
Tractable Planning for Coordinated Story
Capture: Sequential Stochastic Decoupling

Diptanil Chaudhuri1, Hazhar Rahmani2, Dylan A. Shell1, and
Jason M. O’Kane2

1 Dept. of Computer Science and Engineering, Texas A&M University, ,
College Station, TX, USA.

2 Dept. of Computer Science and Engineering, University of South Carolina, ,
Columbia, SC, USA.

Abstract. We consider the problem of deploying robots to observe the
evolution of a stochastic process in order to output a sequence of ob-
servations that fit some given specification. This problem often arises
in contexts such as event reporting, situation depiction, and automated
narrative generation. The paper extends our prior work by formulating
and examining the multi-robot case: a team of robots move about, each
recording what they observe, and, if they manage to capture some event,
communicating that fact with the group. In the end, all events from all
the robots are collated to provide a cumulative output. A plan is used to
decide what each robot will attempt to capture next, based on the state
of the world and the events that have been captured (collectively) so far.
This paper focuses on the question of how to compute effective multi-
robot plans. A monolithic treatment, involving the optimal selection of
joint choices, i.e., choosing the next elements to attempt to capture by
all robots, is formulated where costs are minimized in an expected sense.
Since such plans are prohibitive to compute, variants based on an ap-
proximation scheme based on solving a sequence of individual planning
problems are then introduced. This scheme sacrifices some solution qual-
ity but requires far less computational expense; we show this permits one
to scale to greater numbers of robots.

Keywords: Robot videography, formal methods, heuristics for cooper-
ative planning

1 Motivation

Imagine a nature documentary. Muffled, but in his signature rasping hush, David
Attenborough intones: “We see now the baby gazelle, utterly unaware of danger
lurking close, as she edges toward the water’s edge. Nearby, Mother gazelle is
distracted, only for a moment, but...” and the wild drama ensues—tooth, claw,
and all. Later, as the credits roll by, it turns out that the rare footage making up

This material is based upon work supported by the National Science Foundation
under Grants 1849249 & 1849291.

Tractable Planning for Coordinated Story Capture 3

Also, some related problems bear similarity to robot video capture. Among
them is the work of Yu and LaValle [3], who studied the story validation problem,
the aim of which is to validate whether an event sequence captured by a set
of sensors in the environment is consistent with a given story or not—this is,
roughly, the inverse of the problem we consider here. The other two are the
video summarization problem [4–9] and the vacation snapshot problem [10] the
purpose of which are, respectively, to make a summary of a given video and to
make a diverse selection of samples observed by a mobile robot. The essence
in the video summarization problem is to post-processes a collection of images,
while the idea in our problem is to decide which images the robot should attempt
to capture without knowing which images will actually be realized by the world.
For research about summarization in other contexts, see [11, 12] for generating
commentary, and see [13,14] for producing narrative text.

3 Definitions and Problem Statement

We start defining basic model elements, then give our formal problem statement.

3.1 Worlds and narratives: Event Model and Story Automaton

The atomic items that the robots capture are events, elements from a set E,
which occur at specific times and places. The set of all event sequences (finite
words) over E is denoted E∗. For integer m, the set of all event sequences
over E with length at most m is denoted E≤m. We will mostly write sequences
e1e2 . . . em of events, but occasionally it helps to treat them as tuples too, like
(e1, e2, . . . , em). For each 1 ≤ i ≤ m, we will write ei ∈ (e1, e2, . . . , em), abusing
notation to treat the tuple as a set as well. Using the tuple form, E∗ =

⋃∞
j=0E

j .
Events are assumed to be generated by a stateful stochastic process, unaf-

fected by the actions of the robot.

Definition 1 (Event Model [1]). An event model M = (W,P,w0, E, g) has
(1) W , which is a nonempty finite set, is the state space of the model; (2)
P : W ×W → [0, 1] is the transition probability function of the model, such that
for each state w ∈W ,

∑
w′∈W P (w,w′) = 1; (3) w0 ∈W is the initial state; (4)

E is the set of all possible events; (5) g : W × E → [0, 1] is a labeling function
such that for each state w and event e, g(w, e) is the probability that event e
happens at state w. We assume that g(w0, e) = 0 for any event e, meaning that
no events happens at state w.

