
Signal Processing for Implicit Neural Representations

Dejia Xu∗

dejia@utexas.edu
Peihao Wang∗

peihaowang@utexas.edu

Yifan Jiang
yifanjiang97@utexas.edu

Zhiwen Fan
zhiwenfan@utexas.edu

Zhangyang Wang
atlaswang@utexas.edu

The University of Texas at Austin
https://vita-group.github.io/INSP/

Abstract

Implicit Neural Representations (INRs) encoding continuous multi-media data
via multi-layer perceptrons has shown undebatable promise in various computer
vision tasks. Despite many successful applications, editing and processing an
INR remains intractable as signals are represented by latent parameters of a neural
network. Existing works manipulate such continuous representations via processing
on their discretized instance, which breaks down the compactness and continuous
nature of INR. In this work, we present a pilot study on the question: how to directly
modify an INR without explicit decoding? We answer this question by proposing
an implicit neural signal processing network, dubbed INSP-Net, via differential
operators on INR. Our key insight is that spatial gradients of neural networks can
be computed analytically and are invariant to translation, while mathematically
we show that any continuous convolution filter can be uniformly approximated by
a linear combination of high-order differential operators. With these two knobs,
INSP-Net instantiates the signal processing operator as a weighted composition of
computational graphs corresponding to the high-order derivatives of INRs, where
the weighting parameters can be data-driven learned. Based on our proposed INSP-
Net, we further build the first Convolutional Neural Network (CNN) that implicitly
runs on INRs, named INSP-ConvNet. Our experiments validate the expressiveness
of INSP-Net and INSP-ConvNet in fitting low-level image and geometry processing
kernels (e.g. blurring, deblurring, denoising, inpainting, and smoothening) as well
as for high-level tasks on implicit fields such as image classification.

1 Introduction

The idea that our visual world can be represented continuously has attracted increasing popularity
in the field of implicit neural representations (INR). Also known as coordinate-based neural repre-
sentations, INRs learn to encode a coordinate-to-value mapping for continuous multi-media data.
Instead of storing the discrete signal values in a grid of pixels or voxels, INRs represent discrete
data as samples of a continuous manifold. Using multi-layer perceptrons, INRs bring practical
benefits to various computer vision applications, such as image and video compression [1, 2, 3],
3D shape representation [4, 5, 6, 7, 8, 9, 10, 11], inverse problems [12, 2, 13, 14], and generative
models [15, 16, 17, 18, 19, 20, 21, 22].

Despite their recent success, INRs are not yet amenable to flexible editing and processing as the
standard images could do. The encoded coordinate-to-value mapping is too complex to comprehend
and the parameters stored in multi-layer perceptrons (MLPs) remains less explored. One direction of
existing approaches enables editing on INRs by training them with conditional input. For example,
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Figure 1: An illustration of implicit neural signal processing. Given an INR representing digital
signals, our INSP-Net is capable of direct signal processing without needing to explicitly decode
it. Our model first constructs derivative computation graphs of the original INR and then generates
a linear combination of them into a new INR. It can be later decoded into discretized forms such
as image pixels. The framework is capable of fitting low-level image processing kernels as well as
performing high-level processing such as image classification.

[23, 24, 25, 20, 21, 26] utilize conditional codes to indicate different characteristics of the scene
including shape and color. Another main direction benefits from existing image editing techniques
and operates on discretized instances of continuous INRs such as pixels or voxels. However, such
solutions break down the continuous characteristic of INR due to the prerequisite of decoding and
discretizing before editing and processing.

In this paper, we conduct the first pilot study on the question: how to generally modify an INR without
explicit decoding? The major challenge is that one cannot directly interpret what the parameters in an
INR stand for, not to mention editing them correctly. Our key motivation is that spatial gradients can
be served as a favorable tool to tackle this problem as they can be computed analytically, and possess
desirable invariant properties. Theoretically, we prove that any continuous convolution filter can be
uniformly approximated by a linear combination of high-order differential operators. Based on the
above two rationales, we propose an Implicit Neural Signal Processing Network, dubbed INSP-Net,
which processes INR utilizing high-order differential operators. The proposed INSP-Net is composed
of an inception fusion block connecting computational graphs corresponding to derivatives of INRs.
The weights in the branchy part are loaded from the INR being processed, while the weights in
the fusion block are parameters of the operator, which can be either hand-crafted or learned by the
data-driven algorithm. Even though we are not able to perform surgery on neural network parameters,
we can implicitly process them by retrofitting their architecture and reorganizing the spatial gradients.

We further extend our framework to build the first Convolutional Neural Network (CNN) operating
directly on INRs, dubbed INSP-ConvNet. Each layer of INSP-ConvNet is constructed by linearly
combining the derivative computational graphs of the former layers. Nonlinear activation and
normalization are naturally supported as they are element-wise functions. Data augmentation can be
also implemented by augmenting the input coordinates of INRs. Under this pipeline (shown in Fig. 1),
we demonstrate the expressiveness of our INSP-Net framework in fitting low-level image processing
kernels including edge detection, blurring, deblurring, denoising, and image inpainting. We also
successfully apply our INSP-ConvNet to high-level tasks on implicit fields such as classification.

Our main contributions can be summarized as follows:

• We propose a novel signal processing framework, dubbed INSP-Net, that operates on INRs
analytically and continuously by closed-form high-order differential operators2. Repeatedly
cascading the computational paradigm of INSP-Net, we also build a convolutional network,
called INSP-ConvNet, which directly runs on implicit fields for high-level tasks.

• We illustrate the advantage of adopting differential operators by revealing their inherent
group invariance. Furthermore, we rigorously prove that the convolution operator in the
continuous regime can be uniformly approximated by a linear combination of the gradients.

• Extensive experiments demonstrate the effectiveness of our approach in both low-level
processing (e.g. edge detection, blurring, deblurring, denoising, image inpainting, and
smoothening) and high-level processing such as image classification.

2By saying “closed-form”, we mean the computation follows from an analytical mathematical expression.
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Figure 2: The left image provides an overview of our INSP-Net framework. Each layer combines the
high-order derivative computational graphs of the original INR network. The right image illustrates
the weight sharing scheme in calculating the derivative sub-networks.

2 Preliminaries: Implicit Neural Representation

Implicit Neural Representation (INR) parameterizes continuous multi-media signals or vector fields
with neural networks. Formally, we consider an INR as a continuous function Φ : Rm → R that maps
low-dimension spatial/temporal coordinates to the value space3. For example, to represent 2D image
signals, the domain of Φ is (x, y) spatial coordinates, and the range of Φ are the pixel intensities. The
typical use of INR is to solve a feasibility problem where Φ is sought to satisfy a set of N constraints
{C(Φ, aj |Ωj)}Nj=1, where C is a functional that relates function Φ to some observable quantities aj
evaluating over a measurable domain Ωj ⊆ Rm . This problem can be cast into an optimization
problem that minimizes deviations from each of the constraints:

Φ∗ = argmin
Φ

N∑
j=1

∥C(Φ, aj |Ωj)∥2. (1)

For instance, we can let C = Φ(xj) − aj with Ωj = {xj}, then our objective boils down to a
point-to-point supervision which memorizes a signal into Φ [27]. When functional C is a combination
of differential operators taking values in a point set, i.e., C(a(x),Φ(x),∇Φ(x), · · · ), ∀x ∈ Ωj , Eq.
1 is objective to solving a bunch of differential equations [28, 7, 29]. Note that in this paper, without
particular specification, the gradients are all computed with respect to the input coordinate x. C can
also form an integral equation system over some intervals Ωj [12]. In practice of computer vision,
we reconstruct a signal by capturing sparse observations D = {(Ωj , aj)}Nj=1 from unknown function
Φ, and dynamically sampling a mini-batch from D to minimize Eq. 1 to obtain a feasible Φ.

