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Abstract
Although peridynamics is widely used to investigate mechanical responses in materials, the ability of peridynamics to
capture the main features of realistic stress states remains unknown. Here, we present a procedure that combines
analytic investigation and numerical simulation to capture the elastic field in the mixed boundary condition. By using the
displacement potential function, the mixed boundary condition elasticity problem is reduced to a single partial
differential equation which can be analytically solved through Fourier analysis. To validate the peridynamic model, we
conduct a numerical uniaxial tensile test using peridynamics, which is further compared with the analytic solution
through a convergence study. We find that, when the parameters are carefully calibrated, the numerical predicted
stress distribution agrees very well with the one obtained from the theoretical calculation.
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Introduction

Understanding the role of mechanical properties and
geometric factors in determining the mechanical per-
formance of the materials is crucial for modern engi-
neering, especially in the context of high-tech and
structural glasses. Brittle materials, such as glass, can
be broken suddenly without any obvious deformation
under scratching, impact, or fatigue, which limits their
further application.1–7 One of the obstacles to per-
forming structural analysis on materials is the diffi-
culty in determining the in-situ state of stress. This
can be characterized by the stress field in the bulk
resulting from a given loading. Experimentally, stress
fields can be determined with photoelasticity, strain
correlations based on strain gauges, and high-speed
photometry of dots painted on the sample.8

However, such experimental studies have been lim-
ited mainly by two factors, which makes it difficult to
analyze the exact role of mechanical properties and
geometric factors on material failure. First, the evolu-
tion of stress fields during the crack propagation is
still difficult to access through experiments due to the
limitation of the resolution of devices.9 As such, most
of the experimental measurements can hardly expli-
citly capture the local details of deformation and cor-
responding stress during the loading process at small
scales. Second, real boundary conditions in terms of
loads and displacements are very hard to exactly

determine and constrain in-situ as it requires intensive
stress analysis. An example of this is seen in the unde-
sired effects of barreling seen in uniaxial compression
testing due to the friction between the specimen and
the loading device.10 Stress analysis is based on the
framework of continuum mechanics, and ever more
complex problems continue to be solved with the help
of new mathematical methods and computational
tools.11–15 These problems are typically approached
on the basis of either deformation or stress para-
meters, which are often used to generate linear sys-
tems of equations to solve for wanted unknowns.

Generally, the stress function approach and the
displacement potential formulation are two widely
used methods for solving boundary value elasticity
problems.16,17 The stress function approach had com-
monly been employed in the finite difference tech-
niques, where all boundary conditions are described
as stress or concentrated force.16,18 However, this
treatment also results in some limitations as it doesn’t
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lend itself well to finding solutions to problems where
the boundary conditions are complex. As a result, this
method is not suitable for the problems that have
rigid components or fixed supports, and thus excludes
the stress function approach from being a realistic
candidate for solving many practical mixed boundary
value problems. In the mixed boundary value prob-
lem, the boundary conditions are specified in terms of
both force (or stress) and displacement (or strain).
Stress fields need to be well understood in a reliable
manner in engineering structures for the sake of
safety and economic feasibility, leaving the displace-
ment potential formulation as the ideal candidate for
general analysis. In this method, the problem is a spe-
cific solution to a governing partial differential equa-
tion (PDE) of strain equilibrium. The potential
function satisfying this equation and the boundary
conditions is defined in terms of the spatial variables
defining the plane in which the stress field lives.
Opportunely, the method has the benefit of reducing
the number of dependent variables with respect to
finite difference approaches by a half. This results in
a massive reduction in effort for finding an analytical
solution and higher accuracy without additional
problem at zones of transition between types of
boundary condition.16,19–24

The alternative method is turning to numerical
simulations, which can provide detailed information
at the time and length scale that can hardly be acces-
sible by experiments. The failure of materials has
been studied in the past across a large range of length
scales: including the electronic scale,25 the atomic
scale,26–29 and the macroscopic scale.30–34 Although
the atomic scale simulation can provide more com-
prehensive insight on the mechanical behavior of
materials,25,35,36 it is computationally expensive and
can hardly be employed at macroscopic scale. The
finite element method (FEM) is the most widely used
to investigate the mechanical behavior of materials at
macroscopic scale. However, since the governing
equation of FEM is written in the partial differential
form, numerical difficulties will occur when the crack
emerges and disrupts continuity. As a result, FEM
simulation may be problematic when the fracture is
not negligible.37

