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We reduce the problem of proving a “Boolean Unique Games Conjecture” (with gap 1 − δ vs. 1 − Cδ,8

for any C > 1, and sufficiently small δ > 0) to the problem of proving a PCP Theorem for a certain9

non-unique game. In a previous work, Khot and Moshkovitz suggested an inefficient candidate10

reduction (i.e., without a proof of soundness). The current work is the first to provide an efficient11

reduction along with a proof of soundness. The non-unique game we reduce from is similar to12

non-unique games for which PCP theorems are known.13

Our proof relies on a new concentration theorem for functions in Gaussian space that are14

restricted to a random hyperplane. We bound the typical Euclidean distance between the low degree15

part of the restriction of the function to the hyperplane and the restriction to the hyperplane of the16

low degree part of the function.17
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1 Introduction29

1.1 The Unique Games Conjecture30

The Unique Games Conjecture was introduced by Khot [20] (see also the survey [21]) in31

order to prove optimal inapproximability results that eluded existing techniques.32

▶ Definition 1 (Unique Game). The input of a unique game consists of a regular graph33

G = (V,E), an alphabet Σ of size k, and permutations πe : Σ→ Σ for the edges e = (u, v) ∈ E.34

The task is to label each vertex with a symbol σ(v) ∈ Σ, as to maximize the fraction of edges35

e = (u, v) ∈ E that are satisfied, i.e., πe(σ(u)) = σ(v).36

The following two prover game describes a unique game instance: a verifier interacts with37

two all-powerful provers. The verifier picks uniformly an edge e = (u, v) ∈ E; sends u to one38

prover and sends v to the other prover. Each prover is supposed to respond with a label39

from Σ. The verifier accepts if the two received labels σ(u), σ(v) satisfy πe(σ(u)) = σ(v).40

Note that for every response of one prover in the game, there is a unique response of the41

other prover that is acceptable to the verifier. Hence, this two prover game is called a unique42
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23:2 Reduction From Non-Unique Games To Boolean Unique Games

game. The value of the game is the probability that the verifier accepts when the provers43

play optimally.44

The Unique Games Conjecture says that it is NP-hard to distinguish unique games of45

value close1 to 1 from unique games of value close to 0:46

▶ Conjecture 2 (Unique Games Conjecture). For every ε, δ > 0, there exists k = k(ε, δ),47

such that it is NP-hard, given a unique game instance with alphabet of size k, to distinguish48

between the case where at least 1− δ fraction of the edges are satisfied and the case where at49

most ε fraction of the edges are satisfied.50

We refer to the problem of distinguishing instances where at least 1− δ fraction of the edges51

can be satisfied and instances where at most ε fraction of the edges can be satisfied as 1− δ52

vs. ε unique games.53

The Unique Games Conjecture is known to imply optimal NP-hardness of approximation54

for problems like Max-Cut [22] and Vertex-Cover [28] that eluded optimal inapproxim-55

ability results via existing techniques [18, 9]. Moreover, under the Unique Games Conjecture56

one can prove inapproximability for wide families of approximation problems. Most notably,57

basic semidefinite programming (SDP)-based algorithms are optimal for all local constraint58

satisfaction problems [37].59

There are efficient algorithms for unique games in four cases: (i) Sufficiently small60

alphabet k ≤ exp(1/δ) [20, 10]; (ii) Sufficiently small δ = O(1/ logn) where n is the size of61

the graph [41, 17, 10, 11]; (iii) Large run-time 2npoly(δ) [1]; (iv) Random-like structure of62

G [2, 30].63

There is an NP-hardness result for unique games for δ = 1/2 and any ε > 0 as follows64

from the recently proved 2-to-2 Theorem [24, 13, 12, 6, 23, 25]. There is also a hardness65

result for any δ > 0 and ε = 1− 2δ [19, 25] that holds in the Boolean case k = 2.66

The Boolean case k = 2 is the first interesting case of unique games, and it captures67

problems like Max-Cut and 2Lin(2). The assignments to the variables are ±1, and each68

edge either requires its two endpoints to have the same assignment or different assignment.69

It is conjectureectured (and, indeed, follows from the Unique Games Conjecture [22]) that70

the best algorithm for Boolean unique games is the Goemans-Williamson SDP-based al-71

gorithm [16] that can distinguish value 1 − δ from value ε = 1 − Θ(
√
δ). We focus on a72

weaker conjectureecture:73

▶ Conjecture 3 (Boolean Unique Games Conjecture). For every C ≥ 1, for sufficiently small74

δ > 0, it is NP-hard to distinguish between unique games with k = 2 where 1− δ fraction of75

the edges can be satisfied, and ones where only 1− Cδ fraction of the edges can be satisfied.76

The Unique Games Conjecture can be thought of as an amplified version of Conjecture 3,77

with the soundness error close to 0 rather than close to 1 and the alphabet size appropriately78

increased. It is open whether the Unique Games Conjecture follows from Conjecture 3. There79

were past attempts to prove this implication via a “strong parallel repetition”, but those80

attempts uncovered an obstacle [39, 5].81

1.2 This Work82

In a previous work Khot and Moshkovitz [27] suggested a candidate reduction for proving83

hardness of 1 − δ vs. 1 − Cδ Boolean unique games, however they could not prove the84

1 For unique games there is an efficient algorithm to distinguish games of value exactly 1 from games of
value smaller than 1. Hence, it is necessary to focus on games of value close to 1 rather than 1.
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soundness of the reduction. In this work we define a problem, Subspaces Near-Intersection,85

and show a provably sound reduction from Subspaces Near-Intersection to 1− δ vs. 1− Cδ86

Boolean unique games. Importantly, the NP-hardness of Subspaces Near-Intersection – which87

we conjectureecture but do not prove – is in the same spirit of known PCP Theorems, and88

resembles in many ways the 2-to-2 Theorem.89

▶ Theorem 4 (Main Theorem). Assume the Subspaces Near-Intersection Conjecture (Conjec-90

ture 7 in the sequel). For any C ≥ 1, for any sufficiently small δ > 0, distinguishing 1− δ91

vs. 1 − Cδ Boolean unique games is NP-hard. In fact, if the Subspaces Near-Intersection92

problem requires time T , then distinguishing 1− δ vs. 1− Cδ Boolean unique games requires93

time Ω(T ).94

Our reduction has the added benefit of being highly efficient (linear-sized). In contrast, the95

reduction in [27] had an exponential blowup, as it was only meant to rule out polynomial time96

algorithms for unique games under plausible assumptions on exponential hardness. Like for97

the 2-to-2 problem, one would expect a reduction from Sat to Subspaces Near-Intersection98

to map size-n instances of Sat to size nc(δ) instances of Subspaces Near-Intersection, where99

δ is the completeness error in Subspaces Near-Intersection and c(δ) ≥ 1/δ is a function of δ.100

Subspaces Near-Intersection is discussed in the next section. The main ideas of the proof101

of Theorem 4 are discussed in Section 1.4. A key lemma is a new concentration theorem for102

the restriction of a function in Gaussian space to a random hyperplane. The lemma bounds103

the Euclidean distance between the degree-d part of the restriction and the restriction of the104

degree-d part. The formal statement and more details appear in Section 1.5.105

1.3 Subspaces Near-Intersection Conjecture106

First we discuss existing PCP theorems (projection games), and a projection game based on107

3Lin(R), then we define the new conjectureecture.108

1.3.1 Projection Games109

Existing optimal hardness of approximation results follow from the proven NP-hardness110

of approximating projection games [4, 3, 38, 32]. In (the symmetric version of) projection111

games, the verifier tests the answer of each prover separately in a way that depends solely112

on the question to the prover, and then checks equality between parts of the two answers113

(the projections). For instance, given a Sat instance the verifier may ask each prover for the114

assignment to a subset of the variables. Each subset spans clauses and the verifier checks115

that those clauses are satisfied (a separate test for each prover that depends only on the116

question to the prover). The two subsets intersect, and the verifier checks that the provers117

agree on the assignments to the variables in the intersection (a comparison on parts of the118

answer). Formally:119

▶ Definition 5 (Projection Game). The input of a projection game consists of a bi-regular120

graph G = (X,Y,E) whose X-degree is denoted q, an alphabet Σ and sets Lx ⊆ Σq for121

every vertex x ∈ X. The task is to label each vertex x ∈ X with a symbol σ(x) ∈ Lx, as to122

maximize the probability that, when one picks e = (x, y), (x′, y) ∈ E, it holds σ(x)y = σ(x′)y.123

Sometimes one describes the game over the graph (X, {(x, x′)}).124

It is known that it is NP-hard to distinguish projection games of value 1 from projection125

games of value close to 0 [4, 3, 38, 32], and moreover that it requires time 2n1−o(1) assuming126

CVIT 2016
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the widely believed Exponential Time Hypothesis2 as follows from an almost-linear sized127

reduction from Sat to projection games [32].128

2-to-2 games are projection games where given σ(x)y ∈ Σ there are only two possibilities129

for σ(x) ∈ Lx ⊆ Σq. It is known that it is NP-hard to distinguish 2-to-2 games of value close130

to 1 from 2-to-2 games of value close to 0 [24, 13, 12, 6, 23, 25]. However, 2-to-2 games are131

easier than general projection games, since they have algorithms that run in time 2npoly(δ) [1].132

Appropriately, the known NP-hardness reduction to 2-to-2 games maps size n inputs of Sat133

to size nc(δ) 2-to-2 games for a function c(δ) ≥ 1/δ.134

1.3.2 3Lin(R) Projection Game135

Subspaces Near-Intersection is a proxy for the following projection game based on the136

Khot-Moshkovitz [26] robust real 3Lin: The verifier picks uniformly at random 100k real137

3Lin equations c1, . . . , c100k and two sets S1, S2 of k variables among their variables, where138

|S1 ∩ S2| = k− 1. Note that any subset of the linear equations induced on S1 or on S2 forms139

a linear subspace of Rk. The verifier sends S1 to one prover, and receives a unit vector140

that represents an assignment to S1’s variables. The unit vector must satisfy a random141

linear constraint on S1. The verifier sends S2 to the other prover, and receives a unit vector142

that represents an assignment to S2’s variables. The vector must satisfy a random linear143

constraint on S2. The verifier projects each of the vectors on the k − 1 coordinates that144

correspond to the intersection S1 ∩ S2, and measures the Euclidean distance between the145

projections. Suppose that there exists a prover strategy where the projections are identical146

with probability 1− δ. The task is to efficiently compute a prover strategy that minimizes147

the average Euclidean distance between the projections.148

Simple approximation algorithms for this problem guarantee distances O(
√
δ/k) and149

O(1/k):150

Basic semidefinite programming achieves square distance δ/k, since in the completeness151

case one achieves deviation 0 with probability 1− δ and deviation 1/
√
k with probability152

