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Abstract

Structured prediction of tree-shaped objects is heavily studied under the name of
syntactic dependency parsing. Current practice based on maximum likelihood or
margin is either agnostic to or inconsistent with the evaluation loss. Risk minimiza-
tion alleviates the discrepancy between training and test objectives but typically
induces a non-convex problem. These approaches adopt explicit regularization
to combat overfitting without probabilistic interpretation. We propose a moment-
based distributionally robust optimization approach for tree structured prediction,
where the worst-case expected loss over a set of distributions within bounded
moment divergence from the empirical distribution is minimized. We develop
efficient algorithms for arborescences and other variants of trees. We derive Fisher
consistency, convergence rates and generalization bounds for our proposed method.
We evaluate its empirical effectiveness on dependency parsing benchmarks.

1 Introduction

Structured prediction is an important learning setting for joint prediction of interdependent variables.
The output space typically consists of an exponential number of structured objects whose inherent
relations can be exploited to develop efficient learning algorithms and capture key properties of data
[Ciliberto et al., 2019]. Trees are widely used structures that offer expressiveness and simplicity.
We distinguish between two different tree structured prediction tasks in the literature. The first
task is a structure learning problem in graphical models [Bradley and Guestrin, 2010], aimed at
constructing trees underlying a predictive model from training data. The optimal tree is found easily
with greedy algorithms for generative models [Chow and Liu, 1968], while it is NP-hard for the
discriminative max-margin setting [Meshi et al., 2013]. The second task requires prediction itself to
be a tree-shaped object (e.g., an incidence vector). Dependency parsing is a crucial application of this
problem that has inspired a flurry of work in natural language processing. The first-order spanning
tree prediction assuming factorization over arcs can be done in O(n2) [Stanojević and Cohen, 2021],
whereas exact inference is NP-hard for certain (non-projective) higher-order trees (e.g., considering
siblings) [McDonald and Satta, 2007]. We study the latter in this work.

A common evaluation criterion in dependency parsing is the attachment score, namely, the score we
would like to maximize on test data. It is cost-sensitive to allow partially correct prediction. Ideally,
the training objective should be aligned with the test objective. An early attempt to directly mimic
test conditions leads to a non-convex piece-wise constant objective [Och, 2003]. Risk minimization
in appropriate parametric form has a non-convex smooth objective, solvable with gradient descent,
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but still losing global convergence and generalization guarantees. Maximum likelihood approaches
formulate a convex smooth problem minimizing a logistic loss, consistent with conditional probability
estimates but oblivious to test losses. Maximum margin methods have convex objectives able to
implicitly incorporate custom losses by scaling margins, but are known to be inconsistent with test
losses generally [Nowak-Vila et al., 2021]. Unfortunately, none of these approaches yield a Bayes
optimal estimator for test losses with global convergence and finite-sample generalization guarantees.

Consistent structured prediction methods include Ciliberto et al. [2016], Blondel [2019], Nowak-Vila
et al. [2020], the latter two of which are based on Fenchel-Young losses [Blondel et al., 2020].
However, none of them have addressed the tree structured prediction problem explicitly. For instance,
Blondel [2019] calls for Euclidean or Kullback-Leibler projection oracles, which do not exist in an
efficient sense from what we know for arborescence (directed tree) polytopes. In addition, the Frank-
Wolfe type algorithm adopted by Nowak-Vila et al. [2020] requires a max-min oracle and converges
in a rate of O( 1ϵ ). Furthermore, all of the above methods belong to empirical risk minimization
(ERM) that requires explicit regularization to combat overfitting, which can be quite vulnerable in
high-dimensional settings (e.g., scarce data).

To address the above issues, we propose an estimator from first principles in distributionally robust
optimization (DRO). It minimizes the worst-case risk over an ambiguity set of distributions within
bounded moment divergence from the empirical distribution. We seek probabilistic prediction by
assuming non-deterministic groundtruth labels, which, together with the ambiguity set, models
uncertainty about the unknown true distribution. We interpret the primal problem as a dual-norm-
regularized surrogate loss minimization problem. Note that prior art applying moment-based DRO
to tree-structured graphical models [Fathony et al., 2018b] and bipartite matching [Fathony et al.,
2018a] adopts a special case of our ambiguity set in which the empirical feature moments are matched
exactly and regularization has to be imposed manually. This moment-based DRO also allows us to
derive generalization bounds regarding true worst-case risks. When the ambiguity radius is zero,
the DRO estimator is shown to be consistent. We develop two practical algorithms, one based on
game theory and the other based on marginal probabilities of tree parts. We further propose efficient
Euclidean projection oracles onto the arborescence polytope with linearly convergent guarantees. We
conduct experiments on three common dependency parsing datasets, suggesting that our method is
particularly effective with little training data.

Contributions. Our contributions are summarized as follows. (1) We propose a distributionally robust
tree structured prediction method and show its equivalence to regularized surrogate minimization. (2)
We derive its generalization bounds and consistency. (3) We propose efficient algorithms based on
projection oracles for arborescence polytopes. (4) We perform empirical study on real-world datasets.

Paper structure. We begin with problem setup and existing work in Section 2. We present our method
with theoretical analysis in Section 3. Section 4 proposes efficient projection oracles. Section 5
discusses extensions beyond first-order directed trees. Experimental results of comparing our method
with a competitive baseline are given in Section 6. We conclude the paper in Section 7.

2 Background and Related Works

2.1 Tree Structured Prediction

Consider a weighted directed multi-graph G = (V, E) where each arc (i, j, l) ∈ E from node i to j
has a label l. By designating a root node r ∈ V , we say thatA ⊆ E is an r-arborescence of G if (V,A)
is a directed spanning tree rooted at r. For any v ∈ V , denote by δ−(v) := {(i, j, l) ∈ E : j = v} the
set of its incoming arcs, and δ+(v) := {(i, j, l) ∈ E : i = v} the set of its outgoing arcs.

LetX be the input space and Y ≜
⋃

x∈X Y(x) be the output space where Y(x) represents the set of r-
arborescences of a graph G(x) formed byx. Dependence onx is suppressed when context is clear. Let
R ⊆ 2E be a set of parts with E ⊆ R. Each part s ∈ R is a subset of arcs. It is convenient to represent
y ∈ Y as a binary vector with ys = 1 iff part s appears in y. Let wθ(x,y) ≜

∑
s∈R wθ(x, ys)

be a score function decomposing over parts, parameterized by θ. Let {(x(i),y(i))}mi=1 be a set
of m training examples drawn i.i.d. from a distribution P ∈ P(X × Y), where each y(i) is an
r-arborescence. The goal of tree structured prediction is to learn a function h : X → Y from training
data. Assume that the evaluation criterion is a loss function ℓ : Y × Y → R≥0.
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We introduce existing methods in the setting of (graph-based, non-projective, syntactic) dependency
parsing where x is a sequence of tokens and G(x) encodes dependencies among tokens.

2.2 Maximum Likelihood

A probabilistic modeling approach based on exponential family distributions maximizes the condi-
tional log-likelihood of the training data:

min
θ
−

m∑
i=1

log pθ(y
(i)|x(i)) := −

m∑
i=1

log [exp (wθ(x
(i),y(i)))/Z(x(i))],

where Z(x) ≜
∑

y∈Y(x) exp (wθ(x,y)). This problem is convex for log-linear models, but in-
tractable for generalR [Koller and Friedman, 2009]. The first-order arc-factored model (R = E) is
equivalent to a loop-free factor graph, rendering it tractable via the matrix-tree theorem [Kirchhoff,
1847, William, 1984, Koo et al., 2007, McDonald and Satta, 2007, Smith and Smith, 2007]. Neural
parsers either leverage the same theorem to compute the partition function [Ma and Hovy, 2017]
or consider the parent node distribution independently for each node by local normalization [Dozat
and Manning, 2017, Zhang et al., 2017]. Higher-order models require approximate algorithms such
as loopy belief propagation [Murphy et al., 1999] and Markov chain Monte Carlo [Brooks, 1998].
This approach does not incorporate task-specific losses. In fact, with maximum a posteriori (MAP)
decoding, it is not consistent with any specific loss in general [Nowak-Vila et al., 2019].

2.3 Maximum Margin

An alternative approach based on maximum margin Markov networks [Taskar et al., 2003] or
structured support vector machines [Tsochantaridis et al., 2005] optimizes a hinge-type surrogate:

min
θ

m∑
i=1

−wθ(x
(i),y(i)) + max

y
ℓ(y(i),y) + wθ(x

(i),y),

which inspires a rich line of work based on MAP inference with manual features [Taskar et al., 2004,
McDonald et al., 2005, McDonald and Pereira, 2006, Martins et al., 2009, 2010, 2015, Zhang et al.,
2014] or deep learning [Kiperwasser and Goldberg, 2016, Wang and Chang, 2016]. Approximate
MAP inference is required for models beyond first-order. A smooth variant called softmax-margin
[Gimpel and Smith, 2010] incorporates the task-specific loss ℓ but still implicitly minimizes it.
Margin-based objectives are known to be consistent only under very restrictive conditions [Liu, 2007,
Nowak-Vila et al., 2021] (i.e., data with majority label, loss being a distance).