As this issue is inherent to the local treatment of
FEM, Silling38 proposed a non-local formulation of
the dynamical equations of continuum mechanics
inspired by MD39: peridynamics. The advantage of
this non-local form is that the continuity of strain or
stress field is no longer required, which make it more
suitable for the problem where the significant discon-
tinuity is involved, such as blast,40,41 impact,1,42,43

failure of composite materials,44 and crack
propagation.42,45

In the present work, we investigate the stress field
within a glass pane using the displacement potential
formulation combined with peridynamic simulations.
Based on the displacement potential method, we give

a stress distribution of the sample under uniaxial
loading. To obtain a reliable result, we perform a
convergence study for several computational para-
meters, which are essential for peridynamic simula-
tion. By comparing the stress distribution from the
theoretical calculation and peridynamics simulation,
we demonstrate the ability of peridynamics to repro-
duce the accurate mechanical response of materials
under realistic boundary conditions. The procedure
presented in this study can also be used to validate
other peridynamic models and calibrate the corre-
sponding parameters.

Method and algorithm of solution

Peridynamics

Peridynamics was postulated as a reformulation of
continuum mechanics, such that it is described by
integral equations rather than differential equa-
tions.38,46–49 This removes the necessity of the dif-
ferentiability of the displacement field, providing
valid equations of motion that can describe cracks
and discontinuities in extended bodies.45,50–53 As a
continuum model, peridynamics can be discretized
by both mesh-free and mesh-based methods. In the
case of a uniform grid-style mesh, the domain is
discretized into a lattice whereupon particles at the
nodes interact by pair-wise forces. This formulation
lends itself well to being generalized toward simu-
lating materials with complex constitutive models
such as plasticity and viscoelasticity.47,54 Rather
than interacting only with the connected points, the
particle can also interact with the particles within
the specific region, which is usually a sphere region
with a certain radius called the horizon, d.
Accordingly, in peridynamics, the equation of
motion is rewritten in the integral form:

r€u(x; t)=

ð
Hx

f(u(x’, t)� u(x, t), x’� x) dx’ + b(x, t)

ð1Þ

where f(.) describes the force between particles located
at x and x# (i.e. pairwise force function).Hx represents
the region within the horizon. The functional form of
f(.) depends on the material model used. ü is the sec-
ond derivative of the displacement (i.e. acceleration)
vector field, r is the mass density, and b is the applied
external force density.

In recent years, various types of peridynamics
models and associated material models have been
proposed.38,47,54 However, despite its simple nature,
the bond-based model has previously been shown to
be successful in reproducing the key features of frac-
ture in brittle materials.1,2,45 Here, we focus on the
bond-based model in this study. For a prototype
microelastic brittle (PMB) bond-based material, f(.)
can be expressed as:50
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f h, jð Þ=
j + h
jjj + hjj cs, jk k4 d

0, jk k. d

�
ð2Þ

where j denotes the displacement of particles and h is
interparticle separation. Thus, j + h

j + h represents the
unit vector of bond stretch. c is the bond constant,
and s represents the relative bond stretch. Then, the
micromodulus c is given as:50

c=
18K

pd4
ð3Þ

where K is the bulk modulus and d is horizon. The
bonds between lattice points are assumed to undergo
purely linear elastic deformation until they reach the
critical stretch s0. Once the elongation is greater than
s0, the bond will be removed in the simulation to
mimic the initiation and propagation of cracks. Based
on linear elastic fracture mechanics, the critical bond
stretch s0 is determined according to the energy
released during the crack propagation45:

s0 =

ffiffiffiffiffiffiffiffiffi
5Gc

9Kd

r
ð4Þ

where Gc is the fracture energy of the material. Based
on that, the damage at a material point x and time t is
defined as

u x, tð Þ=1�
Ð
Hx

m(t,h, j)dVx0Ð
Hx

dVx0
ð5Þ

where m(t,h, j) is a Boolean function, which is equal
to 0 when bond is broken, and otherwise is equal to
1. According to this definition, the damage of a point
with no broken bonds is 0, and one with all bonds
broken will have a damage of 1. Thanks to the nonlo-
cal treatment of the interactions between points
within the horizon, the singularity that comes from
the discontinuity can be overcome by the integral for-
mation of the motion equation, which avoids compli-
cated remesh or other procedures in traditional FEM.

