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—— Abstract

We reduce the problem of proving a “Boolean Unique Games Conjecture” (with gap 1 —4§ vs. 1 — C4,
for any C' > 1, and sufficiently small 6 > 0) to the problem of proving a PCP Theorem for a certain
non-unique game. In a previous work, Khot and Moshkovitz suggested an inefficient candidate
reduction (i.e., without a proof of soundness). The current work is the first to provide an efficient
reduction along with a proof of soundness. The non-unique game we reduce from is similar to
non-unique games for which PCP theorems are known.

Our proof relies on a new concentration theorem for functions in Gaussian space that are
restricted to a random hyperplane. We bound the typical Euclidean distance between the low degree
part of the restriction of the function to the hyperplane and the restriction to the hyperplane of the
low degree part of the function.
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1 Introduction

1.1 The Unique Games Conjecture

The Unique Games Conjecture was introduced by Khot [20] (see also the survey [21]) in
order to prove optimal inapproximability results that eluded existing techniques.

» Definition 1 (UNIQUE GAME). The input of a unique game consists of a regular graph
G = (V, E), an alphabet ¥ of size k, and permutations 7w, : X — X for the edges e = (u,v) € E.
The task is to label each vertex with a symbol o(v) € ¥, as to maximize the fraction of edges
e = (u,v) € E that are satisfied, i.e., m.(o(u)) = o(v).

The following two prover game describes a unique game instance: a verifier interacts with
two all-powerful provers. The verifier picks uniformly an edge e = (u,v) € F; sends u to one
prover and sends v to the other prover. Each prover is supposed to respond with a label
from 3. The verifier accepts if the two received labels o(u), o(v) satisfy me(o(u)) = o(v).
Note that for every response of one prover in the game, there is a unique response of the
other prover that is acceptable to the verifier. Hence, this two prover game is called a unique
© Ronen Eldan and Dana Moshkovitz;
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Reduction From Non-Unique Games To Boolean Unique Games

game. The wvalue of the game is the probability that the verifier accepts when the provers
play optimally.

The Unique Games Conjecture says that it is NP-hard to distinguish unique games of
value close! to 1 from unique games of value close to 0:

» Conjecture 2 (Unique Games Conjecture). For every €,0 > 0, there exists k = k(e, ),
such that it is NP-hard, given a unique game instance with alphabet of size k, to distinguish
between the case where at least 1 — & fraction of the edges are satisfied and the case where at
most € fraction of the edges are satisfied.

We refer to the problem of distinguishing instances where at least 1 — § fraction of the edges
can be satisfied and instances where at most ¢ fraction of the edges can be satisfied as 1 — ¢
VS. € unique games.

The Unique Games Conjecture is known to imply optimal NP-hardness of approximation
for problems like MAX-CUT [22] and VERTEX-COVER [28] that eluded optimal inapproxim-
ability results via existing techniques [18, 9]. Moreover, under the Unique Games Conjecture
one can prove inapproximability for wide families of approximation problems. Most notably,
basic semidefinite programming (SDP)-based algorithms are optimal for all local constraint
satisfaction problems [37].

There are efficient algorithms for unique games in four cases: (i) Sufficiently small
alphabet k < exp(1/d) [20, 10]; (ii) Sufficiently small § = O(1/logn) where n is the size of
the graph [41, 17, 10, 11]; (iii) Large run-time nPo [1]; (iv) Random-like structure of
G [2, 30].

There is an NP-hardness result for unique games for § = 1/2 and any ¢ > 0 as follows
from the recently proved 2-to-2 Theorem [24, 13, 12, 6, 23, 25]. There is also a hardness
result for any § > 0 and € = 1 — 2§ [19, 25] that holds in the Boolean case k = 2.

The Boolean case k = 2 is the first interesting case of unique games, and it captures
problems like MAX-CuUT and 2LIN(2). The assignments to the variables are 1, and each
edge either requires its two endpoints to have the same assignment or different assignment.
It is conjectureectured (and, indeed, follows from the Unique Games Conjecture [22]) that
the best algorithm for Boolean unique games is the Goemans-Williamson SDP-based al-
gorithm [16] that can distinguish value 1 — ¢ from value ¢ = 1 — ©(v/§). We focus on a
weaker conjectureecture:

» Conjecture 3 (Boolean Unique Games Conjecture). For every C > 1, for sufficiently small
0 > 0, it is NP-hard to distinguish between unique games with k = 2 where 1 — § fraction of
the edges can be satisfied, and ones where only 1 — C§ fraction of the edges can be satisfied.

The Unique Games Conjecture can be thought of as an amplified version of Conjecture 3,
with the soundness error close to 0 rather than close to 1 and the alphabet size appropriately
increased. It is open whether the Unique Games Conjecture follows from Conjecture 3. There
were past attempts to prove this implication via a “strong parallel repetition”, but those
attempts uncovered an obstacle [39, 5].

1.2 This Work

In a previous work Khot and Moshkovitz [27] suggested a candidate reduction for proving
hardness of 1 — § vs. 1 — C'd Boolean unique games, however they could not prove the

! For unique games there is an efficient algorithm to distinguish games of value exactly 1 from games of
value smaller than 1. Hence, it is necessary to focus on games of value close to 1 rather than 1.
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soundness of the reduction. In this work we define a problem, Subspaces Near-Intersection,
and show a provably sound reduction from Subspaces Near-Intersection to 1 — 4§ vs. 1 — C§
Boolean unique games. Importantly, the NP-hardness of Subspaces Near-Intersection — which
we conjectureecture but do not prove — is in the same spirit of known PCP Theorems, and
resembles in many ways the 2-to-2 Theorem.

» Theorem 4 (Main Theorem). Assume the Subspaces Near-Intersection Conjecture (Conjec-
ture 7 in the sequel). For any C > 1, for any sufficiently small § > 0, distinguishing 1 — ¢
vs. 1 — C§ Boolean unique games is NP-hard. In fact, if the Subspaces Near-Intersection
problem requires time T, then distinguishing 1 — 6 vs. 1 — C'§ Boolean unique games requires
time Q(T).

Our reduction has the added benefit of being highly efficient (linear-sized). In contrast, the
reduction in [27] had an exponential blowup, as it was only meant to rule out polynomial time
algorithms for unique games under plausible assumptions on exponential hardness. Like for
the 2-to-2 problem, one would expect a reduction from SAT to Subspaces Near-Intersection
to map size-n instances of SAT to size n°(®) instances of Subspaces Near-Intersection, where
J is the completeness error in Subspaces Near-Intersection and ¢(d) > 1/ is a function of 4.

Subspaces Near-Intersection is discussed in the next section. The main ideas of the proof
of Theorem 4 are discussed in Section 1.4. A key lemma is a new concentration theorem for
the restriction of a function in Gaussian space to a random hyperplane. The lemma bounds
the Euclidean distance between the degree-d part of the restriction and the restriction of the
degree-d part. The formal statement and more details appear in Section 1.5.

1.3 Subspaces Near-Intersection Conjecture

First we discuss existing PCP theorems (projection games), and a projection game based on
3LIN(R), then we define the new conjectureecture.

1.3.1 Projection Games

Existing optimal hardness of approximation results follow from the proven NP-hardness
of approximating projection games [4, 3, 38, 32]. In (the symmetric version of) projection
games, the verifier tests the answer of each prover separately in a way that depends solely
on the question to the prover, and then checks equality between parts of the two answers
(the projections). For instance, given a SAT instance the verifier may ask each prover for the
assignment to a subset of the variables. Each subset spans clauses and the verifier checks
that those clauses are satisfied (a separate test for each prover that depends only on the
question to the prover). The two subsets intersect, and the verifier checks that the provers
agree on the assignments to the variables in the intersection (a comparison on parts of the
answer). Formally:

» Definition 5 (PROJECTION GAME). The input of a projection game consists of a bi-reqular
graph G = (X,Y, E) whose X-degree is denoted q, an alphabet ¥ and sets L, C 39 for
every vertex x € X. The task is to label each verter x € X with a symbol o(x) € L., as to
mazximize the probability that, when one picks e = (z,y), (2',y) € E, it holds o(z), = o(z'),.
Sometimes one describes the game over the graph (X, {(z,2')}).

It is known that it is NP-hard to distinguish projection games of value 1 from projection
games of value close to 0 [4, 3, 38, 32], and moreover that it requires time gntme® assuming
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the widely believed Exponential Time Hypothesis? as follows from an almost-linear sized
reduction from SAT to projection games [32].

2-to-2 games are projection games where given o(x), € X there are only two possibilities
for o(z) € L, C X9 Tt is known that it is NP-hard to distinguish 2-to-2 games of value close
to 1 from 2-to-2 games of value close to 0 [24, 13, 12, 6, 23, 25]. However, 2-to-2 games are
easier than general projection games, since they have algorithms that run in time g [1].
Appropriately, the known NP-hardness reduction to 2-to-2 games maps size n inputs of SAT
to size n°(®) 2-to-2 games for a function ¢(§) > 1/4.

