
Continuous-Time Spline Visual-Inertial Odometry

Jiawei Mo1 and Junaed Sattar2

Abstract— We propose a continuous-time spline-based for-
mulation for visual-inertial odometry (VIO). Specifically, we
model the poses as a cubic spline, whose temporal derivatives
are used to synthesize linear acceleration and angular velocity,
which are compared to the measurements from the inertial
measurement unit (IMU) for optimal state estimation. The
spline boundary conditions create constraints between the
camera and the IMU, with which we formulate VIO as a
constrained nonlinear optimization problem. Continuous-time
pose representation makes it possible to address many VIO
challenges, e.g., rolling shutter distortion and sensors that may
lack synchronization. We conduct experiments on two publicly
available datasets that demonstrate the state-of-the-art accuracy
and real-time computational efficiency of our method.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) has been

an active research area over the past few decades [1], [2],

with the goal of estimating robot pose using various sensors

(e.g., laser range-finder, GPS, cameras). Fusion of measure-

ments from multiple sensors combines their advantages and

thus improves accuracy and robustness. Due to the ubiquity

and energy-efficiency of cameras and inertial measurement

units (IMU) (e.g., smartphones), visual-inertial odometry

(VIO) [3] has become a popular sensor fusion approach.

Camera and IMU are complementary sensors for SLAM:

a camera estimates robot motion up to an unknown scale

while an IMU estimates the metric scale; additionally, the

IMU estimates inter-frame motion for the visual system to

improve accuracy and robustness.

Early work in VIO is mostly dominated by filtering-

based approaches [4]–[6]. Many of these algorithms solve

the sensor fusion problem based on extended Kalman filter

(EKF) [7], where IMU measurements are used for propa-

gation and camera frames are used for the update. A well-

established technique is MSCKF [4], [5]. It estimates the

orientation, position, and velocity of a robot. The IMU mea-

sures the angular velocity and linear acceleration in its local

frame. The angular velocity measurements between camera

frames are integrated to propagate the orientation. How-

ever, since the position and velocity propagation depend on

orientation, which also changes simultaneously, the Runge-

Kutta method [8] is used for approximating it, making the

integration process computationally expensive. ROVIO [6]

is another development of filtering-based VIO approach. Its

propagation process uses a simplified (by using the mean

of IMU measurements) IMU preintegration approach [9] to

The authors are with the Department of Computer Science and
Engineering, Minnesota Robotics Institute, University of Minnesota

Twin Cities, Minneapolis, MN, USA. {1moxxx066, 2junaed} at
umn.edu.

Fig. 1: The proposed VIO system running on MH1 of EuRoC

dataset. The estimated trajectory (red) is well aligned (by

SE(3)) to the ground-truth poses (green). The scale is also

recovered accurately.

improve computational efficiency. ROVIO also differs from

MSCKF with respect to how they process visual input.

MSCKF tracks feature across frames and minimizes repro-

jection error, while ROVIO minimizes photometric error

directly without feature extraction and matching. We usually

refer to the former process as feature-based approach and

the latter one as direct approach. Direct approaches exhibit

higher accuracy and robustness especially in environments

with less texture or with repetitive textures [10], [11].

Although filtering-based approaches are computationally

efficient, the linearization error from EKF may lead to drift

and inconsistency [12]. In the past decade, optimization-

based VIO approaches [13]–[16] have been proposed to

solve the linearization error. These methods usually integrate

consecutive IMU measurements as a unit constraint. For

optimization-based approaches, the optimal state is estimated

by iteratively solving nonlinear equations. Once the state is

updated, the IMU measurement needs to be re-integrated

with the new pose, IMU bias, etc., which is highly com-

putationally expensive. For computational efficiency, most

recent work (e.g., [15], [16]) adopts the IMU preintegration

approach [9], which integrates IMU measurements in the

2022 IEEE International Conference on Robotics and Automation (ICRA)
May 23-27, 2022. Philadelphia, PA, USA

978-1-7281-9680-0/22/$31.00 ©2022 IEEE 9500

Authorized licensed use limited to: University of Minnesota. Downloaded on December 25,2022 at 18:13:46 UTC from IEEE Xplore. Restrictions apply.

local frame and uses linearized bias in its error function in

order to avoid re-integration.