A handy parameterization of function Φ is a fully-connected neural network, which enables solving
Eq. 1 via gradient descent through a differentiable C. Common INR networks consist of pure
Multi-Layer Perceptrons (MLP) with periodic activation functions. Fourier Feature Mapping (FFM)
[27] places a sinusoidal transformation before the MLP, while Sinusoidal Representation Network
(SIREN) [28] replaces every piece-wise linear activation with a sinusoidal function. Below we give a
unified formulation of INR networks:

Φ(x) = W n(ϕn−1 ◦ ϕn−2 ◦ · · · ◦ ϕ1)(x), ϕi(x) = σi(W ix+ bi), (2)

where W i ∈ Rdi−1×di , bi ∈ Rdi are the weight matrix and bias of the i-th layer, respectively, n is the
number of layers, and σi(·) is an element-wise nonlinear activation function. For FFM architecture,
σi = sin(·) when i = 1 denotes the positional encoding layer [12, 30] and otherwise σi = ReLU(·).
For SIREN, σi = sin(·) for every layer i = 1, · · · , n− 1.

3 Implicit Representation Processing via Differential Operators

Digital Signal Processing (DSP) techniques have been widely applied in computer vision tasks, such
as image restoration [31], signal enhancement [32] and geometric processing [33]. Even modern deep

3Without loss of generality, here we simplify Φ to be a scalar field, i.e., the range of Φ is one-dimensional.
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learning models are consisting of the most basic signal processing operators. Suppose we already ac-
quire an Implicit Neural Representation (INR) Φ : Rm → R, now we are interested in whether we can
run a signal processing program on the implicitly represented signals. One straightforward solution
is to rasterize the implicit field with a 2D/3D lattice and run a typical kernel on the pixel/voxel grids.
However, this decoding strategy produces a finite resolution and discretizes signals, which is mem-
ory inefficient and unfriendly to modeling fine details. In this section, we introduce a computation
paradigm that can process an INR analytically with spatial/temporal derivatives. We show that our pro-
posed method serves as a universal operator that can represent any continuous convolutional kernels.

3.1 Computational Paradigm

It has not escaped our notice that spatial/temporal gradients on INRs∇kΦ can be computed analyt-
ically due to the differentiable characteristics of neural networks. Inspired by this, we propose an
Implicit Neural Signal Processing (INSP) framework that composes a class of closed-form operators
for INRs using functional combinations of high-order derivatives.

We denote our proposed signal processing operator by A built upon high-order derivatives. Given an
acquired INR Φ, we denote the resultant INR processed by operator A as Ψ = AΦ : Rm → R. To
evaluate point x ∈ Rm of processed INR, we propose the following computational paradigm:

Ψ(x) := AΦ(x) = Π
(
Φ(x),∇Φ(x),∇2Φ(x), · · · ,∇kΦ(x), · · ·

)
, (3)

where Π : RM → R can be arbitrary continuous functions, which can be either handcrafted or learned
from data. To learn an operator A from data, we represent Π by Multi-Layer Perceptrons (MLP) with
parameters θ. Here we can slightly abuse the notation of∇k to be a flattened vector of high-order
derivatives without multiplicity since differential operators defined over continuous functions form
a commutative ring. The input dimension of Π depends on the highest order of used derivatives.
Suppose we compute derivatives up to K-th order, then M =

∑K
k=0

(
k+m−1

k

)
= (K+1)

(
K+m
K+1

)
/m,

where
(
k+m−1

k

)
is the number of distinctive k-th order differential operators 4. Intuitively, directional

derivatives encode (local) neighboring information, which can have similar effects of a convolution.
As we will show in Sec. 3.2, Π can construct both shift-invariant and rotation-invariant operators,
which introduces favorable inductive bias to images and 3D geometry processing. More importantly,
we rigorously prove that Eq. 3 is also a universal approximator of arbitrary convolutional operators.

We note that Ψ(x) as a whole can also be regarded as a neural network. Recall the architecture of
Φ(x) in Eq. 2, its k-th order derivative is another computational graph parameterized by W i and
bi that maps x to ∇kΦ(x). For example, the first-order gradient will have the following form:

∇Φ(x) = ϕ̂n−1 ◦ (ϕn−2 ◦ · · · ◦ ϕ1)(x)⊙ · · · ⊙ ϕ̂2 ◦ ϕ1(x)⊙W 1, (4)

where ϕ̂i(y) = W⊤
i σ

′
i−1(W i−1y + bk−1), and σ′

i(·) is the first-order derivative of σi(·). Since ϕ̂i

shares the weights with ϕi, ∇Φ is represented by a closed-form computational network re-using the
weights from Φ, which we refer to as the first-order derivative network. The higher-order derivatives
should induce the derivative network of similar forms. Therefore, the processed INR Ψ will have an
Inception-like architecture, namely, a multi-branch structure connecting the original INR network and
weight-sharing derivative subnetworks followed by a fusion layer Π. We call the entire model (Ψ =
AΦ or Eq. 3) an Implicit Neural Signal Processing Network or an INSP-Net. Note that the only param-
eters of INSP-Net θ are located at the last fusion layer, and can be trained in an end-to-end manner.

We illustrate an INSP-Net in Fig. 2 where the color indicates the weight-sharing scheme. A similar
weight-sharing scheme is also adopted in AutoInt [34]. In practice, we employ auto-differentiation
in PyTorch [35] to automatically create such derivatives networks and reassemble them parallelly
to constitute the architecture of an INSP-Net. When inputting an INR, we load the weights of the
INR to our model following the weight-sharing scheme, and then we obtain an INSP-Net, which
implicitly and continuously represents the processed INR Ψ(x). To effectively express high-order
derivatives, we choose SIREN as the base model [28].

3.2 Theoretical Analysis

In this section, we provide a theoretical justification for the design of our INSP-Net. We will focus
on discussing the latent invariance property and the expressive power of INSP-Net.

4This is equal to the number of monic monomials over Rm with degree k.
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Translation and Rotation Invariance. Group invariance has been shown to be a favorable inductive
bias for image [36], video [37], and geometry processing [38]. It has also been well-known that
group invariance is an intrinsic property of Partial Differential Equations (PDEs) [39, 40]. Since
our INSP-Net is built using differential operators, we are motivated to reveal its hidden invariance
property to demonstrate its advantage in processing visual signals.

In this section, we only consider two transformation groups: translation group T(m) and the special
orthogonal group SO(m) (a.k.a. rotation group). Elements Tv ∈ T(m) in translation group shift the
function Φ by some offset v ∈ Rm. The shifted function can be denoted as Φ ◦ Tv(x) = Φ(x+ v).
Similarly, elements in rotation group perform a coordinate transformation on function Φ by a rotation
matrix R ∈ SO(m). The transformed function can be written as Φ ◦ R(x) = Φ(Rx). Group
invariance means deforming the input space of a function first and then processing it via an operator
is equivalent to directly applying the transformation to the processed function. For a more rigorous
argument, A is said to be translation-invariant if ∀Tv ∈ T(m), Ψ(x+ v) = A[Φ ◦ Tv](x). Likewise,
A is rotation-invariant if ∀R ∈ SO(m) we have Ψ(Rx) = A[Φ◦R](x). Below we provide Theorem
1 to characterize the invariance property for our model.
Theorem 1. Given function Π : RM → R, the composed operator A (Eq. 3) can satisfy:

1. shift invariance for every Π.

