆ Z . Fix m ∈ J . Let Am be a subset of Ω such that Am ∈ Hm. Define ~Y = (Yj)j∈J by Yj = 0
if j 6= m and

Ym(ω) =

{

1 if ω ∈ Am

0 else

It is clear that Yj is Hj-measurable for all j ∈ J . Define the measurable function h : [0, 1]J → [0, 1] by h((xj)j∈J ) = xm.

Define B = {1} ∈ B([0, 1]). Then

Am = {ω ∈ Ω : h(~Y (ω)) ∈ B}

so by definition of Z we have Am ∈ Z . This holds for all m ∈ J and Am ∈ Hm so

∪j∈JHj ⊆ Z

Taking the sigma algebra of both sides gives

σ(∪j∈JHj) ⊆ σ(Z)

Part (a) implies that σ(Z) = Z , which completes the proof.

Proof: (Part (c) of Proposition 1) Suppose X ∈ C. Then X = h(~Y ) for some measurable h and for ~Y = (Yj)j∈J with

Yj : Ω → [0, 1] being Hj-measurable for all j ∈ J . Lemma 3 implies that X is σ(∪j∈JHj)-measurable.

Now suppose X : Ω → [0, 1] is σ(∪j∈JHj)-measurable. It is well known that X is the pointwise limit of simple functions

Xm, so that

X(ω) = lim
m→∞

Xm(ω) ∀ω ∈ Ω (14)

where for each positive integer m the function Xm : Ω → [0, 1] has the form

Xm =

km
∑

i=1

vi,m1{X∈Ii,m} (15)

where km is some positive integer; I1,m, I2,m, . . . , Ikm,m are some disjoint sets in B([0, 1]) whose union is [0, 1]; 1A is an

indicator function that is 1 if event A is true and 0 else; vi,m are some real numbers in [0, 1] for each i ∈ {1, . . . , km}.

Since X is σ(∪j∈JHj)-measurable, we have for each positive integer m and each i ∈ {1, . . . , km}:

{X ∈ Ii,m} ∈ σ(∪j∈JHj) = Z

where the final equality holds by part (b). It follows by definition of Z that

{X ∈ Ii,m} = {ω ∈ Ω : Xi,m(ω) ∈ Bi,m} (16)

for some Bi,m ∈ B([0, 1]) and some Xi,m ∈ C. Substituting (16) into (15) and using (14) we obtain

X = lim sup
m→∞

km
∑

i=1

vi,m1{Xi,m∈Bi,m} (17)

where we have used the fact that the limit exists and so must be equal to the lim sup.

By definition of C, each function Xi,m ∈ C has the form

Xi,m = h(i,m)((Y
(i,m)
j )j∈J ) (18)

for measurable functions h(i,m) : [0, 1]J → [0, 1] and some Hj-measurable functions Y
(i,m)
j : Ω → [0, 1] for j ∈ J . Let L

be the (countably infinite) set of all indices (i,m) such that m ∈ N and i ∈ {1, . . . , km}. Let φ : [0, 1] → [0, 1]L be an

isomorphism. For each j ∈ J define Wj = φ−1((Y
(i,m)
j )(i,m)∈L). Since Wj is the composition of the measurable function

φ−1 with the multidimensional expansion of Hj-measurable functions, it is itself Hj-measurable (recall Lemma 3). Define

φi,m as the (i,m) component of the φ function for each (i,m) ∈ L. Then from (18)

Xi,m = h(i,m) ((φi,m(Wj))j∈J )

Define ~W = (Wj)j∈J . Then

(Xi,m)(i,m)∈L = α( ~W ) (19)

where α : [0, 1]J → [0, 1]L is the measurable function defined for x = (xj)j∈J by component functions αi,m(x) for each

(i,m) ∈ L by

αi,m(x) = h(i,m) ((φi,m(xj))j∈J )
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Define the measurable function g : [0, 1]L → [0, 1] for each x = (xi,m)(i,m)∈L by

g(x) = lim sup
m→∞

km
∑

i=1

vi,m1{xi,m∈Bi,m}

where we observe the limsup is in the set [0, 1] because for each m, all vi,m values are in [0, 1] and at most one term in the

sum is nonzero. It follows that

X
(a)
= g((Xi,m)(i,m)∈L)

(b)
= g(α( ~W ))

where (a) holds by (17); (b) holds by (19). We can now define the measurable function h : [0, 1]J → [0, 1] by h(x) = g(α(x))
and we see that X = h( ~W ), where ~W = (Wj)j∈J for Wj : Ω → [0, 1] being Hj-measurable for all j ∈ J . It follows that X
has the required form for inclusion in the set C.

Now fix K as a finite or countably infinite set. For each k ∈ K let (Vk,Fk) be a Borel space. We consider measurable

functions Xk : Ω → Vk.