In addition to the methods discussed above that are

discrete-time, several continuous-time VIO approaches (e.g.,

[17]–[19]) have been proposed. The continuous-time pose

representation can be useful for many VIO-related challenges

(e.g., rolling shutter distortion [17]) and tasks (e.g., smooth

trajectory planning). Typically, they adopt the cumulative

B-spline [20] to represent the continuous pose. The spline

pose representation being temporally differentiable enables

us to compute analytical time derivatives and synthesize

IMU measurements, which are compared to the real IMU

measurements for the purpose of sensor fusion. Compared

to conventional spline, B-spline is favored due to its local-

ity [20]; additionally, there is no need to explicitly maintain

the spline boundary conditions. However, B-spline calcula-

tion is time consuming [21], and the VIO systems based

on B-spline can barely run in real-time [17]. Improvements

have been proposed in [21], but B-spline calculation is still

slow. Consequently, B-spline pose representation finds use in

sensor calibration [17], [22] without real-time requirements.

In this paper, we propose a novel VIO approach that

combines the advantages of optimization-based direct ap-

proaches and spline pose representation. On the vision side,

we adopt the state-of-the-art direct visual odometry DSO [11]

to provide exteroceptive pose estimation by minimizing

photometric error directly. The major novelty is that we use

conventional spline rather than the B-spline. Compared to B-

spline, where the control knots are abstract and do not pass

through the trajectory, the conventional spline representation

is more straightforward. Specifically, we use a cubic polyno-

mial function of time to represent a spline segment between

each pair of consecutive DSO keyframes. The constant term

of the polynomial is exactly the keyframe pose; the higher-

order terms are the temporal derivatives of the spline which

are used to synthesize IMU readings and generate the IMU

error term for optimization. The core of this work is that

we formulate VIO as a constrained nonlinear optimization

problem. The constraints are the spline boundary conditions

(see Sec. II-C), which create the constraints between the

camera and the IMU. Too many constraints will significantly

slow down the system. However, we can achieve real-time

performance because DSO maintains a sliding window of

keyframes (typically ≤ 7) for optimization, making the

spline scale relatively small and spline boundary conditions

manageable. Overall, our contributions are: i) we propose a

method that uses the (conventional) cubic spline to represent

continuous poses and formulate the VIO as a constrained

nonlinear optimization problem; ii) our experiments on two

publicly available datasets demonstrate its state-of-the-art

performance; iii) we make our implementation publicly avail-

able1. Fig. 1 shows the results of our VIO system on MH1 of

EuRoC dataset [23], where the trajectory is well aligned to

the ground-truth poses and the scale is recovered accurately.

1https://github.com/IRVLab/spline_vio

II. METHODOLOGY

The outline of the proposed approach is that we fit a spline

to the poses in DSO and use its temporal derivatives for IMU

fusion. We briefly introduce DSO and spline representation;

then we discuss how they are used in the proposed method

to solve the VIO problem.

A. Notation

• w: world coordinate frame

• i: IMU coordinate frame

• c: camera coordinate frame

• bold lower-case letters (e.g., a): vectors

• bold upper-case letters (e.g., A): matrices

•
∧: the skew-symmetric matrix of a vector

•
wpc: camera position in world coordinate frame

•
w
c R ∈ SO(3): rotation matrix of camera in world

coordinate frame

• ϕ
∧ ∈ se(3): Lie-algebra representation of w

c R, where

exp(ϕ∧) = R and log(R) = ϕ
∧

B. DSO

We choose DSO [11] to implement visual odometry in our

system. DSO works by minimizing the photometric error

defined over a sliding window of keyframes (which are

sparsely selected camera frames for optimization) with 3D

points:

Edso =
∑

j∈F

∑

p∈Pj

∑

k∈obs(p)

edso(p, k) (1)

edso(p, k) =
∑

p∈Np

wp||(I
k[p′]− bk)−

tke
ak

tje
aj

(Ij [p]− bj)||γ , (2)

p′ = Π(kjTΠ−1(p, dp)). (3)

For each point p ∈ Pj in keyframe j of sliding window F ,

if p is observed by keyframe k, we calculate the photometric

error edso(p, k), which is essentially the pixel intensity (I in

Eq. 2) difference between the point p in keyframe j and

its projection p′ in keyframe k as defined in Eq. 3. The

affine brightness terms (aj/k, bj/k), exposure times (tj/k),

pixel pattern Np, and the Huber norm (|| · ||γ) in Eq. 2 are

included for photometric robustness. Please refer to [11] for

more details.