δ. As a result, this algorithm can efficiently guarantee distance O(
√
δ/k).153

Correlated sampling is the strategy in which the provers guess a clause in S1 ∩ S2, satisfy154

it (with a norm 1 assignment) and assign all other coordinates 0. It achieves distance 1155

with probability3 1/k, and deviation 0 with the remaining probability.156

Hence, the question is whether one can efficiently compute a prover strategy where the157

average distance between the projections is, say, 0.0001 ·min
{√

δ/k, 1/k
}

.158

Subspaces Near-Intersection is closely related to this projection game: there one compares159

the vectors on their projection to a generic hyperplane in Rk, as opposed to an axis-parallel160

hyperplane.161

1.3.3 Subspaces Near-Intersection162

The Subspaces Near-Intersection game is a projection game that is defined over the reals4.163

Each vertex is associated with a linear subspace in Rk, and a labeling to the vertex is a unit164

2 The Exponential Time Hypothesis postulates that Sat requires time 2Ω(n) on inputs of size n.
3 Note that the error probability of correlated sampling can be made C/k if one considers a projection

onto a subspace of dimension k − C instead of k − 1.
4 The intention is to consider real numbers up to a finite precision, so the errors introduced by the finite

precision are much smaller than any other quantity involved. For the sake of clarity in exposition we do
not explicitly address precision errors.
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vector that satisfies the constraints. Each edge is associated with a hyperplane in Rk. The165

vectors on the endpoints of the edge should have the same restriction to the hyperplane of166

the edge.167

▶ Definition 6 (Subspaces Near-Intersection). The input is a regular graph G = (V,E), k × k168

matrices Av with entries in [−1, 1] for the vertices v ∈ V , and unit vectors Θe ∈ Rk for the169

edges. We assume that, per vertex v ∈ V , when one picks a uniform edge e = (u, v) ∈ E170

that touches v, the vector Θe is uniform. The task is to label each vertex with a unit vector171

σ(v) ∈ Rk such that Avσ(v) = 0, as to maximize the number of edges e = (u, v) ∈ E with172

ProjΘ⊥
e

(σ(u)) = ProjΘ⊥
e

(σ(v)) (“satisfied edges”). We say that the edge is α-satisfied if173

|ProjΘ⊥
e

(σ(u))− ProjΘ⊥
e

(σ(v))|2 ≤ α.174

As before, in the case that there exists an assignment where the distance between the175

projections is 0 with probability 1−δ and 1/
√
k with probability δ, a semidefinite programming176

algorithm that minimizes the square distance between the projections, would lead to distance177 √
δ/k between the projections. There is a natural matching semidefinite programming178

integrality gap for Subspaces Near-Intersection described in Appendix A. The correlated179

sampling algorithm we described for the 3Lin(R) projection game in Sub-section 1.3.2 no180

longer applies.181

There is an analogy between the games considered in the recent proof of the 2-to-2182

Theorem and the Subspaces Near-Intersection game: in both games for every edge the label183

of one endpoint does not uniquely determine the label of the other endpoint, but rather184

nearly determines it, leaving out one “degree of freedom”. In the 2-to-2 games of [24, 13, 25],185

labels are vectors over the binary finite field, and one degree of freedom means that there are186

two possibilities for the answer of the other prover. Here labels are real vectors and one of187

their “coordinates” remains undetermined.188

For technical reasons, and similarly to the proof of the 2-to-2 Theorem, we will define a189

slight strengthening using zoom-ins. For a linear subspace Y ⊆ Rk we define the Y -zoom-in190

Subspaces Near-Intersection game as follows: Focus on edges e ∈ E where Y ⊆ Θ⊥
e , i.e.,191

one can write Θ⊥
e = Y + Se, where Se is a hyperplane in Y ⊥. An edge is satisfied if192

ProjSe
(σ(u)) = ProjSe

(σ(v)) and is α-satisfied if |ProjSe
(σ(u))− ProjSe

(σ(v))|2 ≤ α.193

▶ Conjecture 7 (Subspaces Near-Intersection Conjecture). There exists a global constant194

0 < α < 1, such that for any ε, δ > 0, r ∈ N, there exists k ≥ 1 such that
√
δ/k ≫ 1/k,195

and the following is NP-hard: The input is an instance of the Subspaces Near-Intersection196

problem. The task is to distinguish between the cases:197

Completeness: There exists a labeling σ : V → Rk that satisfies5 at least 1− δ fraction of198

the edges e = (u, v) ∈ E. The remaining edges are O(1/
√
k)-far from satisfied.199

Soundness: For any r-dimensional Y ⊆ Rk, for any labeling σ : V → Rk, the probability200

over the choice of e = (u, v) in the Y -zoom-in, that e is α
√
δ/k-satisfied is at most ε.201

1.4 Main Ideas202

This work builds on an idea suggested by Khot and Moshkovitz [27] for proving hardness of203

unique games. Like6 [27] we replace the commonly used long code and Hadamard code by204

5 Near satisfaction suffices; see Section 1.6.
6 The candidate reduction in [27] had a variation on half-space encoding, namely, interval(⟨a, x⟩), where

interval changes sign as one crosses any integer point, not just 0. Crucially, we use half-spaces in the
current paper.

CVIT 2016



23:6 Reduction From Non-Unique Games To Boolean Unique Games

an encoding by half-spaces. We first explain the half-space idea, and then describe our new205

ideas in using and analyzing half-space encodings.206

The half-space defined by a ∈ Rk is ha : Rk → {±1}, where ha(x) = sign(⟨a, x⟩). The207

half-space encoding of a is the truth-table of ha where we enumerate over all x ∈ Rk up to a208

precision that makes the rounding error sufficiently smaller than any of the other quantities209

involved.210

Half-space encoding is similar in structure to the Hadamard encoding, where a vector211

a ∈ {0, 1}k is encoded as the linear function la(x) = ⟨a, x⟩ for all x ∈ {0, 1}k, and arithmetic212

is done over the finite field {0, 1}. This similarity gains us two benefits that the Hadamard213

encoding has:214

1. We can test linear conditions on a ∈ Rk by testing its encoding. Specifically, ⟨a, c⟩ = 0215

for a vector c ∈ Rk iff ha(x+ c) = ha(x) for every x ∈ Rk. (On the soundness side we216

need |⟨a, c⟩| ≫ 0 to detect that the inequality does not hold; this the reason we require217

robustness).218

2. Encodings of similar strings have common parts. Suppose that the projections of a, a′ ∈219

Rk on a hyperplane Θ⊥ are the same. Then, when one picks x ∈ Θ⊥ it holds that220

⟨a, x⟩ = ⟨a′, x⟩. Importantly, the union of all hyperplanes covers Rk uniformly.221

Note that both equations ha(x + c) = ha(x) and ha(x) = ha′(x′) are unique tests. We222

remark that a property like the first is used in any optimal inapproximability result that223

uses the Hadamard code, and a property like the second was used in the proof of the 2-to-2224

Games Theorem (under the name “sub-code covering”). Crucially, half-space encoding has a225

property that the Hadamard encoding does not have, but the long code does have, namely, a226

unique test:227

3. Noise stability test. Half-spaces optimize the success probability of the following test:228

pick random Gaussian x ∈ Rk, perturb x to obtain x′ ∈ Rk also distributed as a Gaussian.229

Check whether ha(x) = ha(x′).230

In discrete space, the long code encoding di(x) = xi optimizes the analogous noise stability231

test, and this was used to show hardness of Boolean unique games assuming the Unique232

Games Conjecture [22].233

In [27] it was suggested that to prove NP-hardness of Boolean unique games one needs234

robustness of the noise stability test:235

Suppose that a half-space passes the noise stability test with probability 1−δ. Assume236

that a balanced function f : Rk → {±1} passes the test with probability 1− Cδ for237

C > 1. Does f correspond to a half-space?238

Works that dealt with robustness in noise stability [34, 33, 14] proved such results for functions239

that pass the test with probability at least 1− δ − ϵ for ϵ≪ δ. Such must be the same as a240

half-space almost everywhere. When the acceptance probability is 1− Cδ, the function f241

can have many forms, including functions of C half-spaces, low degree threshold functions,242

and many more. In particular, the function may have no correlation with any half-space.243

Mossel and Neeman [35] note that functions that pass the noise stability test with constant244

probability have to correlate with a half-space after a large random shift, but we are unable245

to use this fact since a shift hurts the second property above.246

Our idea is not to focus on a half-space that correlates with f (which corresponds to the247

linear part of f), but rather consider the low degree part of f (where the low degree part is248

obtained from the Hermite expansion of f). By the noise stability of f , its low degree part249

must be large. We argue about consistency between low degree parts of functions that are250
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partly similar. We also argue about the ability to extract vectors that satisfy linear tests251

from low degree parts that satisfy the same tests.252

Crucially, all our estimates must be extremely tight, since the gap for Boolean unique253

games is extremely narrow to begin with, 1 − δ vs. 1 − Θ(
√
δ). We obtain the required254

tightness using two tools: hypercontractivity and concentration.255

Hypercontractive inequalities (see, e.g., [36]) bound norms of a “smoothed” function256

by norms of the original function. Here we use the Gaussian hypercontractive inequality,257

through the implied level-d inequalities (see, e.g., [36]), to show that Boolean functions that258

are the same with probability at least 1− δ over the input must have low degree parts that259

are ≈ δ-close in l2 distance. In contrast, a less careful estimate, not using Booleanity and260

hypercontractivity, only gives
√
δ-closeness, which is useless in our context. Note that the261

functions we compare are restrictions of functions f to hyperplanes (as in the second property262

above).263

Concentration is discussed in Section 1.5. It considers functions restricted to a random264

hyperplane, and bounds the typical Euclidean distance of the low degree part of the restriction265

from the restriction of the low degree part. We use concentration to argue consistency between266

the low degree parts of the restrictions of a function to different hyperplanes. We note that267

the much easier to prove distance of O(1/
√
k) rather than O(1/k) would have been useless268

for our application.269

1.5 Concentration of Degree-d Part270

Let f : Rn → R, and let f≤d be the degree-d part of f . Note that f≤d is a global property271

of f . Let Θ be uniformly distributed in the (n− 1)-dimensional sphere, so Θ⊥ is a random272

hyperplane in Rn. Denote the restriction of f to Θ⊥ by f|Θ⊥ . This is a local part of f . We273

show a local-to-global theorem: the degree-d part of f|Θ⊥ is extremely close to the restriction274

of f≤d to Θ⊥:275

▶ Theorem 8 (Concentration of degree-d part). For any ε > 0, for every 0-homogeneous7 f :276

Rn → R with bounded 2-norm, with probability at least 1−ε over Θ,
∣∣(f|Θ⊥)≤d − (f≤d)|Θ⊥

∣∣
2 ≤277

Od,ε(1/n).278

Local-to-global theorems, like linearity testing [7] and low degree testing [40] over finite279

fields, are key to PCP. With Theorem 8 we add a new, tight, low degree testing -type280

theorem, this time in the highly challenging case of real functions and approximate equality.281

To get intuition for why this case is so challenging, note that two different real low degree282

polynomials can be similar on much of the space (Carbery-Wright (Lemma 14) gives tight283

bounds). In contrast, two different low degree polynomials over a finite field are vastly284

different, and this is key to existing combinatorial and algebraic techniques, which we cannot285

use. Standard analytic techniques (e.g., Hermite analysis, or a sampling theorem of Klartag286

and Regev [29]) give an upper bound of O(1/
√
n) rather than O(1/n) even for d = 1. As we287

remarked above, such bounds are useless for our needs.288

Our proof is by a delicate second moment argument using symmetry considerations.289

Crucially, the second moment is a rotationally-invariant quadratic form in f , and hence290

we can use Schur’s lemma from representation theory that classifies rotationally-invariant291

quadratic forms. The lemma implies that the second moment depends only on the spectrum292

of f , and not on its identity. Our calculations can therefore be significantly simplified by293

7 f is 0-homogeneous if f(cx) = f(x) for every x ∈ Rn and c > 0.