1.3.2 3Lin(R) Projection Game

Subspaces Near-Intersection is a proxy for the following projection game based on the
Khot-Moshkovitz [26] robust real 3LIN: The verifier picks uniformly at random 100k real
3LIN equations ci, ..., c1gok and two sets Sy, 59 of k variables among their variables, where
|S1 NSe| =k — 1. Note that any subset of the linear equations induced on S; or on Sy forms
a linear subspace of R*. The verifier sends S; to one prover, and receives a unit vector
that represents an assignment to Si’s variables. The unit vector must satisfy a random
linear constraint on S;. The verifier sends Sy to the other prover, and receives a unit vector
that represents an assignment to Ss’s variables. The vector must satisfy a random linear
constraint on S3. The verifier projects each of the vectors on the k — 1 coordinates that
correspond to the intersection S N Ss, and measures the Euclidean distance between the
projections. Suppose that there exists a prover strategy where the projections are identical
with probability 1 — . The task is to efficiently compute a prover strategy that minimizes
the average Euclidean distance between the projections.

Simple approximation algorithms for this problem guarantee distances O(\/W) and
O(1/k):

Basic semidefinite programming achieves square distance §/k, since in the completeness

case one achieves deviation 0 with probability 1 — ¢ and deviation 1/ Vk with probability

0. As a result, this algorithm can efficiently guarantee distance O(\/W)

Correlated sampling is the strategy in which the provers guess a clause in S; N So, satisfy

it (with a norm 1 assignment) and assign all other coordinates 0. It achieves distance 1

with probability® 1/k, and deviation 0 with the remaining probability.
Hence, the question is whether one can efficiently compute a prover strategy where the
average distance between the projections is, say, 0.0001 - min {\/5/7, 1/k}

Subspaces Near-Intersection is closely related to this projection game: there one compares
the vectors on their projection to a generic hyperplane in R¥, as opposed to an axis-parallel
hyperplane.

1.3.3 Subspaces Near-Intersection

The Subspaces Near-Intersection game is a projection game that is defined over the reals?.
Each vertex is associated with a linear subspace in R, and a labeling to the vertex is a unit

The Exponential Time Hypothesis postulates that SAT requires time 22(m) op inputs of size n.

Note that the error probability of correlated sampling can be made C/k if one considers a projection
onto a subspace of dimension k — C' instead of k — 1.

The intention is to consider real numbers up to a finite precision, so the errors introduced by the finite
precision are much smaller than any other quantity involved. For the sake of clarity in exposition we do
not explicitly address precision errors.
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vector that satisfies the constraints. Each edge is associated with a hyperplane in R*. The
vectors on the endpoints of the edge should have the same restriction to the hyperplane of
the edge.

» Definition 6 (Subspaces Near-Intersection). The input is a reqular graph G = (V, E), k x k
matrices A, with entries in [—1,1] for the vertices v € V, and unit vectors ©, € R* for the
edges. We assume that, per vertex v € V, when one picks a uniform edge e = (u,v) € E
that touches v, the vector ©. is uniform. The task is to label each vertex with a unit vector
o(v) € R* such that A,0(v) = 0, as to maximize the number of edges e = (u,v) € E with
Projgi(o(u)) = Proje.(o(v)) (“satisfied edges”). We say that the edge is a-satisfied if
IProje. (o(u)) — Projos (o(v)l> < a.

As before, in the case that there exists an assignment where the distance between the
projections is 0 with probability 1—§ and 1/ V'k with probability 6, a semidefinite programming
algorithm that minimizes the square distance between the projections, would lead to distance
\/5/7 between the projections. There is a natural matching semidefinite programming
integrality gap for Subspaces Near-Intersection described in Appendix A. The correlated
sampling algorithm we described for the 3LIN(R) projection game in Sub-section 1.3.2 no
longer applies.

There is an analogy between the games considered in the recent proof of the 2-to-2
Theorem and the Subspaces Near-Intersection game: in both games for every edge the label
of one endpoint does not uniquely determine the label of the other endpoint, but rather
nearly determines it, leaving out one “degree of freedom”. In the 2-to-2 games of [24, 13, 25],
labels are vectors over the binary finite field, and one degree of freedom means that there are
two possibilities for the answer of the other prover. Here labels are real vectors and one of
their “coordinates” remains undetermined.

For technical reasons, and similarly to the proof of the 2-to-2 Theorem, we will define a
slight strengthening using zoom-ins. For a linear subspace Y C R* we define the Y-zoom-in
Subspaces Near-Intersection game as follows: Focus on edges e € E where Y C O, ie.,
one can write ©F = Y + S,, where S, is a hyperplane in Y. An edge is satisfied if
Projg, (o(u)) = Projs, (o(v)) and is a-satisfied if |Projg, (o(u)) — Projs, (o(v))|, < .

» Conjecture 7 (Subspaces Near-Intersection Conjecture). There exists a global constant
0 < a <1, such that for any €, > 0, r € N, there exists k > 1 such that \/m > 1/k,
and the following is NP-hard: The input is an instance of the Subspaces Near-Intersection
problem. The task is to distinguish between the cases:
Completeness: There exists a labeling o : V — R¥ that satisfies® at least 1 — § fraction of
the edges e = (u,v) € E. The remaining edges are O(1//k)-far from satisfied.
Soundness: For any r-dimensional Y C R*, for any labeling o : V- — R¥, the probability
over the choice of e = (u,v) in the Y-zoom-in, that e is am—satisﬁed s at most €.

1.4 Main ldeas

This work builds on an idea suggested by Khot and Moshkovitz [27] for proving hardness of
unique games. Like® [27] we replace the commonly used long code and Hadamard code by

5 Near satisfaction suffices; see Section 1.6.

5 The candidate reduction in [27] had a variation on half-space encoding, namely, interval({a, z)), where
interval changes sign as one crosses any integer point, not just 0. Crucially, we use half-spaces in the
current paper.
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an encoding by half-spaces. We first explain the half-space idea, and then describe our new

ideas in using and analyzing half-space encodings.

The half-space defined by a € R¥ is h, : R¥ — {£1}, where h,(z) = sign({(a, x)). The
half-space encoding of a is the truth-table of h, where we enumerate over all z € R* up to a
precision that makes the rounding error sufficiently smaller than any of the other quantities
involved.

Half-space encoding is similar in structure to the Hadamard encoding, where a vector
a € {0,1}" is encoded as the linear function Iy (z) = (a,z) for all z € {0,1}*, and arithmetic
is done over the finite field {0,1}. This similarity gains us two benefits that the Hadamard
encoding has:

1. We can test linear conditions on a € R¥ by testing its encoding. Specifically, (a,c) = 0
for a vector ¢ € R¥ iff h,(x 4 ¢) = ho() for every z € R¥. (On the soundness side we
need |{a, c)| > 0 to detect that the inequality does not hold; this the reason we require
robustness).

2. Encodings of similar strings have common parts. Suppose that the projections of a,a’ €
R¥ on a hyperplane ©+ are the same. Then, when one picks 2 € ©1 it holds that
{a,r) = (a’,x). Importantly, the union of all hyperplanes covers R* uniformly.

Note that both equations hq(z + ¢) = hq(x) and hy(x) = he(2’) are unique tests. We

remark that a property like the first is used in any optimal inapproximability result that

uses the Hadamard code, and a property like the second was used in the proof of the 2-to-2

Games Theorem (under the name “sub-code covering”). Crucially, half-space encoding has a

property that the Hadamard encoding does not have, but the long code does have, namely, a

unique test:

3. Noise stability test. Half-spaces optimize the success probability of the following test:
pick random Gaussian z € R¥, perturb x to obtain 2’ € R also distributed as a Gaussian.
Check whether hq(x) = hqo(2').

In discrete space, the long code encoding d;(x) = x; optimizes the analogous noise stability
test, and this was used to show hardness of Boolean unique games assuming the Unique
Games Conjecture [22].

In [27] it was suggested that to prove NP-hardness of Boolean unique games one needs
robustness of the noise stability test:

Suppose that a half-space passes the noise stability test with probability 1 —4§. Assume
that a balanced function f : R*¥ — {£1} passes the test with probability 1 — C¢ for
C > 1. Does f correspond to a half-space?

Works that dealt with robustness in noise stability [34, 33, 14] proved such results for functions
that pass the test with probability at least 1 — d — € for € < §. Such must be the same as a
half-space almost everywhere. When the acceptance probability is 1 — C§, the function f
can have many forms, including functions of C half-spaces, low degree threshold functions,
and many more. In particular, the function may have no correlation with any half-space.
Mossel and Neeman [35] note that functions that pass the noise stability test with constant
probability have to correlate with a half-space after a large random shift, but we are unable
to use this fact since a shift hurts the second property above.