Proposition 2: Fix J as a nonempty set (possibly uncountably infinite). For each j ∈ J , let Hj ⊆ F be a sigma algebra on

Ω. Fix functions Xk : Ω → Vk for k ∈ K , where (Vk,Fk) are given Borel spaces. For each k ∈ K , fix Jk ⊆ J . Then

Xk is σ(∪j∈Jk
Hj)-measurable ∀k ∈ K (20)

if and only if for each k ∈ K we have

Xk = hk((Yj)j∈J̃k
) (21)

where hk : [0, 1] → Vk is some measurable function, Yj : Ω → [0, 1] are some Hj-measurable functions for each j ∈ J , and

J̃k is a finite or countably infinite subset of Jk for each k ∈ K .

Proof: For the reverse direction, it is clear from Lemma 3 that if (Xk)k∈K has the given form Xk = hk((Yj)j∈J̃k
) then

(20) holds. To prove the forward direction, suppose that (20) holds. Fix k ∈ K . Since (Vk,Fk) is a Borel space, there is a

set Dk ∈ B([0, 1]) and an isomorphism bk : Vk → Dk. Define Zk : Ω → [0, 1] by Zk = bk(Xk). Lemma 3 implies that Zk is

σ(∪j∈Jk
Hj)-measurable. By Proposition 1 we have Zk = g(k)

(

(Y
(k)
j )j∈Jk

)

with Y
(k)
j : Ω → [0, 1] being Hj-measurable for

all j ∈ J , and g(k) : [0, 1]Jk → [0, 1] is measurable. For every such real-valued measurable function g(k), there is a countable

subset J̃k ⊆ Jk for which the function only depends on the variables yj for j ∈ J̃k [see, for example, related Exercise 1.1.22

in [41] and Section 3.13d in [3]]. Thus, we modify the g(k) functions to f (k) : [0, 1]J̃k → [0, 1] measurable for which

Zk = f (k)
(

(Y
(k)
j )j∈J̃k

)

(22)

Let φ : [0, 1] → [0, 1]K be an isomorphism. For each j ∈ J define

Yj = φ−1((Y
(k)
j )k∈K)

Since each function Y
(k)
j is Hj-measurable, Yj is also Hj-measurable (recall Lemma 3). For each k ∈ K let φk denote the

kth component of φ. Then

φk(Yj) = Y
(k)
j

which gives by substitution into (22):

Zk = f (k)
(

(φk(Yj))j∈J̃k

)

= α(k)
(

(Yj)j∈J̃k

)

(23)

where α(k) : [0, 1]J̃k → [0, 1] is defined as the measurable function for each x = (xj)j∈J̃k
by

α(k)(x) = f (k)
(

(φk(xj))j∈J̃k

)

Substituting the definition Zk = bk(Xk) into the left-hand-side of (23) gives

bk(Xk) = α(k)
(

(Yj)j∈J̃k

)

Taking b−1
k (·) of both sides gives

Xk = b−1
k

(

α(k)
(

(Yj)j∈J̃k

))
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This holds for all k ∈ K and has the desired form Xk = hk

(

(Yj)j∈J̃k

)

when the measurable function hk : [0, 1]J̃k → Vk is

defined by hk(x) = b−1
k (α(k)(x)) for all x ∈ [0, 1]J̃k .

Corollary 1: Let (V,FV ) be a Borel space. Let J be a nonempty set and let (Ωj ,Fj) be measurable spaces for each j ∈ J .

If f : ×j∈JΩj → V is a measurable function with respect to (×j∈JΩj ,⊗j∈JFj) and (V,FV ) and ω = (ωj)j∈J then

f(ω) = h((θj(ωj))j∈J̃ ) ∀ω ∈ ×j∈JΩj

where J̃ ⊆ J is a finite or countably infinite set, θj : Ωj → [0, 1] is a measurable function for each j ∈ J̃ , and h : ×j∈J̃Ωj → V
is some measurable function with respect to (×j∈J̃Ωj ,⊗j∈JFj) and (V,FV ).

Proof: Define Sj : Ω → Ωj by Sj(ω) = ωj for j ∈ J . Define Hj = σ(Sj). Then f is σ(∪j∈JHj)-measurable and

Proposition 2 implies f = h((Yj)j∈J̃ ) for a countable subset J̃ ⊆ J , a measurable function h, and for Yj being σ(Sj)

measurable for each j ∈ J̃ . The Doob-Dynkin lemma implies Yj = θj(Sj) = θj(ωj) for j ∈ J̃ .