Analytic model

In this study, the glass plate is in the three-
dimensional stress state. The pane is subjected to uni-
axial tension in y-direction by imposing the constant
velocity on the top and bottom boundaries (see
Figure 1). To remove the potential rigid rotation, the
x- and z-directions are also fixed on the top and bot-
tom boundaries. Beyond that, there is no additional
constrain on the pane.

Here, for linear elastic material, the stress can be
expressed using the Cauchy stress tensor
formulation17:

sx

sy

sz

0
@

1
A=

E

2n2+n� 1

n� 1 �n �n

�n n� 1 �n

�n �n n� 1

0
@

1
A ex

ey
ez

0
@

1
A
ð6Þ

sy =
E

2n2 + n � 1
½ n � 1ð Þey � n(ex + ez)� ð7Þ

Since material is assumed to be isotropic, we can use
the ansatz ex = ez = � neyf(y), where f yð Þ 2 ½0, 1�,
with 0 yielding plane strain at the boundaries and 1
yielding plane stress in the center. Then, sy can be
expressed as:

sy =
1� n � 2n2f(y)

1� n � 2n2

� �
Eey ð8Þ

To determine the functional form of the y-dependence
function, we turn to the displacement potential, which
is defined by the governing PDE:16

∂4C

∂x4
+2

∂4C

∂x2∂y2
+

∂4C

∂y4
=0 ð9Þ

where displacement in the y direction is given in terms
of the potential:22

uy x, yð Þ= 1

1+ �v
2
∂2C

∂x2
+ (1� �v)

∂2C

∂y2

� �
ð10Þ

where �v signifies the effective Poisson ratio defined as:

Figure 1. Schematic illustration of boundary condition. The
orange arrows indicate the direction of constant velocity. The
axial line is located at the middle point of the cross section.
The red dashed line is the J-integral contour.
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�v=
n, plane stress
n

1�n
, plane strain

�
ð11Þ

Similarly, the effective Young’s modulus �E is defined
as:

�E=
E, plane stress
E

1�n2 , plane strain

�
ð12Þ

We can then represent the longitudinal stress in terms
of the potential:

sy =
�E

1+ �vð Þ2
2+ �vð Þ ∂3C

∂x2∂y
+

∂3C

∂y3

� �
ð13Þ

Here, we use the Fourier series representation of C:

C x, yð Þ=
X‘

m=1
Ym yð Þsin axð Þ, a[

mp

Lx
ð14Þ

where Lx is the width of the body in the x-direction.
Combined with (9) and (14), Ym yð Þ can be

expressed as:

Ym yð Þ=Am cosh byð Þ+Bmby sinh byð Þ
+Cm sinh byð Þ+Dmby cosh byð Þ

ð15Þ

where b[ mp
Ly

. According to the axial stress, the force
boundary condition can be written as:

sy x, 0ð Þ=sy x,Ly

� �
=P ð16Þ

Since the ends are fixed to prohibit motion, we can
get another displacement boundary condition:

ux x, 0ð Þ= ux x,Ly

� �
=0 ð17Þ

where

ux x, yð Þ= ∂2C

∂x∂y
ð18Þ

Noted that the ends are regarded as fixed supports
since there is no rotation for these supports. These
boundary conditions are enough to uniquely charac-
terize the Fourier coefficient equation. Plugging equa-
tions (14) and (15) into equation (13), subject to the
boundary conditions from equations (17) and (18),
yields a proportionality

Ym yð Þ;sinh2(y) ð19Þ

which in turn yields

sy;
2 �E(2� �v)

1+ �vð Þ2
X‘

m=1
sinh( by)cosh( by)sin axð Þ

ð20Þ

We now can compare this to the relation derived from
the Cauchy stress tensor. Here, we only consider the
central longitudinal axis of the pane as we care about
the bulk behavior. In this case, sin axð Þ’1, which
leads to:

f(y);
X‘

m=1
sinh( by)cosh( by) ð21Þ

which can be approximated, for 04y4Ly

, as:

f(y);sinh2(y) ð22Þ

Imposing the constraints on the function known from
our physical knowledge of the problem, we find:

f yð Þ=1� sinh2
y

y0

� �
, y0[

Ly

2sinh�1 1ð Þ ð23Þ

Finally resulting in the familiar relationship

sy =E yð Þey ð24Þ

E yð Þ=E 1+
2n2sinh2 y

y0

� 	
1� v� 2n2

0
@

1
A ð25Þ

We can see that E yð Þ ! �E for the appropriate val-
ues of y. Equation (25) is the key result of this
analysis.