2.4 Minimum Risk

Empirical risk minimization suggests directly optimizing the expected target loss on training data:

min
θ

m∑
i=1

∑
y

pθ(y|x(i))ℓ(y(i),y),

which is commonly non-convex due to normalization of pθ. There are a few parsers optimizing
this objective via back-propagation [Stoyanov and Eisner, 2012], k-best lists [Smith and Eisner,
2006], semirings [Li and Eisner, 2009, Zmigrod et al., 2021] and other differentiable approximations
[Gormley et al., 2015, Mensch and Blondel, 2018]. Local optima found by these algorithms do not
satisfy the premise of Fisher consistency and make it difficult to quantify generalization errors.

2.5 Distributionally Robust Optimization

Distributionally robust optimization has attracted emerging interests in improving machine learning
models due to its connections to robustness, regularization and generalization. It proposes to minimize
a risk with respect to the worst-case distribution chosen by an adversary in some uncertainty set:

min
θ

max
Q∈B

EQ[ℓ(Y , hθ(X))],

3



where B is an ambiguity set that can be defined by discrepancies [Shafieezadeh-Abadeh et al.,
2019, Duchi and Namkoong, 2019], moments [Delage and Ye, 2010, Farnia and Tse, 2016], shapes
[Popescu, 2005, Hanasusanto et al., 2015] and kernels [Shang et al., 2017, Staib and Jegelka, 2019].
A thorough review can be found in Rahimian and Mehrotra [2019]. We focus on moment-matching
discriminative approaches while a similar generative method is proposed in Ganapathi et al. [2008].

3 Method

We introduce the formulation, followed by practical algorithms for learning and inference. Afterwards,
we present the theoretical guarantees. We defer all proofs to Appendix A.

3.1 Formulation

We assume that the evaluation criterion is the Hamming loss ℓ(y,y′) :=
∑

i 1(yi ̸= y′i) with
1(·) being the 0-1 indicator function, but the results in this paper generalize to losses with affine
decomposition [Ramaswamy et al., 2013] easily.

Let Ptrue be the true distribution and Pemp be the empirical distribution. Our approach builds upon a
probabilistic predictor that non-parametrically minimizes the expected loss with regard to the most
adverse distribution in an uncertainty set where the distributions are ε away from the empirical
distribution in terms of feature moment difference:

min
P

max
Q∈B(Pemp)

EQX,Y̌ ,PŶ |X
ℓ(Ŷ , Y̌ ), (1)

where B(Pemp) := {Q : QX = Pemp
X ∧∥EPempϕ(·)−EQϕ(·)∥ ≤ ε} with ε ≥ 0 and ϕ : X ×Y → Rd

is a joint feature mapping decomposable over parts: ϕ(x,y) ≜
∑

s ϕ(x, ys). In Farnia and Tse
[2016], cross-moments are adopted: ϕ(x,y) := ϕX(x)⊗ ϕY (y) where ⊗ is the tensor product.

By Fenchel duality [Altun and Smola, 2006] and strong duality [Von Neumann and Morgenstern,
1947], we show that Eq. (1) is analogous to dual-norm-regularized surrogate loss minimization:
Proposition 1. The distributionally robust tree structured prediction problem based on moment
divergence in Eq. (1) can be rewritten as

min
θ

EPemp
X,Y

min
P

max
Q

EPŶ |X ,QY̌ |X
ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∥∗︸ ︷︷ ︸

ℓadv(θ,(X,Y ))

, (2)

where θ ∈ Rd is the vector of Lagrangian multipliers and ∥·∥∗ is the dual norm of ∥·∥.

3.2 Constraint Generation Solution

From a game-theoretic rationale [Topsøe, 1979, Grünwald and Dawid, 2004], Eq. (1) is considered as
an adversary-constrained zero-sum game. A prediction player chooses a set of stochastic strategies
(conditional distributions over arborescences) in order to minimize the expected payoff whereas
an adversarial player chooses constrained strategies to maximize it. The payoff for a pair of pure
strategies is the incurred loss, ℓ(ŷ, y̌). The constrained game is transformed to a set of unconstrained
ones in Eq. (2) whose payoffs are parameterized by θ: payoff(ŷ, y̌) ≜ ℓ(ŷ, y̌) + θ⊺ϕ(x, y̌). Note
that the games in Eq. (1) are jointly constrained for all x’s in the support of Pemp

X while the ones in
Eq. (2) are conditionally independent given x. The unconstrained game can be solved by a linear
program [Von Neumann and Morgenstern, 1947]. However, there are O(nn) spanning trees in a
complete graph, thus making explicit construction of the full payoff matrix impractical.

We adopt a constraint generation algorithm named double oracle [McMahan et al., 2003], shown
in Appendix B. It builds a payoff sub-matrix starting from small initial sets of strategies. In each
iteration, each player takes their turn based on the game payoff sub-matrix by finding the best response
among all possible strategies to the opponent’s optimal mixture strategies. The response is added to a
player’s strategy set if it improves the value of the game, with the sub-matrix updated. The algorithm
terminates and converges to a Nash equilibrium of the original game when the strategy sets no longer
grow. The size of the final sub-matrix is usually small in practice but there are no known theoretical
guarantees, thus no way to analyze the convergence behavior. Finding the best response requires an
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oracle, equivalent to finding the minimum weight arborescence. The objective in Eq. (2) is a convex
function of θ, so we can optimize it with sub-gradients based on solutions of the inner zero-sum
games. Although lacking convergence guarantees, this algorithm is flexible with custom losses and
provides a game-theoretic perspective to a typical DRO problem.

3.3 Marginal Distribution Formulation

The r-arborescence polytope is defined as the convex hull of all vectors representing r-arborescences:
Aarb(x) := Conv({y ∈ R|R| : y ∈ Y(x)}). Note that each p ∈ Aarb is a convex combination of all
r-arborescences: p ≜

∑
y Prob(y)y, where ps denotes the marginal probability of part s. Here we

adopt the squared ℓ2 norm as the dual norm and an ambiguity radius of ε = λ/2. By substituting the
marginal probability vectors and switching min-max optimization orders, we simplify Eq. (2) into

max
q(i)∈Aarb

min
θ

1

m

m∑
i=1

min
p∈Aarb

(q(i) − p(i)emp)
⊺Φ(i)θ − ⟨p, q(i)⟩+ µ

2
∥p∥22 −

µ

2
∥q(i)∥22 +

λ

2
∥θ∥22, (3)

where Φ(i) ∈ R|R|×d denotes the feature matrix of the i-th training data, µ ∈ R≥0 is a smoothing
parameter to induce strong convexity. We push the maximization over q to the outermost level
because of its large computational cost. If µ = 0, the solution to Eq. (3) is also optimal to Eq. (2) by
strong duality but the problem becomes non-smooth. Therefore we expect θ∗ obtained with a very
small positive µ to be a good approximation of θ∗ obtained with µ = 0.

To optimize it, with fixed q, due to strong convexity, the unconstrained minimization over θ yields
θ∗ = − 1

mλ

∑m
i=1(Φ

(i))⊺(q(i) − p(i)emp). In contrast, the constrained minimization over p admits no
closed-form solution but can be cast as Euclidean projection onto Aarb instead, independently for
each i ∈ [m]: p∗ = minp∈Aarb∥p − 1

µq
(i)∥22 ≜ ProjAarb

( 1µq
(i)). Given θ∗ and p∗, the outermost

maximization can be solved by a projected quasi-Newton algorithm [Schmidt et al., 2009] that also
requires the projection oracle ProjAarb

(·), elaborated in Section 4.

3.4 Inference

We propose two algorithms to make inference with given θ∗.

Weight construction. Construct the part weights as Φθ∗ ∈ R|R| and find the maximum weight
arborescence: y∗ ∈ argmaxy yΦθ

∗ by the Gabow-Tarjan (GT) algorithm [Gabow et al., 1986,
Zmigrod et al., 2020] or approximate methods for higher-order trees.

Minimum Bayes risk decoding. The optimal probabilistic prediction P∗ or p∗ can be obtained
from Eq. (2) or Eq. (3). The marginal probabilities enable minimum Bayes risk decoding: y∗ ∈
argminy EP∗

Ŷ |x
ℓ(y, Ŷ ) ≜ argmaxy

∑
s:ys=1 p

∗
s , a maximum weight arborescence problem.

