In-Network Caching Assisted Error Recovery For
File Transfers

Nagmat Nazarov and Engin Arslan
Computer Science and Engineering
University of Nevada Reno
{nnazarov,earslan} @unr.edu

Abstract—Silent data corruption poses permanent data loss
risk for file transfers as receiver server can accept and store
corrupted data as genuine. Researchers proposed end-to-end
integrity verification to recover from silent errors but recovery
process requires entire file to be transmitted, which degrades
the performance of transfers significantly. This paper takes
advantage of programmable network devices to implement in-
network caching for file transfers such that silent errors can
be recovered quickly and scarce network bandwidth can be
used more efficiently. In the proposed design, data packets are
mirrored to cache server as they pass through programmable
devices such that when the receiver detects an error, it can
retrieve the file from in-network cache instead of downloading
from the source again. Our preliminary results show that in-
network caching can shorten error recover duration by 50% and
improve overall transfer performance by around 20%.

I. INTRODUCTION

Wide area file transfers are susceptible to silent data corrup-
tions that escape existing error detection mechanisms such as
TCP checksum. Although some system components have built-
in integrity verification mechanisms, they are either weak or
available only in a subset of computing facilities. For example,
TCP uses 16-bit checksum to capture data corruption, but
it fails to detect errors once in 16 million to 10 billion
packets [1]], which results in frequent missed errors in today’s
high-speed networks that operate at hundreds of gigabit-per-
second speeds. In addition to network, data can also be
corrupted during disk read and write operations as disk drives
suffer from a significant number of silent data corruptions (aka
undetected disk errors) that occur mainly due to firmware or
hardware malfunctions in disk drives [2], .

Researchers proposed application-layer integrity verification
process to detect silent data corruptions which involves, upon
the completion of transfer, the use of secure hash functions
such as SHA256 to calculate and compare the checksum of
files on destination nodes against the checksum of original
files on source nodes. An earlier study showed that nearly
5% of all file transfers in research networks are exposed to
silent errors that would have gone unnoticed if application-
layer integrity verification was not implemented [3]. Hence,
integrity verification plays an important role in protecting file
transfers against silent errors.

On the other hand, integrity verification can degrade the
performance of file transfers significantly since it requires
entire file to be retransmitted even if only one bit is corrupted.

Researchers proposed block-level integrity verification that
involves checking the integrity of file transfers in smaller
segments to avoid transferring very large files in the case of
integrity verification failure. Despite reducing the overhead,
this approach has a risk of missing silent errors while writing
data to disk [4]. Moreover, it still requires the transfer of
nonnegligible amount of data from source to destination when
integrity verification fails.

In this paper, we propose to take advantage of caching and
computing resources deployed inside the network to expedite
the error recovery for file transfers. Network service providers
(e.g., ESnet) are deploying storage and compute resources to
the network alongside network devices that can be allocated
by users to optimize their workflows. These resources can
be leveraged to cache data in-transit until its integrity is
verified. Storing files in cache servers in network along the
transfer path between source and destination nodes (i) reduces
the overhead on network resources by not transferring large
volume of data over the long distances when files need to be
retransferred due to silent errors, and (ii) lower the duration
of error recovery when available bandwidth between caching
site and destination is larger than available bandwidth between
source and destination. Programmable network devices offer
a unique opportunity for the implementation of in-network
caching as we can selectively choose which network flows to
mirror and save in the caching server. Hence, in this work,
we demonstrate that programmable switches can be utilized
to mirror file transfer packets to a nearby cache server which
can then construct files and save them until the integrity of
transfers is verified. In case error is detected due to checksum
mismatch of file at source and destination nodes, files can be
streamed from the cache server to destination node to increase
the speed of recovery and minimize the impact of recovery
process on limited network resources. In summary, we make
following contributions:

e We develop an in-network caching mechanism for file
transfers. We leverage the programmability of switches
to mirror data packets as they pass through the switches
to save them in the cache server. We then process the
captured packets in the cache server to reconstruct the
files.

o We introduce in-network caching assisted error recovery
to retrieve files from cache servers when an error is

detected to minimize error recovery time and reduce
overhead on network resources.

e We conduct experiments using Tofino EdgeCore P4
switch and show that the proposed method leads to 50%
decrease in error recovery process and 20% decrease in
total transfer time of file transfers.