CVIT 2016



23:8 Reduction From Non-Unique Games To Boolean Unique Games

focusing on f that depends only on one of its variables. Given a function that depends on294

one direction, the expression that we need to bound will only depend on the angle between295

this direction and Θ. The technical bulk of the proof then amounts to showing that this296

dependence is quadratic in the scalar product, meaning that it is typically of the order 1/n.297

1.6 The Road Ahead298

This paper suggests two paths to NP-hardness of Boolean unique games:299

1. Prove NP-hardness of Subspaces Near-Intersection as in Conjecture 7. This paper implies300

that NP-hardness of Boolean unique games would follow.301

2. Lift the reduction in this paper to a reduction from the Khot-Moshkovitz NP-hard302

3Lin(R) to Boolean unique games. The reduction was outlined in Sub-section 1.3.2.303

In this sub-section we give more details about each of these paths.304

One can weaken the Subspaces Near-Intersection conjectureecture substantially and the305

analysis in this paper would still go through (with modifications): The verifier can project306

onto subspaces of dimension, say, k−100, instead of dimension k−1. In the completeness case307

there could be approximate equality (with deviation O(δ/
√
k)) rather than exact equality.308

It is enough to have large soundness error, say ε = 0.99, instead of low error. The distance309

of the projections in the soundness case can be of the order of Θ̃(δ/
√
k + 1/k), rather than310

Θ(
√
δ/k).311

The reduction in this paper can be lifted to a reduction from a 3Lin(R) projection game312

like we described in Sub-section 1.3.2 (instead of Subspaces-Near Intersection) to Boolean313

unique games. In this setting, we suggest to focus on projections onto subspaces of dimension314

sufficiently smaller than k − 1, as to decrease the probability that the correlated sampling315

algorithm achieves distance 0. To analyze such a reduction one would need to address316

subspaces that are axes-parallel rather than generic, and this requires ideas beyond the317

ones in this paper. In particular, the concentration theorem we prove is no longer directly318

applicable. In the authors’ opinion, this path is the most promising path towards hardness319

of Boolean unique games.320

2 Preliminaries321

2.1 Hermite Polynomials322

Let Gn denote the n-dimensional Gaussian distribution with n independent mean-0 and323

variance-1 coordinates. The space of all real functions f : Rn → R with Ex∼Gn

[
f(x)2] <324

∞ is denoted L2(Rn,Gn). This is an inner product space with inner product ⟨f, g⟩ .=325

Ex∼Gn [f(x)g(x)]. For a natural number j, the j’th Hermite polynomial Hj : R → R326

is Hj(x) = 1√
j!
· (−1)jex2/2 dj

dxj e
−x2/2. The first few Hermite polynomials are H0 ≡ 1,327

H1(x) = x, H2(x) = 1√
2 · (x

2 − 1), H3(x) = 1√
6 · (x

3 − 3x), H4(x) = 1
2

√
6 · (x

4 − 6x2 + 3).328

The Hermite polynomials satisfy:329

▶ Proposition 9 (Orthonormality). For every j, ⟨Hj , Hj⟩ = 1. For every i ̸= j, ⟨Hi, Hj⟩ = 0.330

In particular, for every j ≥ 1, Ex∈G [Hj(x)] = 0.331

The multi-dimensional Hermite polynomials are: Hj1,...,jn
(x1, . . . , xn) =

∏n
i=1 Hji

(xi). For332

multi-indices L = (l1, . . . , ln) and T = (t1, . . . , tn) we denote L ≤ T if li ≤ ti for every i. We333

write T −L to denote (t1− l1, . . . , tn− ln). We write CT to denote C
∑

i
ti and

(
T
L

)
to denote334 (

t1
l1

)
· · ·
(

tn

ln

)
. The Hermite polynomials form an orthonormal basis for the space L2(Rn,Gn).335
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Hence, every function f ∈ L2(Rn,Gn) can be written as f(x) =
∑

S∈Nn f̂(S) HS(x), where336

S is multi-index, i.e. an n-tuple of natural numbers, and f̂(S) ∈ R (Hermite expansion).337

The size of a multi-index S = (S1, . . . , Sn) is defined as |S| =
∑n

i=1 Si. The degree-d part of338

f is f=d =
∑

|S|=d f̂(S)HS(x). The part of degree at most d is f≤d =
∑d

i=0 f
=i. When f is339

anti-symmetric, i.e. ∀x ∈ Rn, f(−x) = −f(x), we have f̂ (⃗0) = E [f ] = 0 and f≤0 ≡ 0.340

The noise operator (more commonly known as the Ornstein-Uhlenbeck operator) Tρ341

takes a function f ∈ L2(Rn,Gn) and produces a function Tρf ∈ L2(Rn,Gn) that averages342

the value of f over local neighborhoods: Tρf(x) = Ey∈Gn

[
f(ρx+

√
1− ρ2y)

]
. The Hermite343

expansion of Tρf can be obtained from the Hermite expansion of f as follows:344

▶ Proposition 10. Tρf =
∑

S ρ
|S|f̂(S)HS.345

2.2 Some classical inequalities346

The hypercontractive inequality is given in the next lemma.347

▶ Lemma 11 (Hypercontractive inequality). Let f, g : Rk → R. For 0 ≤ ρ ≤
√
rs ≤ 1,348

⟨f, Tρg⟩ ≤ |f |1+r |g|1+s.349

The inequality is often used to show the small sets cannot have much weight on low degree350

parts. Similarly, we will use a corollary of it to show that Boolean functions that are almost351

always the same must have low degree parts that are similar. The corollary is known as352

level-k inequality:353

▶ Lemma 12 (Level-k inequality). Let f : Rk → {0, 1} have mean E [f ] = α and let354

k ≤ 2 ln(1/α). Then,
∣∣f≤k

∣∣2
2 ≤

( 2e
k ln(1/α)

)k
α2.355

A convenient re-formulation is356

▶ Lemma 13. Let A ⊆ Rk be a set of probability α. Let p : Rk → R be a polynomial of357

degree at most k ≤ 2 ln(1/α) with |p|2 = 1. Then, for χA, the indicator function of A,358

|Ex [p(x)χA(x)]| ≤
( 2e

k ln(1/α)
)k/2

α.359

Proof. Since p is of degree at most k, we have ⟨χA, p⟩ = ⟨χ≤k
A , p⟩. By Cauchy-Schwarz360

inequality, ⟨χ≤k
A , p⟩ ≤

∣∣∣χ≤k
A

∣∣∣
2
|p|2 ≤

∣∣∣χ≤k
A

∣∣∣
2
. The lemma follows from a level-k inequality361

(Lemma 12) invoked on χA. ◀362

The Carbery-Wright anti-concentration inequality shows that a low degree polynomial363

cannot be concentrated around any point:364

▶ Lemma 14 (Carbery-Wright Anti-concentration [8]). For t ∈ R and ε > 0, for a polynomial365

p of degree d, |p|2 = 1, Prx∼Gn [|p(x)− t| ≤ ε] ≤ O(d)ε1/d.366

The Gaussian Poincaré inequality upper bounds the variance of a function in terms of its367

derivative:368

▶ Lemma 15 (Gaussian Poincaré inequality). Let f : Rk → R have continuous derivatives.369

Then, Varf ≤ E
[
|∇f |2

]
.370

Klartag and Regev showed that a random subspace samples well any function:371

▶ Lemma 16 (Sampling [29]). Let f : Rk → R with |f |2 <∞. Let 0 < ε < 1. Let S be a uni-372

form subspace of dimension k−1. Then, PrS [|ES [f ]−E [f ]| ≥ ε |f |2] ≤ O
(

exp
(
−Ω

(
εk

log(2/ε)

)))
.373
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Their formulation referred to functions on spheres, but immediately implies the same for374

functions in Gaussian space by averaging over all possible radii. Their formulation referred375

to non-negative functions and multiplicative approximation, but immediately extends to376

general functions and additive approximation by separately considering the negative and377

positive parts of the function.378

The next lemma follows from Lemma 16 (in fact, one needs a much weaker version of379

Lemma 16):380

▶ Lemma 17. For any constants 0 < δ < 1 and d ≥ 1, For any subset H of fraction δ of381

(k − 1)-dimensional subspaces in Rk, the distribution induced on d-dimensional subspaces382

by picking H ∈ H and S ⊆ H, dim(S) = d, is Õd,δ(1/k)-close in statistical distance to the383

uniform distribution over d-dimensional subspaces.384

3 Boolean Unique Game Construction385

Let C ≥ 1. Fix an instance of the Subspaces Near-Intersection Problem, given by G = (V,E),386

k, {Av}v, {Θe}e. Let δ and ε be the completeness and soundness errors, respectively, where387

δ > 0 is sufficiently small and ε is a constant, say 1/10. We will construct a Boolean unique388

games instance with completeness error O(δ/
√
k) (where the O(·) hides a small absolute389

constant, independent of C) and soundness error 1− Cδ/
√
k.390

The unique game we construct consists of encodings of the labeling for the v ∈ V via391

half-spaces.392

▶ Definition 18 (half-space encoding). The half-space encoding of σ ∈ Rk is the Boolean393

function Rk → {±1} defined as HSσ(x) = sign(⟨σ, x⟩).394

For every v ∈ V and x ∈ Rk we have a unique game variable corresponding to v, x that395

is supposed to be assigned HSσ(v)(x) (The actual construction involves a discretization of Rk
396

up to a very high precision in each coordinate. The precision depends on k and 1/δ). We397

denote by fv : Rk → {±1} the actual assignment to the variables that correspond to v.398