IV. STOCHASTIC CONTROL

Throughout this section we fix a probability triplet (Ω,F , P ). Let (ΩS ,FS) be a measurable space and let (ΩX ,FX) be

a Borel space. Consider a discrete time system that evolves over time slots k ∈ {1, 2, 3, . . .}. Let (Sk)
∞
k=1 be a sequence of

random elements of the form Sk : Ω → ΩS . The value Sk represents a system characteristic or state at time k. Let G ⊆ F
be a sigma algebra on Ω that is used as a source of randomness to facilitate stochastic decisions. Let (Xk)

∞
k=1 be a sequence

of random elements of the form Xk : Ω → ΩX . Each Xk represents a decision that is made at time k based on observing

S1, . . . , Sk. Assume decisions for each step k are made to ensure

Xk is σ(σ(S1) ∪ · · · ∪ σ(Sk) ∪ G)-measurable (24)

Xk ∈ C(Sk) (25)

where C : ΩS → Pow(ΩX) is a set-valued map and Pow(ΩX) is the set of all subsets of ΩX . Constraint (24) is the causal

and measurable constraint. Constraint (25) is a system constraint that restricts the Xk value to a set that depends on Sk. Values

of Sk+1 are determined by some probability rule on the system and are possibly dependent on S1, . . . , Sk and X1, . . . , Xk.

A special case is when Sk represents the state of a discrete time Markov chain and there is some transition probability kernel

that specifies the conditional distribution of Sk+1 given Sk and Xk.

Decisions Xk can be vector valued with components that represent power expenditures, costs, or rewards incurred or earned

by different parts of the system at time k. We want to characterize all decision elements (Xk)
∞
k=1 that satisfy (24)-(25).

Proposition 2 ensures that if (24)-(25) hold then

Xk = hk(Y1, . . . , Yk, R) ∈ C(Sk) ∀k ∈ N

for some Borel measurable functions hk : Ωk
S × [0, 1] → ΩX , some G-measurable random variable R : Ω → [0, 1], and some

random variables Yk = θk(Sk) for some measurable functions θk : ΩS → [0, 1]. It immediately follows that

Xk = gk(S1, . . . , Sk, R) ∈ C(Sk) ∀k ∈ N (26)

where gk : Ωk
S × [0, 1] → ΩX is defined

gk(s1, . . . , sk, r) = hk(θ1(s1), . . . , θk(sk), r)

Consider the following additional assumptions:

Assumption 1: There is a deterministic measurable choice function ψ : ΩS → ΩX such that ψ(s) ∈ C(s) for all s ∈ ΩS .

Assumption 2: {(s, x) ∈ ΩS × ΩX : x ∈ C(s)} ∈ FS ⊗FX

Both assumptions hold if ΩS is a finite or countably infinite set, FS = Pow(ΩS), and C(s) is a nonempty subset of FX for

each s ∈ ΩS . Assumptions 1-2 also hold in the case when a vector of resources Pk ∈ R
a (such as power allocations) is chosen

on each slot k ∈ N and affects a vector of rewards Rk ∈ R
b (such as transmission rates over links of a communication system)

via Rk = f(Sk, Pk), where a, b are given positive integers, ΩP is a given Borel measurable subset of Ra, f : ΩS ×ΩP → R
b

is a given measurable function, and

C(s) = {(p, f(s, p)) ∈ R
a+b : p ∈ ΩP } ∀s ∈ ΩS (27)

Indeed, Assumption 1 holds for (27) because ψ(s) = (0, f(s, 0)) is a deterministic measurable choice function; Assumption

2 can be seen to hold for (27) by defining the measurable function g : ΩS × ΩP × R
b → R

b by g(s, p, r) = r − f(s, p)
and observing that g−1({0}) is measurable. More general sufficient conditions for existence of a deterministic measurable

choice function are given in the selection theorems of Blackwell and Ryll-Nardzewski [4], Kuratowski and Ryll-Nardzewski

[5], Dubins and Savage [6], Maitra [7], Aumann [8], Schäl [42], Von Neumann [9], Srivastava [10], and Cascales, Kadets,

Rodrı́guez [18].
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Lemma 4: Suppose Assumptions 1 and 2 hold. The sequence (Xk)
∞
k=1 of Borel measurable random elements of the form

Xk : Ω → ΩX satisfies (24)-(25) if and only if there are measurable functions vk : Ωk
S × [0, 1] → ΩX for each k ∈ N such

that

vk(s1, . . . , sk, r) ∈ C(sk) ∀(s1, . . . , sk, r) ∈ Ωk
S × [0, 1] (28)

and a G-measurable random variable R : Ω → [0, 1] such that

Xk = vk(S1, . . . , Sk, R) ∀k ∈ N (29)

Proof: Suppose (Xk)
∞
k=1 satisfy (24)-(25). Then (26) holds for some measurable functions gk : Ωk

S × [0, 1] → ΩX and

some G-measurable random variable R : Ω → [0, 1]. Define vk : Ωk
S × [0, 1] → ΩX by

vk(s1, . . . , sk, r) =

{

gk(s1, . . . , sk, r) if gk(s1, . . . , sk, r) ∈ C(sk)
ψ(sk) else

Assumptions 1, 2, and measurability of gk imply that vk is measurable. Since ψ(s) ∈ C(s) for all s ∈ ΩS , function vk satisfies

(28). By (26) and definition of vk we obtain (29).