II. RELATED WORK

In network caching has been extensively studied by re-
searchers mainly in the context of web data caching to enhance
user experience [5]. Content Distribution Network (CDN)
achieve this goal by deploying many cache servers close to end
users to store popular content such that they can be delivered
to users quickly. Named Data Networking (NDN) proposed
content-centric networking design to store popular data on
network devices (e.g., routers) such that users can access them
quickly without the need to contact end hosts [6]. Since cache
replacement policy is critical for efficient execution of NDN,
researchers investigated various caching policies [7], [8], [9].

Thomas et al. analyzed the feasibility of using NDN to im-
prove the recovery time for network transmission errors [10].
They presented expected improvement rates for error recovery
based on network configuration and the location of errors
between source and destination. As anticipated, the error
recovery time can be significantly reduced when errors happen
near receiver nodes since cached packets can be retrieved from
one of the nearby network devices. However, they show that
existing memory technologies (e.g., SRAM and DRAM) used
in network devices are unable to support packet-level caching
at high speeds due to capacity and access time limitations.
Moreover, packet-level caching cannot be used to recover from
silent errors since it requires data packets to processed before
caching them to ensure that they are not exposed to silent
errors, which may not be feasible using network devices due
to lack of computational power.

Globus transfer service implements integrity verification for
file transfers and overlaps transfer and checksum compute
operations to minimize the overhead [11]]. Liu et al. proposed
dividing large files into blocks to improve pipelining (i.e.,
block-level pipelining) of transfer and compute tasks for
mixed-size datasets [12]]. Despite reducing the execution time
considerably, it requires careful tuning of block size to perform
well. Moreover, it tries to overlap the transfer operation of
one file with the checksum computation of another file, thus
incurring extra I/O overhead due to reading files twice; one for
transfer and the other for checksum computation. In a previous
work, we proposed the Fast Integrity VERification (FIVER)
algorithm to pipeline the transfer and checksum operations for
the same file to enable I/O sharing between thereby reducing
system overhead [13]], [14]. FIVER outperforms Globus and
block-level pipelining by reducing the overhead of integrity
verification from up to 60% to less than 10%.

In another work, we introduced Robust Integrity Verification
Algorithm (RIVA) to enhance the reliability of integrity verifi-
cation process by detecting and recovering from receiver-side
disk errors that can cause corrupted data to be accepted [4].

RIVA enforces checksum operations to read files directly from
the disk to capture undetected disk write errors. We compared
RIVA against state-of-the-art end-to-end integrity verification
algorithms in terms of robustness to capture error injections
during disk write operations for various file size when using
transfer nodes with a 16GB RAM. Both FIVER [13] and
BlockLevelPpl [12] failed to detect injected errors for all file
sizes as they always read files from page cache during check-
sum calculations. On the other hand, RIVA captured all fault
injections regardless of file size by invalidating cache copies
of file pages before starting checksum computation. However,
all of existing integrity verification solutions require data to
be retrieved from the source, which can induce significant
overhead to network in addition to slowing down the transfer
completion. Hence, this work takes advantage of in-network
storage capacity to cache the file content until its integrity is
verified.

III. BACKGROUND
A. Programmable Switches

Software Defined Networking aimed at separating control
and data planes to allow complex routing decisions to be taken
without the need for modifying switch software. However,
data-control plane communication overhead was introduced
because switches in the data plane are dependent on the
controller for forwarding decisions[15]. Moreover, OpenFlow
switches are equipped with a fixed set of functionalities which
requires new ASIC to be manufactured even for minor changes
in the packet processing architecture. To overcome these
limitations, programmable switch architecture is introduced
to execute custom actions through match-action pipelines.
P4 (Programming Protocol-independent Packet Processors) is
a domain-specific language used to implement processing
pipelines in programmable devices [16], [[17].