Next we group together variables in order to enforce certain basic structural properties399

on the fv’s in a technique called folding. The properties we consider are ones that half-spaces400

have.401

Half-spaces are anti-symmetric, i.e., for every x ∈ Rk, HSσ(−x) = −HSσ(x). While fv402

may not necessarily be HSσ(v), we will enforce anti-symmetry by having only one variable403

for every pair of x,−x where x ∈ Rk.404

▶ Definition 19 (anti-symmetry folding). In the unique games construction the functions fv405

satisfy fv(−x) = −fv(x) for every x ∈ Rk.406

Half-spaces are 0-homogeneous, i.e., for every x ∈ Rk and c > 0 it holds HSσ(c · x) = HSσ(x).407

We enforce 0-homogeneity as follows:408

▶ Definition 20 (0-homogeneity folding). In the unique games construction the functions fv409

satisfy fv(cx) = fv(x) for every x ∈ Rk and c > 0.410

For every A such that Aσ = 0, for every x, y ∈ Rk, α, β ∈ R, we have:411

HSσ(αxA+ βy) = sign(⟨σ, αxA+ βy⟩)412

= sign(α · ⟨σ, xA⟩+ ⟨σ, βy⟩)413

= sign(α · ⟨Aσ, x⟩+ ⟨σ, βy⟩)414

= sign(⟨σ, βy⟩)415
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Therefore we enforce:416

▶ Definition 21 (constraints folding). In the unique games construction the functions fv417

satisfy fv(αxAv + βy) = fv(αzAv + βy) for every x, y, z ∈ Rk, α, β ∈ R.418

To complete the definition of the unique games instance, we define the equations over the419

variables. The equations correspond to two local tests: (1) Noise test on fv for v ∈ V ; (2)420

Consistency test on fu, fv for (u, v) ∈ E. The equations are specified in Figure 1.421

Verifier{fv}
Folding: We assume that the fv’s are folded as in Definitions 19, 20 and 21.
Set β = 1/(1010C2), p = δ/

√
βk. The verifier performs the noise test with probability p;

the consistency test with probability 1− p:
Noise Test: Pick at random v ∈ V . Pick y, x, z ∼ Gk and set x̃, z̃ ∈ Rk as follows:
x̃ = (1− β)y +

√
2β − β2x, z̃ = (1− β)y +

√
2β − β2z. Check fv(x̃) = fv(z̃).

Consistency Test: Pick at random e = (u, v) ∈ E. Pick a random Gaussian x ∈ Θ⊥
e .

Check fu(x) = fv(x).

Figure 1 Unique game

The size of the construction is linear in the size of the Subspaces Near-Intersection422

instance and a function of (the constants) k and 1/δ.423

3.1 Completeness424

Suppose that there is an assignment σ : V → Rk as in the completeness case of Subspaces425

Near-Intersection. Further, assume that each fv corresponds to a half-space encoding of σ(v).426

The probability that the noise test rejects is O(
√
β) and it is performed with probability p,427

so its total contribution is O(δ/
√
k). By the completeness of Subspaces Near-Intersection,428

with probability 1− δ the consistency test always passes, and with probability δ it passes429

except with probability 1/
√
k. Overall, the probability of rejection is O(δ/

√
k).430

4 Soundness431

Assume that {fv}v∈V pass the unique tests with probability at least 1− Cδ/
√
k. We will432

construct a constant-dimensional Y ⊂ Rk and an assignment σ : V → Rk. Each σ(v) is a433

unit vector such that Avσ(v) = 0, and with constant probability over e = (u, v) ∈ EY , when434

one writes Θ⊥
e = Y + Se for Se orthogonal to Y , it holds that435

|ProjSe(σ(u))− ProjSe(σ(v))|2 ≤ ÕC(δ/
√
k + 1/k),436

where the ÕC(·) hides logarithmic factors in
√
k/δ, k, as well as factors that depend on C,437

and the deviation is therefore ≪
√
δ/k.438

The plan for the analysis is as follows: Use the noise stability to decode a large low439

degree part for almost every vertex v ∈ V . Use concentration to argue consistency between440

the restriction of the low degree part to an edge hyperplane and the low degree part of the441

restriction to the hyperplane, for most edges. The low degree parts of the restrictions to442

the edge hyperplane are close in l2 distance for most edges thanks to the consistency test443

and hypercontractivity. Obtain from each low degree polynomial a vector by repeatedly444

differentiating the polynomial. The differentiation will be in random directions we pick, and445
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we focus on zoom-in’s so we can restrict to hyperplanes that contain the random directions.446

We use consistency along edges to argue about consistency of the derivatives and of the447

number of differentiations.448

For all v ∈ V we have |fv|2 = 1. By the success of the functions fv in the unique game,449

the noise test must pass except with probability Cδ/(
√
kp) ≤ C

√
β and the consistency test450

must pass except with probability Cδ/(
√
k(1− p)) ≤ 2Cδ/

√
k. We say that v ∈ V is typical451

if the noise test rejects with probability at most 100C
√
β when v is chosen. In other words,452

for a typical v ∈ V , ⟨fv, T1−βfv⟩ ≥ 1− 200C
√
β. Note that all v ∈ V are typical except for453

at most 0.1 fraction. We say that an edge e = (u, v) ∈ E is typical if both u and v are typical454

and the consistency test rejects with probability at most 20Cδ/
√
k when e is chosen. At455

least 0.7 fraction of the edges are typical.456

4.1 Approximation By Low Degree457

Our first lemma shows that the low degree part of a noise stable function approximates it:458

▶ Lemma 22 (Noise stable functions have large low degree part). Let f : Rk → R, |f |2 <∞.459

Let 0 ≤ ρ ≤ 1 and d ≥ 0. Then, f≤d|22 ≥ ⟨f, Tρf⟩ − ρd |f |22.460

Proof. We can decompose f to its low degree part and its high degree part, f = f≤d +461

f>d, and then ⟨f, Tρf⟩ = ⟨f≤d, Tρf
≤d⟩ + ⟨f>d, Tρf

>d⟩. By Cauchy-Schwarz inequality,462

⟨f≤d, Tρf
≤d⟩ ≤ |f≤d|2|Tρf

≤d|2 ≤ |f≤d|22. Therefore, by Proposition 10 and Parseval identity,463

|f≤d|22 ≥ ⟨f≤d, Tρf
≤d⟩ ≥ ⟨f, Tρf⟩ − ⟨f>d, Tρf

>d⟩ > ⟨f, Tρf⟩ − ρd |f |22. ◀464

Lemma 22 implies that the low degree part of fv approximates fv for a typical v ∈ V :465

f≤d
v |22 ≥ 1− 200C

√
β − (1− β)d. In the above we used that |fv|2 = 1. We set d = Θ(1/β),466

so |f≤d
v |22 ≥ 0.99.467

4.2 Consistency of Degree-d Parts468

In this section we use the high acceptance probability of the consistency test in order to469

show that for most edges (u, v) ∈ E the projections of the barycenters of fu, fv onto Θ⊥
e are470

extremely close to each other. The proof uses the main technical tools we discussed in the471

introduction, namely hypercontractivity and concentration.472

By hypercontractivity, Boolean functions that are the same except with probability O(δ)473

have low degree parts that are Õ(δ) apart in 2-norm (note that there is a simple upper bound474

relying on Parseval identity alone, but it gives the worse upper bound O(
√
δ)), as proven in475

the following lemma:476

▶ Lemma 23 (Low degree consistency). Let f, g : Rk → {±1} be anti-symmetric functions.477

Let 0 ≤ ρ ≤ 1 and d ≤ 2 ln(1/δ). Let δ > 0 be sufficiently small. If f(x) = g(x) with478

probability 1− δ over Gaussian x ∈ Rk, then |f≤d − g≤d|2 ≤ 2
( 2e

d ln(2/δ)
)d/2

δ.479

Proof. We have
∣∣f≤d − g≤d

∣∣
2 =

∣∣(f − g)≤d
∣∣
2. Let p be a polynomial of degree at most d480

and 2-norm 1 that maximizes the correlation with f − g. Then,
∣∣(f − g)≤d

∣∣
2 = ⟨f − g, p⟩.481

Since f and g are anti-symmetric, so is f − g. Hence, p is anti-symmetric. Let A ⊆ Rk be482

the set of x with f(x) > g(x). Since f(x) > g(x) iff g(−x) > f(−x), the probability of A483

is δ/2, and ⟨f − g, p⟩ = Ex [(2p(x)− 2p(−x))χA(x)] = 4E [p(x)χA(x)]. By Lemma 13, since484

d ≤ 2 ln(1/δ) for sufficiently small δ > 0, 4Ex [p(x)χA(x)] ≤ 4
( 2e

d ln(2/δ)
)d/2 (δ/2). The485

lemma follows by collecting all of the above. ◀486
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Let (u, v) ∈ E be a typical edge. By the consistency test, it holds that fu|Θ⊥
e

(x) =487

fv|Θ⊥
e

(x) for random x ∈ Θ⊥
e except with probability O(δ/

√
k). Thus, by Lemma 23,488 ∣∣(fu|Θ⊥

e
)≤d − (fv|Θ⊥

e
)≤d
∣∣
2 ≤ Õ(δ/

√
k). By Theorem 8, for each v ∈ V , for at least 0.99489

fraction of edges e = (u, v) ∈ E,
∣∣(fv|Θ⊥

e
)≤d − (f≤d

v )|Θ⊥
e

∣∣
2 ≤ O(1/k). By the regularity of490

the graph, the triangle inequality and a union bound, with probability at least 0.6 over491

(u, v) ∈ E, the edge is typical, and492 ∣∣(f≤d
u )|Θ⊥

e
− (f≤d

v )|Θ⊥
e

∣∣
2 ≤

∣∣(fu|Θ⊥
e

)≤d − (f≤d
u )|Θ⊥

e

∣∣
2 +

∣∣(fv|Θ⊥
e

)≤d − (f≤d
v )|Θ⊥

e

∣∣
2493

≤ Õ(δ/
√
k + 1/k). (1)494

4.3 Defining The Assignment495

In Section 4.2 we showed that for most edges e = (u, v) ∈ E the degree-d polynomials496

f≤d
u and f≤d

v are close over Θ⊥
e . In this section we show how to extract from the degree-d497

polynomials unit vectors that satisfy the constraints and their projections onto Θ⊥
e are close.498