Conversely, suppose there are vk functions and a random variable R that satisfy (28)-(29). Properties (28)-(29) imply

Xk ∈ C(Sk) for all k, while measurability of vk and the structure Xk = vk(S1, . . . , Sk, R) ensure (by the Doob-Dynkin

lemma) that Xk is σ(S1, . . . , Sk, R)-measurable. Since σ(R) ⊆ G it holds that Xk is σ(σ(S1)∪ · · · ∪ σ(Sk)∪ G)-measurable,

so that (24)-(25) hold.

The vk functions and the random variable R : Ω → [0, 1] in the above result completely specify a causal and measurable

control policy: At time 0, generate a G-measurable random variable R : Ω → [0, 1]. At each step k ∈ {1, 2, 3, . . .}, observe

(S1, . . . , Sk) and make the decision Xk = vk(S1, . . . , Sk, R). The above lemma ensures that, if Assumptions 1-2 hold, all

policies that satisfy (24)-(25) can be specified in this way.

A. Another representation

The following representation theorem from Kallenberg [2] bears some resemblance to (26) and uses the concept of a

randomization variable U .

Theorem 1: (Proposition 5.13 in [2]) Fix (Ω,F , P ) as a probability triplet and let X : Ω → ΩX and S : Ω → ΩS be

random elements where (ΩX ,FX) is a Borel space and (ΩS ,FS) is a measurable space. Suppose there is a random variable

U ∼ U [0, 1] that is independent of (S,X) (U is called a randomization variable). Then

X = f(S,R) almost surely

for some measurable function f : ΩS × [0, 1] → ΩX and some random variable R ∼ U [0, 1] that is independent of S. Further,

R is σ(S,X,U)-measurable.

The next simple corollary changes “almost surely” to “surely.”

Corollary 2: Under the same assumptions as Theorem 1 we can ensure X = g(S,W ) surely for some measurable function

g : ΩS × [0, 1] → ΩX and some random variable W ∼ U [0, 1] that is independent of S and that is σ(S,X,U)-measurable.

Proof: First consider the case when ΩX is an uncountably infinite set. Theorem 1 implies X = f(S,R) almost surely for

some measurable f and some random variable R ∼ U [0, 1] that is independent of S. Let C be an uncountable Borel measurable

subset of [0, 1] that has measure 0, such as the Cantor set. Let b : C → ΩX be an isomorphism (recall Lemma 2). Define the

random variable W : Ω → [0, 1] by

W =

{

R if X = f(S,R) and R /∈ C
b−1(X) else

Since P [X = f(S,R)] = 1 and P [R /∈ C] = 1 we have that P [W = R] = 1 and so W is also uniformly distributed over

[0, 1] and independent of S. By definition of W we have

W /∈ C =⇒ (W = R and X = f(S,R)) (30)

W ∈ C =⇒ W = b−1(X) (31)

Define the measurable function g : ΩS × [0, 1] → ΩX by

g(s, w) =

{

f(s, w) if w /∈ C
b(w) else

It remains to show X = g(S,W ). If W /∈ C then by definition of g we have

g(S,W ) = f(S,W )

(a)
= X
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where (a) holds by (30). If W ∈ C then by definition of g we have

g(S,W ) = b(W ) = b(b−1(X)) = X

where we have used (31). The case when ΩX is finite or countably infinite is similar and proceeds by defining C as a subset

of [0, 1] with the same cardinality as ΩX .

Corollary 3: If random elements (Sk)
∞
k=1 and (Xk)

∞
k=1 satisfy Xk ∈ C(Sk) for all k ∈ N (where each Xk : Ω → ΩX is

measurable with respect to the Borel space (ΩX ,FX); each Sk : Ω → ΩS is measurable with respect to the general measurable

space (ΩS ,FS)), and if there is a random variable U ∼ U [0, 1] that is independent of (Sk, Xk)
∞
k=1, then

a) For all k ∈ N we (surely) have Xk = gk(Sk,Wk) ∈ C(Sk) for some measurable function gk : ΩS × [0, 1] → ΩX and

some random variable Wk ∼ U [0, 1] that is independent of Sk.

b) If Assumptions 1-2 hold then for all k ∈ N there is a measurable function vk : ΩS × [0, 1] → ΩX that satisfies

vk(s, r) ∈ C(s) for all (s, r) ∈ ΩS × [0, 1] such that

Xk = vk(Sk,Wk) (32)

where the random variables Wk are the same as in part (a).