The high-speed packet processing on P4 is composed of four
main components [[18]. First is programmable which identifies
and parses packet header fields. Second is programmable
match-action pipeline where packet header fields are checked
against match table and corresponding actions are performed
on the header. Third is deparser which recreates the packet
by attaching updated header to payload make it ready for
forwarding. Fourth and perhaps the most important point of
this whole architecture is a programmable header and metadata
bus which carries packet header and intermediate results across
processing stages. Parsing and processing only affects the
header field, so packet payload is not affected by this process.

B. Mirroring

A packet may need to be mirrored to a port in addition to
the set of targets intended by the packet’s source. The packets
can be mirrored both from ingress or egress ports as shown
in Figure [T} If we mirror the packet at ingress port, then the
mirrored packet will not be affected by the processing pipeline
that the original packet traverses. On the other hand, if the
mirroring is done it at egress port, then the mirrored packet

HbH 4

(a) Ingress Mirroring

NNNNNNN ader, Fully modified packet, post deparser,ig_tm_md

Original Packet

Py
2
4
@
2
14

(b) Egress Mirroring

Fig. 1. Illustration of ingress and egress mirroring in programmable switches.

will be the same as the original packet since mirroring is done
upon the completion of all processing by the switch.

Ingress Mirroring: On the ingress side, the packet header
passes through the ingress pipeline before being appended to
the payload to form the modified packet. Although mirroring
decision is given during ingress match action pipeline, mir-
rored packet contains unmodified header. The Mirror_ID field
in metadata field is used to indicate whether or not a packet
will be mirrored at the ingress pipeline. The mirrored packet
is then placed into Mirror Buffer after appending Mirror_ID
and some optional metadata fields [19]].

Egress Mirroring: Egress pipeline also has a metadata field
called Mirror_ID. If this field is valid then the egress pipeline
will copy the egress packet together with the Mirror_ID and
additional optional metadata fields into the Mirror Buffer. The
egress pipeline deparser must be programmed to specify the
set of metadata that will accompany the mirrored packet. As
a result, the Mirror Buffer can contain an ingress mirrored
packet or an egress mirrored packet together with a Mirror_ID
field and some additional metadata. The Mirror Buffer then
copies packets to Queuing Subsystem. Since Queuing Subsys-
tem needs to know where each packet will be forwarded to,
the Mirror Buffer builds a table that maps the Mirror_ID to a
tuple that includes the data needed by the Queuing Subsystem
as follows:

e Unicast Egress port ID

o Multicast Group ID (1 and 2)
o Congestion Group ID

o Class of Service (Cos)

The packet and its associated metadata is transferred from
the Mirror Buffer to the Queuing Subsystem when the ingress
pipeline is not transferring a packet to the Queuing Subsystem.
In other words, the Mirror Buffer steals unused cycles from the
Input Pipeline Deparser in order to copy its packets into the
Queuing Subsystem. Mirrored packets enter the Queuing Sub-
system with the Is_Mirrored_Packet metadata bit set, which
allows egress pipeline to differentiate between original packets
and mirrored packets. Deparser terminates the parsed headers
and brings original headers from headers and metadata bus,
adds the payload of the original packet body, and sends them
to the traffic manager. Inside the deparser, we can instantiate
mirror extern which has the special method called “emit”.
It has a special parameter called mirror_session id. Among
intrinsic metadata for ingress deparser, there is a special field
called MirrorType as shown in Figure 2]

packet_out

struct

ingress_intrinsic_metadata_for_deparser_t {
bit drop_ctl;

digest_type;

resubmit_type;

mirror_type;)

DigestType_t
Resubmi

.__:EEP

| Original packet body

We adopted ingress mirroring since we are not inter-
ested in any modifications done at match-action pipeline.
In Tofino-1 architecture mirrored packets are configured via
BRI (Barefoot Runtime Interface) “mirror.cfg” table. It al-
lows up to seven mirror sessions to be created with dif-
ferent configurations, thus we created a custom mirroring
session. After creating a session, we add source server’s
port id along with output port (i.e., cache server’s port
id) into “p4.Ingress_acl.entry_with_acl_mirror” with “mir-
ror_session_id”. Doing so will check the packets in the ingress
deparser and mirror them if they match a specified rule. We
then update IP header checksum as packet header is updated
during the mirroring.