We next describe the main ideas behind the construction of unit vectors. Close degree-d499

polynomials, like f≤d
u and f≤d

v over Θ⊥
e , imply close degree-1 parts, and the degree-1 parts500

correspond to vectors in the linear subspaces associated with u and v. Hence, if the degree-1501

parts of the polynomials were known to be of large 2-norm, then one could have assigned each502

vertex its normalized linear part. Unfortunately, the degree-1 part of the polynomials can503

be 0⃗. The idea is to differentiate the degree-d polynomials sufficiently many times until the504

degree-1 part is of sufficiently large 2-norm. The consistency deteriorates with the number of505

differentiations, but since the degree d is constant, the number of differentiations is constant506

and the deterioration is limited.507

To carry through the above plan we differentiate along random directions y1, . . . , yd−1,508

and focus only on hyperplanes Θ⊥
e that contain Y = span{y1, . . . , yd−1}, since for those509

hyperplanes differentiation and restriction to Θ⊥
e commute. This is the reason we focus on a510

zoom-in of the Subspaces Near-Intersection game. This also introduces a certain asymmetry511

in favor of the directions in Y . To eliminate this asymmetry, we focus on random affine shifts512

of the space Y ⊥. The random choices of Y and the shift would be useful in the analysis, but513

eventually we will fix them so they satisfy desired properties.514

The assignment σ : V → Rk for the Subspaces Near-Intersection instance is defined by515

the algorithm in Figure 2. Our analysis closely follows the algorithm.516

The first lemma upper bounds the degree and lower bounds the norm on D
(i)
v from the517

algorithm in Figure 2 for 0 ≤ i ≤ d− 1:518

▶ Lemma 24 (Norm lemma). For every typical v ∈ V , during the execution of the algorithm519

in Figure 2, for every 0 ≤ i ≤ d− 1,520

1. For all y1, . . . , yi, the function D
(i)
v is a polynomial of degree at most d− i.521

2. Ey1,...,yi

[∣∣∣E [D(i)
v

]∣∣∣2] < η.522

3. Ey1,...,yi

[∣∣∣D(i)
v

∣∣∣2
2

]
≥ 0.99− ηi.523

Proof. We prove that the three items of the lemma hold by induction on 0 ≤ i ≤ d− 1. First524

consider the case of i = 0 where D(0)
v = f≤d

v .525

1. f≤d
v is a polynomial of degree at most d.526

2. By the anti-symmetry folding, E
[
f≤d

v

]
= 0.527

3. For a typical v we have
∣∣f≤d

v

∣∣2
2 ≥ 0.99.528

Assume that the statement holds for i− 1 and let us prove it for i.529
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Global parameters:
For sufficiently small constants 0 < c0 < c1 < 1 (depending on the constant in
Lemma 14), pick uniformly at random

η ∈
[
c0 · 2−2d log d, c1 · 2−2d log d

]
.

Pick Gaussian vectors y1, . . . , yd−1 ∈ Rk. Let Y = span{y1, . . . , yd−1}.
Pick Gaussian vector y ∈ Y .

For every typical v ∈ V we define the assignment σ(v) as follows (for other v’s leave σ(v)
undefined):
1. Let D(0)

v = f≤d
v and i = 0.

2. Let D(0)
v,y : Y ⊥ → R be the affine shift D(0)

v,y(x) = D
(0)
v (y + x)

3. While
∣∣∣(D(i)

v,y)=1
∣∣∣2
2
< η,

a. i← i+ 1.
b. Let D(i)

v = ∂
∂yi

D
(i−1)
v .

c. Let D(i)
v,y : Y ⊥ → R be the affine shift D(i)

v,y(x) = D
(i)
v (y + x).

4. iv ← i.
5. Let vecv ∈ Y ⊥ be (D(iv)

v,y )=1.
6. σ(v)← vecv

|vecv|2
.

Figure 2 The assignment σ : V → Rk for the Y -zoom-in of Subspaces Near-Intersection

1. The function D
(i)
v is a polynomial of degree at most deg(D(i−1)

v ) − 1. The degree530

bound therefore follows from the inductive hypothesis.531

2. E
[
D

(i)
v

]
is the constant part of D(i)

v = ⟨∇D(i−1)
v , yi⟩. Moreover, ∇D(i−1)

v depends on532

y1, . . . , yi−1 and is independent of yi. Thus, E
[
D

(i)
v

]
= ⟨(D(i−1)

v )=1, yi⟩ is a normal variable533

with standard deviation
∣∣∣(D(i−1)

v )=1
∣∣∣
2
. By the design of the algorithm,

∣∣∣(D(i−1)
v )=1

∣∣∣2
2
< η534

and hence Ey1,...,yd−1

[∣∣∣E [D(i)
v

]∣∣∣2] < η.535

3. We have D(i)
v = ⟨∇D(i−1)

v , yi⟩, where ∇D(i−1)
v depends on y1, . . . , yi−1 and is inde-536

pendent of yi. Thus, for every x ∈ Rk, it holds that D(i)
v (x) is a normal variable with537

standard deviation
∣∣∣∇D(i−1)

v (x)
∣∣∣
2
. Hence, Ey1,...,yd−1,x

[
(D(i)

v )(x)2
]

= E
[∣∣∣∇D(i−1)

v (x)
∣∣∣2
2

]
.538

By the Gaussian Poincaré inequality (Lemma 15), for any y1, . . . , yi,539

E
x

[
∇D(i−1)

v (x)2
]
≥ VarD(i−1)

v =
∣∣∣D(i−1)

v

∣∣∣2
2
−E

[
D(i−1)

v

]2
.540

By the inductive hypothesis, E
[∣∣∣D(i−1)

v

∣∣∣2
2

]
≥ 0.99− η(i− 1) and E

[
D

(i−1)
v

]2
< η. Hence,541

E
[
(D(i)

v (x))2
]
≥ 0.99− η(i− 1)− η = 0.99− ηi. ◀542

By the following proposition and the constraints folding (see Definition 21), whenever543

σ(v) is defined it satisfies Avσ(v) = 0⃗.544



E. Eldan and D. Moshkovitz 23:15

▶ Proposition 25. Let f : Rk → R. If f satisfies a constraints folding, then so do f=i for545

any i, any derivative of f , and any scalar multiplication of f .546

The next lemma uses Lemma 24 to argue that σ(v) is well-defined for most vertices v ∈ V .547

548

▶ Lemma 26 (Assignment lemma). Let v ∈ V be typical. With probability at least 0.99 over549

y1, . . . , yd−1 and y, the algorithm in Figure 2 terminates, iv is well-defined, and
∣∣∣(D(iv)

v,y )=1
∣∣∣2
2
≥550

η.551

Proof. The algorithm terminates and iv is well-defined iff there exists 0 ≤ i ≤ d − 1552

such that
∣∣∣(D(i)

v,y)=1
∣∣∣2
2
≥ η. Assume on way of contradiction that there is no such i. By553

Lemma 24, when the algorithm reaches i = d− 1, the polynomial D(d−1)
v is of degree 1 and554

EY,y

[∣∣∣D(d−1)
v,y

∣∣∣2
2

]
= Ey1,...,yd−1

[∣∣∣D(d−1)
v

∣∣∣2
2

]
≥ 0.9. Since each coordinate of the coefficients555

vector∇D(d−1)
v,y is a polynomial of degree at most d in y1, . . . , yd−1 and y, the norm

∣∣∣D(d−1)
v,y

∣∣∣2
2

is556

a polynomial of degree at most 2d in y1, . . . , yd−1, y. By convexity, Ey1,...,yd−1,y

[∣∣∣D(d−1)
v,y

∣∣∣4
2

]
≥557 (

E
[∣∣∣D(d−1)

v,y

∣∣∣2
2

])2
≥ 0.81. By Carbery-Wright anti-concentration (Lemma 14),

∣∣∣D(d−1)
v,y

∣∣∣2
2
≥558

η with probability at least 0.99 over y1, . . . , yd−1 and y. In this case, the loop in the algorithm559

in Figure 2 terminates and iv = d− 1. ◀560

The next lemma argues consistency between D(i)
u and D(i)

v across most edges e = (u, v) ∈561

E, provided that y1, . . . , yd−1 ∈ Θ⊥
e (note that the degree d is constant so the large dependence562

in d – which we state here explicitly, and later omit in the O(·) notation – is permissible).563

▶ Lemma 27 (Consistency lemma). With probability at least 0.6 over e = (u, v) ∈ E, for564

every 0 ≤ i ≤ d− 1,565

E
y1,...,yi∈Θ⊥

e

[∣∣∣(D(i)
u )|Θ⊥

e
− (D(i)

v )|Θ⊥
e

∣∣∣
2

]
≤ (O(d))i · Õ(δ/

√
k + 1/k).566

Proof. By induction over i. For i = 0, the inequality follows from inequality (1): for567

at least 0.6 of the edges e = (u, v) ∈ E we have
∣∣(f≤d

u − f≤d
v )|Θ⊥

e

∣∣
2 ≤ Õ(δ/

√
k + 1/k).568

Assume that the claim holds for i − 1, and let us prove it for i. Let (u, v) ∈ E. We have569

D
(i)
u −D(i)

v = ⟨∇(D(i−1)
u −D(i−1)

v ), yi⟩, where ∇(D(i−1)
u −D(i−1)

v ) depends on y1, . . . , yi−1 and570

is independent of yi. Thus, for every y1, . . . , yi−1 and x ∈ Rk, it holds that (D(i)
u −D(i)

v )(x)571

is a normal variable with standard deviation
∣∣∣∇(D(i−1)

u −D(i−1)
v )(x)

∣∣∣
2
. Thus, by concavity572

and the inductive hypothesis,573

E
y1,...,yi∈Θ⊥

e

[√
E

x∈Θ⊥
e

[
(D(i)

u −D(i)
v )(x)2

]]
≤ E

y1,...,yi−1

[√
E

x,yi

[∣∣∣∇(D(i−1)
u −D(i−1)

v )(x)
∣∣∣2
2

]]
574

≤ O(d) · E
y1,...,yi−1

[√
E
x

[
(D(i−1)

u −D(i−1)
v )(x)2

]]
575

≤ (O(d))iÕ(δ/
√
k + 1/k).576

◀577

The next lemma is similar to Lemma 27, but applies to the shifted D(i)
u,y and D(i)

v,y rather578

than to D(i)
u and D

(i)
v . Recall that Y = span{y1, . . . , yd−1} and EY =

{
e ∈ E |Y ⊆ Θ⊥

e

}
.579

For each e ∈ EY we write Θ⊥
e = Y + Se. The subspace Se is a uniform hyperplane in Y ⊥.580
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▶ Lemma 28. With probability at least 0.99 over Y and y, with probability at least 0.6 over581

e = (u, v) ∈ EY , for every 0 ≤ i ≤ d− 1,
∣∣∣(D(i)

u,y)|S⊥
e
− (D(i)

v,y)|S⊥
e

∣∣∣
2
≤ Õ(δ/

√
k + 1/k).582

Proof. By Lemma 27, with probability at least 0.6 over e = (u, v) ∈ E, for every 0 ≤ i ≤ d−1,583

E
Y ⊆Θ⊥

e

[√
E

y∈Y,x∈Se

[
(D(i)

u,y −D(i)
v,y)(x)2

]]
≤ Õ(δ/

√
k + 1/k). (2)584

By concavity, with probability at least 0.6 over e = (u, v) ∈ E, for every 0 ≤ i ≤ d− 1,585