C. Spline Representation

A cubic spline [24] is defined as

S(x) = Cj(x), xj−1 < x ≤ xj (4)

Cj(x) = aj + bjx+ cjx
2 + djx

3 (5)

j = 1, ..., n (6)

with the boundary conditions of

Cj(xj−1) = yj−1, Cj(xj) = yj , j = 1, ..., n (7)

C ′
j(xj) = C ′

j+1(xj), j = 1, ..., n− 1 (8)

C ′′
j (xj) = C ′′

j+1(xj), j = 1, ..., n− 1 (9)

9501

Authorized licensed use limited to: University of Minnesota. Downloaded on December 25,2022 at 18:13:46 UTC from IEEE Xplore. Restrictions apply.

Intuitively, the cubic spline S(x) is the continuous inter-

polation along a sequence of points (x1, y1), ..., (xn, yn),
with the constraints of zero/first/second-order continuities

between segments Cj and Cj+1. We refer to [24] for more

details.

In the proposed VIO system, we maintain a sliding win-

dow of the keyframes: KF0,KF1,KF2, ...,KFN where N
is the window size (≤ 7 in DSO by default). For KFj ,

its camera pose is represented by w
cjT = [wcjR

wpcj]. We

explicitly convert
cj
wT in DSO to w

cjT in our system because

positions represented in the uniform world coordinate frame

are simple for spline representation (i.e., Eq. 10). We use

a cubic spline to represent the continuous-time pose in the

sliding window: the variable x in Eq. 4 is now the time t,
and y is the keyframe pose [wcjR

wpcj]; each spline segment

Cj represents the pose interpolation between two consecutive

keyframes (KFj and KFj−1 in the current implementation).

For position wpcj , since it is linear and represented in a

uniform world coordinate frame, we directly interpolate it:

wpc(t) =
wpcj + tlpj + t2qp

j + t3cpj (10)

wpc(tj−1) =
wpcj−1

(11)

where l
p
j ,q

p
j , c

p
j correspond to the linear/quadratic/cubic

coefficients aj , bj , cj in Eq. 5. Unlike the global x in Eq. 4,

the t in Eq. 10 is the local time relative to KFj ; tj−1 < 0 in

Eq. 11 represents the time of KFj−1 with respect to KFj .

For w
cjR ∈ SO(3), since it is not in a linear space, we

cannot interpolate the rotation in world coordinate frame

directly. Instead, we interpolate the relative rotation between
w
cj−1

R and w
cjR:

w
c R(t) = w

cjR · exp((tlrj + t2qr
j + t3crj)

∧) (12)

w
c R(tj−1) =

w
cj−1

R (13)

D. IMU Synthesis

If we take the second derivative of Eq. 10, we get the

camera acceleration in world coordinate frame:

wa(t) = wp′′
c (t) = 2qp

j + 6tcpj

However, IMU measures acceleration in local IMU coordi-

nate frame, including the gravity; additionally, there is a bias

term ba
j associated to each keyframe j. Thus, we add the

gravity g, rotate it accordingly, and add the bias to synthesize

IMU acceleration:

ia(t) = i
cR · wc R(t)T · (2qp

j + 6tcpj + g) + ba
j

There are two important notes: first, we explicitly estimate

the scale s of DSO in the metric world; second, we optionally

estimate the roll r and pitch p angle of the gravity. The final

synthesized acceleration data becomes:

ia(t) = i
cR · wc R(t)T · [s · (2qp

j + 6tcpj) + g] + ba
j (14)

g = 9.8 · [−sin(p)cos(r), sin(r),−cos(p)cos(r)]T (15)

Similarly, we take the first derivative of Eq. 12 and get

the angular velocity in the camera coordinate frame:

c
ω(t) = lrj + 2tqr

j + 3t2crj

We rotate the angular velocity to the IMU coordinate frame

and add the gyroscope bias b
g
j to synthesize gyroscope

readings:

i
ω(t) = i

cR · (lrj + 2tqr
j + 3t2crj) + b

g
j (16)

E. VIO State

Consequently, our VIO state vector becomes

state = [fx, fy, cx, cy, s, r, p,kf1,kf2, ..., ,kfN]

kf j = [sdso,b
a
j ,b

g
j , l

r
j ,q

p
j ,q

r
j , c

p
j , c

r
j]

sdso = [wpcj ,
w
ϕcj , aj , bj , dj1, dj2, ..., djM]

For global variables, fx, fy, cx, cy are the camera intrinsic

parameters, s is the DSO scale, and r, p are the roll and pitch

of the gravity. For KFj , its state kf j includes the following

variables: sdso is the DSO state, ba
j ,b

g
j are IMU bias, and

lrj ,q
p
j ,q

r
j , c

p
j , c

r
j are the cubic spline coefficients. Here we

do not store l
p
j in our state because the linear velocity is not

observable by either DSO or IMU (DSO estimates pose up

to an unknown scale and IMU measures the acceleration).