Proof: Part (a) follows immediately from Corollary 2. To prove (b), fix k ∈ {1, 2, 3, . . .} and define

vk(s, r) =

{

gk(s, r) if gk(s, r) ∈ C(s)
ψ(s) else

where gk is from part (a). Assumptions 1 and 2 and measurability of gk ensure measurability of vk . Since ψ(s) ∈ C(s) for

all s ∈ ΩS , it is clear that vk(s, r) ∈ C(s) for all (s, r) ∈ ΩS × [0, 1]. By part (a) it holds that Xk = vk(Sk,Wk).
The equality (32) has a simpler structure than (29). However, the vk functions in (29) completely specify a causal and

measurable control policy. In contrast, the vk functions in (32) do not specify a control policy because each Wk may have

some unknown dependence on S1, . . . , Sk−1 as well as on additional sources of (potentially noncausal) randomness.

B. Opportunistic scheduling

The following special case is of interest in the area of wireless networks. Fix m ∈ N and let (Rm,B(Rm)) be the measurable

space for the decision elements Xk. There are m different wireless links that can change over time according to states (Sk)
∞
k=1,

where Sk describes the state of all channels on slot k. At the start of each slot k ∈ N we observe Sk and then choose a

transmission rate vector Xk ∈ C(Sk), where C(Sk) ⊆ R
m is the set of all transmission rate options available when the

channel state is Sk (different rate options arise, for example, from different modulation and coding choices). This is called an

opportunistic scheduling system because the state Sk is known beforeXk is decided. Control strategies for such systems consider

network stability [14][23], utility maximization [13][12][24][25][26][27], and energy minimization [28]. Assume (Sk)
∞
k=1 are

identically distributed random elements associated with a measurable space (ΩS ,FS) and a distribution λ : FS → [0, 1]:

λ(A) = P [Sk ∈ A] ∀A ∈ FS

The full sequence (Sk)
∞
k=1 is “chosen by nature” at time 0. In a causal decision scenario, on step k the controller only knows

the values of S1, . . . , Sk before choosing Xk ∈ C(Sk). In a noncausal scenario the full (Sk)
∞
k=1 sequence is known. Assume

G ⊆ F is a subsigma algebra independent of σ((Sk)
∞
k=1) that is used as a source of randomness to facilitate stochastic

decisions. Assume there is a random variable U ∼ U [0, 1] that is G-measurable.

The work [12] defines the network rate region Γ as the set of all expectations of X1 that can be achieved on the first

slot, shows this set is the same for all slots, and determines the fundamental capacity region (see also [14][23]) when such a

transmission system is used for single and multi-hop queueing networks.2 The argument in [12] implicitly allows expanding

the probability space to ensure the sigma algebra G is complex enough to emulate an independent virtual system with identical

stochastics over any number of virtual slots before the slot 1 decision on the actual system is made. The next results do not

require expanding the probability space and allow G to be as simple as G = σ(U).
Assumption 3: For the function C : ΩS → Pow(Rm), there is a bounded subset D ⊆ R

m such that C(s) is nonempty and

C(s) ⊆ D for all s ∈ ΩS .3

Definition 1: Given a distribution λ : FS → [0, 1] and a function C : ΩS → Pow(Rm) that satisfies Assumption 3, define

the rate region Γ ⊆ R
m as the set of all expectation vectors E [v(S,U)] that can be achieved by some measurable function

v : ΩS × R → R
m that satisfies v(s, w) ∈ C(s) for all s ∈ ΩS and w ∈ R, and on a probability space with independent

random elements S and U such that S has distribution λ and U ∼ U [0, 1].
Define Γ as the closure of the set Γ. Using Corollary 3b, it is straightforward to show that Assumptions 1, 2, 3 imply that Γ is

nonempty, bounded, and convex, while Γ is nonempty, compact, and convex. It can be shown the definition of Γ is unchanged

2For 1-hop networks the capacity region is the set of all vectors that are dominated by a vector in the closure of Γ. For multi-hop networks the capacity
region depends on all possible multi-hop flow allocations available on graphs associated with points in the closure of Γ [23][13][43].

3Assumption 3 is mainly for convenience and can be replaced by the weaker assumption that expectations of random vectors Xk ∈ C(Sk) are finite.
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if one allows U to be a random variable of any distribution, provided that U and S are independent. The next lemma shows

that Γ captures all time average expectations of Xk that can be achieved at any time k by a measurable decision policy for

choosing Xk ∈ C(Sk), regardless of whether or not the policy is causal. Sample path time averages are also considered in the

lemma using a theory of constructible sets [11]. Counter-examples in Section V show that time averages can be far outside

the set Γ if the controller can make nonmeasurable decisions.