3.5 Statistical Properties

Basic generalization bounds of DRO methods derived from measure concentration are not appro-
priate for an ambiguity set defined by low-order moments in this paper since it fails to converge
[Shafieezadeh-Abadeh et al., 2019]. We take an alternate approach following Farnia and Tse [2016]
to obtain excess out-of-sample risk bounds by assuming boundedness on features and losses.

Theorem 2. Given m samples, a non-negative loss ℓ(·, ·) such that |ℓ(·, ·)| ≤ K, a feature function
ϕ(·, ·) such that ∥ϕ(·, ·)∥ ≤ B, a positive ambiguity level ε > 0, then, for any ρ ∈ (0, 1], with a
probability at least 1− ρ, the following excess true worst-case risk bound holds:

max
Q∈B(Ptrue)

RL
Q(θ

∗
emp)− max

Q∈B(Ptrue)
RL

Q(θ
∗
true) ≤

4KB

ε
√
m

(
1 +

3

2

√
ln(4/ρ)

2

)
,

where θ∗emp and θ∗true are the optimal parameters learned in Eq. (2) under Pemp and Ptrue respectively.
The original risk of θ under Q is RL

Q(θ) := EQX,Y ,Pθ
Ŷ |X

ℓ(Ŷ ,Y ) with Bayes prediction Pθ
Y |x ∈

argminP maxQ EQY̌ |xPŶ |x
ℓ(Ŷ , Y̌ ) + θ⊺ϕ(x, Y̌ ).
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Theorem 2 presents a bound based on uniform convergence and Rademacher complexities [Bartlett
and Mendelson, 2002], which improves the results in Asif et al. [2015], who merely show that the
worst-case risk upper bounds the risk under any distribution in the ambiguity set.

The dual problem in Eq. (2) suggests an adversarial surrogate loss ℓadv(θ, (x,y)) in a ERM form.
The special case of ε = 0 in our DRO estimator has a similar form to the max-min surrogate loss in
Nowak-Vila et al. [2020] except that we assume probabilistic prediction. A conclusion of its Fisher
consistency can thus be drawn based on Fathony et al. [2018a], Nowak-Vila et al. [2020].

Corollary 3. When ε = 0, ℓadv is Fisher consistent with respect to ℓ. Namely, Pθ∗
true

Ŷ |X is the proba-
bilistic prediction made by the Bayes optimal decision rule, where θ∗true is defined in Theorem 2.

If ε > 0, the decoded prediction for each x will not belong to the convex hull of true conditional
distributions, thus not a minimizer of ℓ. On the other hand, if ε is chosen as m−α for 0 < α < 1/2,
ℓadv will be universally consistent according to the comparison inequality in Nowak-Vila et al. [2020].

4 Projection onto Arborescence Polytopes

The Euclidean projection onto an r-arborescence polytope is a quadratic programming problem1:

min
x∈Aarb

f(x) := ∥x−w∥22.

We focus on first-order models and discuss the extensions to other classes of trees in Section 5.

4.1 Frank-Wolfe Algorithm

The Frank-Wolfe (FW) method [Frank et al., 1956] is an iterative first-order algorithm that enforces
constraints by optimizing a linear objective over the feasible set at each iteration t:

st ∈ arg min
s∈Aarb

s⊺∇f(xt), (4)

which is a minimum weight arborescence problem with weights∇f(xt) in our case. The solution is
updated and stays feasible: xt+1 ← xt + γt(s

t − xt), where γt is a step size typically set to 2
t+2 .

FW style algorithms are known to have a convergence rate of O( 1ϵ ) [Jaggi, 2013].

4.2 Martin’s Polytope

A compact representation of Aarb with a polynomial number of linear constraints is attractive to
lead to efficient algorithms. To the best of our knowledge, there is no existing projection method
exploiting special structures of this polytope. An extended formulation of the arborescence polytope
[Friesen, 2019, Martin, 1991] follows a lift-and-project approach. It relates each element to existence
of k-arboresences of the underlying undirected graph for all k ∈ V . We extend it to multi-graphs:

Amarb := {zr : ∃zk ≥ 0
∑

a∈δ−(j)

zka = 1(j ̸= k) ∀k, j ∈ V ∧
∑

a∈E′
ij

zka =
∑

a∈Eij

zra ∀k ̸= r, i, j ∈ V ∧ zr ≥ 0},

where zr ∈ R|E| is associated with the original arcs E , zk ∈ R|E′| for k ̸= r is associated with a
simple directed graph (V, E ′) formed by removing directions and splitting each edge {i, j} into two
directed ones, Eij := {a ∈ E : ā = {i, j}} is the set of arcs connecting i and j with ā ≜ (i, j, l) :=
{i, j} denoting the underlying undirected edge. We show exact correspondence between Amarb and
Aarb based on a similar argument for simple graphs [Friesen, 2019]:

Proposition 4. Let G be a multi-graph. Amarb ≜ Aarb.

1This is a well-defined convex optimization problem, different from that in differentiable structured prediction
methods [Peng et al., 2018, Mihaylova et al., 2020] which elicit gradients with respect to inputs.
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To solve minx∈Amarb∥x−w∥22, we propose to adopt the alternating direction method of multipliers
(ADMM) and rewrite it into the following separable form:

min
u
g(u) :=

∑
k∈V

1

|V|∥uk −w∥22 + IUk
(uk)

s.t. Uk := {x ∈ R|E| : ∃z ∈ R|E′|
≥0

∑
a∈δ−(j)

za = 1(j ̸= k) ∧
∑
a∈E′

ij

za =
∑
a∈Eij

xa ∀i, j ∈ V}

ur = uk ∀k ∈ V \ r, Ur := {x ∈ R|E|
≥0 :

∑
a∈δ−(j)

xa = 1(j ̸= r) ∀j ∈ V},

where IU (·) is the characteristic function with IU (x) = 0 if x ∈ U and∞ otherwise.

Let λ′
k be the dual variables and λk := 1

ρk
λ′
k. The scaled augmented Lagrangian function is

Lρ(u,λ)=g(u) +
∑

k ̸=r
ρk

2 ∥ur − uk + λk∥22 − ρk

2 ∥λk∥22.

The ADMM algorithm updates the parameters as follows:

ut+1
k := arg min

uk∈Uk

Lρ((u
t
r,u

t
k),λ

t) ≜ ProjUk
(
2w + ρk|V|(ut

r + λ
t
k)

2 + ρk|V|
) ∀k ̸= r

ut+1
r := arg min

ur∈Ur

Lρ((u
t
r,u

t+1
k ),λt) ≜ ProjUr

(
2w + |V|∑k ̸=r ρk(u

t+1
k − λt

k)

2 + |V|∑k ̸=r ρk
)

λt+1
k := λt

k + (ut+1
r − ut+1

k ) ∀k ̸= r.

This decomposes the original projection problem into simpler projection problems. Projection onto
Uk for k = r decomposes over j ∈ V into |V| projections onto simplex, solvable as fast as O(n)
in the worst case [Condat, 2016]. For k ̸= r, computation of ut+1

k can be done in parallel. The
Lagrange dual problem of ProjUk

(·) can be written as

max
α∈R|V|

∑
{i,j}∈Ē

hij(α)−
∑
j ̸=k

αj s.t. hij(α) =

{
w2

ij/nij if αij > 2wij/nij ,

−nijα2
ij/4 + αijwij if αij ≤ 2wij/nij ,

where wij :=
∑

a∈Eij
wa, nij := |Eij |, αij := min(αi, αj) and αk := +∞. Strong duality holds

by linear constraint qualification. Primal solutions are recovered by x∗a = wa −min(α∗
ā/2, wā/nā).

Convergence. The dual objective of ProjUk
(·) is strongly concave on {α ∈ R|V| : ∀i∃j {i, j} ∈

E ∧ αi ≤ αj ∧ αi ≤ 2wij/nij}, with a unique global maximizer. This implies fast convergence
in practice given good initialization. The negative Lagrange dual function has restricted strong
convexity with ν = minij(nij/2), near the optimum, suggesting linear convergence [Zhang and
Cheng, 2015]. Alternatively, exact solutions can be found by enumerating rankings (with duplicates)
of α in O(|V||V|). In this manner, the ADMM algorithm with a strongly convex objective has a
linear convergence rate O(log 1

ϵ ) with either exact [Deng and Yin, 2016] or linearly convergent
approximate solution [Hager and Zhang, 2020] of ProjUk

(·). Using Nesterov’s accelerated gradient
algorithm [Nesterov, 2003] to optimize Eq. (3) leads to iteration complexityO(C log 1

ϵ ) with constant
C dependent on Lipschitz constants of gradients and µ.

5 Extensions

5.1 Undirected Spanning Trees

An straight-forward way of extending to undirected spanning trees is to split {i, j} into two arcs
(i, j), (j, i) and make the feature mapping direction-invariant, i.e., ϕ(x, ys) = ϕ(x, ys′) for s and s′
having the same underlying undirected graph. We post-process the prediction by removing directions.