The sdso contains the camera pose wpcj ,
w
ϕcj , the affine

photometric parameters aj , bj , and the (inverse) depth dj of

M feature points associated with this keyframe.

F. Spline Constraints

Closer observation of Eq. 14 and Eq. 16 shows that they

are solely dependent on the current keyframe KFj and

independent of KFj−1. It is because we have not considered

the spline boundary conditions (i.e., Eq. 7, Eq. 8, Eq. 9).

Eq. 12 and Eq. 13 connect w
cj−1

R and w
cjR and introduce

constraints to the rotation spline:

cr(j) =
w
cj−1

RT · wcjR

· exp((tj−1l
r
j + t2j−1q

r
j + t3j−1c

r
j)

∧) = I (17)

Position constraints are more complex since we do not store

l
p
j into our state vector. We use Eq. 10 and Eq. 11 to calculate

it:

l
p
j = (wpcj−1

− wpcj)/tj−1 − tj−1q
p
j − t2j−1c

p
j (18)

Here we calculate the linear velocity l
p
j at KFj with the

reference of KFj−1. We can also predict it from the next

keyframe KFj+1:

l
p
j = wp∗

′

c (tj) = l
p
j+1 + 2tjq

p
j+1 + 3t2jc

p
j+1

= (wpcj −
wpcj+1

)/tj + tjq
p
j+1 + 2t2jc

p
j+1

wp∗
c is the spline segment starting from KFj+1 (shift j to

j + 1 in Eq. 10). Making l
p
j consistent, we get the velocity

continuity constraint:

cv(j) = (wpcj−1
− wpcj)/tj−1 − tj−1q

p
j − t2j−1c

p
j

− (wpcj −
wpcj+1

)/tj − tjq
p
j+1 − 2t2jc

p
j+1 = 0 (19)

The rest of spline boundary conditions, such as linear

acceleration continuity, are not explicitly constrained since

9502

Authorized licensed use limited to: University of Minnesota. Downloaded on December 25,2022 at 18:13:46 UTC from IEEE Xplore. Restrictions apply.

they are implicitly constrained by the IMU measurements.

Not constraining them also slightly relaxes the cubic spline

motion assumption (i.e., the motion is modeled by the

cubic polynomial in Eq. 5). In fact, constraining consecutive

orientations (Eq. 17), positions (hardcoded into Eq. 18), and

velocities (Eq. 19) is exactly what the IMU preintegration

approach [9] does.

G. Energy Function

Fig. 2: Factor graph for the proposed VIO system. Fig. 5 of

[11] shows the details of the box labeled DSO. For the IMU

part, eimu is calculated by all IMU measurements between

two consecutive keyframes and current IMU bias in Eq. 22;

ebias is determined by consecutive IMU bias terms in Eq. 23;

the dashed lines between splines and keyframes (KF) are the

spline constraints (Eq. 17, Eq. 19, Eq. 20).

Fig. 3: An intuitive explanation of the IMU part in our

system. Between two consecutive keyframes (KFj−1 and

KFj), we have many IMU measurements (red dots). The

goal is to fit a spline (the curve between KFj−1 and KFj)

to minimize the distance to the IMU measurements (Eimu)

while the constraints (cr = 0 and cv = 0) are satisfied. (a):

IMU error is minimized but the constraints are unsatisfied

(the blue dashed line); (b): the constraints are satisfied but

IMU error is large; (c): IMU error is minimized while the

constraints are satisfied.