Our idea is not to focus on a half-space that correlates with f (which corresponds to the
linear part of f), but rather consider the low degree part of f (where the low degree part is
obtained from the Hermite expansion of f). By the noise stability of f, its low degree part
must be large. We argue about consistency between low degree parts of functions that are
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partly similar. We also argue about the ability to extract vectors that satisfy linear tests
from low degree parts that satisfy the same tests.

Crucially, all our estimates must be extremely tight, since the gap for Boolean unique
games is extremely narrow to begin with, 1 —§ vs. 1 — ©(1/§). We obtain the required
tightness using two tools: hypercontractivity and concentration.

Hypercontractive inequalities (see, e.g., [36]) bound norms of a “smoothed” function
by norms of the original function. Here we use the Gaussian hypercontractive inequality,
through the implied level-d inequalities (see, e.g., [36]), to show that Boolean functions that
are the same with probability at least 1 — § over the input must have low degree parts that
are = d-close in lo distance. In contrast, a less careful estimate, not using Booleanity and
hypercontractivity, only gives v/d-closeness, which is useless in our context. Note that the
functions we compare are restrictions of functions f to hyperplanes (as in the second property
above).

Concentration is discussed in Section 1.5. It considers functions restricted to a random
hyperplane, and bounds the typical Euclidean distance of the low degree part of the restriction
from the restriction of the low degree part. We use concentration to argue consistency between
the low degree parts of the restrictions of a function to different hyperplanes. We note that
the much easier to prove distance of O(1/v/k) rather than O(1/k) would have been useless
for our application.

1.5 Concentration of Degree-d Part

Let f: R™ — R, and let <% be the degree-d part of f. Note that f<% is a global property
of f. Let © be uniformly distributed in the (n — 1)-dimensional sphere, so ©+ is a random
hyperplane in R™. Denote the restriction of f to ©+ by Jio+. This is a local part of f. We
show a local-to-global theorem: the degree-d part of fig. is extremely close to the restriction
of f<4 to ©+:

» Theorem 8 (Concentration of degree-d part). For any ¢ > 0, for every 0-homogeneous’ f :
R™ — R with bounded 2-norm, with probability at least 1—¢e over ©, (f‘@L)Sd - (ffd)|@L ‘2 <
Og.(1/n).

Local-to-global theorems, like linearity testing [7] and low degree testing [40] over finite
fields, are key to PCP. With Theorem 8 we add a new, tight, low degree testing -type
theorem, this time in the highly challenging case of real functions and approximate equality.
To get intuition for why this case is so challenging, note that two different real low degree
polynomials can be similar on much of the space (Carbery-Wright (Lemma 14) gives tight
bounds). In contrast, two different low degree polynomials over a finite field are vastly
different, and this is key to existing combinatorial and algebraic techniques, which we cannot
use. Standard analytic techniques (e.g., Hermite analysis, or a sampling theorem of Klartag
and Regev [29]) give an upper bound of O(1/4/n) rather than O(1/n) even for d = 1. As we
remarked above, such bounds are useless for our needs.

Our proof is by a delicate second moment argument using symmetry considerations.
Crucially, the second moment is a rotationally-invariant quadratic form in f, and hence
we can use Schur’s lemma from representation theory that classifies rotationally-invariant
quadratic forms. The lemma implies that the second moment depends only on the spectrum
of f, and not on its identity. Our calculations can therefore be significantly simplified by

7 f is 0-homogeneous if f(cx) = f(z) for every & € R™ and ¢ > 0.
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focusing on f that depends only on one of its variables. Given a function that depends on
one direction, the expression that we need to bound will only depend on the angle between
this direction and ©. The technical bulk of the proof then amounts to showing that this
dependence is quadratic in the scalar product, meaning that it is typically of the order 1/n.

1.6 The Road Ahead

This paper suggests two paths to NP-hardness of Boolean unique games:

1. Prove NP-hardness of Subspaces Near-Intersection as in Conjecture 7. This paper implies
that NP-hardness of Boolean unique games would follow.

2. Lift the reduction in this paper to a reduction from the Khot-Moshkovitz NP-hard

3LIN(R) to Boolean unique games. The reduction was outlined in Sub-section 1.3.2.

In this sub-section we give more details about each of these paths.

One can weaken the Subspaces Near-Intersection conjectureecture substantially and the
analysis in this paper would still go through (with modifications): The verifier can project
onto subspaces of dimension, say, k— 100, instead of dimension k—1. In the completeness case
there could be approximate equality (with deviation O(§/v/k)) rather than exact equality.
It is enough to have large soundness error, say € = 0.99, instead of low error. The distance
of the projections in the soundness case can be of the order of ©(5/vk + 1/k), rather than
O(\/d/k).

The reduction in this paper can be lifted to a reduction from a 3LIN(R) projection game
like we described in Sub-section 1.3.2 (instead of Subspaces-Near Intersection) to Boolean
unique games. In this setting, we suggest to focus on projections onto subspaces of dimension
sufficiently smaller than k& — 1, as to decrease the probability that the correlated sampling
algorithm achieves distance 0. To analyze such a reduction one would need to address
subspaces that are axes-parallel rather than generic, and this requires ideas beyond the
ones in this paper. In particular, the concentration theorem we prove is no longer directly
applicable. In the authors’ opinion, this path is the most promising path towards hardness
of Boolean unique games.

2 Preliminaries

2.1 Hermite Polynomials

Let G™ denote the n-dimensional Gaussian distribution with n independent mean-0 and
variance-1 coordinates. The space of all real functions f : R" — R with Ezugn [f(2)?] <
oo is denoted L?(R™,G™). This is an inner product space with inner product (f,g) =
Ez~g» [f(2)g(z)]. For a natural number j, the j'th Hermite polynomial H; : R — R
is Hj(z) = % - (—1)j6w2/2%6_12/2. The first few Hermite polynomials are Hy = 1

\/ﬁ
Hy(z) =z, Ha(x) = % (z? = 1), H3(z) = % - (2% — 32), Hy(x) = (z* — 622 + 3).

V6

1
2v6
The Hermite polynomials satisfy:
» Proposition 9 (Orthonormality). For every j, (Hj;, H;) = 1. For every i # j, (H;, H;) = 0.
In particular, for every j > 1, Egeg [Hj(z)] = 0.

The multi-dimensional Hermite polynomials are: Hj, . (z1,...,2,) = [[1—; Hj,(2;). For
multi-indices L = (I, ...,I,) and T = (t1,...,t,) we denote L < T if I; < t; for every i. We
write T — L to denote (t; —lq,...,t, — ). We write CT to denote C2it and () to denote

(2) o (fn) The Hermite polynomials form an orthonormal basis for the space L2(R™, G").



336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

E. Eldan and D. Moshkovitz

Hence, every function f € L?(R",G™) can be written as f(z) = > gepn f(S) Hs(x), where
S is multi-index, i.e. an n-tuple of natural numbers, and f(S) € R (Hermite expansion).
The size of a multi-index S = (S1,...,S,) is defined as |S| = >""" , S;. The degree-d part of
fis f7¢ = Z|S|=d f(S)Hs(x). The part of degree at most d is f<¢ = Z?:o f=* When f is
anti-symmetric, i.c. Vo € R?, f(—z) = —f(x), we have f(0) = E[f] =0 and f<° = 0.

The noise operator (more commonly known as the Ornstein-Uhlenbeck operator) T},
takes a function f € L?(R™,G") and produces a function T,,f € L?(R",G") that averages

the value of f over local neighborhoods: T, f(z) = Eyegn» [f(px + /1 - ,02y)] The Hermite

expansion of T, f can be obtained from the Hermite expansion of f as follows:

» Proposition 10. T,f = 3¢ pl5I f(S)Hs.

2.2 Some classical inequalities
The hypercontractive inequality is given in the next lemma.

» Lemma 11 (Hypercontractive inequality). Let f,g : R¥ — R. For 0 < p < /rs < 1,
<f7Tpg> S |f‘1+7" |g|1+s'

The inequality is often used to show the small sets cannot have much weight on low degree
parts. Similarly, we will use a corollary of it to show that Boolean functions that are almost
always the same must have low degree parts that are similar. The corollary is known as
level-k inequality:

» Lemma 12 (Level-k inequality). Let f : RF — {0,1} have mean E[f] = o and let
k< 2In(1/a). Then, |£<H], < (3 n(1/a))" .

A convenient re-formulation is

» Lemma 13. Let A C R* be a set of probability a. Let p : R¥ — R be a polynomial of

degree at most k < 2In(1/a) with |p|, = 1. Then, for xa, the indicator function of A,
e k/2

[Bq [p(2)xa(2)]] < (3¢ In(1/a))™" a.