The model assumes that the events in each state of the event model are both
mutually and temporally independent. That is, the probability of occurrence of
an event e in state w at time t does not depend on the probability of occurrence
of any event e′ at time t, nor at any time before that.

An execution of the system starts from w0, and then at each time step t, the
system transitions from state wt to a state wt+1, which is chosen randomly based
on P (wt, ·). Accordingly, the system’s execution goes through a path w0w1 · · · .

4 Diptanil Chaudhuri, Hazhar Rahmani, Dylan A. Shell, and Jason M. O’Kane

When the system enters state wt, each event e occurs with probability g(wt, e).
At a time step, it is possible that several events occur simultaneously.

In this paper, we consider a problem in which multiple robots are work-
ing cooperatively to record a sequence of events. As the system evolves along
w0w1w2 · · · , the robots attempt to record some of the events that occur in the
world to form a story ξ ∈ E∗. To specify the story, we use deterministic finite
automaton (DFA) [15], called the story automaton D = (Q,E, δ, q0, F), in
which Q is the state space, the set of events E is the alphabet, δ : Q × E → Q
is the transition function, q0 is the initial state, and F ⊆ Q is the set of all
accepting (final) states.

The language of the story automaton is denoted by L(D). Given a state
q ∈ Q, we say that state q′ is reachable from q by event sequence e1e2 · · · em if
there is a sequence of states q1, q2, . . . , qm+1 such that q1 = q, qm+1 = q′, and
qi+1 = δ(qi, ei) for each 1 ≤ i ≤ m. We assume that each state is reachable from
itself (by ε, the empty string).

3.2 Robot model

The current state of the event model is assumed to be observable to all the
robots, i.e., at each time t, the robots know the current state of the event model
(or the world) wt; however, they do not know what the next state, wt+1, will
be. (In [1], our earlier work, we considered the case where the current state of
the event model was not observable: for simplicity, especially in exploring the
complexities arising in the multi-robot case, the present paper utilizes MDPs
throughout, rather than the less tractable POMDP model.)

Generally, robots use actions to alter their relationship with the world—here,
the robots also attempt to record events. To cooperatively capture a sequence
of events each of the n robots chooses an action to execute from A, the set of all
possible actions. Each action is associated with the event they aim to capture
via the recording function, r : A→ E ∪ {ε}. Since some actions may not involve
any recording, the symbol ε is included, indicating that no event will ever be
captured by the associated action. At every time step, each robot executes an
action from A, if that action aims to capture an event and that event occurs
during the execution of the action, the robot will succeed in capturing that
event. We assume every event can be recorded by some action, i.e., for every
e ∈ E, there is some action ae ∈ A such that r(ae) = e. Further, the set of
actions includes a no-action choice, ⊥ ∈ A, that does nothing and records no
event, r(⊥) = ε. Occasionally we will apply r(·) to a tuple in a point-wise fashion.

Owing to constraints, present either in the world or in the way the robots
interact with the world, not all actions can be executed at all times. Hence,
an action a ∈ A with r(a) = ε may still be useful because, though it won’t
capture an event itself, it may alter what can be captured subsequently. Think,
for instance, of a robot using the time step’s duration to shift location, or to
deploy a stalking horse. The following structure expresses such constraints and
also associates costs to each action.

Tractable Planning for Coordinated Story Capture 5

Definition 2 (Valid-action Automaton (VA)). For robot i ∈ {1, . . . , n},
we define its valid-action automaton as a 5-tuple, V(i) = (V (i), v

(i)
0 , A, τ (i), c(i)),

(1) V (i) is the set of vertices; (2) v
(i)
0 ∈ V (i) is the initial vertex; (3) A, its

alphabet, a set of all possible robot actions; (4) τ (i) : V (i) × A ↪→ V (i), which
could be partial, is the transition function; (5) c(i) : V (i) × A → R>0 ∪ {+∞}
is the cost function, such that for each (v, a) ∈ V (i) ×A, c(i)(v, a) is the cost of
taking action a at vertex v. We assume that c(i)(v, a) = +∞ for any (v, a) such
that τ (i)(v, a) is not defined.