Alternatively, we seek projection oracles for undirected graphs. Projection via FW is done by using
any minimum spanning tree algorithm in Eq. (4). For ADMM, the formulation in Martin [1991]
is originally for undirected trees: Amund := {x : ∃z ≥ 0

∑
a∈δ−(j) z

k
a = 1(j ̸= k) ∧ zkij + zkji =

x{i,j}∀k, i, j ∈ V}. ADMM is easily adapted to this case with
∑

a∈Eij
xa replaced by x{i,j}.
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5.2 Dependency Trees

The spanning tree structure in dependency parsing is a special one where the outdegree of root is
restricted to be one. We can use the GT algorithm for inference with either the same training objective
or an aligned objective where a dependency tree polytope is considered: Adep(x) := Conv({y ∈
Y(x) : |δ+(r)| = 1}). A straightforward extension of Amarb to characterizing dependency trees is
Amdep := {zr : zr ∈ Amarb ∧

∑
a∈δ+(r) z

r
a = 1}, equivalent to Adep by the following proposition:

Proposition 5. Let G be a multi-graph. Amdep ≜ Adep.

FW methods leverage the GT algorithm in Eq. (4). As for ADMM, the dual problem of projection
onto U ′

r := {x : x ∈ Ur ∧
∑

a∈δ+(r) xa = 1} becomes

max
α,β

∑
a∈E

ha(α, β)−
∑
j ̸=r

αj − β s.t. ha(α, β) =

{
w2

a γa > 2wa,

waγa − γ2a/4 γa ≤ 2wa,

where γ(i,j,l) := αj + 1(i = r)β. This can be solved in O(|E| log |E|) [Zhang et al., 2010].

5.3 Higher-order Polytope

Compact higher-order polytope descriptions exist for undirected spanning trees but are still unknown
for arborescences with even one monomial [Friesen, 2019]. FW requires a linear oracle that is
NP-hard to solve exactly in higher-order settings [McDonald and Pereira, 2006].

Instead, we can approximate it with a local polytope where the marginal probabilities of each part s
is required to be locally consistent with that of each arc a. For simplicity, we consider only features
for the all-true assignments, i.e., all arcs exist in part s. The resulting polytope can be written as
Amloc := {x : xE ∈ Amarb ∧ ∀s ∈ R, a ∈ s ps ≤ pa}, which suggests an ADMM algorithm with
additional constraint sets for each part: Us := {x ∈ R|R|

≥0 : xs ≤ xa ∀a ∈ s}, the projection onto
which can be done in O(|s| log |s|). See Appendix D for details.

6 Experiments

We evaluate our proposed method on dependency parsing tasks and compare its ability to BiAF
[Dozat and Manning, 2017], arguably the state-of-the-art neural dependency parser. We implement
our methods in Python and C2. We leverage the implementations in SuPar3 [Zhang et al., 2020] for
the baseline. All experiments are conducted on a computer with an Intel Core i7 CPU (2.7 GHz) and
an NVIDIA Tesla P100 GPU (16 GB).

We adopt three public datasets, the English Penn Treebank (PTB v3.0) [Marcus et al., 1993], the
Penn Chinese Treebank (CTB v5.1) [Xue et al., 2002] and the Universal Dependencies (UD v2.3)
[Nivre et al., 2016]. See Appendix C for data-processing details.

Representation learning is not the focus of this paper. We follow Levy et al. [2020] and compare
our method with the last biaffine classification layer in BiAF on top of pretrained features preceding
this layer (backbone’s output). The pretrained embeddings produced by complicated non-linear
models make Fisher consistency’s assumption of optimizing over all measurable functions less
violated. To featurize the data, for each dataset, we train a BiAF network with the whole training set
to obtain a pretrained model. Note that this may create unfair advantages for the baseline because
the last layer was optimized together with the backbone network in an end-to-end manner during
pretraining. Moreover, pretraining uses a standard ERM objective with the cross-entropy loss and
local normalization over head nodes. The pretrained features are thus more adequate for the ERM
objective than for our DRO objective. To make use of the features as inputs in our method, we take
the outer product of the embedding vectors for two nodes as the arc feature vector. Our method and
the biaffine layer therefore share the same number of parameters (501× 501, including bias terms).
We focus on predicting the unlabeled dependency tree while relying on pretrained models for relation
label prediction. The evaluation criteria are the labeled/unlabeled attachment scores (LAS/UAS) and

2Our code is publicly available at https://github.com/DanielLeee/drtreesp.
3https://github.com/yzhangcs/parser
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Table 1: Comparison of mean UAS and execution time under different training set sizes. Time
refers to the CPU time taken to finish one gradient descent step. Statistically significant differences
compared to BiAF are marked with † (paired t-test, p < 0.05). The best UAS are highlighted in bold.

PTB CTB UD Dutch UD Turkish (low resource)

Method Time (s) m = 10 50 100 1000 m = 10 50 100 1000 m = 10 50 100 1000 m = 10 50 100 1000

BiAF 0.34 93.48 96.87 96.95 97.16 88.45 90.89 91.15 91.70 90.86 93.80 94.15 94.98 17.64 26.59 30.75 42.82
Marginal 0.28 94.51† 96.81† 96.92 97.12 89.19† 91.03† 91.27 91.67 92.41† 94.22† 94.50† 95.15† 24.85† 32.83† 33.75† 43.18
Stochastic 2.72 94.62† 96.81 96.93 97.14 89.27† 91.03† 91.27 91.66 92.40† 94.23† 94.47 95.14† 25.06† 31.35† 33.62† 41.20†

Game 7.25 94.51† 96.86 96.92 97.08† 89.22† 91.06† 91.22 91.57† 92.32† 94.34† 94.59† 95.01 19.85 23.18† 27.12† 36.30†

100 101 102 103
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Figure 1: Convergence of ADMM and FW for
random points with 95% confidence intervals.
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Figure 2: The best UAS with the Marginal algo-
rithm as µ and λ vary in logarithmic scales.

labeled/unlabeled complete matches (LCM/UCM). The attachment score can be transformed to the
Hamming loss with linear mapping: AS(y,y′) ≜ |V| − 1− ℓ(y,y′)/2.

Full batch learning is adopted for Marginal (Eq. (3)). Mini-batch training is adopted for Game, the
game-theoretic algorithm, and Stochastic, which solves the inner min-max problem in Eq. (2) using
Eq. (3) with fixed θ. All models are trained with the training set only. The optimal hyperparameters
and parameters are chosen based on the validation set. See Appendix C for detailed parameter values.

To showcase the ability of DRO methods tackling scarce data, in each run, we randomly draw
m ∈ {10, 50, 100, 1000} samples without replacement from the training set and keep the original
validation and test sets. All the models are trained on the same set of sampled data. The process
is repeated 5 times for each m. The main UAS results on the PTB, CTB and UD Dutch Lassy
Small datasets are reported in Table 1 with complete results provided in Appendix C. Our methods
consistently deliver higher UAS than BiAF especially with a small amount of data4. With little training
data, DRO approaches minimize the worst-case risk to avoid overfitting. With more training data
available, our method is still comparable to BiAF which is not significantly better than our methods
by statistical tests. This illustrates the advantages of replacing conditional log-likelihood with our
Fisher consistent surrogate loss without changing the number of model parameters. Moreover, we
study a low-resource setting with the UD Turkish dataset in which only the sampled data is used
for pretraining without BERT embeddings. The binary cross-entropy loss (single normalization) is
adopted during pretraining in this setting to avoid pretrained features biased towards the multi-class
cross-entropy loss (local normalization) adopted by BiAF. We observe consistently competitive
performance of our methods in the low-resource setting in Table 1 as well.

We report computational time of one gradient descent step in the second column of Table 1, averaged
across 10 runs. For fair comparisons, all the models are run with CPU only, with a batch size of
200. All the methods achieve their optimal validation set performance in 150-300 steps. BiAF and
Marginal are the fastest because the most time-consuming step of computing dot products of features
and parameters is only performed once whereas the other two methods perform it multiple times.
However, since Marginal is unable to leverage stochastic gradients, its execution time grows linearly
in the full batch size. Henceforth, there is a trade-off between Marginal and Stochastic/Game for
computational efficiency. The extra cost compared to BiAF with cross entropy is expected because
distributional robustness against a set of adversarial distributions is guaranteed.