Tofinol: bit<3>
Tofino2: bit<4>

Fig. 2. Ingress Mirror deparser scheme.

IV. PROPOSED MODEL AND PRELIMINARY RESULTS

Figure [] demonstrates the proposed in-network caching
architecture. As files are being transferred from the sender
to receiver, data packets are mirrored to cache server located
near the programmable switch. The packets are captured at the
mirror site and processed to reconstruct the file. After the file
transfer operation is completed, the receiver servers calculates
the checksum for the transferred file and compare it against the
checksum sent by the sender. If the checksums do not match,
then the receiver sends a request to sender to resend the file.
This message is then intercepted by the programmable switch
and forwarded it to the cache server to transfer the file from
the cache server.

Since cache servers receives packets from programmable
switch in raw format, we implemented high-performance data
capturing and processing pipeline to reconstruct files from
mirror traffic. We use tcpdump [20] to capture mirrored

1000, M=E dpkt
@ Scapy
= pyshark

Time(sec)

100MB 500MB 1GB

Filesize

Fig. 3. dpkt outperforms pyshark and Scapy libraries by 10 — 400x
when processing captured traffic (i.e., pcap files) on cache servers to extract
original files.

packets on the cache server. Upon the completion of the
mirroring, we execute pcap parser to remove packet headers
and handle out of order and duplicate packets. Since mirrored
data must be ready as soon as an error is detected by the
receiver to take advantage of caching, the speed of pcap
processing is critical to observe a benefit from using the
cache data for error recovery. We evaluated the performance
of multiple pcap processing tools for various pcap sizes in
Figure [3 Specifically, we tested pyshark [21]], Scapy [22],
and dpkt [23] libraries. We observe that pyshark is the
slowest when it comes to parsing pcap files as its performance
is more than 400x slower than that of dpkt. Also, while at-
taining better performance than pyshark, Scapy is 8 —10x
times slower than dpkt.

In addition to yielding the best performance, dpkt can also
be used to process raw packets as they are being captured by
tcpdump to avoid incurring additional delay between packet
capture and file reconstruction. However, we find that dpkt is
not fast enough to process raw packets as they arrive to cache
server, thus we write the packets into a pcap file and let the
dpkt to process the pcap file.

To evaluate the proposed in network caching assisted error
recovery method for file transfers, we used three servers and
a switch (EdgeCore WedgelOOBF-32QS) that comes with
32 x 100G ports, 16 Core Intel x86 Broadwell-DE, Pentium
D-1517 processor, and 128 GiB SSD storage. The source,
destination, and cache servers are connected to the EdgeCore
switch with 1G, 10G, and 10G interfaces, respectively as
illustrated in Figure] We intentionally kept the bandwidth
between source and the switch lower compared to other links
to highlight the performance of in-network assisted error
recovery method in the presence of bandwidth difference
between source-destination and cache server-destination pairs.
As in-network resources are widely deployed, this is expected
to be a common scenario as wide-area network bandwidth are
highly likely to be lower compared to bandwidth between end
hosts and nearby network switches.

EdgeCore P4

16 Switch 10G
10G6 Destination

Source

Cache Server

Fig. 4. Network topology of test environment. While the network capacity
between source and destination nodes are limited to 1 Gbps, network
bandwidth between the cache server and destination node is 10Gbps. Caching
files at in-network cache servers helps to recover from silent errors quickly by
transferring file from nearby cache servers with possibly higher bandwidth.

TABLE 1
COMPARISON OF ERROR RECOVERY TIMES WITH AND WITHOUT
(REGULAR) IN NETWORK CACHING IN THE PRESENCE OF SILENT ERRORS.