Combining photometric error from DSO, IMU error be-

tween consecutive keyframes, and the spline constraints, we

get our final energy function for optimization:

min(Edso + λEimu) s.t. cr = I and cv = 0 (20)

Eimu = eTimuWneimu + eTbiasWbebias (21)

eimu =

[
ia(t)
i
ω(t)

]
−

[
iã(t)
i
ω̃(t)

]
(22)

ebias =

[
ba
j

b
g
j

]
−

[
ba
j−1

b
g
j−1

]
(23)

Edso is already introduced in Sec. II-B. Eimu is the sum

of IMU measurement error eimu weighted by IMU noise

Wn and IMU bias error ebias weighted by IMU ran-

dom walk Wb. eimu is the difference from the predicted

IMU reading by Eq. 14 and Eq. 16 to IMU measurement

[iã(t)T , i
ω̃(t)T]T ; ebias is the bias difference between

two consecutive keyframes. Eimu is added to Edso with

an empirical weight λ. The resulting factor graph is given

in Fig. 2. Fig. 3 gives an intuitive explanation of our VIO

system.

Since cr and cv are equality constraints, we can solve

Eq. 20 efficiently using Lagrange multiplier [25].

H. Initialization

Using spline representation makes initialization more

straightforward compared to the conventional approaches.

First of all, the gravity is initialized using the first 40 IMU

measurements as [16] does. When the system starts, we run

DSO to get four keyframes. We assume these four keyframes

share a set of spline coefficients (i.e., l, q, c in Eq. 10 and

Eq. 12) so that we can linearly solve for the coefficients.

After the spline is initialized, we can linearly solve for the

IMU bias and scale using Eq. 14 and Eq. 16 with the IMU

measurements. Empirically, we find that setting acceleration

bias ba to zero ensures a more robust initialization process.

I. First Estimate Jacobians

After the initialization stage, we use First Estimate Ja-

cobians [26] throughout our implementation. Even though

there is a large amount of IMU data, we only calculate

the Jacobians once at the first estimate and store the value

for later iterations. Using First Estimate Jacobians not only

maintains the consistency of our VIO system [11] but also

improves the computational efficiency.

III. EXPERIMENTAL EVALUATION

Through experiments, we show that the proposed VIO

approach, as an alternative to IMU preintgration [9], achieves

state-of-the-art performance. We refer to the proposed

method as SplineVIO. Since our VIO implementation is

based on DSO [11], we compare it to DSO with IMU prein-

tegration for direct comparison. There is no such official im-

plementation; however, [27] is a third-party implementation

of VI-DSO [16] and Stereo-DSO [28]. Disabling the stereo

component from [28], the remaining system is essentially

VI-DSO, the state-of-the-art monocular VIO system of DSO

with IMU preintegration using dynamic marginalization.

Additionally, we include DSO as the baseline.

9503

Authorized licensed use limited to: University of Minnesota. Downloaded on December 25,2022 at 18:13:46 UTC from IEEE Xplore. Restrictions apply.

Our evaluation is based on the EuRoC dataset [23] and

TUM VI dataset [29]. The EuRoC dataset is recorded by

a Micro Aerial Vehicle (MAV) in two scenes: the ‘Machine

Hall’ (MH) and the ‘Vicon Room’ (V), with the ground-truth

poses available for the entire dataset. The TUM VI dataset is

recorded in several scenes, however, only the ‘Room’ (TR)

sequences provide full ground-truth poses. Thus we focus on

the ‘Room’ sequences for a complete comparison.

We mainly use the absolute trajectory error [11], [16] as

the accuracy metric, which is calculated as the root mean

square error (RMSE) of the trajectory. The trajectory is

aligned to the ground-truth poses by SE(3) for our system

and VI-DSO, and by Sim(3) for DSO since scale cannot

be estimated by monocular visual odometry. Due to the

randomness in DSO, we run each algorithm 10 times and

report the individual results in Fig. 5 and the median RMSE

in Table I.

TABLE I: The median RMSEs over 10 runs for different

methods on each sequence from EuRoC dataset and TUM

VI dataset. For VI-DSO, [27] are the results of the 3rd party

implementation; [16] are the original results reported in the

paper [16], we include these results for reference.