4The UAS is high with 10 training samples possibly because (1) the backbone sub-network and linear layer
were trained together with the whole training set; (2) BERT embeddings yield data representation that is easily
linearly separable; (3) 10 samples result in as many as 10× 20× 20 balanced head-selection instances for BiAF.
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We compare ADMM and FW by performing for 100 times projection of random points in [−5, 5]75
on a graph with 5 nodes and 3 parallel arcs between each (i, j). We subtract the integral part of
the observed minimum values in each run for better illustration. As shown in Figure 1, ADMM
usually finds a better solution in the arborescence polytope than FW does within 1000 iterations5.
That being said, the per-iteration cost of ADMM is about 8n times higher than that of FW due to
consensus optimization of n subproblems. In practice, the solution computed with FW usually leads
to an approximately good sub-derivative to optimize the DRO objective. We have verified that the
solutions suggested by ADMM satisfy the polytope constraints for graphs of up to 10 nodes.

We conduct sensitivity analysis by varying µ and λ on UD Dutch with 100 training samples. Figure 2
implies that moderate smoothing is beneficial to generalization. The ambiguity radius should be
judiciously chosen because a small λ causes overfitting while a large λ leads to conservative models.

7 Discussion and Conclusion

We proposed a distributionally robust and consistent tree structured prediction method. We showed
its equivalence to regularized surrogate loss minimization. We put forward a provably convergent
algorithm based on efficient projection oracles for arborescence polytopes. Our proposed method
enjoys Fisher consistency and robustness against noise in conditional distributions in terms of feature
moments. Theoretical and empirical results validate its effectiveness.

We assume that an expressive feature mapping is given such that a sufficiently good linear discriminant
rule can be learned. The class-sensitive form ϕ(x,y) is general but consumes more memory than the
decomposable form ϕX(x) ⊗ ϕY (y). The ADMM projection algorithm is efficient theoretically
with high per-iteration costs in practice. We expect this work to be a principled way of learning to
predict tree-structured objects. Future directions include a more efficient implementation and general
structured prediction with DRO. Potential negative societal impacts of our work include using its
prediction without verification to guide human-centered design in policy-making.

Representation learning. Our method can be easily adapted to a representation learning framework
with automatic differentiation. Although this may lead to a non-convex problem without the theoreti-
cal guarantees derived in this paper, it is highly desired in practice if feature mappings are optimized
as well. We discuss a possible approach as follows. Modern neural networks for supervised learning
typically have a linear layer in the end without activation. Assume the penultimate layer outputs Φ(x)
for input x, the last layer with parameters θ will typically output ψ(x) := Φ(x)θ ∈ Rk, sometimes
called logits, with k = n2 labels for all arcs when parsing a sentence of n tokens. Note that θ in
our formulation naturally serves as the parameters of this linear layer. Moreover, knowing ψ(x) is
sufficient for us to solve the inner minimax problem in Eq. (2) to get P∗

Ŷ |x and Q∗
Y̌ |x. In this way,

our DRO method can be considered a loss layer without learnable parameters, which backpropagates
the sub-derivative of the objective with respect to ψ(x):

∂

∂ψ(x)
ℓadv ∈

1

B

B∑
i=1

(q(i)∗ − p(i)∗emp ),

where B is the batch size. The sub-derivative of the regularization term with respect to θ should be
added to the linear layer. Now we are able to take advantage of automatic differentiation and focus
on solving the inner adversarial problem given ψ(x) and y. Since the computational bottleneck lies
in computing ψ(x) and backward passes, the overhead of computing the adversarial loss may be
dominated and not significant compared to the cross-entropy loss. We leave investigations on its
effective applications to future work.
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A Technical Proofs

Proposition 1. The distributionally robust tree structured prediction problem based on moment
divergence in Eq. (1) can be rewritten as

min
θ

EPemp
X,Y

min
P

max
Q

EPŶ |X ,QY̌ |X
ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∥∗︸ ︷︷ ︸

ℓadv(θ,(X,Y ))

,

where θ ∈ Rd is the vector of Lagrangian multipliers and ∥·∥∗ is the dual norm of ∥·∥.

Proof. Recall the primal problem

min
P

max
Q∈B(Pemp)

EQX,Y̌ PŶ |X
ℓ(Ŷ , Y̌ ),

where B(Pemp) := {Q : QX = Pemp
X ∧ ∥EPempϕ(·)− EQϕ(·)∥ ≤ ε} with ε ≥ 0.

Note the feature function ϕ(·) is fixed and given. Since PŶ |X ∈ ∆ and QX,Y̌ ∈ ∆∩B(Pemp) where
∆ is the probability simplex with dimension omitted, the constraint sets are convex. The objective
function is convex in P and concave in Q because it is affine in both. Therefore strong duality holds:

max
Q∈B(Pemp)

min
P

EQX,Y̌ PŶ |X
ℓ(Ŷ , Y̌ ).

Let C := {u : ∥u− EPempϕ(·)∥ ≤ ε}. Rewrite the problem with this constraint:

sup
Q,u

min
P

EPemp
X QY̌ |XPŶ |X

ℓ(Ŷ , Y̌ )− IC(u)

s.t. u = EPemp
X QY̌ |X

ϕ(X, Y̌ ),

where IC(·) is the indicator function with IC(x) = 0 if x ∈ C and +∞ otherwise. The simplex
constraints are omitted.

The dual problem by relaxing the equality constraint is

sup
Q,u

min
θ

min
P

EPemp
X QY̌ |XPŶ |X

ℓ(Ŷ , Y̌ )− IC(u) + θ⊺EPemp
X QY̌ |X

ϕ(X, Y̌ )− θ⊺u,

where θ is the vector of Lagrange multipliers.

GivenX = x, optimization of QY̌ |x and PŶ |x can be done independently. Again by strong duality,
we can rearrange the terms:

min
θ

EPemp
X

min
P

max
Q

EQY̌ |XPŶ |X
ℓ(Ŷ , Y̌ ) + θ⊺ϕ(X, Y̌ ) + sup

u
−IC(u)− θ⊺u.

The associated dual norm ∥·∥∗ of the norm ∥·∥ is defined as

∥z∥∗ := sup{z⊺x : ∥x∥ ≤ 1},
based on which we are able to simplify the optimization over u as

sup
u
−IC(u)− θ⊺u = sup

u∈C
−θ⊺u = sup

e:∥e∥≤1

−θ⊺(EPempϕ(·)− εe) = −θ⊺EPempϕ(·) + ε∥θ∥∗.

Plugging it back to the dual problem, we have

min
θ

EPemp
X,Y

min
P

max
Q

EQY̌ |XPŶ |X
ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∥∗.

Theorem 2. Given m samples, a non-negative loss ℓ(·, ·) such that |ℓ(·, ·)| ≤ K, a feature function
ϕ(·, ·) such that ∥ϕ(·, ·)∥ ≤ B, a positive ambiguity level ε > 0, then, for any ρ ∈ (0, 1], with a
probability at least 1− ρ, the following excess true worst-case risk bound holds:

max
Q∈B(Ptrue)

RL
Q(θ

∗
emp)− max

Q∈B(Ptrue)
RL

Q(θ
∗
true) ≤

4KB

ε
√
m

(
1 +

3

2

√
ln(4/ρ)

2

)
,
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where θ∗emp and θ∗true are the optimal parameters learned in Eq. (2) under Pemp and Ptrue respectively.
The original risk of θ under Q is RL

Q(θ) := EQX,Y ,Pθ
Ŷ |X

ℓ(Ŷ ,Y ) with Bayes prediction Pθ
Y |x ∈

argminP maxQ EQY̌ |xPŶ |x
ℓ(Ŷ , Y̌ ) + θ⊺ϕ(x, Y̌ ).

Proof. Define the adversarial surrogate risk of θ with respect to P̃ as

RS
P̃ (θ) := EP̃X,Y

ℓadv(θ, (X,Y )) := EP̃X,Y
min
P

max
Q

EQY̌ |XPŶ |X
ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∥∗.

Let θ∗true ∈ argminθ R
S
Ptrue(θ) and θ∗emp ∈ argminθ R

S
Pemp(θ) be the optimal parameters learned with

Ptrue
X,Y and Pemp

X,Y respectively.

Given x, define the decoded prediction by θ as

Pθ
Y |x ∈ argmin

P
max
Q

EQY̌ |xPŶ |x
ℓ(Ŷ , Y̌ ) + θ⊺ϕ(x, Y̌ ).

Let the original risk of loss ℓ under some distribution Q be

RL
Q(θ) := EQX,Y ,Pθ

Ŷ |X
ℓ(Ŷ ,Y ).

According to Proposition 1, for any fixed P, we have similarly

max
Q∈B(Pemp)

EQX,Y̌ PŶ |X
ℓ(Ŷ , Y̌ ) ≜ min

θ
EPemp

X,Y
max
Q

EQY̌ |XPŶ |X
ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∥∗.