The Courant–Friedrichs–Lewy (CFL) condition

The timestep used in peridynamics should be carefully
selected to ensure the convergence of simulation. The
CFL condition is widely used to select the critical
timestep for peridynamics. The basic idea of CFL
condition is that the timestep should be shorter than
the critical time required for the mechanical wave to
go through the lattice spacing.55 Here, it can be
expressed as:

a
Dt

Dx
41 ð26Þ

In peridynamics, Dx is the lattice spacing and a can be
taken to be the Rayleigh velocity:56

a=Cr =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

(1+ n)r

s
ð27Þ
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where r is the mass density and E is the Young’s mod-
ulus. In the PMB model, the Poisson ratio is fixed to
be 0.25, so

Dt4Dx

ffiffiffiffiffiffiffiffiffiffiffi
1:25r

E

r
ð28Þ

Simulation details

Here, the boundary condition applied in the analytic
model is also applied in the numerical model for fair
comparison. As shown in the system diagram pre-
sented in Figure 1, the length of sample is 14mm
while the out of plane thickness is 3mm. Moreover, a
3mm initial infinite sharp crack is created to simulate
mode I fracture since the sizes of initial crack and
thickness are comparable in many experiments.
Noted that, the crack is not created for the simula-
tions where the fracture is not involved. The sample is
discretized into lattice point with 0.5mm lattice spac-
ing. Then, the strain rate _e can be calculated based on
the constant velocity v: _e= 2v

L , where L=14mm is
the length of the sample.

All of simulations are performed by using the peridy-
namics package from LAMMPS, which has been vali-
dated by comparing the experimental data.1,2,43,45,57,58

After simulations, the results are further visualized with
OVITO. Here, to mimic the brittle materials, the
mechanical properties of soda-lime silicate glass are
used.35,42 The input parameters are given in Table 1.
Figure 2 shows the implementation at various stages in

LAMMPS: Figure 2(a) shows the initial setup with the
glued edges highlighted in red, Figure 2(b) shows the
notch in black and the stress concentration that results
from the axial load, and Figure 2(c) shows the final
crack path by highlighting damaged voxels.

Young’s modulus is determined by taking the slope
of the stress-strain curve. The stress is determined by
setting the yy-component of the stress tensor as an
output from LAMMPS directly, while the strain is
calculated after the simulation from the particle tra-
jectories. For each y-position along the loaded axis of
the sample, the Young’s modulus is calculated and
can be written as the function of y-position: E(y). We
then fit this E(y) to equation (25) with a chi-square
(x2) fit taking E as the fitting parameter. The good-
ness of fit is determined by

x2 =
Xn

i=1

(Oi � Ai)
2

Ai
ð29Þ

where Oi is the simulation results and Ai is the analy-
tical results from equation (25). The Young’s modulus
is determined where x2 is minimum.

The fracture energy can be obtained by calculating
the area under the stress-displacement curve:44

Gc = s0 sy dly ð30Þ

where sy and ly are the stress and displacement in the
loading direction (y-axis), respectively. The term s0 is
calculated based on the system geometry as

Table 1. Performance of peridynamic simulations. The parameters are selected based on the convergence results.

Simulation input parameter Material input parameter Simulation result % Error

d 3 Dx E (GPa) 95.25 E (GPa) 94.5 0.79
Dx 0.2 mm
_ey 0.01 s21 Gc (J/m2) 4.3 Gc (J/m2) 4.39 2.09
Dt 0.1 ns

Figure 2. (a) Peridynamics simulation setup before loading. (b) Axial stress at the time when the crack start to propagate, a stress
concentration is observed at the crack tip. (c) Counter plot of the damage distribution after failure. The damage value represents
the fraction of broken bonds. Crack surface appears when the damage value reach around 0.5.
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s0 =
L

L� Ln
ð31Þ

where L is the length of the specimen and Ln is the
length of the notch. Herein, s0 =

14
11 .