2. rotation invariance if Π has the form: Π(y) = f(∥y∥2) for some f : R→ R.

We prove Theorem 1 in Appendix A. Our Theorem 1 implies that operator A is inherently shift-
invariant. This is due to the shift-invariant intrinsics of differential operators as we show in the proof.
Rotation invariance is not guaranteed in general. However, if one carefully designs Π, it can also
be achieved via our framework. Moreover, we also suggest a feasible solution to constructing a
rotation-invariant operator A in Theorem 1. In our construction, Π first isotropically pools over the
squares of all directional derivatives, and then maps the summarized information through another
scalar function f . We refer interested readers to [39] for more group invariance in differential forms.

Universal Approximation. Convolution, formally known as the linear shift-invariant operator,
has served as one of the most prevalent signal processing tools in the vision domain. Given two
(real-valued) signals f and g, we denote their convolution as g ⋆ f = f ⋆ g. In this section, we
examine the expressiveness of our INSP-Net (Eq. 3) by showing it can represent any convolutional
filter. To draw this conclusion, we first present an informal version of our main results as follows:
Theorem 2. (Informal statement) For every real-valued function g : Rm → R, there exists a
polynomial p(x1, · · · , xm) with real coefficients such that p (∇) f can uniformly approximate g ⋆ f
by arbitrary precision for all real-valued signals f .

The formal statement and proof can be found in Appendix B. Theorem 2 involves the notion of
polynomials in partial differential operators (see more details in Appendix B). p(∇)f in turn can be
written as a linear combination of high-order derivatives of f (a special case of Eq. 3 when Π is
linear). The key step to prove Theorem 2 is applying Stone-Weierstrass approximation theorem on
the Fourier domain. However, we note that functions obtained by the Fourier transform are generally
complex functions. The prominence of our proof is that we can constrain the range of the polynomial
coefficients into the real domain, which makes it implementable via a common deep learning
infrastructure. The implication of Theorem 2 is that the mapping between convolution and derivative
is as simple as a linear transformation. Recent works [41, 42, 43] show the converse argument
that derivatives can be approximated via a linear combination of discrete convolution. Theorem 2
establishes the equivalence between differential operator and convolution in the continuous regime.
In our proof, k-th order derivatives correspond to k-th order monomial in the spectral domain.
Fitting convolution using derivatives amounts to approximating spectrum via polynomials. This
implies higher degree of polynomial induces closer approximation. Since p(∇) is not difficult to be
approximated by a neural network Πθ , we can easily derive the next result Corollary 3.
Corollary 3. For every real-valued function g, there exists a neural network Πθ such that Ψ = AΦ
(Eq. 3) can uniformly approximate g ⋆ Φ by arbitrary precision for every real-valued signals Φ.

As we discussed in Theorem 1, A are constantly shift-invariant. This means when approximating a
convolutional kernel, the trajectory of A is restricted into the shift-invariant space. Moreover, we
emphasize that INSP-Net is far more expressive than convolutional kernels since Πθ can also fit any
nonlinear continuous functions due to the universal approximation theorem [44, 45, 46].
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3.3 Building CNNs for Implicit Neural Representations

Convolutional Neural Networks (CNN) are capable of extracting informative semantics by only piling
up basic signal processing operators. This motivates us to build CNNs based on INSP-Net that can
directly run on INRs for high-level downstream tasks. In fact, to simulate exact convolution, our
Theorem 2 suggests simplify Πθ to a linear mapping. Then our former computational paradigm Eq.
3 is changed to:

Ψ(x) := p(∇)Φ(x) = θ0Φ(x) + θ⊤
1 ∇Φ(x) + θ⊤

2 ∇2Φ(x) + · · ·+ θ⊤
k ∇kΦ(x) + · · · , (5)

where θk ∈ R(
k+m−1

k ) are parameters of the operator p(∇). We name this special case of Eq. 3 as
INSP-Conv. One plausible implementation of INSP-Conv is to employ a one-layer MLP to represent
Πθ . WhenA = p(∇), INSP-Conv preserves both linearity and shift-invariance when evolving during
the training. We propose to repeatedly apply INSP-Conv with non-linearity to INRs that mimics
a CNN-like architecture. We name this class of CNNs composed by multi-layer INSP-Conv (Eq.
5) as INSP-ConvNet. Previous works [47, 48] extracting semantic features from INR either lack
local information by point-wisely mapping INR’s intermediate representation to a semantic space or
explicitly rasterize INR into regular grids. To the best of our knowledge, it is the first time that one
can run a CNN directly on an implicit representation thanks to closed-formness of INSP-Net. The
overall architecture of INSP-ConvNet can be formulated as:

ConvNet[Φ](x) = A(L) · σ ◦ A(L−1) · σ ◦ · · · ◦ A(2) · σ ◦ A(1) · Φ(x), (6)

where σ is an element-wise non-linear activation, L is the number of INSP-Net layers, and Φ is an
input INR. We use the symbol · to denote operator functioning, and ◦ to denote function composition.
Due to page limit, we defer detailed introduction to INSP-ConvNet to Appendix C.

4 Related Work

4.1 Implicit Neural Representation

Implicit Neural Representation (INR) represents signals by continuous functions parameterized by
multi-layer perceptrons (MLPs) [28, 27], which is different from traditional discrete representations
(e.g., pixel, mesh). Compared with other representations, the continuous implicit representations
are capable of representing signals at infinite resolution and have become prevailing to be applied
upon image fitting [28], image compression [1, 49] and video compressing [3]. In addition, INR has
been applied to more efficient and effective shape representation [4, 5, 6, 7, 8, 9, 10, 11], texture
mapping [50, 51], inverse problems [12, 2, 13, 14] and generative models [15, 16, 17, 18, 19, 20, 21,
22]. There are also efforts speeding up the fitting of INRs [52] and improving the representation
efficiency [53]. Nowadays, editing and manipulating multi-media objects gains increasing interest
and demand [54]. Thus, signal processing on implicit neural representation is essentially an important
task worth investigating.

4.2 Editable Implicit Fields

Editing implicit fields has recently attracted much research interest. Several methods have been
proposed to allow editing the reconstructed 3D scenes by rearranging the objects or manipulating
the shape and appearance. One line of work alters the structure and color of objects by conditioning
latent codes for different characteristics of the scene [25, 20, 21, 26]. Another direction involves
discretizing the continuous fields. By converting the implicit fields into pixels or voxels, traditional
image and voxel editing techniques [55, 56] can be applied effortlessly. These approaches, however,
are not capable of directly performing signal processing on continuous INRs. Functa [54] can use
a latent code to control implicit funtions. NID [57] represents neural fields as a linear combination
of implicit functional basis, which enables editing by change of sparse coefficients. However, such
editing scheme suffers from limited flexibility. Recently, NFGP [58] proposes to use neural fields
for geometry processing by exploring various geometric regularization. INS [59] distills stylized
features into INRs via the neural style transfer framework [60]. Our INSP-Net that makes smart use
of closed-form differential operators does not require neither additional per-scene fine-tuning nor
discretization to grids.
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Input Image Sobel Filter Canny Filter Prewitt Filter INSP-Net

Figure 3: Edge detection. We fit the natural images with SIREN and use our INSP-Net to process
implicitly into a new INR that can be decoded into edge maps.