Sequence MH1 MH2 MH3 MH4 MH5

VI-DSO [27] 0.076 0.033 0.468 0.190 ×
SplineVIO 0.066 0.056 0.142 0.131 0.129

VI-DSO [16] 0.062 0.044 0.117 0.132 0.121
DSO 0.032 0.024 0.115 × 0.929

(a) EuRoC Machine Hall

Sequence V11 V12 V13 V21 V22 V23

VI-DSO [27] 0.173 × 0.187 0.110 0.087 0.089

SplineVIO 0.087 × × 0.103 0.111 ×
VI-DSO [16] 0.059 0.067 0.096 0.040 0.062 0.174
DSO 0.059 0.267 0.590 0.042 0.053 0.855

(b) EuRoC Vicon Room

Sequence TR1 TR2 TR3 TR4 TR5 TR6

VI-DSO [27] 0.082 0.114 0.165 0.072 × 0.055

SplineVIO 0.085 0.186 0.114 0.142 × 0.137
VI-DSO [16] - - - - - -
DSO 0.058 0.106 0.084 0.106 × 0.059

(c) TUM VI Room

EuRoC Dataset

Machine Hall: Fast motion is present at the beginning

of each MH sequence to aid IMU initialization, but the

resulting motion blur is challenging for visual tracking. An

example is given in Fig. 4. That is why the authors of

DSO [11] crop the beginning and only use the part of the

sequence where the MAV is in the air. However, for VIO

systems, IMU initialization is essential so we cannot discard

the beginning part. Hence, our experiments use the entire

sequence. Parameter-wise, we set the IMU weight λ = 6
in Eq. 20, which is the default value in [27] for testing on

EuRoC dataset.

From the MH parts in Fig. 5 and Table Ia, DSO works

on MH1 to MH3 but fails on MH4 and MH5. The results of

DSO on MH sequences are slightly worse than the results

reported in [11] since we do not crop the beginning parts.

Fig. 4: The MH sequences start with fast motion to activate

IMU, which causes motion blur that creates challenges for

visual tracking.

Similarly, our results of VI-DSO on MH sequences are not

as good as the results in [16] (we include the original results

to the row of VI-DSO [16] in Table I for reference). The

first reason is that we use a third-party implementation [27]

since no official release is available; the other reason is that

the authors of [16] do not use the entire sequence and we

have no information about their start time. Compared to

DSO, the results of VI-DSO on MH3 are worse but the

results on MH4 are better. This is because well initialized

and maintained IMU states improve the overall accuracy and

robustness while poorly initialized or maintained IMU states

degrade performance. The proposed SplineVIO performs the

best on MH sequences, it works most of the time on all MH

sequences (Fig. 5) and achieves lower median RMSEs in

Table Ia.

Vicon Room: The Vicon Room sequences do not con-

tain fast motion for IMU initialization. Hence, the DSO

results are closer to the ones reported in [11]. However, due

to the lack of sufficient IMU initialization, the performance

of SplineVIO degrades compared to MH sequences. VI-DSO

is more robust and slightly more accurate on the Vicon Room

sequences compared to SplineVIO. Dynamic marginalization

in VI-DSO enables delayed IMU initialization that is very

effective on sequences without fast motion at the beginning

such as Vicon Room sequences. We intend to integrate

dynamic marginalization into our system in future work

for improved accuracy and robustness. Nevertheless, the

accuracy margin between VI-DSO and SplineVIO in Table Ib

is not significant on sequences that both work (i.e., V11, V21,

V22).

TUM VI Dataset

To further validate the proposed SplineVIO, we test it on

the Room sequences in the TUM VI dataset [29]. Due to

the different hardware setup, we change the IMU weight

λ = 0.1 in Eq. 20 (same for the IMU weight in VI-DSO).

Similar to the Vicon Room sequences, VI-DSO slightly

outperforms the proposed SplineVIO but the margin is small.

This dataset does not have a dedicated IMU initialization

9504

Authorized licensed use limited to: University of Minnesota. Downloaded on December 25,2022 at 18:13:46 UTC from IEEE Xplore. Restrictions apply.

Age. Simultaneous Localization and Mapping,” IEEE Transactions on

Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[2] S. Thrun, “Simultaneous Localization and Mapping,” in Robotics and

Cognitive Approaches to Spatial Mapping, pp. 13–41, Springer, 2007.

[3] J. Delmerico and D. Scaramuzza, “A Benchmark Comparison of
Monocular Visual-Inertial Odometry Algorithms for Flying Robots,”
in 2018 IEEE International Conference on Robotics and Automation

(ICRA), pp. 2502–2509, 2018.

[4] A. I. Mourikis and S. I. Roumeliotis, “A Multi-State Constraint
Kalman Filter for Vision-aided Inertial Navigation,” in Proceedings

2007 IEEE International Conference on Robotics and Automation,
pp. 3565–3572, 2007.

[5] M. Li and A. I. Mourikis, “Improving the Accuracy of EKF-based
Visual-inertial Odometry,” in 2012 IEEE International Conference on

Robotics and Automation, pp. 828–835, 2012.