Proposition 3: Suppose Assumptions 1, 2, 3 hold for the opportunistic scheduling problem with identically distributed

random elements (Sk)
∞
k=1 with some distribution λ. Let (Xk)

∞
k=1 be a sequence of (Borel measurable) random vectors that

satisfy Xk ∈ C(Sk) surely for each k ∈ N. Then

a) For all k ∈ N we have E [Xk] ∈ Γ and 1
k

∑k

i=1 E [Xi] ∈ Γ.

b) If (Sk)
∞
k=1 is i.i.d. and Sk is independent of (X1, . . . , Xk−1) for all k ∈ {2, 3, 4, . . .} then for all k ∈ N

E [Xk|Hk] ∈ Γ almost surely

where Hk = σ(X1, . . . , Xk−1) for k ≥ 2 and H1 = {φ,Ω}.

c) If (Sk)
∞
k=1 is i.i.d. and Sk is independent of (X1, . . . , Xk−1) for all k ∈ {2, 3, 4, . . .} then

limk→∞ dist
(

1
k

∑k
i=1Xi,Γ

)

= 0 almost surely

where dist(x,Γ) is the Euclidean distance between a point x ∈ R
m and the compact and convex set Γ ⊆ R

m.

Proof: Without loss of generality, for parts (a)-(b) we can assume existence of a random variable U ∼ U [0, 1] of the form

U : Ω → [0, 1] that is independent of (Sk, Xk)
∞
k=1. Indeed, if this does not hold then we can extend the probability space to

a new space (Ω̃, F̃ , P̃ ) such that

Ω̃ = Ω× [0, 1], F̃ = F ⊗ B([0, 1]), P̃ = P ⊗ µ

where µ is the standard Borel measure on Borel subsets of [0, 1]. Each outcome of the new sample space has the form

ω̃ = (ω, t) where ω ∈ Ω and t ∈ [0, 1]. Then define S̃k : Ω̃ → ΩS and X̃k : Ω̃ → R
m by

S̃k(ω, t) = Sk(ω) , X̃k(ω, t) = Xk(ω)

Also define U : Ω̃ → [0, 1] by U(ω, t) = t and observe that U ∼ U [0, 1] and U is independent of (X̃k, S̃k)
∞
k=1. Then

(X̃k, S̃k)
∞
k=1 on the extended probability space has the same distribution as (Xk, Sk)

∞
k=1 on the original space. Thus, Xk and

X̃k have the same expectation (useful for part (a)); f(X1, . . . , Xk−1) and f(X̃1, . . . , X̃k−1) have the same distribution for any

measurable function f (useful for part (b)).

To prove (a), suppose there is a sequence of random vectors (Xk)
∞
k=1 that satisfy Xk ∈ C(Sk) surely for each k ∈

{1, 2, 3, . . .}. Assuming existence of U ∼ U [0, 1] that is independent of (Sk, Xk)
∞
k=1, apply Corollary 3b to obtain

Xk = vk(Sk,Wk) (33)

for some measurable function vk : ΩS × [0, 1] → R
m that satisfies vk(s, v) ∈ C(s) for all s ∈ ΩS , t ∈ [0, 1] and some random

variable Wk ∼ U [0, 1] that is independent of Sk. By definition of Γ it holds that E [Xk] ∈ Γ. This holds for all k ∈ N.

Convexity of Γ ensures that 1
k

∑k

i=1 E [Xk] ∈ Γ for all k ∈ N.

To prove (b), assume (Sk)
∞
k=1 are i.i.d. and fix k ∈ {2, 3, 4, . . .}. Let Z be a version of E [Xk|Hk]. Since Γ is a closed

subset of Rm it is Borel measurable and {Z /∈ Γ} is an event. Suppose P [Z /∈ Γ] > 0 (we reach a contradiction). Since Γ is

compact and convex it is constructible, meaning it is the countable intersection of closed half-spaces (see Proposition 7.5.6 in

[11]):

Γ = ∩∞
j=1{x ∈ R

m : a⊤j x ≤ bj} (34)

for some aj ∈ R
m and bj ∈ R for j ∈ N. Then

P
[

Z /∈ Γ
]

= P [∪∞
j=1{a

⊤
j Z > bj}]

Since the above probability is positive, there must be an index i ∈ N for which P [a⊤i Z > bi] > 0. Define the event

A = {a⊤i Z > bi}. Then P [A] > 0. Since Z is a version of E [Xk|Hk] it is Hk-measurable and A ∈ Hk. By the defining

property of a conditional expectation it holds that

E [Z1A] = E [Xk1A]

and so
E
[

a⊤i Z1A
]

P [A]
=
a⊤i E [Xk1A]

P [A]

Since U ∼ U [0, 1] is independent of the random element (Sk, 1A) ∈ ΩS × {0, 1} we have by Corollary 3b

Xk = v(Sk, 1A,W )
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for some random variable W ∼ U [0, 1] that is independent of (Sk, 1A), and for some measurable function v : ΩS × {0, 1} ×
[0, 1] → R

m such that

v(s, b, w) ∈ C(s) ∀s ∈ ΩS , b ∈ {0, 1}, w ∈ [0, 1]

Then

E
[

a⊤i Z1A
]

P [A]
=
a⊤i E [v(Sk, 1A,W )1A]

P [A]
(35)

= a⊤i E [v(Sk, 1,W )|A] (36)