We start by looking at the worst-case risk of θ∗true and θ∗emp.

max
Q∈B(Ptrue)

RL
Q(θ

∗
emp)

=min
θ

EPtrue
X,Y

max
Q

E
QY̌ |XP

θ∗
emp

Ŷ |X

ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∥∗

≤EPtrue
X,Y

max
Q

E
QY̌ |XP

θ∗
emp

Ŷ |X

ℓ(Ŷ , Y̌ ) + θ∗emp · (ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∗emp∥∗,

where the last inequality holds because θ∗emp is not necessarily a minimizer. Similarly for θ∗true,

max
Q∈B(Ptrue)

RL
Q(θ

∗
true) ≤ EPtrue

X,Y
max
Q

E
QY̌ |XPθ∗

true
Ŷ |X

ℓ(Ŷ , Y̌ ) + θ∗true · (ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∗true∥∗.

On the other hand,
EPtrue

X,Y
max
Q

E
QY̌ |XPθ∗

true
Ŷ |X

ℓ(Ŷ , Y̌ ) + θ∗true · (ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∗true∥∗

=min
θ

EPtrue
X,Y

min
P

max
Q

EQY̌ |XPŶ |X
ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∥∗

=min
P

min
θ

EPtrue
X,Y

max
Q

EQY̌ |XPŶ |X
ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∥∗

≤min
θ

EPtrue
X,Y

max
Q

E
QY̌ |XPθ∗

true
Ŷ |X

ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∥∗

= max
Q∈B(Ptrue)

RL
Q(θ

∗
true),

where the first equality holds according to the definition of θ∗true. The above two inequalities imply
the equality:

max
Q∈B(Ptrue)

RL
Q(θ

∗
true) = EPtrue

X,Y
max
Q

E
QY̌ |XPθ∗

true
Ŷ |X

ℓ(Ŷ , Y̌ ) + θ∗true · (ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∗true∥∗.

Therefore,
max

Q∈B(Ptrue)
RL

Q(θ
∗
emp)− max

Q∈B(Ptrue)
RL

Q(θ
∗
true)

≤EPtrue
X,Y

max
Q

E
QY̌ |XP

θ∗
emp

Ŷ |X

ℓ(Ŷ , Y̌ ) + θ∗emp · (ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∗emp∥∗

− (EPtrue
X,Y

max
Q

E
QY̌ |XPθ∗

true
Ŷ |X

ℓ(Ŷ , Y̌ ) + θ∗true · (ϕ(X, Y̌ )− ϕ(X,Y )) + ε∥θ∗true∥∗). (5)
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The main idea is thus to use uniform convergence bounds. Firstly, by substituting Q = Ptrue, note that

min
P

max
Q

EQY̌ |XPŶ |X
ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X, Y̌ )− ϕ(X,Y )) ≥ min

P
EPtrue

Y |XPŶ |X
ℓ(Ŷ ,Y ) ≥ 0.

We can get an upper bound of the norm of any optimal solution θ∗true or θ∗emp as follows:

0 + ε∥θ∗true∥∗ ≤ RS
Ptrue(θ∗true) ≤ RS

Ptrue(0) ≤ EPtrue
X,Y

min
P

max
Q

EQY̌ |XPŶ |X
ℓ(Ŷ , Y̌ ) ≤ K =⇒ ∥θ∗true∥∗ ≤

K

ε
.

Let ψ(X,Y ) := θ⊺ϕ(X,Y ) and ψx := (ψ(x,y))y∈Y . Define

f(θ, P̃) := EP̃X,Y
min
P

max
Q

EQY̌ |XPŶ |X
ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X, Y̌ )− ϕ(X,Y ))

≜ EP̃X,Y
max
Q

EQY̌ |XPθ
Ŷ |X

ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X, Y̌ )− ϕ(X,Y ))

≜ EP̃X,Y
max
Q

EQY̌ |XPθ
Ŷ |X

ℓ(Ŷ , Y̌ ) + ψ(X, Y̌ )− ψ(X,Y )

≜ g(ψ, P̃).

Let qx ∈ ∆ be the probability vector of QY̌ |x and ey be the standard basis vector with y-th entry
equal to 1. We have that for any (x,y),

∂

∂ψx
g(ψ, δ(x,y)) ⊆ Conv({qx − ey : qx ∈ ∆}) =⇒ ∥ ∂

∂ψx
g(ψ, δ(x,y))∥1 ≤ max

qx∈∆
∥qx − ey∥1 ≤ 2,

where δ(x,y) is the Dirac point measure. g(·, P̃) is therefore 2-Lipschitz with respect to the ℓ1 norm.
As per the assumption, ∥ϕ(·, ·)∥ ≤ B. This further implies that

f(θ1, δ(x1,y1))− f(θ2, δ(x2,y2)) ≤
4KB

ε
∀θ1,θ2,x1,x2,y1,y2 s.t. ∥θi∥∗ ≤

K

ε
∀i = 1, 2.

We then follow the proof of Theorem 3 in Farnia and Tse [2016]. According to Theorem 26.12 in
Shalev-Shwartz and Ben-David [2014], by uniform convergence, for any ρ ∈ (0, 2], with a probability
at least 1− ρ

2 ,

f(θ∗emp,Ptrue)− f(θ∗emp,Pemp) ≤ 4KB

ε
√
m

(
1 +

√
ln(4/ρ)

2

)
.

According to the definition of θ∗true, the following inequality holds:

f(θ∗emp,Pemp) + ε∥θ∗emp∥∗ − f(θ∗true,Pemp)− ε∥θ∗true∥∗ ≤ 0.

Since θ∗true do not depend on samples, according to the Hoeffding’s inequality, with a probability
1− ρ/2,

f(θ∗true,Pemp)− f(θ∗true,Ptrue) ≤ 2KB

ε
√
m

√
ln(4/ρ)

2
.

Applying the union bound to the above three inequations, with a probability 1− ρ, we have

f(θ∗emp,Ptrue) + ε∥θ∗emp∥∗ − f(θ∗true,Ptrue)− ε∥θ∗true∥∗ ≤
4KB

ε
√
m

(
1 +

3

2

√
ln(4/ρ)

2

)
.

As stated by Inequation (5), we conclude with the following excess risk bound:

max
Q∈B(Ptrue)

RL
Q(θ

∗
emp)− max

Q∈B(Ptrue)
RL

Q(θ
∗
true) ≤

4KB

ε
√
m

(
1 +

3

2

√
ln(4/ρ)

2

)
.
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Corollary 3. When ε = 0, ℓadv is Fisher consistent with respect to ℓ. Namely,

Pθ∗
true

Ŷ |X ∈ arg min
PŶ |X

EPtrue
X,Y ,PŶ |X

ℓ(Ŷ ,Y ),

where θ∗true is learned with ℓadv and Ptrue as in Theorem 2.

Proof. Our formulation differs from Nowak-Vila et al. [2020] in the fact that we allow probabilistic
prediction to be ground truth. By defining y∗(µ) as the gold standard probabilistic prediction and Y
as the set of all possible probabilistic predictions in Proposition C.2 in Nowak-Vila et al. [2020], we
have

Pθ∗
true

Ŷ |x ∈ Conv(arg min
PŶ |x

EPtrue
Y |x,PŶ |x

ℓ(Ŷ ,Y )).

Therefore,

Pθ∗
true

Ŷ |x ∈ arg min
PŶ |x

EPtrue
Y |x,PŶ |x

ℓ(Ŷ ,Y ).

Proposition 4. Let G be a multi-graph. Amarb ≜ Aarb.

Proof. We follow the proof of Friesen [2019] for simple graphs. Recall the definition of Amarb:

Amarb := {zr : ∃z ≥ 0∑
a∈δ−(j)

zka = 1(j ̸= k) ∀k, j ∈ V∧ (6)

∑
a∈E′

ij

zka =
∑
a∈Eij

zra ∀k ̸= r, i, j ∈ V}. (7)

On one hand, given a legal r-arborescence with characteristic vector zr, Eq. (6) and Eq. (7) hold by
the definition of arborescences. The equality also holds for a convex combination of the characteristic
vectors of r-arborescences.

On the other hand, given z ∈ Amarb. Consider Edmond’s definition of r-arborescence polytope based
on rank constraints: ∑

a∈S

xa ≤ |S| − 1 ∀S ⊂ V with S ̸= ∅ (8)∑
a∈δ−(j)

xa = 1(j ̸= r) ∀j ∈ V (9)

x ≥ 0.

We have Eq. (6) directly implies Eq. (9). According to Eq. (7),∑
a∈S

zra =
∑
a∈S

zua ∀S ⊆ V ∧ u ∈ V .

Therefore, ∑
a∈S

zra =
∑
a∈S

zua ≤
∑
j∈S

∑
a∈δ−(j)

zua = |S| − 1 ∀S ⊆ V ∧ u ∈ S,

which is exactly Eq. (8).

Proposition 5. Let G be a multi-graph. Amdep ≜ Adep.