Proof. Since p is of degree at most k, we have (xa,p) = <X§k7p>. By Cauchy-Schwarz

inequality, <X§k7p> < ‘ Xik’ Ipl, < ‘ x%k‘ . The lemma follows from a level-k inequality
2 2

(Lemma 12) invoked on x 4. <

The Carbery-Wright anti-concentration inequality shows that a low degree polynomial
cannot be concentrated around any point:

» Lemma 14 (Carbery-Wright Anti-concentration [8]). Fort € R and € > 0, for a polynomial
p of degree d, |pla = 1, Prygn [|p(z) —t| < €] < O(d)e/?.

The Gaussian Poincaré inequality upper bounds the variance of a function in terms of its
derivative:

» Lemma 15 (Gaussian Poincaré inequality). Let f : R¥ — R have continuous derivatives.
Then, Varf < E [|Vf|2} .
Klartag and Regev showed that a random subspace samples well any function:

» Lemma 16 (Sampling [29]). Let f : R* — R with |f], < co. Let 0 < e < 1. Let S be a uni-
form subspace of dimension k—1. Then, Prg [|[Es [f] —E[f]| > |fls] <O (exp <fQ ( ek

log(2/e)
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Their formulation referred to functions on spheres, but immediately implies the same for
functions in Gaussian space by averaging over all possible radii. Their formulation referred
to non-negative functions and multiplicative approximation, but immediately extends to
general functions and additive approximation by separately considering the negative and
positive parts of the function.

The next lemma follows from Lemma 16 (in fact, one needs a much weaker version of
Lemma 16):

» Lemma 17. For any constants 0 < 6 < 1 and d > 1, For any subset H of fraction 6 of
(k — 1)-dimensional subspaces in R¥, the distribution induced on d-dimensional subspaces
by picking H € H and S C H, dim(S) = d, is O4,5(1/k)-close in statistical distance to the
uniform distribution over d-dimensional subspaces.

3 Boolean Unique Game Construction

Let C' > 1. Fix an instance of the Subspaces Near-Intersection Problem, given by G = (V, E),
k, {A},, {©c},.. Let § and € be the completeness and soundness errors, respectively, where
d > 0 is sufficiently small and ¢ is a constant, say 1/10. We will construct a Boolean unique
games instance with completeness error O(5/v'k) (where the O(-) hides a small absolute
constant, independent of C') and soundness error 1 — C6/Vk.

The unique game we construct consists of encodings of the labeling for the v € V via
half-spaces.

» Definition 18 (half-space encoding). The half-space encoding of ¢ € RF is the Boolean
function RF — {£1} defined as HS, (z) = sign({c, x)).

For every v € V and x € RF we have a unique game variable corresponding to v,z that
is supposed to be assigned HS, (,,)(z) (The actual construction involves a discretization of RE
up to a very high precision in each coordinate. The precision depends on k and 1/§). We
denote by f, : R¥ — {£1} the actual assignment to the variables that correspond to v.

Next we group together variables in order to enforce certain basic structural properties
on the f,’s in a technique called folding. The properties we consider are ones that half-spaces
have.

Half-spaces are anti-symmetric, i.e., for every x € R¥, HS,(—z) = —HS,(x). While f,
may not necessarily be HS(,), we will enforce anti-symmetry by having only one variable
for every pair of z, —x where x € R¥.

» Definition 19 (anti-symmetry folding). In the unique games construction the functions f,
satisfy fo(—x) = —f,(x) for every x € R¥.

Half-spaces are 0-homogeneous, i.e., for every € R¥ and ¢ > 0 it holds HS,(c-x) = HS,(z).
We enforce 0-homogeneity as follows:

» Definition 20 (0-homogeneity folding). In the unique games construction the functions f,
satisfy fo(cx) = f,(x) for every x € R and ¢ > 0.

For every A such that Ao = 0, for every =,y € R¥, o, 8 € R, we have:
HS,(azA+ fy) = sign({o,azA + fy))

sign(a - (o, zA) + (0, fy))

Sign( : <A07 1.> + <07 ﬂy>)

sign((o, By))

(%
«
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Therefore we enforce:

» Definition 21 (constraints folding). In the unique games construction the functions f,
satisfy f,(axA, + By) = fo(azA, + By) for every z,y,z € R¥, a, 8 € R.

To complete the definition of the unique games instance, we define the equations over the
variables. The equations correspond to two local tests: (1) Noise test on f, for v € V; (2)
Consistency test on f,, f, for (u,v) € E. The equations are specified in Figure 1.

Verifier{ f, }

Folding: We assume that the f,’s are folded as in Definitions 19, 20 and 21.

Set B =1/(10°C?), p = §//Bk. The verifier performs the noise test with probability p;

the consistency test with probability 1 — p:
Noise Test: Pick at random v € V. Pick y,z,2z ~ G* and set &, € RF as follows:
F=(1-B)y+ 28— PPz, 2= (1 - B)y+ /2B — B2. Check f,(%) = f,(2).
Consistency Test: Pick at random e = (u,v) € E. Pick a random Gaussian x € ©}.

Check f,(z) = fu ().

Figure 1 Unique game

The size of the construction is linear in the size of the Subspaces Near-Intersection
instance and a function of (the constants) k and 1/0.

3.1 Completeness

Suppose that there is an assignment ¢ : V — R* as in the completeness case of Subspaces

Near-Intersection. Further, assume that each f, corresponds to a half-space encoding of o (v).

The probability that the noise test rejects is O(y/B3) and it is performed with probability p,
so its total contribution is O(6/v/k). By the completeness of Subspaces Near-Intersection,
with probability 1 — § the consistency test always passes, and with probability § it passes
except with probability 1/v/k. Overall, the probability of rejection is O(6/v/k).

4  Soundness

Assume that {f,}, ., pass the unique tests with probability at least 1 — C§/vk. We will
construct a constant-dimensional Y C R¥ and an assignment o : V — R¥. Each o(v) is a
unit vector such that A,o(v) = 0, and with constant probability over e = (u,v) € Ey, when
one writes ©L =Y + S, for S, orthogonal to Y, it holds that

|Projs, (o(u)) = Projs, (o(v))l, < Oc(6/Vk +1/k),

where the O¢/(+) hides logarithmic factors in vk/d, k, as well as factors that depend on C,
and the deviation is therefore < /3/k.

The plan for the analysis is as follows: Use the noise stability to decode a large low
degree part for almost every vertex v € V. Use concentration to argue consistency between
the restriction of the low degree part to an edge hyperplane and the low degree part of the
restriction to the hyperplane, for most edges. The low degree parts of the restrictions to
the edge hyperplane are close in [y distance for most edges thanks to the consistency test
and hypercontractivity. Obtain from each low degree polynomial a vector by repeatedly
differentiating the polynomial. The differentiation will be in random directions we pick, and

23:11

CVIT 2016



23:12

446
447
448
449
450
451
452
453
454
455

456

457

458

459

460

461
462
463

464

465
466

467

468

469
470
471
472
473
474
475

476

477

478

479

480
481
482
483

484

485

486

Reduction From Non-Unique Games To Boolean Unique Games

we focus on zoom-in’s so we can restrict to hyperplanes that contain the random directions.
We use consistency along edges to argue about consistency of the derivatives and of the
number of differentiations.

For all v € V we have |f,|2 = 1. By the success of the functions f, in the unique game,
the noise test must pass except with probability C4/(v/kp) < C'/B and the consistency test
must pass except with probability C/(vE(1 — p)) < 2C8/vk. We say that v € V is typical
if the noise test rejects with probability at most 100C+/ when v is chosen. In other words,
for a typical v € V, (f,, Ti—fu) > 1 —200C+/B. Note that all v € V are typical except for
at most 0.1 fraction. We say that an edge e = (u,v) € E is typical if both w and v are typical
and the consistency test rejects with probability at most 20C6/vk when e is chosen. At
least 0.7 fraction of the edges are typical.

4.1 Approximation By Low Degree

Our first lemma shows that the low degree part of a noise stable function approximates it:

» Lemma 22 (Noise stable functions have large low degree part). Let f: R - R, |f|, < co.
Let 0 < p<1andd>0. Then, f<43 > (f,T,f) —pd|f\§.

Proof. We can decompose f to its low degree part and its high degree part, f = f<¢ +
7% and then (f,T,f) = (f<4,T,f<%) + (f>4,T,f>%). By Cauchy-Schwarz inequality,
(ST, =) < |f<o|T, <2 < |f=¢|3. Therefore, by Proposition 120 and Parseval identity,
[F298 = (fSL T f =) 2 (F T f) = (0 Tpf 29 > (L. Tof) = p? | fl5- <

Lemma 22 implies that the low degree part of f, approximates f, for a typical v € V:
=43 >1-200Cy/B — (1 — )% In the above we used that |f,|, = 1. We set d = ©(1/8),
so |f=413 > 0.99.