E
Y ⊆Θ⊥

e

[
E

y∈Y

[√
E

x∈Se

[
(D(i)

u,y −D(i)
v,y)(x)2

]]]
≤ Õ(δ/

√
k + 1/k). (3)586

By Markov’s inequality, with probability at least 0.6 over e = (u, v) ∈ E, with probability at587

least 0.99 over Y ⊆ Θ⊥
e and y ∈ Y , we have588 ∣∣∣(D(i)

u,y)|Se
− (D(i)

v,y)|Se

∣∣∣
2
≤ Õ(δ/

√
k + 1/k). (4)589

By Lemma 17, the distribution induced on e and Y by first picking e ∈ E out of the set590

of fraction 0.6, and then picking Y ⊆ Θ⊥
e , is close to the distribution that picks Y by picking591

Gaussian y1, . . . , yd−1, Y = span{y1, . . . , yd−1}, and then picks e ∈ EY that belongs to the592

set of fraction 0.6. Therefore, with probability 0.99 over Y, y, the above event also holds with593

probability 0.6 over e ∈ EY . ◀594

By Lemmas 26 and 28, there exist y1, . . . , yd−1 and y, such that with probability at least595

0.5 over e = (u, v) ∈ EY , the following two conditions holds (recall that when one picks596

e = (u, v) ∈ EY uniformly, the distribution over v is uniform over V , and that 0.9 fraction of597

the vertices v ∈ V are typical):598

1.
∣∣∣(D(iv)

v,y )=1
∣∣∣2
2
≥ η.599

2. For every 0 ≤ i ≤ d− 1,
∣∣∣(D(i)

u,y)|S⊥
e
− (D(i)

v,y)|S⊥
e

∣∣∣
2
≤ Õ(δ/

√
k + 1/k).600

The second item implies that for every 0 ≤ i ≤ d − 1,
∣∣∣((D(i)

u,y)|Se
)=1 − ((D(i)

v,y)|Se
)=1
∣∣∣
2
≤601

Õ(δ/
√
k + 1/k). The case d = 1 of Theorem 8 implies that for every u ∈ V with probability602

at least 0.999 over the edge e = (u, v) ∈ EY , for every i,603 ∣∣∣((D(i)
u,y)|Se

)=1 − (D(i)
u,y)=1)|Se

∣∣∣
2
≤ Õ(δ/

√
k + 1/k). (5)604

Applying the same to v ∈ V and taking a union bound and a triangle inequality, with605

probability at least 0.49 over (u, v) ∈ EY , for every i,606 ∣∣∣((D(i)
u,y)=1)|Se

− ((D(i)
v,y)=1)|Se

∣∣∣
2
≤ Õ(δ/

√
k + 1/k). (6)607

Note that inequality (6) implies consistency between vectors corresponding to u and to v608

restricted to the hyperplane of interest. It remains to argue that iu = iv with high probability.609

As a consequence of inequality (6), with probability at least 0.49 over e = (u, v) ∈ EY , for610

every i,611 ∣∣∣∣∣∣∣((D(i)
u,y)=1)|Se

∣∣∣2
2
−
∣∣∣((D(i)

v,y)=1)|Se

∣∣∣2
2

∣∣∣∣ ≤ Õ(δ/
√
k + 1/k). (7)612

By sampling (Lemma 16) and union bound, for every u ∈ V , with probability at least 0.999613

over e = (u, v) ∈ EY , for every i,614 ∣∣∣∣∣∣∣((D(i)
u,y)=1)|Se

∣∣∣2
2
−
∣∣∣(D(i)

u,y)=1
∣∣∣2
2

∣∣∣∣ ≤ Õ(1/k). (8)615
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A similar bound holds for v. Hence, from inequalities (7) and (8) via a union bound and a616

triangle inequality, with probability at least 0.47 over e = (u, v) ∈ EY , for every i,617 ∣∣∣∣∣∣∣(D(i)
u,y)=1

∣∣∣2
2
−
∣∣∣(D(i)

v,y)=1
∣∣∣2
2

∣∣∣∣ ≤ Õ(δ/
√
k + 1/k). (9)618

By the design of the algorithm in Figure 2, inequality (9) guarantees that iu = iv except619

with probability Õ(δ + 1/k). In this case, by inequality (5),620

|ProjSe(vecu)− ProjSe(vecv)| ≤ Õ(δ/
√
k + 1/k). (10)621

The vectors vecu and vecv are normalized to obtain σ(u) and σ(v), respectively. Hence, by622

inequalities (10) and (9), and since
∣∣∣(D(iu)

u,y )=1
∣∣∣
2
≥ Ω(1), with probability at least 0.47 over623

e = (u, v) ∈ EY , |ProjSe
(σ(u))− ProjSe

(σ(v))| ≤ Õ(δ/
√
k + 1/k).624

5 Concentration of the restricted Hermite tensors625

In this section we prove Theorem 8. Note: In this section we use n to denote the dimension.626

5.1 Overview of the proof627

We first sketch some of the main steps of the proof. Consider the functional Q(f) =628

EΘ
∣∣(f|Θ⊥)≤d − (f≤d)|Θ⊥

∣∣2
2 where Θ is uniformly distributed in the sphere. It is not hard to629

check that Q(f) is a quadratic form in f , which is invariant under compositions of f with630

orthogonal transformations.631

Here we allude to Schur’s lemma, which states that rotational invariant quadratic forms632

on functions on the sphere can be expressed as linear combinations of the L2 norms of633

the projections onto eigenspaces of the Laplacian. This means that the maximum of the634

quadratic form among functions with a perscribed L2 norm must be attained on a function635

which only depends on the first coordinate x1.636

Our quadratic form, however, is a functional of functions on Rn rather than the sphere;637

this issue can be bypassed by considering homogeneous functions and using the concentration638

of the Gaussian in a thin spherical shell. Thus the first step of the proof roughly implies639

that it is sufficient to consider functions of the form f(x1, ..., xn) = g(x1).640

By applying rotations around the first vector of the standard basis, e1, it is not hard to641

see that when f is of the above form, the quantity θ →
∣∣(f|θ⊥)≤d − (f≤d)|θ⊥

∣∣2
2 only depends642

on θ1 := ⟨θ, e1⟩. By concentration of measure, this angle is of the order 1/
√
n. The technical643

bulk of the proof is to show that the above expression behaves like θ4
1 for small θ1.644

5.2 Preliminaries645

Identify a tensor T of degree ℓ with a multilinear polynomial T [x1, ..., xℓ] =
∑

i1,...,iℓ∈[n]ℓ Ti1,...,iℓ
x1

i1
·646

... ·xℓ
iℓ
. For any x ∈ Rn, denote by H(k)(x), the k-th Hermite tensor associated with x, defined647

by H(k)(x) := (−1)kϕ(x)−1(∇kϕ(x)), where ϕ(x) = exp(−|x|2/2). For example, we have648

H(1)(x) = x, H(1)(x)[y] = ⟨x, y⟩, H(2)(x) = x⊗2 − In, H(1)(x)[y, z] = ⟨x, y⟩⟨x, z⟩ −649

⟨y, z⟩. and H(3)(x)[y, z, w] = ⟨x, y⟩⟨x, z⟩⟨x,w⟩ − ⟨x, y⟩⟨z, w⟩ − ⟨x, z⟩⟨y, w⟩ − ⟨x,w⟩⟨y, z⟩,650

(see [31, p. 157]). For two tensors T,U of degree ℓ, define the Hilbert-Schmidt in-651

ner product by ⟨T,U⟩HS =
∑

(i1,...,iℓ)∈[n]ℓ Ti1,...,iℓ
Ui1,...,iℓ

and the corresponding norm652

∥T∥2
HS = ⟨T, T ⟩HS . We will allow ourselves to abbreviate the notation and write ∥T∥653

and ⟨T,U⟩ whenever this causes no confusion. For a function f , we define its k-barycenter654
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by bk(f) :=
∫
H(k)(x)f(x)dγ(x) and also denote αk(f)2 := ∥bk(f)∥2

HS . For a tensor T of655

degree ℓ and an orthogonal projection P , define PT [x1, ..., xℓ] := T [Px1, ..., Pxℓ]. It is not656

hard to verify that for f : Rn → R and for θ ∈ Sn−1, one has657

Pθ⊥

∫
H(k)(x)f(x)dγ(x) =

∫
H(k)(x)fθ(x)dγ(x) (11)658

where fθ(x) =
∫∞

−∞ f(Pθ⊥x+ tθ)dγ(t) is the marginal of f on θ⊥.659

For a unit vector θ ∈ Sn−1, let γθ be the Gaussian measure restricted to {⟨x, θ⟩ = 0},660

in other words, dγθ(x) = 1
(2π)(n−1)/2 e

−|x|2/21⟨x,θ⟩=0dHn−1(x). For a function f : Rn → R661

define, by slight abuse of notation, bk(f ; θ) =
∫
H(k)(x)f(x)dγθ. By the orthogonality of662

Hermite polynomials, we have for all f=k(x) = 1
k! ⟨H

(k)(x), bk(f)⟩, ∀x ∈ Rn. Likewise,663

for all θ ∈ Sn−1 (f|θ⊥)=k = 1
k! ⟨H

(k)(x), bk(f ; θ)⟩, ∀x ∈ θ⊥. Therefore, by Parseval’s664

identity, we have
∣∣(f|θ⊥)=k − (f=k)|Θ⊥

∣∣
2 = 1

k!∥Pθ⊥(bk(f ; θ)−bk(f))∥HS . Thus, for a function665

f : Rn → R, we define Q(f) = Qk(f) := Eθ∼σ∥Pθ⊥(bk(f ; θ) − bk(f))∥2
HS . Theorem 8 will666

follow immediately from the next result.667

▶ Theorem 29. Let f : Rn → R be 0-homogeneous. Eθ∼σ∥bk(f ; θ)− bk(f))∥2
HS = Ok(1/n2).668

Proof of Theorem 8. Apply Theorem 29 for and k ≤ d and use Chebyshev’s inequality and669

a union bound. ◀670

5.3 A reduction to functions depending on one variable671

The proof of the above theorem relies on the following lemma, which essentially reduces the672

problem to the case that f is a low-degree polynomial which only depends on one variable.673

▶ Lemma 30. For any 0-homogeneous function f with ∥f∥L2(γ) = 1, there is a polynomial674

h : R→ R of degree at most 8k such that, defining f̃(x) = h
(

x1
|x|/

√
n

)
, we have ∥f̃∥L2(γ) = 1675

and
∣∣Qk(f)−Qk(f̃)

∣∣ = O(1/n2).676

The main step towards the lemma is the following proposition:677

▶ Proposition 31. Assuming that f is 0-homogeneous, There exists a polynomial q on R, of678

degree at most 8k, such that Qk(f) =
∫
Sn−1

∫
Sn−1 f(x)f(y)q(⟨x, y⟩)dγ(x)dγ(y) +O(1/n2).679

Before we prove Proposition 31, we need two additional propositions, whose proofs are680

deferred to the end of this section.681

▶ Proposition 32. There exist constants Cn,C ′
n such that Cn, C

′
n < C for some universal682

constant C > 0, and such that the following holds. Let x, y ∈ Rn and let θ be uniformly683

distributed in Sn−1. Then, for every continuous g : Sn−1 → R, limε→0
1
ε2 E
[
1{|⟨x, θ⟩| ≤684