INR Fitted Noisy Mean Filter MPRNet INSP-Net Target Image

20.14/0.60 20.09/0.61 20.51/0.66 24.02/0.76 PSNR/SSIM

Figure 4: Image denoising. We fit the noisy images with SIREN and train our INSP-Net to process
implicitly into a new INR that can be decoded into natural clear images.

4.3 PDE based Image Processing

Partial differential equations (PDEs) have been successfully applied to many tasks in image process-
ing and computer vision, such as image enhancement [61, 62, 63], segmentation [64, 40], image
registration [65], saliency detection [66] and optical flow computation [67]. Early traditional PDEs
are written directly based on mathematical and physical understanding of the PDEs (e.g., anisotropic
diffusion [61], shock filter [62] and curve evolution based equations [68, 69, 70]). Variational design
methods [63, 71, 70] start from an energy function describing the desired properties of output im-
ages and compute the Euler-Lagrange equation to derive the evolution equations. Learning-based
attempts [40, 66] build PDEs from image pairs based on the assumption (without proof) that PDEs
could be written as linear combinations of fundamental differential invariants. Although it might be
feasible to let INRs solve this bunch of signal processing PDEs, one needs to per-case re-fit an INR
with an additional temporal axis, which is presumably sampling inefficient. The multi-layer structure
appearing in INSP-Net can be viewed as an unfolding network [72, 73] of the Euler method to solve
time-variant PDEs [74]. We elaborate this connection in Appendix D.

5 Experiments

In this section, we evaluate the proposed INSP framework on several challenging tasks, using different
combinations of Π. First, we build low-level image processing filters using either hand-crafted or
learnable Π. Then, we construct convolutional neural networks with our INSP-ConvNet framework
and validate its performance on image classification. More results and implementation details are
provided in the Appendix E F.

5.1 Low-Level Vision for Implicit Neural Images

For low-level image processing, we operate on natural images from Set5 dataset [75], Set14
dataset [76], and DIV-2k dataset [77]. Originally designed for super-resolution, the images are
diverse in style and content. Note that the unprocessed images presented in figures are the images
decoded from unprocessed INRs.

Since our method operates directly on INRs, we firstly fit the images with INRs and then feed
the INRs into our framework. The final output is another INR which can be decoded into desired
images. The training set of our method consists of 90 examples of INRs, where each INR is built on
SIREN [28] architectures.
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INR Fitted Blur Image Wiener Filter MPRNet INSP-Net Target Image

23.88/0.77 21.72/0.52 26.73/0.83 27.67/0.79 PSNR/SSIM

Figure 5: Image deblurring. We fit the blurred images with SIREN and train our INSP-Net to process
implicitly into a new INR that can be decoded into clear natural images.

Original Image Box Filter Gaussian Filter INSP-Net

Figure 6: Image blurring. We fit the natural images with SIREN and train our INSP-Net to process
implicitly into a new INR that can be decoded into blurred images.

Edge Detection Since the edges correspond to gradients in the images, using gradients of INRs to
obtain edges is straightforward. θ1 is set to 1 while other coefficients are set to 0. We provide visual
comparisons against Sobel filter [78], Canny detector [79] and Prewitt operator [80] in Fig. 3.

Image Denoising For classical image denoising filters, we compare against the median filter
and mean filter. We use MPRNet [81] as a learning-based baseline. The input noisy images are
synthesized using additive gaussian noise. Visual results are provided in Fig. 4.

Image Blurring Image blurring is a low-pass filtering operation. We provide a visual comparison
against classical filters including 3× 3 box filter and 3× 3 gaussian filter. The target images used for
training our INSP-Net are the results of the Gaussian filter. Visual results are provided in Fig. 6.

Image Deblurring We compare the proposed method with both traditional algorithms (e.g., wiener
filter [82]) and learning-based algorithms(e.g., MPRNet [81]). We synthesize blurry images using
Gaussian filters. As shown in Fig. 5, Wiener Filter produce severe artifacts and MPRNet successfully
reconstructs clear textures. INSP-Net is capable of generating competitive results against MPRNet
and outperforms the Wiener Filter.

Image Inpainting We conduct two kinds of experiments in image inpainting, to inpaint 30%
random masked pixels or to remove the texts (“INSP-Net”). Comparison methods include mean
filter, median filter, and LaMa [83]. LaMa is a learning-based method using Fourier convolution
for inpainting. As shown in Fig. 7, mean filter and median filter partially restore the masked pixels,
but severely hurt the visual quality of the rest parts. Also, they can not handle the text region.
LaMa successfully removes the text and inpaint the masked pixels. Our proposed method largely
outperforms the filter-based algorithms and performs as well as the LaMa.

5.2 Geometry Processing on Signed Distance Function

We demonstrate that the proposed INSP framework is not only capable of processing images, but
also capable of processing geometry. Signed Distance Function (SDF) [25] is adopted to represent
geometries in this section. We first fit an SDF from a point cloud following the training loss proposed
in [28, 7]. Then we train our INSP-Net to simulate a Gaussian-like filter similar to image blurring.
Afterwards, we apply the trained INSP-Net to process the specified INR. When visualization, we
use marching cube algorithm to extract meshes from SDF. We choose Thai Statue, Armadillo, and
Dragon from Stanford 3D Scanning Repository [84, 85, 86, 87] to demonstrate our results. Fig. 8
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Input Image Mean Filter Median Filter LaMa INSP-Net Target Image

12.60/0.43 17.02/0.53 18.99/0.63 26.40/0.88 23.07/0.76 PSNR/SSIM

26.98/0.96 26.80/0.90 26.41/0.88 23.29/0.73 33.44/0.95 PSNR/SSIM

Figure 7: Image inpainting. We fit the input images with SIREN and train our INSP-Net to process
implicitly into a new INR that can be decoded into natural images. Note that LaMa requires explicit
masks to select the regions for inpainting and the masks are roughly provided.

INR Fitted SDF SDF Smoothened by INSP-Net

Figure 8: Left: unprocessed geometry decoded from an unprocessed INR. Right: smoothened
geometry decoded from the output INR of our INSP-Net. Best view in a zoomable electronic copy.

exhibits our results on Thai Statue. Our method is able to smoothen the surface of the geometry and
erase high-frequency details acting as if a low-pass filter. We defer more results to Fig. 14.

5.3 Classification on Implicit Neural Representations

We demonstrate that the proposed INSP framework is not only capable to express low-level image
processing filters, but also supports high-level tasks such as image classification. To achieve this goal,
we construct a 2-layer INSP-ConvNet. The INSP-ConvNet consists of 2 INSP-Net layers. Each of
them decomposes the INR via the differential operator and combines them with learnable Π. We
build another 2-layer depthwise ConvNets running on pixels as the baseline for a fair comparison,
since it has comparable expressiveness to our INSP-ConvNet in theory. We also build a PCA + SVM
method and an MLP classifier that directly classify INRs according to (vectorized) weight matrices.