Each robot i ∈ {1, 2, . . . , n} keeps track of the current state of its own valid-

action automaton, denoted v
(i)
t . Actions are performed as follows. Robot i makes

a choice, from among those actions a for which τ(v
(i)
t , a) is defined, to enact at

time t+ 1. We denote the action a
(i)
t , because it is chosen at time t. The world

evolves from wt to wt+1, and robot i pays cost c(i)(v
(i)
t , a

(i)
t) executing a

(i)
t to

change its circumstances, with aspects relevant for subsequent actions being

represented in v
(i)
t+1. Finally, if r(a

(i)
t) 6= ε, the robot attempts to record event

r(a
(i)
t) ∈ E, which succeeds with probability g(wt+1, r(a

(i)
t)).

For each time step t ≥ 1, we define Xt ⊆ E≤n to be the set of all event se-
quences, in any order, formed from all the events that were captured by the
robots at time step t. For example, if at time step t0, e1 was captured by
robot 1, e2 was captured by robot 2, and ε (nothing) was captured by robot 3,
then Xt0 = {e1e2, e2e1}. We also let Xt =

∏t
i=1Xi be the set of all event

sequences obtained by concatenating the event sequences made for the time
steps 1, . . . , t. As an example, if X1 = {e3, e4e2} and X2 = {e1e2, e2e1}, then
X2 = {e3e1e2, e3e2e1, e4e2e1e2, e4e2e2e1}. The robots check at each time t, if
there exists an event sequence x ∈ Xt such that x ∈ L(D) or not. If yes, then it
means that the robots have successfully collected events to make a desired story,
namely x, and they terminate. Note that Xt is the set of all event sequences the
robots can make by concatenating all the events they have captured until time
step t with the constraint that for times t1 and t2 for which t1 < t2, no event
captured at t2 precedes an event captured at t1.

3.3 Policies and Problem Statement

The robots’ choice of actions is governed by a policy π(·, ·, ·), that, at time t,
based on the current state of the event model, states in the story automaton,
and current states in the robots’ valid-action automata, produces a n-tuple of
actions, termed a joint action, telling each robot what action to execute.

Given valid-action automata V(i) = (V (i), v
(i)
0 , A, τ (i), c(i)), i ∈ {1, . . . , n},

we will write V = V (1) × · · · × V (n). Similarly, for joint actions, we have A =
A × · · · × A = An. (To lighten the notation, we assume that A is identical for
every robot; no generality is lost because, should robot i be unable to execute
some a ∈ A, then a simply does not appear in V(i).)

Given V(i) for i ∈ {1, . . . , n}, we define c : V×A→ R>0, the aggregate cost
function, by c((v(1), . . . , v(n)), (a1, . . . , an)) =

∑n
i=1 c

(i)(v(i), ai). Then the total

6 Diptanil Chaudhuri, Hazhar Rahmani, Dylan A. Shell, and Jason M. O’Kane

cost incurred up until time t is Jt =
t−1∑
i=0

c((v
(1)
t , . . . , v

(n)
t), (a

(1)
t , . . . , a

(n)
t)). Let

T be the first time such that XT ∩ L(D) 6= ∅, then we say the story has been
captured at time T and we write the cost of capturing the story as J = JT .

We now define the problem we study in this paper.

Problem: Multi-Robot Recording Cost Minimization (Mrrcm)

Input: An event set E; an event model M = (W,P,w0, E, g); the story
automaton D = (Q,E, δ, q0, F); the number of robots, n; a set of n

valid-action automata V(i) = (V (i), v
(i)
0 , A, τ (i), c(i)), ∀i ∈ {1, · · ·n}.

Output: A policy, π∗ : S × 2Q ×V → A, that minimize the expected cost,
J , to capture a story in L(D).

4 Solving Mrrcm

In this section we provide two algorithms to solve Mrrcm.

4.1 Preliminary definitions

In the initial step, the algorithm makes use of the story automaton and n, the
number of robots, to construct a footage automaton as follows:

Definition 3 (Footage Automaton). Let D = (Q,E, δ, q0, F) be the story
automaton and n be the number of robots. We construct the footage automaton
as a nondeterministic finite automaton (NFA) N = (Q,E, δN, q0, F), where (1)
Q is the state space; (2) E = {(e(1), . . . , e(n)) | e(i) ∈ E ∪ {ε},∀i ∈ {1, . . . , n}} is
its alphabet; (3) δN : Q×E ↪→ 2Q, is the transition function, such that for q ∈ Q
and (e(1), . . . , e(n)) ∈ E, δN(q, (e(1), . . . , e(n))) = {qi|qi ∈ Q, where, in D, qi is
reachable from q using some permutation of the tuple (e(1), . . . , e(n))}; (4) q0 is
the initial state; (5) F is the set of final states.