4.2 Consistency of Degree-d Parts

In this section we use the high acceptance probability of the consistency test in order to
show that for most edges (u,v) € E the projections of the barycenters of f,, f, onto ©F are
extremely close to each other. The proof uses the main technical tools we discussed in the
introduction, namely hypercontractivity and concentration.

By hypercontractivity, Boolean functions that are the same except with probability O(9)
have low degree parts that are O(8) apart in 2-norm (note that there is a simple upper bound
relying on Parseval identity alone, but it gives the worse upper bound O(v/3)), as proven in
the following lemma:

» Lemma 23 (Low degree consistency). Let f,g: RF — {£1} be anti-symmetric functions.
Let 0 < p <1 and d < 2In(1/6). Let &6 > 0 be sufficiently small. If f(x) = g(x) with

probability 1 — § over Gaussian x € R, then |fS9 — g=d], <2 (% 1n(2/(5))d/2 J.

Proof. We have |f5d — g§d|2 = |(f — g)§d|2. Let p be a polynomial of degree at most d
and 2-norm 1 that maximizes the correlation with f — g. Then, |(f - g)Sd|2 =(f—g,p).
Since f and g are anti-symmetric, so is f — g. Hence, p is anti-symmetric. Let A C R* be
the set of z with f(x) > g(z). Since f(x) > g(z) iff g(—x) > f(—=z), the probability of A
is 0/2, and (f — g,p) = Es [(2p(2) — 2p(—z))xa(z)] = 4E [p(z)xa(z)]. By Lemma 13, since
d < 21In(1/4) for sufficiently small § > 0, 4E, [p(z)xa(z)] < 4 (%‘fln(Q/é))d/2 (6/2). The
lemma follows by collecting all of the above. <
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Let (u,v) € E be a typical edge. By the consistency test, it holds that Juor () =
fojor (z) for random x € OL except with probability O(6/vk). Thus, by Lemma 23,
|(fu|9é)§d — (fv|@é)§d|2 < O(6/Vk). By Theorem 8, for each v € V, for at least 0.99
fraction of edges e = (u,v) € E, |(fv‘@é)5d - (f;d)|@ei|2 < O(1/k). By the regularity of
the graph, the triangle inequality and a union bound, with probability at least 0.6 over
(u,v) € E, the edge is typical, and

(fuor )= = (FeDior |, + [(foor )= = (f5Nor ],

< O /Vk+1/k). (1)

|(fu§d)\e; - (fvgd)\eL s =

e

4.3 Defining The Assignment

In Section 4.2 we showed that for most edges e = (u,v) € E the degree-d polynomials
fd and f=? are close over ©F. In this section we show how to extract from the degree-d

polynomials unit vectors that satisfy the constraints and their projections onto ©L are close.

We next describe the main ideas behind the construction of unit vectors. Close degree-d
polynomials, like f=¢ and f=% over ©L, imply close degree-1 parts, and the degree-1 parts
correspond to vectors in the linear subspaces associated with w and v. Hence, if the degree-1
parts of the polynomials were known to be of large 2-norm, then one could have assigned each
vertex its normalized linear part. Unfortunately, the degree-1 part of the polynomials can
be 0. The idea is to differentiate the degree-d polynomials sufficiently many times until the
degree-1 part is of sufficiently large 2-norm. The consistency deteriorates with the number of
differentiations, but since the degree d is constant, the number of differentiations is constant
and the deterioration is limited.

To carry through the above plan we differentiate along random directions y1,...,y4_1,
and focus only on hyperplanes ©F that contain Y = span{yi,...,ya_1}, since for those
hyperplanes differentiation and restriction to ©F commute. This is the reason we focus on a
zoom-in of the Subspaces Near-Intersection game. This also introduces a certain asymmetry
in favor of the directions in Y. To eliminate this asymmetry, we focus on random affine shifts
of the space Y. The random choices of Y and the shift would be useful in the analysis, but
eventually we will fix them so they satisfy desired properties.

The assignment o : V — RF for the Subspaces Near-Intersection instance is defined by
the algorithm in Figure 2. Our analysis closely follows the algorithm.

The first lemma upper bounds the degree and lower bounds the norm on D,(,i) from the
algorithm in Figure 2 for 0 <i<d—1:

» Lemma 24 (Norm lemma). For every typical v € V', during the execution of the algorithm
in Figure 2, for every 0 <i<d-—1,

1. For all vy, ...,y;, the function Df,i) s a polynomial of degree at most d — i.

2. By, [E [DS”HZ] <.

3. Eyl,w-vyi |:‘D1(11)

2
} > 0.99 — 7.
2

Proof. We prove that the three items of the lemma hold by induction on 0 < ¢ < d—1. First
consider the case of ¢ = 0 where DSO) = fUSd.

1. f=%is a polynomial of degree at most d.

2. By the anti-symmetry folding, E [fvgd] =0.

3. For a typical v we have |f§d|§ > 0.99.
Assume that the statement holds for ¢ — 1 and let us prove it for 4.
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Global parameters:
For sufficiently small constants 0 < ¢y < ¢; < 1 (depending on the constant in
Lemma 14), pick uniformly at random

ne [CO . 272d10gd’61 . 272dlogd] .

Pick Gaussian vectors yi,...,yq_1 € R¥. Let Y = span{yi,...,ya_1}-
Pick Gaussian vector y € Y.
For every typical v € V we define the assignment o(v) as follows (for other v’s leave o(v)
undefined):
1. Let DS,O) = fvfd and ¢ = 0.
2. Let DY) : Y1 — R be the affine shift D) (z) = DI (y + )

. 2
3. While \(Dgg>=1\2 <

a. i< 1+1. .
b. Let D = 2 D™,
c. Let Dq(f,)y : Y+ — R be the affine shift Df,g(x) = Df,i)(y + z).

4. 4, < i. )
. Let vec, € Y1 be (Dﬂ(zlfz}))ﬂ-
6. o(v) + L

[vecy |y

[&,]

Figure 2 The assignment o : V — R* for the Y-zoom-in of Subspaces Near-Intersection

1. The function DY is a polynomial of degree at most deg(Dl(,i_l)) — 1. The degree

bound therefore follows from the inductive hypothesis.
2. E [Dgi)} is the constant part of D,(,i) = <VDl(,i_1),yi>. Moreover, VDq(,i_l) depends on

Y1,--.,%—1 and is independent of y;. Thus, E [Dl(,i)} = <(D$}"1)):1, y;) is a normal variable

. 2
(DF )=t <

with standard deviation ‘(Df,i_l))zl‘ . By the design of the algorithm,
2 2

112
and hence Ey, .y, , “E {Dq(f)H } <.

3. We have D = <VD1(,i_1),yi>, where VDS depends on yi,...,y;—1 and is inde-
pendent of y;. Thus, for every z € R¥, it holds that Dy (z) is a normal variable with

|

.....

By the Gaussian Poincaré inequality (Lemma 15), for any y1,. .., v,

j , 2 2

E {VDf;z_l)(ﬂU)z} > VarD{7V) = ’Df)@—l)‘ _E [Dqu—l)} _
2

2 2
By the inductive hypothesis, E UDS—U ’2] >0.99—n(i—1) and E [DS‘”} < 7. Hence,
E [(Déi)(x))Q} >0.99 — (i — 1) — 1= 0.99 — 7i. <

By the following proposition and the constraints folding (see Definition 21), whenever
o(v) is defined it satisfies A,o(v) = 0.
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» Proposition 25. Let f: RF — R. If f satisfies a constraints folding, then so do f=* for
any i, any derivative of f, and any scalar multiplication of f.

The next lemma uses Lemma 24 to argue that o(v) is well-defined for most vertices v € V.

» Lemma 26 (Assignment lemma). Let v € V be typical. With probability at least 0.99 over
Y1, - -+ Yd—1 and y, the algorithm in Figure 2 terminates, i, is well-defined, and ’(Dl(,fg))zl ‘j >
7.

Proof. The algorithm terminates and 4, is well-defined iff there exists 0 < i < d —1
such that ‘(Df,%):l‘z > n. Assume on way of contradiction that there is no such i. By
Lemma 24, when the algorithm reaches i = d — 1, the polynomial Dl(,dfl) is of degree 1 and

2 2
Ev,y UD&iiy_l) 2} =Ey1,....yas [ Dq(,d_l)u > 0.9. Since each coordinate of the coefficients

2
is
2

1)

vector VDSZ Disa polynomial of degree at most d in y1, . . ., y4—1 and y, the norm ‘foﬂj

4
a polynomial of degree at most 2d in y1, ..., Y4—1,y. By convexity, Ey,.. v 1.y UDI(,(?y_l) } >
2

2
DD >

97\ 2
(E UD%‘”LD > 0.81. By Carbery-Wright anti-concentration (Lemma 14), | Dy, y L2

7 with probability at least 0.99 over y;,...,yq—1 and y. In this case, the loop in the algorithm
in Figure 2 terminates and i, = d — 1. |

The next lemma argues consistency between D,(f) and Df,i) across most edges e = (u,v) €
E, provided that yy,...,y4_1 € OF (note that the degree d is constant so the large dependence

in d — which we state here explicitly, and later omit in the O(-) notation — is permissible).