We evaluate the proposed INSP-ConvNet on MNIST (28× 28 resolution) and CIFAR-10 (32× 32
resolution) datasets, respectively. For each dataset, we will firstly fit each image into an implicit
representation using SIREN [28]. Both experiments take 1000 epochs to optimize with AdamW
optimizer [88] and a learning rate of 10−4. Results are shown in Tab. 1.

Accuracy Depthwise CNN PCA + SVM MLP classifier INSP-ConvNet
MNIST 87.6% 11.3% 9.8% 88.1%

CIFAR-10 59.5% 9.4% 10.1% 62.5%

Table 1: Quantitative Results of Image Classification. All methods except “Depthwise CNN” operate
on the parameter of INR directly, while “Depthwise CNN” operates on images decoded from INR.
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We categorize Depthwise CNN as explicit method, which requires to extract the image grids from
INRs before classification. PCA + SVM and MLP classifier working on the network parameter space
can be regarded as two straightforward implicit baselines. We find that traditional classifiers can
hardly classify INR on weight space due to its high-dimensional unstructured data distribution. Our
method, however, can effectively leverage the information implicitly encoded in INRs by exploiting
their derivatives. As a consequence, INSP-ConvNet can achieve classification accuracy on-par with
CNN-based explicit method, which validates the learning representation power of INSP-ConvNet.

6 Conclusion

Contribution. We present INSP-Net framework, an implicit neural signal processing network that
is capable of directly modifying an INR without explicit decoding. By incorporating differential
operators on INR, we can instantiate the INR signal operator as a composition of computational
graphs approximating any continuous convolution filter. Furthermore, we make the first effort to
build a convolutional neural network that implicitly runs on INRs. While all other methods run
on discrete grids, our experiment demonstrates our INSP-Net can achieve competitive results with
entirely implicit operations.

Limitations. (Theory) Our theory only guarantees the expressiveness of convolution by allowing
infinite sequence approximation. Construction of more expressive operators and more effective
parameterization for convolution remain widely open questions. (Practice) INSP-Net requires the
computation of high-order derivatives which is neither memory efficient nor numerically stable.
This hinders the scalability of our INSP-ConvNet that requires recursive computation of derivatives.
Addressing how to reconstruct INRs in a scalable manner is beyond the scope of this paper. All INRs
used in our experiments are fitted by per-scene optimization.

Acknowledgement

Z. Wang is in part supported by an NSF Scale-MoDL grant (award number: 2133861).

References
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A Proof of Theorem 1

To begin with, we give the formal definitions of translation and rotation group, along with the notion
of shift invariance and rotation invariance.
Definition A.1. (Translation Group & Shift Invariance) Translation group T(m) is a transformation
group isomorphic to m-dimension Euclidean space, where each group element Tv transforms a
vector x ∈ Rm by Tv(x) = x+ v. An operator A is said to be shift-invariant if A(Φ ◦ Tv)(x) =
AΦ(Tv(x)) = AΦ(x+ v).
Definition A.2. (Rotation Group & Rotation Invariance) Rotation group SO(m) is a transformation
group also known as the special orthogonal group, where each group element R ∈ Rm×m satisfying
R⊤R = I transforms a vector x ∈ Rm by R(x). An operator A is said to be rotation-invariant if
A(Φ ◦R)(x) = AΦ(Rx).

Proof. (Shift Invariance) To show the shift invariance of our model Eq. 3, it is equivalent to show
any differential operators are shift-invariant. For the first-order derivatives (gradients), we consider
arbitrary shift operator Tv ∈ T, by chain rule we will have:

∇[Φ ◦ Tv](x) =

[
d(x+ v)

dx

]⊤
∇Φ(x+ v) = ∇Φ(x+ v), (7)

where the Jacobian matrix of Tv(x) is an identity matrix. Eq. 7 implies that gradient operator is
shift-invariant. By induction, any high-order differential operators must also be shift-invariant:

∇k[Φ ◦ Tv](x) = ∇kΦ(x+ v), (8)
Therefore, we can conclude Π(Φ,∇Φ,∇2Φ, · · · ) is shift-invariant for any Π combining derivatives
in any form.

(Rotation Invariance) By Lemma A.1, given arbitrary function Φ : Rm → R, and for every rotation
matrix R ∈ SO(m), we can compute the k-th derivatives as:

vec
(
∇k[Φ ◦R](x)

)
= R⊤⊗k vec (∇Φ(Rx)) . (9)

Then adopting properties of Kronecker product [89], the norm of∇k[Φ ◦R](x) can be written as:

∥∇k[Φ ◦R](x)∥2F = Tr
[
vec (∇Φ(Rx))

⊤
R⊗kR⊤⊗k vec (∇Φ(Rx))

]
(10)

= vec (∇Φ(Rx))
⊤
(
R⊗k−1 ⊗R

)(
R⊤⊗k−1 ⊗R⊤

)
vec (∇Φ(Rx)) (11)

= vec (∇Φ(Rx))
⊤
((

R⊗k−1R⊤⊗k−1
)
⊗ I

)
vec (∇Φ(Rx)) (12)

= · · · = vec (∇Φ(Rx))
⊤
I⊗k vec (∇Φ(Rx)) = ∥∇Φ(Rx)∥2F (13)

where Eq. 11 is due to the fact (A ⊗ B)⊤ = A⊤ ⊗ B⊤, Eq. 12 is because of (A ⊗ B)(C ⊗
D) = AC ⊗ BD, and Eq. 13 is yielded by applying the orthogonality of R and repeating
step Eq. 12 to Eq. 13. Therefore, for every integer k > 0, operator ∥∇kΦ(x)∥22 is rotation-
invariant. Hence, Π = f

(∥∥[Φ(x) ∇Φ(x) ∇2Φ(x) · · ·
]∥∥

F

)
= f

(√∑
k=0∥∇kΦ(x)∥22

)
is

also rotation-invariant.

Below we supplement the Lemma A.1 used to prove Theorem 1.
Lemma A.1. Suppose given function f : Rm → R and arbitrary linear transformation A ∈ Rm×m,
then vec

(
∇k[f ◦A](x)

)
= A⊤⊗k vec

(
∇kf(Ax)

)
for ∀k ≥ 0.