File Size Regular Inclzzltl‘i?grk Impl('g/:';%ment
100MB 2.08 1.66 55
1GB 21.29 16,31 3
5GB 105.47 81.56 30
10GB 23383 176.45 yv;
20GB 468.89 357.27 47

We first measure transfer times in the absence of cache
servers. In this scenario, we first transfer files from source
to destination and in the case of checksum mismatch, we
resend files from the source to destination to recover from
silent errors. We use MD5 to calculate file hashes and run
integrity check between source and destination nodes. That is,
both sender and receiver calculates file hashes based on their
copy of file and exchange them after files are transferred. We
measured error recover time and total transfer times when
in network caching is implemented to recover from silent
errors for different file sizes. Total transfer time includes times
of first transfer, checksum calculation, and second transfer
of files with the assumption that the checksum values do
not match. Recovery time, on the other hand, only contains
time to transfer a file second time to recover from checksum
mismatch issue. Table [[| and Table |lI| presents values and im-
provement ratios of in network caching method in comparison
to traditional approach (i.e., regular). We observe that, for
all file sizes, recovery time is shortened by around 50% and
total transfer time is reduced by 20% with the help of in-
network caching. Although the bandwidth between the cache
server and destination node is 102 higher than the bandwidth
between the source and destination nodes, we only observe 2x
improvement in transfer times. This is due to the fact that file
transfers are limited to around 2.2 Gbps disk write speed at
the destination node, thus cache server to destination transfer
speed cannot reach to 10 Gbps.

V. CONCLUSION AND FUTURE WORK

Silent error detection is critical for file transfers to avoid
permanent data losses. However, current recovery process
which involves the retransfer of files from source node in-

TABLE II
COMPARISON OF TOTAL TRANSFER TIMES WITH AND WITHOUT
(REGULAR) IN NETWORK CACHING IN THE PRESENCE OF SILENT ERRORS.

File Size Regular InCI::}tl\im:)grk Impl('(‘)g)ement
100MB 2.08 1.66 20
1GB 21.29 16.31 23
5GB 105.47 81.56 22
10GB 233.43 176.45 24
20GB 468.89 357.27 23

creases transfer times considerably in addition to consuming
significant network bandwidth. In this paper, we presented
an in-network caching assisted error recovery approach that
takes advantage of in-network resources to store files until
their transfers are completed successfully. If an error is de-
tected, then files can be retrieved from a nearby cache server
instead of downloading them from the original source. This
provides significant speed up in the recovery time as well
as reducing the load on network resources. Programmable
devices lend themselves for the efficient implementation of
in-network caching as they provide a configurable traffic
mirroring scheme. Hence, we implemented the proposed in-
network caching assisted error recovery approach using a
programmable Tofino switch. The preliminary results show
that in network caching reduces error recovery times by 50%
and total transfer times by 20% for varying file sizes. It
is important to note that the improvement rates are highly
dependent on network configurations and cache server settings,
thus the proposed solution has a potential to yield higher gains
through the use of more customized networking and caching
configurations.

As a future work, we plan to extend the proposed method
with more automation such that clients can demand only
certain files to be cache instead of all files. This way, the load
on cache servers will be minimized. Similarly, cache servers
can register themselves to programmable devices to support
the implementation of multiple cache servers. Finally, we will
explore various cache eviction policies to avoid overwhelming
cache servers’ storage space with stale date.

VI. ACKNOWLEDGMENTS

This project is in part sponsored by the National Sci-
ence Foundation (NSF) under award numbers 2019164 and
2145742.

REFERENCES

[1] J. Stone and C. Partridge, “When the CRC and TCP checksum disagree,”
in ACM SIGCOMM computer communication review, vol. 30, no. 4.
ACM, 2000, pp. 309-319.

[2] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
G. R. Goodson, and B. Schroeder, “An analysis of data corruption in
the storage stack,” ACM Transactions on Storage (TOS), vol. 4, no. 3,
p. 8, 2008.