Results and discussion

At beginning, the horizon is selected as three times of
lattice spacing. The timestep is 1 ns and the strain rate
is 1 s21. To investigate the effect of horizon size on the
simulation results of peridynamics, we vary the size of
the horizon from 2 to 4.5 times of lattice spacing while
keep the rest simulation parameters unchanged.
Noted that the yield stress of brittle material with an
initial crack depends on the geometry of the sample
and is not compared in this study.

Figure 3(a) shows the calculated Young’s modulus
as the function of horizon size. The results suggest
that there is a non-monotonic relationship between
horizon size and Young’s modulus. The most accurate
Young’s modulus obtained from peridynamics can be
expected when the horizon size is around 3 and 4.2
times of lattice spacing. Figure 3(b) shows the calcu-
lated fracture energy as the function of horizon size.
We find that the fracture energy roughly decreases
monotonically with the horizon size, while the most
accurate fracture energy can be obtained when the
horizon size approaches three times of lattice spacing.
In each set of figures, the ‘‘accuracy’’ is seen through
an agreement with the analytic result informed by the
displacement potential formulation which is shown as
a red horizontal line. The black line in each set of fig-
ures is a guide for the eye through the data points
gathered from simulation. The above results suggest
that the effect of horizon size is not negligible and the
horizon size should be three times of lattice spacing to
offer the most accurate mechanical behavior, which

agrees with previous studies.59,60 Based on that, the
horizon size is selected as three times of lattice spacing
in the following simulations.

We then investigate the effect of lattice spacing on
the simulated mechanical properties. Here, the lattice
spacing is varied from 0.1 to 1mm while the rest of
parameters are fixed for a fair comparison.

As shown in Figure 4(a), the significant underesti-
mate of Young’s modulus is observed when the lattice
spacing becomes comparable with the thickness of
the sample. However, the influence of lattice spacing
is much smaller when it is less than 0.5mm. Similarly,
the convergence of simulated fracture energy can be
observed when the lattice spacing is smaller than
0.5mm as shown in Figure 4(b). Considering the fact
that the decrease of lattice spacing will significantly
increase the computational time of peridynamics, the
0.5mm lattice spacing is selected based on the balance
between efficiency and accuracy.

We then investigated the influence of strain rate.
To this end, we only vary the velocity of the top and
bottom layers to achieve various strain rates without
change other simulation details.

Figure 5(a) shows Young’s modulus as the function
of the strain rate. We found that the extremely high
strain rate (i.e. 40 s21) will overestimate Young’s mod-
ulus. Nevertheless, the effect of strain rate becomes
negligible once it is slower than 0.4 s21. The influence
of strain rate on the fracture energy is also investigated.
As shown in Figure 5(b), the simulated fracture energy
increase monotonically with strain rate. The origin of
this strain rate introduced toughening behavior can be
considered as the crack instability under high propaga-
tion velocity.44 Although the fracture energy continues
to decrease with strain rate even at 0.4 s21, the differ-
ence of fracture energy caused by strain rate becomes
much smaller when it is less than 1 s21.

Furthermore, we investigate the effect of strain
rate on crack propagation. To this end, we first

Figure 3. Effect of horizon size on the (a) Young’s modulus and (b) fracture energy. The theoretical value informed by the
displacement potential formulation and elasticity is shown as a red horizontal line. The black line is a guide for the eye through data
points gathered from simulation.
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calculated the J-integral based on the method devel-
oped in Hu et al.61 The critical J-integral value Jc is
recorded as the maximum J-integral value during the
loading process.61 Thus, the critical intensity factor
Kc can be expressed as Kc =

ffiffiffiffiffiffiffiffi
EJc
p

.62 As shown in
Figure 6, we find that the critical intensity factor Kc

increases monotonically with the strain rate.
However, this strain rate dependency becomes much
less sensitive when the strain rate is lower than
0.4 s21. In general, to simulate the mechanical beha-
vior under the quasi-static loading condition, the
strain rate should be as low as possible. On the other
hand, the strain rate should be as high as possible to
save computational time. As a result, we select a
0.4 s21 strain rate to mimic the quasi-static loading
condition without significantly increasing the compu-
tational cost.