Proof. vec
(
∇k[f ◦A](x)

)
= A⊤⊗k vec

(
∇kf(Ax)

)
trivially holds for k = 0, 1. Then we prove

Lemma A.1 by induction. Suppose the (j−1)-th case satisfies the equality: vec
(
∇j−1[f ◦A](x)

)
=

A⊤⊗j−1 vec
(
∇j−1f(Ax)

)
, then consider the j-th case:

∇j [f ◦A](x) = ∇ vec
(
∇j−1[f ◦A](x)

)
= ∇A⊤⊗j−1 vec

(
∇j−1f(Ax)

)
= A⊤∇jf(Ax)A⊗j−1,

where the first equality is done by reshaping the mj tensor to be an m × mj−1 Jacobian matrix,
the second equality is due to the induction hypothesis, and the third equality is an adoption of
chain rule. Due to the fact vec(ABC) = (C⊤ ⊗ A) vec(B), we have vec

(
∇j [f ◦A](x)

)
=

A⊤⊗j vec
(
∇jf(Ax)

)
. Then by induction, we can conclude the proof.
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B Proof of Theorem 2

For a sake of clarity, we first introduce few notations in algebra and real analysis. We use Ck(X ,R)
to denote the k-th differentiable functions defined over domain X , W k,p(X ,R) to denote the k-th
differentiable and Lp integrable Sobolev space over domain X . We use notation A[f ] to denote the
image of function (say f ) under the transformation of an operator (sayA). We use symbol ◦ to denote
function composition (e.g., f ◦ g(x) = f(g(x))). We use dot-product · between two functions (say
f and g) to represent element-wise multiplication of function values (say f · g(x) = f(x) · g(x)).
Besides, we list the following definitions and assumptions:

Definition B.1. (Polynomial) We use R[x1, · · · , xm] to represent the multivariate polynomi-
als in terms of x1, · · · , xm with real coefficients. We write a (monic) multivariate monomial
m(x1, · · · , xm) = xn1

1 xn2
2 · · ·xnm

m as m(x) = xn where n = [n1 · · · nm] ∈ Nm. Then
we denote a polynomial as p(x) = a1x

n1 + · · ·+ adx
nd ∈ R[x1, · · · , xm] where xni denotes the

i-th multivariate monomial and ai ∈ R is the corresponding coefficient.

Definition B.2. (Differential Operator) Suppose a compact set X ⊆ Rm. we denote Dn :
C∞(X ,R)→ C∞(X ,R) as the high-order differential operator associated with indices n ∈ Nm:

Dn[f ] =
∂∥n∥1

∂xn1
1 · · · ∂x

nm
m

f. (14)

Definition B.3. We define polynomial in gradient operator as: p(∇) = p
(

∂
∂x1

, · · · , ∂
∂xm

)
=

a1Dn1 + · · · + adDnd ∈ R[x1, · · · , xm] where Dni denotes the ni-th order partial derivative
(Definition B.2) and ai ∈ R is the corresponding coefficient.

Remark B.1. The mapping between p(x) and p(∇) is a ring homomorphism from polynomial ring
R[x1, · · · , xm] to the ring of endomorphism defined over C∞(X ,R).
Definition B.4. (Fourier Transform) Given real-valued function f : Rm → C that satisfies Dirichlet
condition5, then Fourier transform F is defined as:

F [f ](w) =

∫
Rm

f(x) exp(−2πiw⊤x)dx. (15)

Inverse Fourier transform F−1 exists and has the form of:

f(x) =

∫
Rm

F [f ](w) exp(2πiw⊤x)dw. (16)

Definition B.5. (Convolution) Given two real-valued functions f : Rm → R and g : Rm → R,
convolution between f and g is defined as:

(f ⋆ g)(x) =

∫
Rm

f(x− ξ)g(ξ)dξ. (17)

Then we denote f ⋆ g = Tg[f ], where Tg represents a convolutional operator associated with the
function g.

We make the following mild assumptions on the signals and convolutional operators, which are
widely satisfied by the common signals and systems.

Assumption B.6. (Band-limited Signal Space) Define the signal space S as a Sobolev space
W∞,1(Rm,R) of real-valued functions such that for ∀f ∈ S:

(I) f ∈ C∞(Rm,R) is continuous and smooth over Rm.

(II) f satisfies the Dirichlet condition.

(III) f has a limited width of spectrum: there exists a compact subset W ⊂ Rm such that
|F [f ](w)| = 0 if w /∈ W , and

∫
W |F [f ](w)|dw <∞.

5Dirichlet condition guarantees Fourier transform exists: (1) The function is L1 integrable over the entire
domain. (2) The function has at most a countably infinite number of infinte minima or maxma or discontinuities
over the entire domain.

17



Assumption B.7. (Convolution Space) Define a convolutional operator space T such that ∀Tg ∈ T :

(IV) g : Rm → R is real-valued function.

(V) F [g] ∈ C(Rm,R) has a continuous spectrum.

Before we prove Theorem 2, we enumerate the following results as our key mathematical tools:

First of all, we note the following well-known result without a proof.
Lemma B.1. (Convolution Theorem) For every Tg ∈ T , it always holds that F ◦ Tg[f ](w) =
F [f ](w) · F [g](w).

Next, we present Stone-Weierstrass Theorem as our Lemma B.2 as below.
Lemma B.2. (Stone-Weierstrass Theorem) Suppose X is a compact metric space. If A ⊂ C(X ,R)
is a unital sub-algebra which separates points in X . Then A is dense in C(X ,R).

A straightforward corollary of Lemma B.2 is the following Lemma B.3.
Lemma B.3. Let X ⊂ Rm be a compact subset of Rm. For every ϵ > 0, there exists a polynomial
p(x) ∈ R[x1, · · · , xm] such that supx∈X |f(x)− p(x)| < ϵ.

Proof. Proved by checking polynomials R[x1, · · · , xm] form a unital sub-algebra separating points
in X , and equipping C(X ,R) with the distance metric d(f, h) = supx∈X |f(x)− g(x)|.

We also provide the following Lemma B.4 to reveal the spectrum-domain symmetry for real-valued
signals.
Lemma B.4. Suppose f is a continuous real-valued function satisfying Dirichlet condition. Then
F [f ](w) = F [f ](−w)∗, i.e., the spectrum of real-valued function is conjugate symmetric.

Proof. By the definition of Fourier transform (Definition B.4):

F [f ](−w) =

∫
Rm

f(x) exp(2πiw⊤x)dx =

∫
Rm

f(x)∗ exp(−2πiw⊤x)∗dx (18)

=

[∫
Rm

f(x) exp(−2πiw⊤x)dx

]∗
= F [f ](w)∗, (19)

where Eq. 18 holds because f is a real-valued function.

We present Lemma B.5 as below, which reflects the effect of differential operators on the spectral
domain.
Lemma B.5. Suppose f ∈ C∞(Rm,R) is a smooth real-valued function satisfying Dirichlet
condition. Then F ◦ Dn[f ](w) = (2πi)∥n∥1wn · F [f ](w) for every n ∈ Nm.

Proof. We first show the case of first-order partial derivative. Suppose h ∈ C(Rm,R) is L1 integrable
(then Fourier transform exists).

∂

∂xi
h(x) =

∂

∂xi

∫
Rm

F [h](w) exp(2πiw⊤x)dw (20)

=

∫
Rm

F [h](w)
∂

∂xi
exp(2πiw⊤x)dw (21)

= 2πi

∫
Rm

wiF [h](w) exp(2πiw⊤x)dw. (22)

Then we apply the Fourier transform to Eq. 20, we can obtain:

F ◦ ∂

∂xi
[h](w) = 2πiwiF [h](w). (23)

Note that f ∈ W∞,1(Rm,R) ensures all its partial derivatives are differentiable and absolutely
integrable. We can recursively apply ∂

∂xi
to f for ni times for each i ∈ [m], and use Eq. 23 above to

conclude the proof.
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Below is the formal statement of our Theorem 2 and its detailed proof.
Theorem B.6. For every Tg ∈ T and arbitrarily small ϵ > 0, there exists a polynomial p(x) ∈
R[x1, · · · , xm] such that supx∈Rm |Tg[f ](x)− p(∇)[f ](x)| < ϵ for all f ∈ S .