» Lemma 27 (Consistency lemma). With probability at least 0.6 over e = (u,v) € E, for
every 0 <1 <d—1,

E H(fo)heﬁL — (D)0

Y1y Yi €OF

| < ©@wy-o6vE+ ),

Proof. By induction over i. For ¢ = 0, the inequality follows from inequality (1): for
at least 0.6 of the edges e = (u,v) € E we have |( ;dfffd)|@ei|2 < O(5/Vk + 1/k).
Assume that the claim holds for ¢ — 1, and let us prove it for i. Let (u,v) € E. We have
DY) —Df)i) = (V(D&i_l) —Df,i_l)), yi), where V(D,(f_l) —Dl(,i_l)) depends on y1,...,y;—1 and
is independent of y;. Thus, for every yi,...,yi—1 and € R*, it holds that (D&i) — Dl(,l))(x)

is a normal variable with standard deviation V(Dg_l) - Dl(,i_l))(x)’ . Thus, by concavity
2

and the inductive hypothesis,

B \/me%L {(Dp_pgz‘))(x)z]] < E \/IEy UV(DS;_D _Di(}i—l))(x)’z]]
< 0@ E [\/E [(DS‘” - D%"‘”)(:c)ﬂJ
< (O(@d)'OO/VE +1/k).

The next lemma is similar to Lemma 27, but applies to the shifted ij)y and D% rather
than to DS’ and DY, Recall that Y = span{y,...,ys_1} and Ey = {ec E|Y CO}}.
For each e € Fy we write ©L =Y + S.. The subspace S, is a uniform hyperplane in Y*.
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» Lemma 28. With probability at least 0.99 over Y and y, with probability at least 0.6 over
e = (u,v) € Ey, for every 0 <i<d—-1, (D,Ei)y)‘si — (Dfﬁ;)wi ’2 <O /VE+1/k).

Proof. By Lemma 27, with probability at least 0.6 over e = (u,v) € E, for every 0 <14 < d—1,

_Vyeyﬁese [(D&%—Dgfl,xx)ﬂ < O@/VE+1/k), )

yCoer

By concavity, with probability at least 0.6 over e = (u,v) € E, for every 0 < i <d — 1,

E |E {\/ZE {(D&fL—vag,)(x)ﬂH < O(6/Vk+1/k). (3)

yCcoLl |yey €S,

By Markov’s inequality, with probability at least 0.6 over e = (u,v) € E, with probability at
least 0.99 over Y C @j‘ and y € Y, we have

|(D)1s. = (D)is. |, < O6/VE+1/m). @

By Lemma 17, the distribution induced on e and Y by first picking e € E out of the set
of fraction 0.6, and then picking Y C ©Z, is close to the distribution that picks Y by picking
Gaussian y1,...,Y4—-1, ¥ = span{yi,...,yi—1}, and then picks e € Ey that belongs to the
set of fraction 0.6. Therefore, with probability 0.99 over Y, y, the above event also holds with
probability 0.6 over e € Ey. <

By Lemmas 26 and 28, there exist y1,...,y4—1 and y, such that with probability at least
0.5 over e = (u,v) € Ey, the following two conditions holds (recall that when one picks
e = (u,v) € Ey uniformly, the distribution over v is uniform over V', and that 0.9 fraction of
the vertices v € V are typical):

, 2
L |0 =
2
2. Forevery 0 <i<d-—1, (Dg,)y)\sg - (Dl(,z,;)‘sé

The second item implies that for every 0 < i < d — 1,

, S O(6/Vk + 1/k).

((Diy)is.)=" = (DE)s) 7 <
O(5/vVk +1/k). The case d = 1 of Theorem 8 implies that for every v € V with probability
at least 0.999 over the edge e = (u,v) € Ey, for every i,

‘((Dq(ﬁ)yhse):l — (D)™ )s.

Applying the same to v € V and taking a union bound and a triangle inequality, with
probability at least 0.49 over (u,v) € Ey, for every i,

, = O(/Vk + 1/k). (5)

(D)5, = (D) s|, = 06/ VE+1/). (6)

u,y v,y

Note that inequality (6) implies consistency between vectors corresponding to u and to v
restricted to the hyperplane of interest. It remains to argue that i,, = i,, with high probability.
As a consequence of inequality (6), with probability at least 0.49 over e = (u,v) € Ey, for
every i,

2

@@y sl < oeEum. 7)

2 ‘

o=,

By sampling (Lemma 16) and union bound, for every u € V, with probability at least 0.999
over e = (u,v) € Ey, for every 1,

u7

o)

- [@ef) < oam, ®)
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A similar bound holds for v. Hence, from inequalities (7) and (8) via a union bound and a
triangle inequality, with probability at least 0.47 over e = (u,v) € Ey, for every i,

2

[~ o] < owrvkm Y

2
By the design of the algorithm in Figure 2, inequality (9) guarantees that i, = i, except
with probability O(d + 1/k). In this case, by inequality (5),

|Projs, (vec,) — Projs, (vee,)| < O(8/Vk+1/k). (10)

The vectors vec, and vec, are normalized to obtain o(u) and o(v), respectively. Hence, by
inequalities (10) and (9), and since ‘(D&ig‘;)):l‘z > (1), with probability at least 0.47 over
e = (u,v) € Ey, |Projs, (o(u)) — Projs,(o(v))| < O(6/VEk + 1/k).

5 Concentration of the restricted Hermite tensors

In this section we prove Theorem 8. Note: In this section we use n to denote the dimension.

5.1 Overview of the proof

We first sketch some of the main steps of the proof. Consider the functional Q(f) =
Eeo |(f‘@¢)§d — (ffd)|@L |2 where O is uniformly distributed in the sphere. It is not hard to
check that Q(f) is a quadratic form in f, which is invariant under compositions of f with
orthogonal transformations.

Here we allude to Schur’s lemma, which states that rotational invariant quadratic forms
on functions on the sphere can be expressed as linear combinations of the Lo norms of
the projections onto eigenspaces of the Laplacian. This means that the maximum of the
quadratic form among functions with a perscribed L, norm must be attained on a function
which only depends on the first coordinate x1.

Our quadratic form, however, is a functional of functions on R™ rather than the sphere;
this issue can be bypassed by considering homogeneous functions and using the concentration
of the Gaussian in a thin spherical shell. Thus the first step of the proof roughly implies
that it is sufficient to consider functions of the form f(z1,...,z,) = g(x1).

By applying rotations around the first vector of the standard basis, e;, it is not hard to
see that when f is of the above form, the quantity 6 — ’(fng.)Sd - (fgd)lgj_ ‘z only depends
on 61 := (f,e1). By concentration of measure, this angle is of the order 1/4/n. The technical
bulk of the proof is to show that the above expression behaves like 87 for small ;.

5.2 Preliminaries

Identify a tensor T of degree £ with a multilinear polynomial T'[z!, ..., 2] = 3
~fo. For any z € R, denote by H*)(x), the k-th Hermite tensor associated with z, defined
by H®) (z) := (=1)*¢(x) " (VF¢(x)), where ¢(z) = exp(—|z|?/2). For example, we have
HW(z) = o, HY(@)y = (v,y), HO(2) = 2®* = 1L,, HW(2)ly,z] = (z,y)(z,2) -
(y,z>. and H(g)(x)[y,z,w] = <x,y><x,z><az,w) - <$’y><sz> - <$’Z><va> - (x,w)(y,z),
(see [31, p. 157]). For two tensors T,U of degree ¢, define the Hilbert-Schmidt in-
ner product by (T,U)pgs = Z(il,...,u)e[n]f Ti,....i,Uiy .., and the corresponding norm
T3¢ = (T, T)us. We will allow ourselves to abbreviate the notation and write ||T7|
and (T, U) whenever this causes no confusion. For a function f, we define its k-barycenter
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by bi(f) == [ H® x)dy(x) and also denote ay(f)? := ku(f)HiIS For a tensor T of
degree E and an orthogonal projection P, define PT[z1,...,z¢] := T[Pz1, ..., Pxy]. It is not
hard to verify that for f : R” — R and for § € S*~!, one has

. / H® () f(z)dy(z) = / H®) () fo(w)dy(x) (11)

where fo(z) = [0 f(Pprx + t0)dy(t) is the marginal of f on 6+

For a umt vector 6 € S"71, let vp be the Gaussian measure restricted to {(z,6) = 0},
in other words, dvy(x) = me*‘zﬁpl(%m:od%nq(as). For a function f : R® — R
define, by slight abuse of notation, by (f;0) = [ H*) (x)f(x)dve. By the orthogonality of
Hermite polynomials, we have for all f=%(x) = %(H(k)(a:),bk(f», Va € R™. Likewise,
for all § € S*—! (f‘@L): = <H(k)( ), bk(f 6)), Va € 6. Therefore, by Parseval’s
identity, we have |(f“9¢) —(f7")jex |2 211 Pas (be(f50) — b (f))| s Thus, for a function
fiR" 5 R, we define Q(f) = Qu(f) = ool Por (bi(f30) — bi(f))]|% . Theorem 8 will
follow immediately from the next result.