Each transition starting from a state in the footage automaton corresponds to at
most n consecutive transitions starting from that state in the story automaton.
The idea is that the footage automaton tracks the story automaton states which
can be reached using the events captured by all of the robots. The next step
converts the footage automaton N into a deterministic footage automaton D =
(Q,E, δD, q0,F), which is, in fact, a deterministic finite automaton, using the
well-known technique of NFA to DFA conversion [15]. The number of edges in the
constructed N, of the output D, and the work needed in this conversion step, can
be reduced by fixing a canonical representative, equivalent up to permutation,
for the n-tuples comprising E. Sorting the tuples works.

We define a function h : A× 2E → (E ∪{ε})n such that for each joint action
a ∈ A, and a set of events B ⊆ E, h(a, B) = (d(1), . . . , d(n)) in which for each
j ∈ {1, . . . , n}, d(j) = r(a(j)) if r(a(j)) ∈ B, otherwise d(j) = ε.‡ Intuitively, given

‡Being consistent with that above, we use a(j) to denote the jth element of a.

Tractable Planning for Coordinated Story Capture 7

that only the events in B happen, the function h outputs an n-tuple of events
which are captured by the action a. We then define o : A→ 2(E∪{ε})

n

such that
for each a ∈ A, o(a) =

⋃
B⊆E{h(a, B)}. This function produces any tuple of

events that could be captured by a joint action.
Two additional functions will be needed. Let % : A×W × (E ∪{ε})n ↪→ R≥0

be a function such that for each a ∈ A, w ∈W , and b ∈ o(a),

%(a, w,b) =

(∏
e0∈b

g(w, e0)

)
·
(∏

e1∈r(a)
e1 6∈b

(
1 − g(w, e1)

))
.

The interpretation is: assuming that at time t the robots execute joint action
a and, at t + 1, the event model transitions to w, then %(w,a,b) gives the
probability that b is realized by w. Or, in other words, among those events
attempted to be captured by a, only those within b happened in state w.

Next, using 1A(·) for set A’s indicator function, let λ : Q×A×W ×Q be

λ(q,a, w,q′) =
∑

b∈o(a)
1{q′}(δD(q,b)) · %(a, w,b).

At time t, if the footage automaton is in state q and the robots execute a,
and thereupon the event model transitions next to state w, then λ(q,a, w,q′) is
the probability that the footage automaton transitions to q′ at t+ 1.

With these definitions, we now present our algorithms for solving Mrrcm.

4.2 Full Joint Plan

The first step of the algorithm makes from valid-action automata of the robots,
an automaton defined as follows:

Definition 4 (Joint Action Automaton (JA)). Given valid-action automata

V(i) = (V (i), v
(i)
0 , A, τ (i), c(i)) for i ∈ {1, 2, . . . n}, and the aggregate cost func-

tion c : V × A → R>0, their joint action automaton is V = (V,v0,A, T, c),
where: (1) V = V (1) × V (2) × · · · × V (n) is the set of all the vertices; (2)

v0 = (v
(1)
0 , v

(2)
0 , . . . , v

(n)
0) is the initial vertex; (3) A = An is the set of all

actions; (4) T : V×A ↪→ V is the valid transitions function, such that for each
(v(1), v(2), . . . , v(n)), (w(1), w(2), . . . , w(n)) ∈ V and (a(1), a(2), . . . , a(n)) ∈ A,
T ((v(1), v(2), . . . , v(n)), (a(1), a(2), . . . , a(n))) = (w(1), w(2), . . . , w(n)) if for each
i ∈ {1, . . . , n}, τ (i)(v(i), a(i)) = w(i); (5) c : V ×A → R>0 is the aggregate cost
function.

Now, to solve the Mrrcm problem jointly for all the robots, we search over
all a joint action space. To do so we construct an MDP, called the joint MDP.