Proof. For every f ∈ S and Tg ∈ T , by Lemma B.1, one can rewrite:

F ◦ Tg[f ](w) = F [f ](w) · F [g](w) := f̂(w)ĝ(w), (24)

where we use f̂ : Rm → C and ĝ : Rm → C to denote the Fourier transform of f and g, respectively.
We can construct an invertible mapping ϕ by letting:

ϕ[f̂ ](w) = ℜ{f̂(w)} − ℑ{f̂(w)}, (25)

ϕ−1[f̃ ](w) =
f̃(w) + f̃(−w)

2
− i

f̃(w)− f̃(−w)

2
, (26)

which is also known as the Hartley transform. By Lemma B.4 (with Assumption (I) (IV)), f̃ := ϕ[f̂ ]
and g̃ := ϕ[ĝ] are both real-valued functions.

Since f̂ is only supported inW (by Assumption (III)), we only consider g̃ within the compact subset
W . By Lemma B.3 (with Assumption (V)), there exists a polynomial p̃(w) ∈ R[w1, · · · , wm] =
ã0 + ã1wn1 + · · · + ãdw

nd such that supw∈W |g̃(w) − p̃(w)| < ϵ/2C for every ϵ > 0, where d
is the number of monomials in p̃, ã0, ã1, · · · , ãd ∈ R are corresponding coefficients, and C > 0 is
some constant.

Applying ϕ−1 to p̃, we will obtain a new (complex-valued) polynomial p̂ := ϕ−1[p̃] ∈
C[w1, · · · , wm] such that:

ℜ{p̂(w)} = p̃(w) + p̃(−w)

2
, ℑ{p̂(w)} = p̃(w)− p̃(−w)

2
. (27)

We observe that the coefficients of p̂ satisfy: âk = ãk if ∥nk∥1 is even and âk = iãk if ∥nk∥1 is odd.
Then we bound the difference between ĝ and p̂ for every w ∈ W:

|ĝ(w)− p̂(w)| =

∣∣∣∣∣
(
f̃(w) + f̃(−w)

2
− p̃(w) + p̃(−w)

2

)
(28)

− i

(
f̃(w)− f̃(−w)

2
− p̃(w)− p̃(−w)

2

)∣∣∣∣∣ (29)

≤ 1

2

(∣∣∣f̃(w)− p̃(w)
∣∣∣+ ∣∣∣f̃(−w)− p̃(−w)

∣∣∣) (30)

+
1

2

(∣∣∣p̃(w)− f̃(w)
∣∣∣+ ∣∣∣p̃(−w)− f̃(−w)

∣∣∣) (31)

≤ ϵ

C
. (32)

In the meanwhile, by Lemma B.5 (with Assumption (I), (II)), F ◦ Dn[f ](w) = (2πi)∥n∥1wn ·
F [f ](w) for every n ∈ Nm. Define a sequence qn(w) = (2πi)∥n∥1wn, then partial derivatives of
f in terms of n ∈ Nm can be written as:

F ◦ Dn[f ](w) = qn(w) · F [f ](w). (33)

Next we decompose polynomial p̂ in terms of qn. Let ak = âk/(2πi)
∥nk∥1 , then p̂(w) = a0 +

a1qn1
(w) + · · · + adqnd

(w). We note that {ak, ∀k ∈ [d]} must be real numbers since âk is
real/imaginary when ∥nk∥1 is even/odd, which coincides with (2πi)∥nk∥1 .

By linearity of inverse Fourier transform and Eq. 33, element-wisely multiplying
∑d

k=0 akqnk
to f̂

will lead to a transform on the spatial domain:

F−1

[
d∑

k=0

akqnk
· F [f ]

]
=

d∑
k=0

akDnkf := p(∇)[f ], (34)
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Algorithm 1 Forward pass of INSP-ConvNet

1: Input: An INR network Φ(x) : Rm → R, convolutional operator weights θ(l) ∈ RM and an
input coordinate x.

2: Output: Value at x of INR ConvNet[Φ] processed by INSP-ConvNet.
3: y(0) ← Φ(x)
4: for l = 1, · · · , L do
5: ŷ(l) ←

[
y(l−1) ∂y(l−1)

∂x

⊤
∂2y(l−1)

∂x2

⊤
· · · ∂Ky(l−1)

∂xK

⊤
]
θ(l) ▷ Convolutional layer

6: y(l) ← ReLU(InstanceNorm1D(ŷ(l))) ▷ Non-linearity and normalization
7: end for
8: return y(L).

where we define polynomial p(∇) := a0 + a1Dn1 + · · · + adDnd ∈ R
[

∂
∂x1

, · · · , ∂
∂xm

]
over the

ring of partial differential operators (Definition B.3). Now we bound the difference between Tg[f ]
and p(∇)[f ] for every f ∈ S and x ∈ Rm:

|Tg[f ](x)− p(∇)[f ](x)| =

∣∣∣∣∣
∫
W

exp(2πiw⊤x)f̂(w)

(
ĝ(w)−

d∑
k=0

akqnk
(w)

)
dw

∣∣∣∣∣ (35)

≤
∫
W

∣∣∣∣∣f̂(w)

(
ĝ(w)−

d∑
k=0

akqnk
(w)

)∣∣∣∣∣ dw (36)

≤

(
sup
w∈W

∣∣∣∣∣ĝ(w)−
d∑

k=0

akqnk
(w)

∣∣∣∣∣
)(∫

W

∣∣∣f̂(w)
∣∣∣ dw) (37)

≤ ϵ, (38)

where Eq. 37 follows from Hölder’s inequality, and Eq. 38 is obtained by substituting the upper
bound of difference |ĝ(w) −

∑d
k=0 akqnk

(w)| and letting C equal to the L1 norm of f̂(w) (by
Assumption (III)).

C Implementation Details of INSP-ConvNet

We have formulated exact convolution form and INSP-Conv in Sec. 3.3. We provide a pseudocode
to illustrate the forward pass of INSP-ConvNet in Algorithm 1. Below we elaborate each main
component:

Convolutional Layer. Each A(l) represents an implicit convolution layer. We follow the closed-
form solution in Eq. 5 to parameterizeA(l) with θ(l). We point out that ConvNet[Φ] also corresponds
to a computational graph, which can continuously map coordinates to the output features. To construct
this computational graph, we recursively call for gradient networks of the previous layer until the first
layer. For example,A(l) will request the gradient network ofA(l−1) ·σ◦· · ·◦A(1) ·Φ, and thenA(l−1)

will request the gradient network of the rest part. This procedure will proceed until the first layer,
which directly returns the derivative network of Φ. Kernels in CNNs typically perform multi-channel
convolution. However, this is not memory friendly to gradient computing in our framework. To this
end, we run channel-wise convolution first and then employ a linear layer to mix channels [90].

Nonlinear Activation and Normalization. Nonlinear activation and normalization are naturally
element-wise functions. They are point-wisely applied to the output of an INSP-Net and participate
the computational graph construction process. This corresponds to the line 6 of Algorithm 1.

Training Recipe. Given a dataset D = {(Φi, yi)} with a set of pre-trained INRs Φi and their
corresponding labels yi, our goal is to learn a ConvNet[·] that can process each example. In contrast
to standard ConvNets that are designed for grid-based images, the computational graph of INSP-
ConvNet contains parameters of both the input INR Φi and learnable kernels A(l). During the
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training stage, we randomly sample a mini-batch (Φi, yi) from D to optimize INSP-ConvNet. The
corresponding loss will be evaluated according to the network output, and then back-propagate
the calculated gradients to the learnable parameters in A(l), using the stochastic gradient descent
optimization. Along the whole process, the parameters of Φi is fixed and only the parameters in A(l)

is optimized. Standard data augmentations are included by default, including rotation, zoom in/out,
etc. In practice, we implement these augmentations by using affine transformation on the coordinates
of INRs.