Proof. Recall the definition of Amdep:

Amdep := {zr : zr ∈ Amarb∧∑
a∈δ+(r)

zra = 1}. (10)
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Algorithm 1 Double Oracle Game Solver
Input: Lagrange multipliers θ; feature function ϕ(·, ·); initial set of trees {yinitial}
Output: A sparse Nash equilibrium (T̂ , Ť ,P,Q)

Initialize T̂ ← Ť ← {yinitial}
repeat
(P, v̂Nash)← SolveZeroSumGameT̂ (ℓ,θ

⊺ϕ, T̂ , Ť )
(y̌BR, v̌BR)← FindBestResponse(ℓ,θ⊺ϕ,P, T̂ )
if v̂Nash ̸= v̌BR then
Ť ← Ť ∪ {y̌BR}

end if
(Q, v̌Nash)← SolveZeroSumGameŤ (ℓ,θ

⊺ϕ, T̂ , Ť )
(ŷBR, v̂BR)← FindBestResponse(ℓ,θ⊺ϕ,Q, Ť )
if v̌Nash ̸= v̂BR then
T̂ ← T̂ ∪ {ŷBR}

end if
until v̂Nash = v̌BR = v̌Nash = v̂BR
return (T̂ , Ť ,P,Q)

On one hand, given a legal dependency tree zr ∈ Adep, it satisfies Eq. (6) and Eq. (7) by Proposition 4.
It also satisfies Eq. (10) by the definition of Adep.

On the other hand, given zr ∈ Amdep, firstly, zr must be in Aarb by Proposition 4, which implies that
we can write it as a convex combination of k r-arborescences vectors: zr ≜ α1t

1+α2t
2+ · · ·+αkt

k.
All of them are legal r-arborescences, so

∑
a∈δ+(r) t

i
a ≥ 1 for all i ∈ [k]. Now if

∑
a∈δ+(r) t

i
a > 1

for some i, we would have a contradiction,
∑

a∈δ+(r) z
r
a > 1.

B Algorithm Details

The pseudo-code of the constraint generation algorithm proposed in Section 3.2 is illustrated in
Algorithm 1.

C More on Experiments

We adopt three public datasets, the English Penn Treebank (PTB v3.0) [Marcus et al., 1993], the Penn
Chinese Treebank (CTB v5.1) [Xue et al., 2002], the Dutch Lassy Small Treebank and the Turkish
Treebank in Universal Dependencies (UD v2.3) [Nivre et al., 2016]. We follow conventions in Chen
and Manning [2014], Dyer et al. [2015] to prepare our data. We make standard train/validation/test
splits. We use Stanford Dependencies (SD v3.3.0) [De Marneffe and Manning, 2008] to convert
dependencies in PTB and CTB. The predicted POS tags with Stanford POS tagger [Toutanova et al.,
2003] are adopted for PTB whereas gold POS tags are adopted for CTB and UD. Punctuation is
excluded during evaluation6.

The pretrained models are trained with the suggested hyperparameters in SuPar. The pretrained
models achieve 97.25%, 91.91% and 94.78% UAS on PTB, CTB and UD Dutch respectively, where
RoBERTa [Liu et al., 2019], ELECTRA [Cui et al., 2020] and XLM-RoBERTa [Conneau et al., 2019]
are adopted as encoders. No BERT embeddings are adopted for the UD Turkish dataset.

For our ADMM algorithm, we adopt the adaptive scheme of varying penalty parameters (τincr =
τdecr = 1.1, µ = 1) in Boyd et al. [2011] and the stopping criterion (ϵtol = 10−2) for consensus
ADMM in Xu et al. [2017]. In FW, the learning rate is set to 2

t+2 . The smoothness weight µ
and ambiguity radius λ = 2ε are tuned using a logarithmic scale on [10−7, 1]. The batch size for
the game-theoretic algorithm is 10. The batch size for Stochastic is 200. The error tolerance in
Game is set to 10−2. In stochastic gradient training, we use Adam with lr = 10−2, β1 = 0.9,

6A token is a punctuation if its gold POS tag is space, semi-colon, comma or period for English and PU for
Chinese.
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β2 = 0.999, ϵ = 10−8. In our experiments, for efficiency, we again adopt the FW algorithm for the
outer maximization in Marginal.

Complete main experimental results including all the metrics are shown in Table 2.

D Extension Details

For the dependency tree polytope, recall that the dual problem of projection onto U ′
r := {x : x ∈

Ur ∧
∑

a∈δ+(r) xa = 1} is

max
α,β

∑
a∈E

ha(α, β)−
∑
j ̸=r

αj − β s.t. ha(α, β) =

{
w2

a γa > 2wa,

waγa − γ2a/4 γa ≤ 2wa,

where γ(i,j,l) := αj +1(i = r)β. Following Zhang et al. [2010] similarly, we sort 2w(i,j,l) for each j
and compute the optimal α∗

j with β = 0. Let the sorted w’s be (w(j)
1 , . . . , w

(j)
n ) for each j. We blend

create a set {w(j)
x −α∗

j} for all j and x. Let the sorted sequence be−∞ = t1 < t2 < · · · < tnt =∞.
The derivative with respect to β is piecewise-linear in each interval [tk, tk+1]. Since the objective is
concave in β, we can iterate over all the intervals or find the optimal β∗ with binary search.

For higher-order tree local polytopes, the central problem is the projection onto

Us := {x ∈ R|R|
≥0 : xs ≤ xa ∀a ∈ s}.

The only variables of interest are xa and xs, given xs, the optimal xa is simply x∗a = max(wa, xs).
We can sort (wa, ws)a∈s and enumerate the range xs takes over this set.

E Wong’s Arborescence Polytope

We introduce another extended formulation of the arborescence polytope based on a multi-commodity
flow representation [Wong, 1980, Martins, 2012, Friesen, 2019] as follows, which may be of indepen-
dent interest: ∑

a∈δ−(j)

xa = 1(j ̸= r) ∀j ∈ V (11)

∑
a∈δ−(j)

fka −
∑

a∈δ+(j)

fka = 1(j = k)− 1(j = r) ∀k ∈ V \ {r}, j ∈ V (12)

0 ≤ fka ≤ xa ∀a ∈ E , k ∈ V \ {r}. (13)

Thus we have the arborescence polytope:

Amc = {x ∈ R|E||∃f : (x,f) satisfy equations (11)− (13)}.

According to Martins [2012], Friesen [2019], Amc ≜ Aarb instead of an outer polytope of Aarb.

We are interested in the following quadratic programming problem with linear inequality constraints:
min
x∈Amc

∥x−w∥22.

We can reformulate the problem as

min
x,u

g(x,u) :=
1

2
∥x−w∥22 +

1

2
∥u−w∥22 + IX (x) + IU (u)

s.t. x = u

X := {x :
∑

a∈δ−(j)

xa = 1(j ̸= r)∀j ∈ V ∧ xa ≥ 0∀a ∈ E}

U := {u : ∃f
∑

a∈δ−(j)

fka −
∑

a∈δ+(j)

fka = 1(j = k)− 1(j = r) ∀k ∈ V \ {r}, j ∈ V

0 ≤ fka ≤ ua ∀k ∈ V \ {r}, a ∈ E}.

22



Table 2: Comparison of mean UAS, LAS, UCM and LCM under different training set sizes. Sta-
tistically significant differences compared to BiAF are marked with † (paired t-test, p < 0.05). We
highlight in bold the best results among the four methods.

Dataset # train Metric BiAF Marginal Stochastic Game

PTB

10

UAS 93.48± 2.30 94.51± 1.71† 94.62± 1.60† 94.51± 1.75†
LAS 92.02± 2.26 93.04± 1.69† 93.14± 1.58† 93.04± 1.73†
UCM 47.17± 10.28 52.30± 8.71† 52.62± 8.18† 52.50± 8.60†
LCM 39.73± 7.96 43.63± 6.71† 43.97± 6.39† 43.86± 6.58†

50

UAS 96.87± 0.06 96.81± 0.05† 96.81± 0.05 96.86± 0.05
LAS 95.34± 0.06 95.28± 0.05† 95.28± 0.05 95.33± 0.05
UCM 67.65± 0.81 67.38± 0.62 67.18± 0.79 67.73± 0.64
LCM 55.46± 0.59 54.93± 0.56† 54.79± 0.59† 55.17± 0.49

100

UAS 96.95± 0.05 96.92± 0.06 96.93± 0.05 96.92± 0.03
LAS 95.42± 0.05 95.39± 0.06 95.40± 0.04 95.39± 0.02
UCM 68.79± 0.42 68.27± 0.72 68.36± 0.41 68.29± 0.34
LCM 56.21± 0.14 55.68± 0.56 55.67± 0.45 55.66± 0.33

1000

UAS 97.16± 0.02 97.12± 0.03 97.14± 0.02 97.08± 0.03†
LAS 95.63± 0.03 95.59± 0.02 95.60± 0.02 95.55± 0.03†
UCM 70.99± 0.23 70.59± 0.49 70.61± 0.32 69.94± 0.34†
LCM 57.57± 0.09 57.18± 0.28† 57.24± 0.28† 56.80± 0.23†