ε, |⟨y, θ⟩| ≤ ε}g(θ)
]

= Cn
1

|x||y|
√

1−
〈

x
|x| , y

|y|

〉2
Eg(θ1), where θ1 is uniform in Sn−1 ∩ x⊥ ∩ y⊥.685

Furthermore, limε→0
1
εE [1{|⟨x, θ⟩| ≤ ε}g(θ)] = C′

n

|x| g(θ2), where θ2 is uniform in Sn−1 ∩ x⊥.686

▶ Proposition 33. For every k, n ∈ N there exist polynomials p1, p2, p3, p4 in 3 variables, of687

degree at most 3k, with coefficients bounded by Ok(nk), such that the following holds. For each688

x, y ∈ Rn, let θ1 be uniform in Sn−1 ∩ x⊥ ∩ y⊥ and let θ2 be uniform in Sn−1 ∩ x⊥. Then we689

have the representations E⟨Pθ⊥
1
H(k)(x), Pθ⊥

1
H(k)(y)⟩ = p1(|x|, |y|, ρ(x, y)) +

√
1− ρ(x, y)2 ·690

p2(|x|, |y|, ρ(x, y)) and E⟨Pθ⊥
2
H(k)(x), Pθ⊥

2
H(k)(y)⟩ = p3(|x|, |y|, ρ(x, y)) +

√
1− ρ(x, y)2 ·691

p4(|x|, |y|, ρ(x, y)) where ρ(x, y) :=
〈

x
|x| ,

y
|y|

〉
.692
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Proof of Proposition 31. By an approximation argument, we may assume that f is con-693

tinuous. We then have, β(f ; θ) = limε→0
√

2π
2ε

∫
1{|⟨x, θ⟩| ≤ ε}H(k)(x)f(x)dγ. Therefore, we694

have the following expression for Q(f):695

Eθ∼σ

∥∥∥∥ lim
ε→0

Pθ⊥

√
2π

2ε

∫
1{|⟨x, θ⟩| ≤ ε}H(k)(x)f(x)dγ(x)− Pθ⊥

∫
H(k)(x)f(x)dγ(x)

∥∥∥∥2

HS

696

= lim
ε→0

(
Eθ∼σ

[
π

2ε2

∫
1
{
|⟨x, θ⟩| ≤ ε
|⟨y, θ⟩| ≤ ε

}
⟨Pθ⊥H(k)(x), Pθ⊥H(k)(y)⟩f(x)f(y)dγ(x, y)697

−
√

2π
ε

∫
1{|⟨x, θ⟩| ≤ ε}⟨Pθ⊥H(k)(x), Pθ⊥H(k)(y)⟩f(x)f(y)dγ(x, y)698

+
∫
⟨Pθ⊥H(k)(x), Pθ⊥H(k)(y)⟩f(x)f(y)dγ(x, y)

])
699

=
∫

(h1(x, y)− 2h2(x, y) + h3(x, y)) f(x)f(y)dγ(x, y),700
701

where702

h1(x, y) = limε→0 Eθ∼σ
π

2ε2 1
{

|⟨x,θ⟩|≤ε
|⟨y,θ⟩|≤ε

}
⟨Pθ⊥H(k)(x), Pθ⊥H(k)(y)⟩,703

h2(x, y) = limε→0 Eθ∼σ

√
2π
ε 1 {|⟨x, θ⟩| ≤ ε} ⟨Pθ⊥H(k)(x), Pθ⊥H(k)(y)⟩,704

h3(x, y) = Eθ∼σ⟨Pθ⊥H(k)(x), Pθ⊥H(k)(y)⟩.705

By Proposition 32, we have706

h1(x, y) = Cn

|x||y|
√

1−
〈

x
|x| ,

y
|y|

〉2
Eθ1∼U(Sn−1∩x⊥∩y⊥)⟨Pθ⊥

1
H(k)(x), Pθ⊥

1
H(k)(y)⟩707

for some constant Cn depending only on the dimension, and which is smaller than a universal708

constant C > 0. From this point on, the expression Ck will denote a constant that depends709

only on k, whose value may vary between different instances.710

By Proposition 33 there are polynomials p1, p2 of degree at most 3k, with coefficients711

bounded by Ckn
k, such that h1(x, y) = 1

|x||y|

(
p1(ρ(x,y),|x|,|y|)√

1−ρ(x,y)2
+ p2(ρ(x, y), |x|, |y|)

)
where712

ρ(x, y) =
〈

x
|x| ,

y
|y|

〉
.713

Since the coefficients of p1 are bounded by Ckn
k, we have p1(ρ(x, y), |x|, |y|) ≤ Ckn

k(|x|+714

1)k(|y| + 1)k. By taking the Taylor expansion of the function s → 1√
1−s2 of order 2k + 4,715

we conclude that there exists a polynomial q(·) of degree 4k + 4 such that h1(x, y) =716
q(ρ(x,y))p1(ρ(x,y),|x|,|y|)+p2(ρ(x,y),|x|,|y|))

|x||y| + Ok

(
nk(1 + |x|)k(1 + |y|)kρ(x, y)4k+4) . By Cauchy-717

Schwartz and since Ex∼γ |x|2k ≤ Ckn
k and Ex,y∼γ

[
|ρ(x, y)|ℓ

]
≤ Cℓn

−ℓ/2, we have nk
∫

(|x|+718

1)k(|y| + 1)kρ(x, y)4k+4f(x)f(y)dγ(x, y) ≤ 1
n2Ck∥f∥2

2. The last two displays imply that719

there exists a polynomial q1 of degree at most 8k so that
∫
h1(x, y)f(x)f(y)dγ(x, y) =720 ∫

q1(ρ(x, y), |x|, |y|)dγ(x, y) + Ok

(
∥f∥2

2
n2

)
. Following a similar argument with the terms h2721

and h3, we conclude that there exists a polynomial p of degree at most 8k such that722

Q(f) =
∫
p (ρ(x, y), |x|, |y|) f(x)f(y)dγ(x, y) + Ok

(
∥f∥2

2
n2

)
. Since f is 0-homogeneous, by723

polar integration one learns that for all k1, k2, k3, there exist constants Ck1,k2,k3 , C
′
k1,k2,k3

724

such that
∫ ∫
⟨x, y⟩k1 |x|k2 |y|k3f(x)f(y)dγ(x)dγ(y) can be written as725

= Ck1,k2,k3

∫ ∫ 〈
x

|x|
,
y

|y|

〉k1

f(x)f(y)dγ(x)dγ(y)726

= C ′
k1,k2,k3

∫
Sn−1

∫
Sn−1

〈
x

|x|
,
y

|y|

〉k1

f(x)f(y)dσ(x)dσ(y).727

728
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We conclude that there exists a polynomial q(·) of degree at most 8k such that Qk(f) =729 ∫
Sn−1×Sn−1 q

(〈
x

|x| ,
y

|y|

〉)
f(x)f(y)dσ(x)dσ(y) +Ok(1/n2). ◀730

Proof of Lemma 30. For a function h ∈ L2(Sn−1), define by ProjSk
h the orthogonal pro-731

jection of h into the subspace spanned by spherical harmonics of degree k. An application732

of Schur’s lemma (or the Funk-Hecke formula) ensures that for every polynomial g de-733

gree ℓ there exist constant α1, ..., αℓ such that
∫
Sn−1

∫
Sn−1 f(x)f(y)g(⟨x, y⟩)dγ(x)dγ(y) =734 ∑

i≤ℓ αi∥ProjSi
f∥2

L2(Sn−1) Thus, by Proposition 31 we learn that there are some (αi)8k
i=0 such735

that736

Q(f) =
∑

0≤i≤8k

αi∥ProjSi
f∥2

L2(Sn−1) +Ok(1/n2). (12)737

(in the last formula, by slight abuse of notation, on the right hand side the function f738

should be understood as its restriction to the sphere). Now, for any j ∈ N there exists a739

function hj depending only on x1 such that ∥ProjSi
hj∥2

L2(Sn−1) = 1{i=j}. Therefore, defining740

f̃(x) =
∑

j hj

(
x1
|x|

)
∥ProjSi

f∥L2(Sn−1), we have ∥ProjSi
f∥L2(Sn−1) = ∥ProjSi

f̃∥L2(Sn−1) for741

all i, and therefore by (12), we have |Q(f) − Q(f̃)| = O(1/n2). Moreover, ∥f∥L2(γ) =742

∥f∥L2(Sn−1) = ∥f̃∥L2(Sn−1). This completes the proof. ◀743

5.4 Finishing the proof744

Let f : Rn → R be a function which has the form f(x1, ..., xn) = h
(
x1

√
n

|x|

)
for some745

polynomial h : R→ R of degree at most 8k and with ∥f∥L2(γ) = 1. In light of Lemma 30,746

Theorem 29 will be concluded by showing that747

Q(f) = Ok(1/n2). (13)748

Let θ be uniform in Sn−1. We first show that, by symmetry, we can essentially assume in our749

calculations that θ ∈ span{e1, e2}. Let us write θ1 = ⟨θ, e1⟩ and define θ̃ := e1θ1 +e2
√

1− θ2
1.750

By symmetry of the function f to orthogonal transformations which keep e1 fixed, we have751

Q(f) = Eθ1∥Pθ̃⊥(bk(f ; θ̃)− bk(f))∥2
HS . In order to understand the role of the projection onto752

the subspace θ̃⊥, define an orthonormal basis to θ̃⊥ as follows: Set e′
1 =

√
1− θ2

1e1 − θ1e2753

and e′
i = ei+1 for i = 2, ..., n− 1, so that (e′

i)n−1
i=1 form an orthonormal basis for θ̃⊥. We have,754

755

∥Pθ̃⊥(bk(f ; θ̃)− bk(f))∥2
HS =

∑
(i1,...,ik)∈[n−1]k

(
bk(f ; θ̃)[e′

i1
, ..., e′

ik
]− bk(f)[e′

i1
, ..., e′

iℓ
]
)2
. (14)756

Fix I = (i1, ..., iℓ) ∈ [n− 1]ℓ. There exists a function JI and α(I) ∈ [k] such that757