Definition 5 (Joint MDP). For event set E and modelM = (W,P,w0, E, g),
joint action automaton V = (V,v0,A, T, c), and the deterministic footage au-
tomaton D = (Q,E, δD, q0,F), construct MM,D,V = (S, s0,A,P,J,G), where
(1) S ⊆ W × Q × V, is the set of states; (2) s0 = (w0, q0,v0) ∈ S is the

8 Diptanil Chaudhuri, Hazhar Rahmani, Dylan A. Shell, and Jason M. O’Kane

initial state; (3) A : S → 2A is the action function, such that for each s =
(w,q,v) ∈ S, A(s) = {a ∈ A | δD(q, r(a)) and T (v,a) are defined}; (4) P :
S × A × S → [0, 1], is the probability function, P ((w,q,v),a, (w′,q′,v′)) =
1{v′}(T(v,a)) ·P (w,w′) ·λ(q,a, w′,q′); (5) J : S×A→ R, is the cost function,
J ((w,q,v),a) = (1− 1F(q)) · c(v,a); (6) G = W × F × V is the set of goal
states.

Note that this construction is a goal MDP, meaning it is an MDP supple-
mented with a set of goal states. The Mrrcm problem then is reduced to finding
for this MDP, a policy that minimizes the expected cost of reaching goal states.
Such a policy, denoted π∗M, is a function π∗M : S → A which gives the optimal
action for each s ∈ S \G using the Bellman equation, which may be computed
by a variety of methods [16].

Note that for all s ∈ G, V ∗M(s) = 0. As each state s ∈ S is a triple (w,q,v),
and each state q of the deterministic footage automaton corresponds to a set of
states of the story automaton, the computed policy π∗M is a solution to Mrrcm.

This MDP has a state space of size Θ(|W ||Q||V (1)||V (2)| · · · |V n|) and an
action space of size |A|n. As the number of robots increases, both the state
space and the action space of the MDP grows exponentially. Because of this, the
next section pursues a solution to the Mrrcm problem with less expense.

4.3 Sequentialized Planning

The overall idea of our second algorithm, following the classical approach in
multi-agent planning [17], is to solve a sequence of MDPs, each being consid-
erably smaller than the full joint MDP. Each MDP is constructed for a single
robot in the team, the structure of each conditioned on the optimal policies of
those preceding it in the sequence. Each is a goal MDP and, hence, an optimal
policy can be computed via Bellman recurrences.

Suppose that the n robots are ordered: j1j2 . . . jn, where jk ∈ {1, . . . , n}. If
j1, . . . , jk−1 have determined how they will act, robot jk can solve an MDP with
stochastic transitions incorporating the events that the other k−1 might record,
along with the associated probabilities of the events actually occurring, as gratis
contributions. Once robot jk solves this to obtain a policy, we have policies for
the first k robots, and could proceed onward to robot jk+1. And so on, until jn.

The difficulty is that, even if the k− 1 robots do have policies, those policies
involve states within V(j1),V(j2), . . . ,V(jk−1), which is information that robot jk
is not privy to, so policies will not give a determination of the actions of the first
k− 1 robots. Even if the robot had that information —obtained, say, by copious
broadcast communication— this would still yield a policy for jk as a function
over W ×Q×V (j1)×· · ·V (jk), which grows exponentially in n in the worse case.

We pursue the following alternative, with more attractive scaling proper-
ties. For robot jk, we compute a policy over state space W × Q × V (jk). The
construction of the jk’s MDP is as follows:

Definition 6. For robot jk, event model M = (W,P,w0, E, g), determinis-
tic footage automaton D = (Q,E, δD, q0,F), valid-action automaton for the

Tractable Planning for Coordinated Story Capture 9

robot V(jk) = (V (jk), v
(jk)
0 , A, τ (jk), c(jk)), policies πjm for m ∈ {1, . . . , k − 1},

and a distribution over the valid-action automata states for the k − 1 robots,
∆(jm) : V (jm) → [0, 1] for m ∈ {1, . . . , k − 1}, we construct the sequential MDP

Mjk = (S(jk), s
(jk)
0 , A,P(jk), J (jk)), where

– S(jk) ⊆W ×Q× V (jk) is the state space;

– s
(jk)
0 = (w0, q0, v

(jk)
0) ∈ S(jk) is the initial state;