CTB

10

UAS 88.45± 0.67 89.19± 0.38† 89.27± 0.33† 89.22± 0.39†
LAS 84.79± 0.62 85.50± 0.35† 85.58± 0.30† 85.53± 0.36†
UCM 35.21± 1.67 36.83± 1.20 37.14± 0.94† 36.95± 1.23†
LCM 25.86± 0.87 26.82± 0.62 26.95± 0.59† 26.95± 0.63†

50

UAS 90.89± 0.10 91.03± 0.05† 91.03± 0.05† 91.06± 0.05†
LAS 87.08± 0.10 87.20± 0.05† 87.20± 0.05† 87.23± 0.06†
UCM 42.54± 0.24 42.92± 0.24† 42.86± 0.12† 42.99± 0.30
LCM 29.70± 0.23 29.69± 0.36 29.72± 0.38 29.79± 0.23

100

UAS 91.15± 0.16 91.27± 0.08 91.27± 0.10 91.22± 0.05
LAS 87.32± 0.14 87.42± 0.06 87.42± 0.08 87.37± 0.05
UCM 43.41± 0.35 43.91± 0.27† 43.86± 0.43† 43.81± 0.22
LCM 30.02± 0.22 30.27± 0.25 30.23± 0.28 30.26± 0.26

1000

UAS 91.70± 0.04 91.67± 0.03 91.66± 0.03 91.57± 0.03†
LAS 87.84± 0.04 87.80± 0.03 87.79± 0.03 87.70± 0.03†
UCM 45.80± 0.27 45.43± 0.11† 45.41± 0.12† 45.36± 0.27†
LCM 31.14± 0.19 31.11± 0.18 31.08± 0.17 31.20± 0.11

UD Dutch

10

UAS 90.86± 1.23 92.41± 0.94† 92.40± 0.91† 92.32± 1.03†
LAS 86.54± 1.26 88.10± 0.95† 88.08± 0.91† 87.99± 1.00†
UCM 64.11± 2.18 67.26± 2.16† 67.21± 1.91† 67.26± 1.97†
LCM 48.33± 1.88 50.32± 1.75† 50.48± 1.45† 50.46± 1.30†

50

UAS 93.80± 0.43 94.22± 0.26† 94.23± 0.18† 94.34± 0.24†
LAS 89.36± 0.33 89.79± 0.21† 89.79± 0.12† 89.89± 0.18†
UCM 70.57± 1.52 72.42± 0.90† 72.05± 0.99 72.60± 1.39
LCM 52.40± 0.61 53.47± 0.62† 53.40± 0.59 53.58± 0.76

100

UAS 94.15± 0.18 94.50± 0.18† 94.47± 0.13 94.59± 0.12†
LAS 89.69± 0.18 90.04± 0.15† 90.01± 0.12 90.12± 0.10†
UCM 71.71± 0.92 73.24± 0.88† 73.01± 0.99 73.63± 0.75†
LCM 53.01± 0.81 53.79± 0.40 53.70± 0.55 54.13± 0.44†

1000

UAS 94.98± 0.07 95.15± 0.10† 95.14± 0.11† 95.01± 0.05
LAS 90.44± 0.06 90.59± 0.08† 90.59± 0.08† 90.44± 0.06
UCM 74.73± 0.33 75.87± 0.63† 75.64± 0.57† 75.41± 0.56
LCM 54.59± 0.13 55.21± 0.17† 55.16± 0.21† 54.70± 0.22

UD Turkish

10

UAS 17.64± 2.45 24.85± 2.35† 25.06± 0.58† 19.85± 0.46
LAS 4.86± 2.74 5.33± 2.97 5.40± 2.85 5.02± 3.04
UCM 7.69± 1.72 9.03± 1.33 7.88± 2.27 10.03± 0.54
LCM 1.46± 1.03 1.50± 1.07 1.50± 1.07 1.74± 1.38

50

UAS 26.59± 2.37 32.83± 1.50† 31.35± 1.10† 23.18± 2.03†
LAS 10.14± 0.57 10.73± 0.86 10.74± 0.54 10.10± 0.69
UCM 10.03± 1.31 10.63± 0.50 10.81± 0.50 10.34± 0.36
LCM 3.24± 0.31 3.26± 0.24 3.38± 0.27 3.43± 0.27

100

UAS 30.75± 1.13 33.75± 0.86† 33.62± 1.49† 27.12± 1.25†
LAS 10.84± 0.80 11.48± 0.75 11.69± 0.67† 10.48± 0.70†
UCM 11.61± 1.22 11.30± 0.29 11.34± 0.26 11.08± 0.44
LCM 3.53± 0.60 3.61± 0.31 3.57± 0.23 3.55± 0.23

1000

UAS 42.82± 1.82 43.18± 1.73 41.20± 2.17† 36.30± 2.79†
LAS 18.44± 1.00 18.24± 1.62 18.13± 1.13 16.38± 1.20†
UCM 15.86± 0.40 15.18± 0.81 13.78± 0.30† 13.52± 0.43†
LCM 4.49± 0.47 4.37± 0.46 4.31± 0.41† 4.29± 0.38†
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The scaled augmented Lagrangian function is

Lρ(x,u,y) = g(x,u) + λ′⊺(x− u) + ρ

2
∥x− u∥22

= g(x,u) +
ρ

2
∥x− u+

1

ρ
λ′∥22 −

1

2ρ
∥λ′∥22

= g(x,u) +
ρ

2
∥x− u+ λ∥22 −

ρ

2
∥λ∥22,

where λ :=
1

ρ
λ′.

The ADMM algorithm updates the parameters as follows:

xt+1 := argmin
x
Lρ(x,u

t,λt)

= argmin
x

1

2
∥x−w∥22 + IX (x) +

ρ

2
∥x− ut + λt∥22

= arg min
x∈X
∥x− 1

ρ+ 1
(w + ρut − ρλt)∥22,

≜ ProjX (
1

ρ+ 1
(w + ρut − ρλt))

ut+1 := argmin
u
Lρ(x

t+1,u,λt)

= argmin
u

1

2
∥u−w∥22 + IF (u) +

ρ

2
∥xt+1 − u+ λt∥22

= argmin
u∈U
∥u− 1

ρ+ 1
(w + ρxt+1 + ρλt)∥22,

≜ ProjU (
1

ρ+ 1
(w + ρxt+1 + ρλt))

λt+1 := λt + (xt+1 − ut+1).

Projection onto X is decomposable over each j ∈ V . And for each j, the optimal value of the group
can be computed in O(n) in almost closed form via Section 5.5.1 in Zhang et al. [2010] or other
simplex projection algorithms in O(n log n).
Projection onto U is a minimum quadratic capacity expansion cost problem for fixed multi-commodity
flows:

min
u∈U
∥u−w∥22.

A partially relaxed problem is

max
β

min
u,f
∥u−w∥22 +

∑
a,k

βk
a(f

k
a − ua)

s.t.
∑

a∈δ−(j)

fka −
∑

a∈δ+(j)

fka = I(j = k)− I(j = r) ∀k ∈ V \ {r}, j ∈ V

fka ≥ 0, βk
a ≥ 0 ∀k ∈ V \ {r}, a ∈ E .

Given β, the sub-problem for u is

min
u

∑
a

u2a − 2uawa −
∑
k

βk
aua,

with an analytical solution

u∗ = w +
1

2
βk.
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Given β, the sub-problem for f is

min
f

∑
a,k

βk
af

k
a

s.t.
∑

a∈δ−(j)

fka −
∑

a∈δ+(j)

fka = I(j = k)− I(j = r)∀k ∈ V \ {r}, j ∈ V

fka ≥ 0 ∀k ∈ V \ {r}, a ∈ E ,
which is a minimum-cost multi-commodity flow problem.

With u∗ and f∗, we can optimize β with sub-gradient ascent.

Alternatively, another partially relaxed problem is

max
β

min
u,f
∥u−w∥22 +

∑
a,k

fka (β
k
h(a) − βk

t(a)) +
∑
k

βk
r − βk

k

s.t. 0 ≤ fka ≤ ua, βk
a ≥ 0 ∀k ∈ V \ {r}, a ∈ E ,

where h(a) and t(a) are the head and tail of arc a respectively.

Given β, the inner minimization problem is decomposed over a:

min
u,f

u2a − 2uawa +
∑
k

fka (β
k
h(a) − βk

t(a))

s.t. 0 ≤ fka ≤ ua ∀k ∈ V \ {r},
which is a convex continuous knapsack problem for each a.

The above optimization requires sub-gradient methods, which are usually slower than FW (O( 1
ϵ2 )).
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