» Theorem 29. Let f: R™ — R be 0-homogeneous. Egq||bx(f;0) — bi(f))||3s = Ox(1/n?).

Proof of Theorem 8. Apply Theorem 29 for and k& < d and use Chebyshev’s inequality and
a union bound. |

5.3 A reduction to functions depending on one variable

The proof of the above theorem relies on the following lemma, which essentially reduces the
problem to the case that f is a low-degree polynomial which only depends on one variable.
» Lemma 30. For any 0-homogeneous function f with || f| .,y = 1, there is a polynomial
h:R—R of degree at most 8k such that, defining f(x) = h (uﬁil\/ﬁ)’ we have ||fHL2(’y) =1
and |Qr(f) — ‘ =0(1/n?).

The main step towards the lemma is the following proposition:

» Proposition 31. Assuming that f is 0-homogeneous, There exists a polynomial ¢ on R, of
degree at most 8k, such that Q(f) = Jsu-1 Jon—1r f(2)f(W)a((x,y))dy(x)dy(y) + O(1/n?).

Before we prove Proposition 31, we need two additional propositions, whose proofs are
deferred to the end of this section.

» Proposition 32. There exist constants Cy,,C! such that C,,C! < C for some universal
constant C > 0, and such that the following holds. Let x,y € R™ and let 6 be uniformly

distributed in S"7'. Then, for every continuous g : S"~' — R, lim._,o ZE|1{|(z,0)| <

g, [y, 0)] < e}g(h) } —Eg(01), where 0y is uniform in Stnaztnyt.
\xllyl\/ o1 i

Furthermore, lim._,o 1E [1{|(z,0)| < }g(@)} = %9(92), where 0y is uniform in S"7L Nzt

» Proposition 33. For every k,n € N there exist polynomials p1,p2, ps, ps in 3 variables, of
degree at most 3k, with coefficients bounded by Oy, (n*), such that the following holds. For each
x,y € R™, let 0, be uniform in S""'Nat Ny’ and let O3 be uniform in S*~ ' Nat. Then we
have the representations IE(P@%H(k)(aj), Pys H® (y)) = pi(|z], |y, p(z,9)) + /1 — p(z,y)? -

pa(|z], |yl, p(w,y)) and B(Pyy H® (z), Pyr H®) (y)) = ps(|z],|yl, p(z,v)) + /1= p(x,y)?
pallal,lyl, ple,y) where p(a,y) = (. 14 )-



693

694

695

696

697

698

699

700
701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

7

N}
S

7
728

[N
i1

E. Eldan and D. Moshkovitz

Proof of Proposition 31. By an approximation argument, we may assume that f is con-
tinuous. We then have, 8(f;6) = \/ﬂ [ 1{[{z,0)| < e}H® (z)f(x)dy. Therefore, we
have the following expression for Q(f):

\/ﬂ

EONU

1{[(z,0)| < e} H® () f (x)d() — P / HO (2) f(2)dr ()

lim ng_
e—0

i (ng [“ I { <*’;’9>|' i} Py HO) (), Py HO () f(2)  (5)dr (2, 9)

e—0 2e2
2 [ 110,01 < 2By HO @), Py HO ) @) () )
[P O @). P HO ) @) 1) )

+
_ / ha(2,y) — 2ha(,y) + ha(z, ) £(@)F@)dry (),

where
hy(z,y) = lime 0 Epo 5z 2e2 { i } PHLH )s Py H® (Y)),
ha(z,y) = lim. 0 By Y251 {|(z,0)| < €} <P9LH<’€>< ), Py H®) (y)),
hs(x,y) =E9~0<P9LH(]€)( ), Py H®) (y)).

By Proposition 32, we have
Ch

lallyly/1 = (& )

for some constant C,, depending only on the dimension, and which is smaller than a universal
constant C' > 0. From this point on, the expression Cy will denote a constant that depends
only on k, whose value may vary between different instances.

By Proposition 33 there are polynomials p1,ps of degree at most 3k, with coefficients

bounded by Cyn*, such that hi(z,y) = — <p1(p(z’y)’|m’|y|) + pa(p(z,y), |z, y|)) where

llly] Vi-p(z.y)?
— /[ x Y
plz.y) = <\w|’ \y|>'

Since the coefficients of p; are bounded by Cyn*, we have py (p(x,y), |7/, |y]) < Crn®(|z| +
1)*(Jy| + 1)*. By taking the Taylor expansion of the function s — \/% of order 2k + 4,
we conclude that there exists a polynomial ¢(-) of degree 4k + 4 such that h(x,y) =

a(p(z,y))p1(p(z,y), \Tg\g\l@ll)-wz(ﬂ(l,y)vll\»\yl)) 1+ Oy (nk(l + |x|) (1+ |y|) p(z,y )4k+4). By Cauchy-

Schwartz and since E, . |z|?* < Cpn® and E, o~y [lp(z,y)|*] < Cen=*2, we have n* [(|z| +
DF(lyl + 1D*p(z,y)** f(2) f(y)dy(z,y) < 55Ck|IflI3. The last two displays imply that
there exists a polynomial ¢; of degree at most 8k so that [ hi(z,y)f(x)f(y)dy(z,y) =

[ ar(p(z, ), ||, ly)dry(z, y) + O (Hfllz
and hd, we conclude that there exists a polynomial p of degree at most 8k such that

hi (l‘, y) = E01~U(S"*1ﬁmLﬁyL)<P9f H(k)(x)v PGf-H(k) (y)>

) . Following a similar argument with the terms hq
= [p(p(z,y),|z|, |y]) f(z)f(y)dy(z,y) + Ok (”flb). Since f is 0-homogeneous, by

polar integration one learns that for all ky, ks, k3, there exist constants Ckl,k%k:;,C’,’chk%kS
such that [ [(z,y)*|z|*2|y|* f(z) f(y)dy(z)dvy(y) can be written as

= Cusens [ [ (52 @sm@n0

= Gl " J@) ooy,
Lo 1<|m| |y|>
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We conclude that there exists a polynomial ¢(-) of degree at most 8k such that Qx(f) =

Jon-rxonr a (B 1)) F@)f W)do(@)do(y) + Ox(1/n?). -

Proof of Lemma 30. For a function h € Ly(S"™1), define by Projg, h the orthogonal pro-
jection of h into the subspace spanned by spherical harmonics of degree k. An application
of Schur’s lemma (or the Funk-Hecke formula) ensures that for every polynomial g de-
gree { there exist constant oy, ..., such that [, 1 [o.—i f(2)f(y)g((z,y))dy(x)dy(y) =

> i<e @il Projg, f||L2 gn-1) Thus, by Proposition 31 we learn that there are some ()8, such
that
Q)= Y aillProjs, flI7, 1) + Ox(1/n%). (12)

0<i<8k

(in the last formula, by slight abuse of notation, on the right hand side the function f
should be understood as its restriction to the sphere). Now, for any j € N there exists a
function h; depending only on x; such that ||Projgs, h; H%Q(Sn,l) = 14i—j}. Therefore, defining

f(x) = Ej hj (%) HProjSif”LQ(S"*l)v we have ||PrOJSZf| Lo(Sn—1) = HPI‘OjSifNHLﬂS"*l) for

all i, and therefore by (12), we have |Q(f) — Q(f)| = O(1/n?). Moreover, ||f||L,¢) =
IlfllLssn-1) = | fll,sn—1). This completes the proof. <

5.4 Finishing the proof

Let f : R — R be a function which has the form f(z1,...,2,) = h a:l‘lf‘ for some

polynomial h : R — R of degree at most 8% and with [|f[/z,(,) = 1. In light of Lemma 30,
Theorem 29 will be concluded by showing that

Q(f) = Ox(1/n?). (13)