– A is the action space;
– P(jk) : S(jk) ×A× S(jk) → [0, 1] is the probability function such that

P(jk)(s, a, s′) = 1{v′}(τ
(jk)(v, a))

∑
α∈Ak

a

P (w,w′)µw,q(α)λ(q,α, w′,q′)

with s = (w,q, v), s′ = (w′,q′, v′), and where µw,q : Ak
a → [0, 1] is

µw,q(α) =
∑

v(1)∈V (j1)

...

v(k−1)∈V (jk−1)

k−1∏
m=1

(
1{a(m)}(πjm(w,q, v(m)))∆(jm)(v(m))

)

and Ak
a consists of joint actions (a(1), a(2), . . . , a(k−1), a,

n−k︷ ︸︸ ︷
⊥,⊥, · · · ,⊥);

– J (jk) : S(jk)×A→ R is the cost function, such that for s = (w,q, v) ∈ S(jk)

and a ∈ A, we have J (jk)(s, a) = (1− 1F(q)) c(jk)(v, a).

The intuition here is that, in lieu of actual information on the state of each
V(jk), estimates (in the form of distribution ∆(jk)) are used as an approximation.
In what follows, we make a maximum entropy assumption over the states of the
valid-action automata, i.e., ∆(i)(v) = 1

|V (i)| , though cleverer choices exist.

Based on this treatment, one expects that the ordering of the robots would
affect the overall solution quality. Though a random order will work, it may fail
to give a good policy so we employ the following greedy heuristic to choose a
favourable ordering. First, we calculate the policies for all n robots tentatively
assuming each would be operating alone. Then we select the robot whose indi-
vidual policy gives the least expected cost to capture the story, and use it as
the robot for the first spot. Having determined j1, we compute policies for the
remaining n − 1 robots, given j1 and its policy πj1 . The robot with the least
expected cost becomes j2, and the process is repeated but now with {j1, j2}
determined. This is repeated until all n have been ordered.

5 Case Study

In this section, we present results of our Python implementation of the algo-
rithms, which we executed on an Ubuntu 16.04 computer with a 3.6GHz CPU.

We revisit the shooting of documentary in a wildlife reserve as used as motiva-
tion initially, and outlined in Figure 1. A system-level event model is constructed
from event models for the animals. Figure 2 shows, for each type of animal, the
transition probability function P of its event model, in which each entry P (l1, l2)

Tractable Planning for Coordinated Story Capture 11

{A
}

{B
}

{C
}

{A
,B

}

{A
,B

,C
}

{A
×
2
,B

,C
}

{A
×
3
,B

,C
}

0

20

40

60

80

100

Team Composition

C
os
t

Joint
Greedy
Random

1 2 3 4 5

101

102

103

104

105

106

Number of robots

T
im

e
to

co
m
p
u
te

(s
ec
on

d
s) Joint

Greedy
Random

Fig. 3: Left: Cost to capture story. The theoretical prediction (expected cost for policy)
is shown via × marks. Average cost for 1000 simulation is shown via bars. Right: Time
to compute the policies. (The y-axis is in the logarithmic scale).

For this purpose, for each robot i and action a, for each vertex v of the valid-
action automaton of robot i, we set c(i)(v, a) = 1. Because the joint cost of a
group of robots is the sum of costs for individual robots, in reporting the results
we have divided by the number of robots, each of the expected and the average
costs obtained for a joint plan so that these figures represent, respectively, the
excepted number of hours and the average number of hours to record a story. For
the sequential plan, no division is needed and we use the expected and average
costs obtained for the last MDP in the sequential plan directly.

In this case study we are interested in capturing a sequence that is a superse-
quence for both the sequences gefmcgkf and gefmkgkf , each of which chronicles
both a gazelle’s life and a flamingo life. Once a desired sequence was captured,
we post-process it to make two videos gefmcgkf and gefmkgkf from it, each for
a TV channel. Note that the language of the specification DFA in this case is
infinite. We considered several scenarios in which different numbers of each type
of robot are tasked to capture a desired story. For our implementations, we use
the value-iteration method to solve the underlying MDPs. For each scenario, we
solved the Mrrcm problem using the joint approach and the sequential approach
with the random and greedy strategies. Also for each scenario, we generated 1000
simulations of executing the event model and for each simulation the robot(s)
use the computed policy to capture a story. For each case, we computed the av-
erage cost of capturing a desired story over the 1000 simulations. Figure 3 shows
the expected number of hours and the average number of hours for those simu-
lations. As it was expected, a robot of type A outperformed the other two robot
types B and C in yielding a smaller expected cost. Also for each experiment, the
expected cost was very close to the average cost for 1000 simulations. We were
able to generate a joint plan only for up to three robots; it took approximately
14 hours to generate a joint plan for three robots, while generating a sequential
plan for three robots with each of the random and the greedy strategies took
approximately 43 minutes and 85 minutes respectively.