= a⊤i E [v(Sk, 1,W )] (37)

where we have used the fact that (Sk,W ) is independent of A (recall that W is independent of (Sk, 1A) and Sk is independent

of the Hk-measurable random variable 1A, so that Sk,W, 1A are mutually independent). Defining y = E [v(Sk, 1,W )], it

follows by definition of Γ that y ∈ Γ ⊆ Γ and so a⊤i y ≤ bi (recall (34)). Thus

E
[

a⊤i Z1A
]

P [A]
≤ bi

and so

E
[

(a⊤i Z − bi)1A
]

≤ 0 (38)

By definition of event A = {a⊤i Z > bi}, the random variable (a⊤i Z − bi)1A is nonnegative, so (38) implies

(a⊤i Z − bi)1A = 0 almost surely

However, (a⊤i Z − bi)1A > 0 if and only if 1A > 0, which contradicts the fact that P [A] > 0.

To prove (c), define M1 = X1 − E [X1] and define Mk = Xk − E [Xk|Hk] for k ∈ {2, 3, 4, . . .}. Then {Mk}
∞
k=1 is a

zero mean sequence of bounded random vectors in R
m where each component forms a martingale difference, and so the law

of large numbers for martingale differences implies that 1
k

∑k

i=1Mi converges to 0 almost surely [44]. Thus, 1
k

∑k

i=1Xi −
1
k

∑k

i=1 E [Xk|Hk] converges to 0 almost surely. However, part (b) implies E [Xk|Hk] ∈ Γ almost surely, and convexity of Γ

implies 1
k

∑k
i=1 E [Xk|Hk] ∈ Γ almost surely.

Conversely, if (Sk)
∞
k=1 is identically distributed with distribution λ and U ∼ U [0, 1] is independent of (Sk)

∞
k=1, then for

any x ∈ Γ it is straightforward to see there is a causal and measurable decision policy that chooses Xk ∈ C(Sk) to ensure:

limk→∞
1
k

∑k
i=1 E [Xi] = x

and if (Sk)
∞
k=1 are i.i.d. then we can further ensure

limk→∞
1
k

∑k

i=1Xi = x almost surely

This is done by first mapping the random variable U ∼ U [0, 1] to a sequence of i.i.d. U [0, 1] random variables (U1, U2, U3, . . .)
by using the bits corresponding to the binary expansion of U . Then fix any sequence of points xk ∈ Γ that satisfy xk → x
and define Xk = vk(Sk, Uk) for k ∈ N where vk is the corresponding measurable function in the definition of Γ that ensures

Xk ∈ C(Sk) and E [Xk] = xk for all k ∈ N.

V. COUNTER-EXAMPLES

This section considers pathological cases for the opportunistic scheduling problem with i.i.d. channel states (Sk)
∞
k=1 and

only m = 1 channel. We use (ΩS ,FS) = ([0, 1],B([0, 1])) throughout.

A. Nonmeasurable policies

This example gives an opportunistic scheduling system for which a nonmeasurable policy produces larger time averages

in comparison to any measurable policy. It is similar in spirit to the example given by Blackwell in [20] which shows that

a single decision at one step of a finite stage dynamic program can bring arbitrarily more utility if it makes a measurable

decision based on both the current state and memory, rather than only on the current state (even if the utility function depends

only on the current state and the current decision). However, the structure of that example is different from ours and compares

two measurable policies rather than a nonmeasurable policy in comparison to any measurable decision.

Define

Ω = [0, 1]N, F = ⊗k∈NB([0, 1]), P = ⊗k∈Nµ

where µ is the standard Borel measure on [0, 1]. Each outcome has the structure ω = (ω0, ω1, ω2, . . .). Define U : Ω → [0, 1]
and Sk : Ω → [0, 1] by U(ω) = ω0 and Sk(ω) = ωk for k ∈ {1, 2, 3, . . .}. Then (Sk)

∞
k=1 are i.i.d. U [0, 1] variables; U ∼ U [0, 1]

is independent of (Sk)
∞
k=1.
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Fix A ⊆ [0, 1] as a set with inner measure 0 and outer measure 1 (such sets exist under the Axiom of Choice [35][36][37]). In

particular, neitherA nor its complementAc = [0, 1]\A contains a Borel subset of positive measure. Define C : [0, 1] → Pow(R)
by

C(s) =

{

{0, 1} if s ∈ A
{0, 2} if s ∈ Ac

A measurable choice function for this system is ψ(s) = 0 for all s ∈ [0, 1] and so Assumption 1 holds. However, it can be

shown that Assumption 2 fails.