The effect of the timestep is also investigated in this
study. Here, the timestep varies from 0.1 to 200 ns
while the rest remains consistent. As shown in Figure
7(a), the large timestep (i.e. 200 ns) can significantly

Figure 5. Effect of strain rate on the (a) Young’s modulus and (b) fracture energy. The theoretical value informed by the
displacement potential formulation and elasticity is shown as a red horizontal line. The black line is a guide for the eye through data
points gathered from simulation.

Figure 4. Effect of lattice space on the (a) Young’s modulus and (b) fracture energy. The theoretical value informed by the
displacement potential formulation and elasticity is shown as a red horizontal line. The black line is a guide for the eye through data
points gathered from simulation.

Figure 6. Effect of strain rate on the critical stress intensity
factor.

Rivera et al. 7



underestimate Young’s modulus. However, the con-
vergence of simulated Young’s modulus can be
observed once the timestep is smaller than 10ns,
which is in agreement with the CFL condition marked
by the vertical blue line. Similarly, the CFL condition
can also ensure the convergence of fracture energy as
illustrated in Figure 7(b). When the timestep is much
larger than the timestep estimated from the CFL con-
dition, the peridynamics simulation can yield unrealis-
tic fracture energy (i.e. three times higher than the
theoretical value).

As presented in Table 1, we show that the mechan-
ical properties (i.e. Young’s modulus and fracture
energy) can be well reproduced by carefully selecting

the simulation parameters (i.e. horizon, lattice spac-
ing, strain rate, and timestep).

Based on that, we now investigate the ability of
peridynamics to reproduce the accurate stress field of
material under realistic boundaries. Figure 8 shows
the local stress along the axial line designated in
Figure 1 as the function of the y-position. The simu-
lated results show a clear ‘‘glued’’ effect of the regions
that are close to the top and bottom boundary: the
axial stress decreases monotonically with the distance
from the boundary layers and reaches a minimum at
the mid-section.

As seen in Figure 8, by comparing the theoretical
results from equation (25) (the blue dashed line), we
show that the simulated stress distribution (the black
points) agrees very well with the theoretical one.
Moreover, Table 1 shows the choices of input para-
meters made based on the convergence study, and
shows that the associated simulation output yields
excellent agreement with the input Young’s modulus
and fracture energy when fit to equation (25).

Conclusions

Although peridynamics becomes more popular in
recent years, the analytic framework to calibrate the
numerical parameters is of critical importance to
reproduce reliable simulation results. Rather than
comparing with traditional numerical results (such as
FEM), we calibrate the parameters for peridynamics
by directly comparing them with the theoretic solu-
tion. The proposed framework provides a general
way to obtain the unphysical numerical parameters in
peridynamics that can reproduce the right mechanical
properties of brittle materials. Combining the analytic
solution with peridynamic simulation, we demon-
strate the ability of peridynamics to capture the realis-
tic mechanical behavior of brittle materials under

Figure 8. Stress as a function of loading direction along the
axial line (depicted in Figure 1). The blue line represents the
theoretical results obtained from (24). The black points are
obtained from peridynamics simulation.

Figure 7. Effect of timestep on the (a) Young’s modulus and (b) fracture energy. The theoretical value informed by the
displacement potential formulation and elasticity is shown as a red horizontal line. The black line is a guide for the eye through data
points gathered from simulation.
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uniaxial loads. By using the displacement potential
function, the mixed boundary condition elasticity
problem is reduced to a single partial differential
equation which can be analytically solved through
Fourier analysis. Then, we perform the peridynamics
simulation under the same boundary conditions to
validate the reliability of peridynamics. This shows
that, when the parameters are carefully calibrated,
peridynamics can realistically reproduce the state of
stress in the material during loading even for complex
boundary conditions, which is necessary for the fur-
ther implementation of peridynamics. In addition to
this, the proposed procedure can also be implemented
for more complex peridynamic models (such as
advanced models that can capture the fatigue63 or vis-
coelastic behavior of materials64), in which some
parameters are not well defined and need to be care-
fully calibrated. Noted that the current study only
considers the tensile fracture (i.e. model I fracture).
Extension of the current framework to more compli-
cated loading conditions is necessary in future work.
Moreover, with the parameters calibrated by the
method proposed in this study, it is also interesting to
perform the large-scale peridynamics simulation to
investigate the details of crack propagation, such as
the evolution of crack velocity and the shape of the
crack front.
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