H(k)(x)[e′
i1
, ..., e′

iℓ
] = Hα(I)(⟨x, e′

1⟩)JI(ProjL(x)), (15)758

where L = span(e′
2, ..., e

′
n−1). Let Γ1 ∼ N (0, 1),Γ2 ∼ N (0, 1),Γ3 ∼ N(0,ProjL) be independ-759

ent. In this case, note that e′
1Γ1 + θ̃Γ2 + Γ3

(d)= N (0, In). We therefore have by equation (15)760

and by the definition of bk(f ; θ̃),761

bk(f ; θ̃)[e′
i1
, ..., e′

iℓ
] = E

[
Hα(I)(Γ1)JI(Γ3)h

( √
1− θ2

1Γ1√
(Γ2

1 + |Γ3|2)/n

)]
, (16)762
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and on the other hand,763

bk(f)[e′
i1
, ..., e′

iℓ
] = E

[
Hα(I)(Γ1)JI(Γ3)h

( √
1− θ2

1Γ1 + θ1Γ2√
(Γ2

1 + Γ2
2 + |Γ3|2)/n

)]
. (17)764

The assumption ∥f∥2 = 1 amounts to765

E

h( Γ1√
(|Γ3|2 + Γ2

1 + Γ2
2)/n

)2
 = 1. (18)766

The next lemma follows from a direct calculation.767

▶ Lemma 34. Assume that n is large enough. Let Γ1,Γ2 ∼ N (0, 1) and Γ3 ∼ N (0, In−2) be768

independent. Let γ̃ be the density of the random varianble Γ1√
(|Γ3|2+Γ2

1+Γ2
2)/n

and let γ be the769

standard Gaussian density. Then 1
2 ≤

γ̃(s)
γ(s) ≤ 2, ∀s ∈ [−n0.1, n0,1].770

Equation (18) and Lemma 34 imply that ∥h∥L2(γ) ≤ 2 and771

E

h( Γ1√
|Γ3|2/n

)2
 ≤ 2. (19)772

In what follows, we denote by Ck a constant depending only on k whose value may change773

between different appearances. Since H ′
ℓ(x) = ℓHℓ−1(x), for every ℓ there exists a constant774

Cℓ such that any Hermite polynomial Hℓ with ℓ ≤ k satisfies |Hℓ(x(1 − s)) − Hℓ(x)| ≤775

s|x|ℓmax|y|≤|x| |Hℓ−1(y)| ≤ Cks(2 + |x|)k, ∀s ∈ (0, 1). Moreover since h is a polynomial of776

degree at most 8k with ∥h∥L2(γ) ≤ 2, we conclude that777

|h(x(1− s))− h(x)| ≤ Cks(2 + |x|)8k, ∀s ∈ (0, 1). (20)778

So we can write bk(f ; θ̃)[e′
i1
, ..., e′

ik
] = E

[
Hα(Γ1)JI(Γ3)h

(
Γ1√

|Γ3|2/n

)]
+ Tres[e′

i1
, ..., e′

ik
]779

where, relying on (15) and on (16),780

Tres = E

[
H(k)(Γ2θ̃ + Γ1e

′
1 + Γ3)

(
h

(
Γ1√
|Γ3|2/n

)
− h

( √
1− θ2

1Γ1√
(Γ2

1 + |Γ3|2)/n

))]
781

By Parseval’s inequality, we have782

∥Tres∥2
2 = E

(h( Γ1√
|Γ3|2/n

)
− h

( √
1− θ2

1Γ1√
(Γ2

1 + |Γ3|2)/n

))2
783

(20)
≤ CkE



∣∣∣∣∣∣∣∣
√

1−θ2
1Γ1√

Γ2
1+|Γ3|2

− Γ1√
|Γ3|2

Γ1√
|Γ3|2

∣∣∣∣∣∣∣∣ (2 + |Γ1|)8k


2784

= CkE


∣∣∣∣∣∣

√
1− θ2

1√
Γ2

1
|Γ3|2 + 1

− 1

∣∣∣∣∣∣ (2 + |Γ1|)8k

2
785

≤ CkE

[((
θ2

1 + Γ2
1

|Γ3|2

)
(2 + |Γ1|)8k

)2]
≤ Ck

(
θ4

1 + 1
n2

)
.786

787
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In a similar manner, (20) and (17) imply that bk(f)[e′
i1
, ..., e′

ik
] = E

[
Hα(I)(Γ1)JI(Γ3)h

(√
1−θ2

1Γ1+θ1Γ2√
|Γ3|2/n

)]
+788

T ′
res[e′

i1
, ..., e′

ik
] with ∥T ′

res∥2
2 ≤ Ck

(
θ4

1 + 1
n2

)
. Note, however, that since Hα(I) is an eigen-789

vector of the heat operator, we have790

E

[
Hα(I)(Γ1)JI(Γ3)h

(√
1− θ2

1Γ1 + θ1Γ2√
|Γ3|2/n

)]
= E

[
JI(Γ3)E

[
Hα(I)(Γ1)h

(√
1− θ2

1Γ1 + θ1Γ2√
|Γ3|2/n

)∣∣∣∣∣Γ3

]]
791

= (1− θ2
1)α(I)/2E

[
Hα(I)(Γ1)JI(Γ3)h

(
Γ1√
|Γ3|2/n

)]
.792

793

We conclude that bk(f ; θ̃)[e′
i1
, ..., e′

ik
]− bk(f)[e′

i1
, ..., e′

ik
] equals:794

Tres[e′
i1
, ..., e′

ik
]− T ′

res[e′
i1
, ..., e′

ik
] +
(

1− (1− θ2
1)α(I)/2

)
E

[
Hα(I)(Γ1)JI(Γ3)h

(
Γ1√
|Γ3|2/n

)]
,795

796

Now, by Parseval,797

∑
I=(i1,...,ik)∈[n−1]k

(
1− (1− θ2

1)α(I)
)2

E

[
Hα(I)(Γ1)JI(Γ3)h

(
Γ1√
|Γ3|2/n

)]2

798

≤ k2θ4
1E

h( Γ1√
|Γ3|2/n

)2
 (19)
≤ Ckθ

4
1,799

800

Combining the last two displays with equation (14), we finally attain801

∥Pθ̃⊥(bk(f ; θ̃)− bk(f))∥2
HS ≤ Cθ4

1 + 4∥T ′
res∥2

2 + 4∥Tres∥2
2 ≤ Ck

(
θ4

1 + 1
n2

)
.802

803

Since Eθ4
1 = O(1/n2), taking expectation over θ establishes (13), and completes the proof of804

Theorem 29.805

5.5 Loose ends806

Proof of Proposition 32. Denote by σn the unique rotationally-invariant measure on the unit807

sphere in Rn. A standard calculation (see [15, Equation (24)]) shows that the density of an808

ℓ-dimensional marginal of σn has the form ψn,ℓ(x) = ψn,ℓ(|x|) = Γn,ℓ

(
1− |x|2

)n−ℓ−2
2 , |x| ≤ 1809

for a constant Γn,ℓ. By continuity, limε→0
1
εE1{|⟨x, θ⟩| ≤ ε} = limε→0

1
εE1

{
|⟨x/|x|, θ⟩| ≤ ε

|x|

}
=810

2
|x| Γn,1. By the continuity of g,811

lim
ε→0

1
ε
E [1{|⟨x, θ⟩| ≤ ε}g(θ)] = lim

ε→0

1
ε
E
[
1{|⟨x, θ⟩| ≤ ε}g

(
Projx⊥θ

|Projx⊥θ|

)]
,812

and the first part of the proposition follows by symmetry to revolution about x. Now, for813

the second part, for ρ ∈ [0, 1] denote V (ρ) = Vol
({

(x, y) : |x| < 1, |ρx+
√

1− ρ2y| < 1
})

,814

the volume of the rhombus with angle arcsin(ρ) and height 2. A calculation shows that815

for all ρ < 1/2, V (ρ) = 4√
1−ρ2

. So we have by continuity the following expression for816

limε→0
1
ε2 E [g(θ)1{|⟨x, θ⟩| ≤ ε, |⟨y, θ⟩| ≤ ε}]:817

= lim
ε→0

1
|x||y|ε2E

[
g

( Projx⊥∩y⊥θ

|Projx⊥∩y⊥θ|

)
1{|⟨x̂, θ⟩| ≤ ε, |⟨ŷ, θ⟩| ≤ ε}

]
818

= Γn,2V (⟨x̂, ŷ⟩)
|x||y|

E
[
g

( Projx⊥∩y⊥θ

|Projx⊥∩y⊥θ|

)]
.819

820
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The proposition follows. ◀821

Proof of Proposition 33. Both expressions are invariant to orthogonal transformations ap-822

plied to both x, y, and are therefore functions of ⟨x, y⟩, |x| and |y|. By applying a rotation,823

assume that824

x ∈ span(e1), y ∈ span(e1, e2), x1 ≥ 0, y2 ≥ 0. (21)825

Evidently, for any fixed θ and indices i1, ..., ik ∈ [n]k, the expression826

Pθ⊥H(k)(x)[ei1 , ..., eik
]Pθ⊥H(k)(y)[ei1 , ...eik

]827

is a polynomial of degree at most k in x1, y1, y2 with coefficients depending only on k. Since828

the distribution of θ1, θ2 does not depend on x, y given the above assumption, we have that829

restricted to (21), the two expressions E⟨Pθ⊥
1,2
H(k)(x),Pθ⊥

1,2
H(k)(y)⟩HS , are polynomials of830

degree at most k in x1, y1, y2 with coefficients bounded by Ok(nk). Note that under (21),831

we have x1 = |x|, y1 = ρ(x, y)|y|, y2 =
√

1− ρ(x, y)2|y|. Thus, we can express the above832

expressions as polynomials of degree at most 2k in |x|, |y|, ρ(x, y) and
√

1− ρ(x, y)2 as long833

as (21) holds. Since the above expressions are invariant under rotations, these forms will834

hold true in general. This completes the proof. ◀835
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A Integrality Gap for Subspaces Near-Intersection920

In this section we sketch an integrality gap instance for the semidefinite program that921

minimizes E(u,v)∈E

[
|ProjΘ⊥

e
(σ(u))− ProjΘ⊥

e
(σ(v))|22

]
. Consider the following graph G =922

(V,E): its vertices correspond to all unit vectors v ∈ Rk where coordinates are taken up to923

sufficiently large precision with respect to δ > 0. The subspace associated with the vertex is924

the one that is spanned by v. For the vertex corresponding to vector v there is an edge that925

touches it for every unit vector Θ ∈ Rk (up to the aforementioned precision) and it connects926

it to a vertex associated with a random vector u ∈ Rk such that
∣∣v|Θ⊥ − u|Θ⊥

∣∣
2 ≈

√
δ927

(the approximation reflects the precision error). Note that this instance of Subspaces Near-928

Intersection has a vector solution given by the unit vector associate with every vertex, and it929

achieves value approximately δ by construction. Nevertheless, there is no feasible assignment930

σ : V → Rk where |ProjΘ⊥
e

(σ(u)) − ProjΘ⊥
e

(σ(v))|2 is typically 0.001
√
δ, simply because931

only the prescribed unit vector is in the subspace of each vertex.932
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