[6] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “It-
erated Extended Kalman Filter based Visual-Inertial Odometry using
Direct Photometric Feedback,” The International Journal of Robotics

Research, vol. 36, no. 10, pp. 1053–1072, 2017.

[7] S. Thrun, “Probabilistic Robotics,” Communications of the ACM,
vol. 45, no. 3, pp. 52–57, 2002.

[8] J. C. Butcher, “A History of Runge-Kutta Methods,” Applied Numer-

ical Mathematics, vol. 20, no. 3, pp. 247–260, 1996.

[9] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “IMU
Preintegration on Manifold for Efficient Visual-Inertial Maximum-
a-Posteriori Estimation,” in Robotics: Science and Systems (RSS)

Conference 2015, Robotics: Science and Systems, 2015.

[10] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast Semi-Direct
Monocular Visual Odometry,” in 2014 IEEE International Conference

on Robotics and Automation (ICRA), pp. 15–22, 2014.

[11] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 3, pp. 611–625, 2018.

[12] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “An Observability-
Constrained Sliding Window Filter for SLAM,” in 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 65–
72, 2011.

[13] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based Visual-Inertial Odometry using Nonlinear Optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[14] R. Mur-Artal and J. D. Tards, “Visual-Inertial Monocular SLAM With
Map Reuse,” IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 796–803, 2017.

[15] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator,” IEEE Transactions on

Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[16] L. Von Stumberg, V. Usenko, and D. Cremers, “Direct Sparse Visual-
Inertial Odometry Using Dynamic Marginalization,” in 2018 IEEE In-

ternational Conference on Robotics and Automation (ICRA), pp. 2510–
2517, 2018.

[17] S. Lovegrove, A. Patron-Perez, and G. Sibley, “Spline Fusion: A
Continuous-Time Representation for Visual-Inertial Fusion with Ap-
plication to Rolling Shutter Cameras.,” in BMVC, vol. 2, p. 8, 2013.

[18] C. Kerl, J. Stckler, and D. Cremers, “Dense Continuous-Time Tracking
and Mapping with Rolling Shutter RGB-D Cameras,” in 2015 IEEE

International Conference on Computer Vision (ICCV), pp. 2264–2272,
2015.

[19] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza,
“Continuous-Time Visual-Inertial Odometry for Event Cameras,”
IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1425–1440, 2018.

[20] K. Qin, “General Matrix Representations for B-splines,” The Visual

Computer, vol. 16, no. 3-4, pp. 177–186, 2000.

[21] C. Sommer, V. Usenko, D. Schubert, N. Demmel, and D. Cremers,
“Efficient Derivative Computation for Cumulative B-Splines on Lie
Groups,” in 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 11145–11153, 2020.

[22] P. Furgale, T. D. Barfoot, and G. Sibley, “Continuous-Time Batch Es-
timation using Temporal Basis Functions,” in 2012 IEEE International

Conference on Robotics and Automation, pp. 2088–2095, 2012.

[23] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The EuRoC Micro Aerial Vehicle
Datasets,” The International Journal of Robotics Research, vol. 35,
no. 10, pp. 1157–1163, 2016.

[24] Wikiversity, “Cubic Spline Interpolation — Wikiversity,” 2021. [On-
line; accessed 25-March-2021].

[25] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier

Methods. Academic Press, 2014.
[26] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “A First-Estimates

Jacobian EKF for Improving SLAM Consistency,” in Experimental

Robotics, pp. 373–382, Springer, 2009.
[27] R. Sun, “Direct Sparse Odometry Combined with Stereo Cameras and

IMU.” https://github.com/RonaldSun/VI-Stereo-DSO.
[Online; accessed 31-August-2021].

[28] R. Wang, M. Schwrer, and D. Cremers, “Stereo DSO: Large-Scale
Direct Sparse Visual Odometry with Stereo Cameras,” in 2017 IEEE

International Conference on Computer Vision (ICCV), pp. 3923–3931,
2017.

[29] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stckler, and
D. Cremers, “The TUM VI Benchmark for Evaluating Visual-Inertial
Odometry,” in 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 1680–1687, 2018.

9506

Authorized licensed use limited to: University of Minnesota. Downloaded on December 25,2022 at 18:13:46 UTC from IEEE Xplore. Restrictions apply.