Let 6 be uniform in S”~'. We first show that, by symmetry, we can essentially assume in our
calculations that 6 € span{e;,es}. Let us write §; = (0, e1) and define 0:=e10,+e9y/1 — 62.
By symmetry of the function f to orthogonal transformations which keep e; fixed, we have
Q(f) = Eo, | Ps. (bi(f;0) — b (f)) |35~ In order to understand the role of the projection onto
the subspace OL define an orthonormal basis to 61 as follows: Set el =/1—02e; — bres
and ¢} = ;41 for i = 2,...,n — 1, so that (¢})"=' form an orthonormal basis for §-. We have,

1P5. (i (£3.0) = b () Irs = > (b F30) €l r €l ) = BR(F)lel, el ]) - (14)

(i1,eevin) E[n—1]%
Fix I = (i1, ...,i¢) € [n — 1]°. There exists a function J; and «(I) € [k] such that
H® ()[e], ... e5,] = Ha(ry (2, 1)) J1 (Proj (2)), (15)

where L = span(e), ...,el,_;). Let T'y ~ N/(0, 1) 'y ~ N(0,1),T'3 ~ N(0,Proj; ) be independ-

ent. In this case, note that e{I'y + 0Ty + Fg = N( n)- We therefore have by equation (15)
and by the definition of by (f;6),

V1—62T,
Hony(T'1)Jr(T3)h ( (1“%1+ |1“13|2)/n>] ; (16)

or(f:0)ler, - v€i,] = E
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and on the other hand,

be(f)le) sl ] = E

Ham(n)JI(Fg)h( V1 6T+ 6T )] (17)

V(I + 13+ T52)/n

The assumption ||f|l2 = 1 amounts to

I, 1
" (ww o +r§>/n> - .

The next lemma follows from a direct calculation.

» Lemma 34. Assume that n is large enough. Let T'1,Ts ~ N(0,1) and T's ~ N(0,1,_2) be
independent. Let 7 be the density of the random varianble ——=2o— and let v be the

V(IT324T34T3)/n

i< 38 <2, Vse[-not n0l].

Equation (18) and Lemma 34 imply that ||h]|z,,) <2 and

standard Gaussian density. Then

Fl ?
h (JW) <2 (19)

In what follows, we denote by Cy a constant depending only on k whose value may change
between different appearances. Since Hy(x) = (Hy_1(x), for every ¢ there exists a constant
Cy such that any Hermite polynomial H, with ¢ < k satisfies |Hp(z(1 — s)) — Hy(x)| <
s|@|0maxy <z [He—1(y)| < Crs(2+ |z|)*, Vs € (0,1). Moreover since h is a polynomial of
degree at most 8k with ||h|z,(,) < 2, we conclude that

|h(z(1 —s)) — h(z)| < Crs(2+|2|)%, Vs € (0,1). (20)

So we can write bk(f;é)[egl,...,e;k] =E |:HQ<F1>J](F3>h <\/|FF31|W)] + Tresleq, s €, ]

where, relying on (15) and on (16),

H®(T90 +T1e, +T3) [ A L S B V1- 0l ))]
e )< (\/rﬁ/n) <<P%+|r3|2>/n

Tres =K

By Parseval’s inequality, we have

2 I V1= 63Ty 2
Treslla =E M = | ="
17,2 ( ( W) ( (F%+IF3|2)/H>>

2

\/1—951"1 I
(20) F2 Tal2 - Ta|2
S Ck,E \/ 1+‘ 3‘1—‘1 \/‘ 3| (2_’_‘1—\1‘)8]@

VITs]?
- 2

1-0?2

=GE | | | === 1|2+ T:)*
A/ ‘F31|2 +1

2 2
< GiE ((9% + T31|2> (2+ |F1|)8’“)

1
Sck<9411+n2)
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s In a similar manner, (20) and (17) imply that by (f)[ef,, ..., e}, ] = E {H ) (T1)Jr(T'3)h (”1\_/‘7?7#)]4—

wo Tloles .. ef ] with [T/, [13 < Cr (01 + 7). Note, however, that since H, sy is an eigen-

res 217 ) zk =
1 —0°T, +6,T
Ha([)(rl)h< I 2>‘F3H

0 vector of the heat operator, we have
ﬂﬂ + 91F2
791 E | Hor)(T'1)J1(I's)h =
@) IT3[2/n ITs2/n
T
702 = (1-067)*D°E [Ha(I)(Fl)JI(F3)h (1” :

793 \/|F3|2/n

E | J;(I'3)E

/

e We conclude that by (f; )] € s i ] — bi(f)lef,, ., e}, ] equals:

; Tlealelys el ]+ (1= (1= 03202 E

795 Tres[eilw ° zk] resl€iy»

796

Iy
Hory(T1)J1(T3)h (\/W)] ;

o Now, by Parseval,

2\« 2 r
- 3 (1 (1 6?) “)) E [Ha(,)(rl)Jl(r?,)h (\/m)

I:(il ,,,,, ik)G[’nfl]k

2
r (19)
< K*01E h<1> < o1,

2

VI3[ /n

s Combining the last two displays with equation (14), we finally attain

800

~ 1
o PG (£3) ~ s < €O+ AT I + ATl < Cu (014 ).

803

sos  Since EOF = O(1/n?), taking expectation over @ establishes (13), and completes the proof of
w5 Theorem 29.

« 5.5 Loose ends

sor  Proof of Proposition 32. Denote by o, the unique rotationally-invariant measure on the unit
s sphere in R™. A standard calculation (see [15, Equation (24)]) shows that the density of an
s (-dimensional marginal of o, has the form 1, ¢(z) = ¥ ¢(|z|) = Tpe (1 — |ac\2)niT[72 |z] <1
s for a constant I'y, ¢. By continuity, lim._,¢ %]El{|<m, 0)| < e} =lim._o %El {|(x/|x\ 0] < M } =

811 |72\F”71' By the continuity of g,

1 1 Proj,.6
1 < g1 < Proj,.0
w I B0 < <o(0)] = i 2B |10 < e (o))
a1z and the first part of the proposition follows by symmetry to revolution about x. Now, for
s the second part, for p € [0,1] denote V' (p) = Vol ({(x,y) sz < 1, |pr 4+ /1 = pPyl < 1}) )

a5 the volume of the rhombus with angle arcsin(p) and height 2. A calculation shows that
as for all p < 1/2, V(p) =

. So we have by continuity the following expression for

—p2
817 limgﬁ() [ ( )1{|<1‘ 0 ‘ |< >| < 8}]
PI‘OJ 1A ie
1 = lim Ny 1{(3.0)] < 50| <
" e—0 |x\|y\52 [ (|PIOJILmyl9|> {{(Z,0)| <&, |(9,0)] < 6}:|

n2V(<£L’,y>) |: ( PrOJxLﬂyla >:|
810 = Elg . .
820 |$Hy| |PrOJ$LmyL9|
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The proposition follows. <

Proof of Proposition 33. Both expressions are invariant to orthogonal transformations ap-
plied to both z,y, and are therefore functions of (x,y), |z| and |y|. By applying a rotation,
assume that

x € span(ey), y € span(ey,ea), x1 >0, ya >0. (21)
Evidently, for any fixed @ and indices iy, ..., € [n]¥, the expression
Por H®) (z)]es,, ... e5, [Por H® (y)[es, , ...e5,]

is a polynomial of degree at most k in x1,y1,y2 with coeflicients depending only on k. Since
the distribution of 61, 6> does not depend on z,y given the above assumption, we have that
restricted to (21), the two expressions E<P9i2H(k) (x), P9i2H(k)(y)>HS, are polynomials of
degree at most k in 1, y;, ye with coefficients bounded by Oy (n*). Note that under (21),
we have z1 = |z|, y1 = p(z,9)|yl, y2 = /1 — p(z,y)?|y|. Thus, we can express the above
expressions as polynomials of degree at most 2k in |z|, |y|, p(z,y) and /1 — p(x,y)? as long
as (21) holds. Since the above expressions are invariant under rotations, these forms will
hold true in general. This completes the proof. <
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A Integrality Gap for Subspaces Near-Intersection

In this section we sketch an integrality gap instance for the semidefinite program that
minimizes Eyv)er [|[Projos (0(u)) — Projos(a(v))[3]. Consider the following graph G =
(V, E): its vertices correspond to all unit vectors v € R¥ where coordinates are taken up to
sufficiently large precision with respect to § > 0. The subspace associated with the vertex is
the one that is spanned by v. For the vertex corresponding to vector v there is an edge that
touches it for every unit vector ® € R* (up to the aforementioned precision) and it connects
it to a vertex associated with a random vector u € R* such that |U|@L — U‘@L|2 ~ Vo
(the approximation reflects the precision error). Note that this instance of Subspaces Near-
Intersection has a vector solution given by the unit vector associate with every vertex, and it
achieves value approximately § by construction. Nevertheless, there is no feasible assignment
oV — RF where |Projes(o(u)) — Proje.(o(v))2 is typically 0.001v/6, simply because
only the prescribed unit vector is in the subspace of each vertex.
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