D Connection with PDE based Signal Processing

Partial Differential Equation (PDE) has been successfully applied to image processing domain as
we discussed in Sec. 4.3. In this section, we focus on their connection with our INSP-Net. We
summarize the methods of this line of works [61, 40, 66] in the following formulation:

∂Ψ(x, t)

∂t
= Mt

[
Ψ(x, t),∇xΨ(x, t),∇2

xΨ(x, t), · · ·
]
, (39)

where Mt(·) is a time-variant function that remaps the direct output and high-order derivatives of
function Ψ. For heat diffusion, Mt boils down to be an stationary isotropic combination of second-
order derivatives. In [61], Mt is chosen to be a gradient magnitude aware diffusion operator running
on divergence operators. [40, 66] degenerate Mt to a time-dependent linear mapping of pre-defined
invariants of the maximal order two. We note that Eq. 39 can be naturally solved with INRs, as
INRs are amenable to solving complicated differential equation shown by [28]. One straightforward
solution is to parameterize Mt by another time-dependent coordinate network [27] and enforce the
boundary condition Ψ(x, 0) = Φ(x) and minimize the difference between the two hands of the Eq.
39. However, foreseeable problem falls in sampling inefficiency over the time axis. Suppose we
discretize the time axis into small intervals 0 = t0 < t1 < · · · < tN , then Eq. 39 has a closed-form
solution given Mt by Euler method:

Ψ(x, tn+1) =

∫ tn+1

tn

Mt

[
Ψ(x, t),∇xΨ(x, t),∇2

xΨ(x, t), · · ·
]
dt+Ψ(x, tn) (40)

≈Mtn

[
Ψ(x, tn),∇xΨ(x, tn),∇2

xΨ(x, tn), · · ·
]
(tn+1 − tn) + Ψ(x, tn). (41)

One can see Eq. 41 can be regarded as a special case of our model Eq. 3, where we absorb Mtn , time
interval tn+1 − tn, and the residual term Ψ(x, tn) into one Π. Considering our multi-layer model
INSP-ConvNet (see Sec. 3.3), we can analogize tn to the layer number, and then solving Eq. 39 at
time tN is approximately equal to forward passing an N -layer INSP-ConvNet.

E More Experiment Details

We implement our INSP framework using PyTorch. The gradients are obtained directly using the
autograd package from PyTorch. All learnable parameters are trained with AdamW optimizer and
a learning rate of 1e-4. For low-level image processing kernels, images are obtained from Set5
dataset [75], Set14 dataset [76], and DIV-2k dataset [77]. These datasets are original collected for
super-resolution task, so the images are diverse in style and content. In our experiments, we construct
SIREN [28] on each image. For efficiency, we resized the images to 256× 256. We use 90 images to
construct the INRs used for training, and use the other images for evaluation.

For image classification, we construct a 2-layer INSP-ConvNet framework. Each INSP layer con-
structs the derivative computational graphs of the former layers and combines them with learnable
Π. The INSP-layer is capable of approximating a convolution filter. For a fair comparison, we build
another 2-layer depthwise convolutional network running on image pixels as the baseline. Both our
INSP-ConvNet and the ConvNet running on pixels are trained with the same hyper-parameters. Both
experiments take 1000 training epochs, with a learning rate of 1e− 4 using AdamW optimizer.

F More Experimental Results

Additional Visualization. In this section, we provide more experimental results. Fig. 9 provides
comparisons on edge detection task. Fig. 10 shows image denoising results. Fig. 11 demonstrates
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PSNR SSIM LPIPS
Input (decoded from INR) 20.51 0.47 0.40

MPRNet [81] 23.95 0.72 0.36
MAXIM [91] 24.64 0.74 0.33
Mean Filter 22.57 0.60 0.43
INSP-Net 23.86 0.65 0.38

Table 2: Quantitative result of image denoising on 100 testing images from DIV-2k dataset [77],
where the synthetic noise is rgb gaussian noise. The noise is similar to the ones seen during the
training of MPRNet and MAXIM, so they obtain better performance with the help of a much wider
training set.

image deblurring results. Fig. 12 shows image blurring results. Fig. 13 shows image inpainting
results. Fig. 14 presents additional results on geometry smoothening.

Additional Quantitative Results. We also provide quantitative comparisons on the test set in
Tab. 2. The test set consists of 100 INRs fitted from 100 images in DIV-2k dataset [77]. In Tab. 2,
their performance is better when the synthetic noise becomes three-channel Gaussian noise. The
synthetic noise is similar to those seen during the training process of MPRNet [81] and MAXIM [91],
so they benefit from their much wider training set.

Audio Signal Processing. We additionally validate the ability of our INSP framework by processing
audio signals. We add synthetic Gaussian noise onto the audio and use it to fit a SIREN. The noisy
audio decoded from the INR is shown in Fig. 15(b). Then we use our INSP-Net to implicitly process
it to a new INR that can be further decoded into denoised audio. It’s decoded result is shown in
Fig. 15(c). We also provide visualization of the denoising effect in Fig. 15(f).
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Input Image Sobel Filter Canny Filter Prewitt Filter INSP-Net

Figure 9: Edge detection. We fit the natural images with SIREN and use our INSP-Net to process
implicitly into a new INR that can be decoded into edge maps.
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Noisy Image Mean Filter MPRNet INSP-Net Target Image

Figure 10: Image denoising. We fit the noisy images with SIREN and train our INSP-Net to process
implicitly into a new INR that can be decoded into natural clear images.
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Blur Image Wiener Filter MPRNet INSP-Net Target Image

Figure 11: Image deblurring. We fit the blurred images with SIREN and train our INSP-Net to
process implicitly into a new INR that can be decoded into clear natural images.
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Original Image Box Filter Gaussian Filter INSP-Net

Figure 12: Image blurring. We fit the natural images with SIREN and train our INSP-Net to process
implicitly into a new INR that can be decoded into blurred images.
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Input Image Mean Filter LaMa INSP-Net Target Image

Figure 13: Image inpainting. We fit the input images with SIREN and train our INSP-Net to process
implicitly into a new INR that can be decoded into natural images. Note that LaMa requires explicit
masks to select the regions for inpainting and the masks are roughly provided. The first two rows
contain input images with random pixels erased. The last two rows contain input images with text
contamination.

INR Fitted SDF SDF Smoothened by INSP-Net

Figure 14: Additional results on geometry smoothening via INSP-Net. Left: unprocessed geometry
decoded from an unprocessed INR. Right: smoothened geometry decoded from the output INR of
our INSP-Net. Best view in a zoomable electronic copy.
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(a) Ground truth clear audio. (b) Input noisy audio (decoded from
INR).

(c) Output audio of INSP-Net.

(d) Difference between input and
ground truth.

(e) Difference between output and
ground truth.

(f) Contrast between input (blue)
and output (red) differences.

Figure 15: Audio denoising. We fit the noisy audio with SIREN and train our INSP-Net to process
implicitly into a new INR that can be decoded into denoised audio.
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