12 Diptanil Chaudhuri, Hazhar Rahmani, Dylan A. Shell, and Jason M. O’Kane

6 Conclusion

This paper considered the problem of computing a policy, for a team of robots,
minimizing the expected cost of recording a sequence of events that happen
unpredictably. The problem is reduced to that of computing an optimal policy
for a joint MDP of the robots. To overcome the computational complexities
of solving the joint MDP, we proposed to solve the problem via a sequence of
MDPs, using a greedy heuristic to order that sequence, and finally we presented
our implementation results via a wild life case study.

References

1. H. Rahmani, D. A. Shell, and J. M. O’Kane, “Planning to chronicle,” in Workshop
on the Algorithmic Foundations of Robotics (WAFR XIV), 2020.

2. D. A. Shell, L. Huang, A. T. Becker, and J. M. O’Kane, “Planning coordinated
event observation for structured narratives,” in IEEE ICRA, 2019.

3. J. Yu and S. M. LaValle, “Story validation and approximate path inference with
a sparse network of heterogeneous sensors,” in IEEE ICRA, 2011.

4. Y. J. Lee, J. Ghosh, and K. Grauman, “Discovering important people and objects
for egocentric video summarization,” in IEEE CVPR, 2012.

5. R. Hong, J. Tang, H.-K. Tan, C.-W. Ngo, S. Yan, and T.-S. Chua, “Beyond search:
Event-driven summarization for web videos,” ACM Transactions on Multimedia
Computing, Communications, and Applications, vol. 7, no. 4, p. 35, 2011.

6. D. Potapov, M. Douze, Z. Harchaoui, and C. Schmid, “Category-specific video
summarization,” in ECCV, 2014.

7. L. Feng, Z. Li, Z. Kuang, and W. Zhang, “Extractive video summarizer with mem-
ory augmented neural networks,” in ACM Multimedia, 2018.

8. P. Chang, M. Han, and Y. Gong, “Extract highlights from baseball game video
with hidden markov models,” in IEEE ICIP, 2002.

9. M. H. Kolekar and S. Sengupta, “Event-importance based customized and auto-
matic cricket highlight generation,” in IEEE ICME, 2006.

10. Y. Girdhar, P. Giguere, and G. Dudek, “Autonomous adaptive exploration using
realtime online spatiotemporal topic modeling,” International Journal of Robotics
Research, vol. 33, no. 4, pp. 645–657, 2014.

11. H. Hajishirzi, J. Hockenmaier, E. T. Mueller, and E. Amir, “Reasoning in Robocup
Soccer Narratives,” in UAI, 2011.

12. S. Rosenthal, S. P. Selvaraj, and M. Veloso, “Verbalization: Narration of au-
tonomous robot experience,” in IJCAI, 2016.

13. M. O. Riedl and R. M. Young, “Narrative Planning: Balancing Plot and Charac-
ter,” Journal of Artificial Intelligence Research, vol. 39, pp. 217–268, 2010.

14. C. Barot, M. Branon, R. E. Cardona-Rivera, M. Eger, M. Glatz, N. Green, J. Mat-
tice, C. Potts, J. Robertson, M. Shukonobe, L. Tateosian, B. R. Thorne, and R. M.
Young, “Bardic: Generating Multimedia Narrative Reports for Game Logs,” Work-
ing Notes of the AIIDE Workshop on Intelligent Narrative Technologies, 2017.

15. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and
Computation. Adison-Wesley. Reading, Mass, 1979.

16. M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons, 1994.

17. E. Ephrati and J. S. Rosenschein, “Divide and conquer in multi-agent planning,”
in AAAI-94, 1994.