[3] R. Kettimuthu, Z. Liu, D. Wheeler, 1. Foster, K. Heitmann, and F. Cap-
pello, “Transferring a petabyte in a day,” Future Generation Computer
Systems, vol. 88, pp. 191-198, 2018.

[4] B. Charyyev, A. Alhussen, H. Sapkota, E. Pouyoul, M. H. Gunes, and
E. Arslan, “Towards securing data transfers against silent data corrup-
tion,” in 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). 1EEE, 2019, pp. 262-271.

[51 S. Vural, P. Navaratnam, N. Wang, C. Wang, L. Dong, and R. Tafazolli,
“In-network caching of internet-of-things data,” in 20/4 IEEE interna-
tional conference on communications (ICC). 1EEE, 2014, pp. 3185-
3190.

[6] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66-73, 2014.

[71 Z. Li, G. Simon, and A. Gravey, “Caching policies for in-network
caching,” in 2012 2Ist International conference on computer commu-
nications and networks (ICCCN). 1EEE, 2012, pp. 1-7.

[8] I Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in Proceedings of the second edition
of the ICN workshop on Information-centric networking, 2012, pp. 55—
60.

[9]1 N. Choi, K. Guan, D. C. Kilper, and G. Atkinson, “In-network caching
effect on optimal energy consumption in content-centric networking,” in
2012 IEEE international conference on communications (ICC). 1EEE,
2012, pp. 2889-2894.

[10] Y. Thomas, G. Xylomenos, and G. C. Polyzos, “In-network packet-
level caching for error recovery in icn,” in 2020 [8th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOPT), 2020, pp. 1-8.

[11] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy, R. Ket-
timuthu, J. Kordas, M. Link, S. Martin, K. Pickett, and S. Tuecke,
“Software as a service for data scientists,” Communications of the ACM,
vol. 55:2, pp. 81-88, 2012.

[12] S. Liu, E.-S. Jung, R. Kettimuthu, X.-H. Sun, and M. Papka, “Towards
optimizing large-scale data transfers with end-to-end integrity verifica-
tion,” in Big Data (Big Data), 2016 IEEE International Conference on.
IEEE, 2016, pp. 3002-3007.

[13] E. Arslan and A. Alhussen, “Fast integrity verification for high-speed
file transfers,” arXiv preprint arXiv:1811.01161, 2018.

[14] A. Alhussen and E. Arslan, “Avoiding data loss and corruption for
file transfers with fast integrity verification,” Journal of Parallel and
Distributed Computing, vol. 152, pp. 33-44, 2021.

[15] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 136-141, 2013.

[16] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.

[17] H. Stubbe, “P4 compiler & interpreter: A survey,” Future Internet
(FI) and Innovative Internet Technologies and Mobile Communication
(IITM), vol. 47, 2017.

[18] J. Santiago da Silva, F.-R. Boyer, and J. P. Langlois, “P4-compatible
high-level synthesis of low latency 100 gb/s streaming packet parsers in
fpgas,” in Proceedings of the 2018 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, 2018, pp. 147-152.

[19] Barefoot-Intel, “Switch architecture specification,” 10k Device Family,
vol. Product Specification, pp. 45-47, 2020.

[20] P. Goyal and A. Goyal, “Comparative study of two most popular packet
sniffing tools-tcpdump and wireshark,” in 2017 9th International Con-
ference on Computational Intelligence and Communication Networks
(CICN). IEEE, 2017, pp. 77-81.

[21] ”pyshark”, 2022, accessed = 2022-10-05. [Online]. Available: https:
//github.com/KimiNewt/pyshark

[22] ”Scapy”, 2022, accessed = 2022-10-05. [Online]. Available: http:
/Iwww.secdev.org/projects/scapy/

[23] D. Song, “Dpkt - python module for fast, simple packet parsing,” 2006.
[Online]. Available: https://github.com/kbandla/dpkt

https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
https://github.com/kbandla/dpkt

	Introduction
	Related Work
	Background
	Programmable Switches
	Mirroring

	Proposed Model and Preliminary Results
	Conclusion and Future Work
	Acknowledgments
	References