Consider any decision policy that is measurable, meaning that it produces valid random variables (Xk)
∞
k=1 that satisfy

Xk ∈ C(Sk) surely for all k ∈ N. For each fixed k ∈ N define the set

Dk = {ω ∈ Ω : ωk ∈ A}

It turns out that every F -measurable subset of Dk has measure 0, and every F -measurable subset of Dc
k also has measure 0

(proof postponed to the next paragraph). Since Xk is a valid random variable we know {Xk = 1} and {Xk = 2} are valid

events (i.e., in F ). Since Xk ∈ C(Sk) we have {Xk = 1} ⊆ Dk and so P [Xk = 1] = 0. Likewise, {Xk = 2} ⊆ Dc
k and so

P [Xk = 2] = 0. It follows that Xk = 0 almost surely for all k ∈ N and so limk→∞
1
k

∑k
i=1Xi = 0 almost surely. On the

other hand, the (nonmeasurable) policy that chooses Xk = 1 if Sk ∈ A and Xk = 2 otherwise surely yields Xk ∈ C(Sk) and

Xk ≥ 1 for all k ∈ N, so lim infk→∞
1
k

∑k

i=1Xi ≥ 1 surely.

It remains to show that every F -measurable subset of Dk has probability 0 (the corresponding proof for Dc
k is similar). Let

Z be a F -measurable subset of Dk. Let πk(Z) be the projection of Z onto the dimension k. Then πk(Z) ⊆ A. Since Z ∈ F ,

Z can be viewed as a Borel measurable subset of the Polish space [0, 1]N, and since the projection onto one dimension is a

continuous function, the set πk(Z) is an analytic subset of [0, 1] and hence a Lebesgue measurable subset of [0, 1] [10]. It

follows that πk(Z) = B∪R where B is a Borel set and R is a subset of a Borel set R̃ with µ(R̃) = 0. Since B ⊆ πk(Z) ⊆ A
we have µ(B) = 0 (recall that all Borel measurable subsets of A have measure 0). Therefore

P [Z] ≤ P
[

ω ∈ Ω : ωk ∈ B ∪ R̃
]

= µ(B ∪ R̃)

≤ µ(B) + µ(R̃) = 0

B. Randomization without deterministic measurable choice

This example shows a probability space with random elements Xk ∈ C(Sk) for all k ∈ N, so that a form of randomized

choice exists, without the measurable choice assumption (Assumption 1). Famous examples in the field of descriptive set theory

by Blackwell [31], Novikoff [32], Sierpiński [33], and Addison [34] prove existence of a Borel measurable set A ⊆ [0, 1]2

with a projection π1(A) onto the first component that satisfies π1(A) = [0, 1] and such that there is no measurable function

ψ : [0, 1] → [0, 1] that satisfies (x, ψ(x)) ∈ A for all x ∈ [0, 1] (see also Example 5.1.7 in [10]). Define

C(s) = {y : (s, y) ∈ A} ∀s ∈ [0, 1]

Assumption 2 holds for this system because {(s, x) ∈ [0, 1]2 : x ∈ C(s)} = A is a Borel set, while Assumption 1 fails because

there is no measurable choice function ψ(s). Nevertheless a probability space can have i.i.d. random vectors (Sk, Xk)
∞
k=1

that satisfy Xk ∈ C(Sk) surely for all k ∈ N as follows: Let (Uk)
∞
k=0 be i.i.d. U [0, 1] variables. Since A is an uncountably

infinite Borel measurable subset of R
2, there is an isomorphism b : [0, 1] → A. Define (Sk, Xk) = b(Uk) for all k ∈ N.

Then (Sk, Xk)
∞
k=1 are indeed i.i.d. random vectors and (Sk, Xk) ∈ A and so Xk ∈ C(Sk) surely for all k ∈ N. Fix k ∈ N.

Using randomization variable U0 with Corollary 2 implies Xk = hk(Sk,Wk) for some Borel measurable function hk and

some random variable Wk ∼ U [0, 1] that is independent of Sk. Since Assumption 2 holds, any probability space that contains

a random element (S,W ) with the same distribution as (Sk,Wk) yields

P [hk(S,W ) ∈ C(S)] = 1

VI. CONCLUSION

This paper considers sequences of Borel measurable functions where each function Xk is constrained to be measurable

with respect to the sigma algebra generated by the union of an arbitrary number of sigma algebras associated with index

k. Specifically, each Xk is σ(∪j∈Jk
Hj)-measurable, where Jk is an arbitrary index set and Hj is a sigma algebra for each

j ∈ Jk. It is shown that each Xk can be expressed as the composition of a Borel function hk with some real-valued measurable

functions Yj for j ∈ Jk, each Yj being measurable with respect to the sigma algebra Hj . The same Yj functions can be used

to represent the influence of Hj for all indices k in which j ∈ Jk. For applications to stochastic control, this enables

functional representations of all possible decision vectors that satisfy causality and measurability constraints. This leads to

a refined theorem on network capacity for opportunistic scheduling in time-varying wireless networks. The theorem uses
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two measurability assumptions, including an assumption on existence of a measurable choice function. By utilizing classical

pathological counter-examples in the field of descriptive set theory, an example opportunistic scheduling system is developed

for which a nonmeasurable policy yields significantly better time averages in comparison to any measurable policy.
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