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Abstract9

We give an efficient deterministic algorithm that outputs an expanding generating set for any10

finite abelian group. The size of the generating set is close to the randomized construction of Alon11

and Roichman [9], improving upon various deterministic constructions in both the dependence on12

the dimension and the spectral gap. By obtaining optimal dependence on the dimension we resolve13

a conjecture of Azar, Motwani, and Naor [14] in the affirmative. Our technique is an extension of14

the bias amplification technique of Ta-Shma [40], who used random walks on expanders to obtain15

expanding generating sets over the additive group of Fn
2 . As a consequence, we obtain (i) randomness-16

efficient constructions of almost k-wise independent variables, (ii) a faster deterministic algorithm for17

the Remote Point Problem, (iii) randomness-efficient low-degree tests, and (iv) randomness-efficient18

verification of matrix multiplication.19
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1 Our Contributions28

1.1 Main Result29

A graph is an expander if there exists a constant α > 0 such that the spectral gap of its30

adjacency matrix (namely, the difference between its top eigenvalue and its second eigenvalue)31

is at least α. Such graphs are very well-connected in the sense that they lack sparse cuts.32

Expanders that are additionally sparse are immensely important in computer science and33

mathematics (see, e.g. the survey [28]).34

Cayley graphs are an important class of graphs built from groups. Given a group G and35

a generating set S ⊂ G, the graph Cay(G,S) has vertex set G and edges (g, g · s) for all36

g ∈ G, s ∈ S. In addition to describing various well-known graphs such as the hypercube37

and the torus, Cayley graphs of (non-abelian) groups gave the first explicit constructions38

of near-optimal expander graphs [34]. Moreover, their algebraic structure makes Cayley39

1 Corresponding author.

© Akhil Jalan and Dana Moshkovitz;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 40; pp. 40:1–40:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akhil@cs.utexas.edu
mailto:akhil@cs.utexas.edu
mailto:danama@cs.utexas.edu
mailto:danama@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.40
https://arxiv.org/abs/2105.01149
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


40:2 Near-Optimal Cayley Expanders for Abelian Groups

graphs easier to analyze. In particular, the eigenvectors and eigenvalues of a Cayley graph40

are well-understood through the Fourier transform on the group.41

When is a Cayley graph an expander? Alon and Roichman showed that given a group42

G, integer n ≥ 1, and ε > 0, taking a uniformly random subset S ⊂ Gn of size O(n log(|G|)
ε2 )43

gives an expander with spectral gap 1 − ε, with high probability [9]. They also proved a44

nearly matching lower bound of |S| = Ω((n log(|G|)
ε2 )1−o(1)) when G is abelian. When G = F245

the lower bound is Ω( n
ε2 log(1/ε) ) [6] 2.46

An explicit construction with parameters matching the Alon-Roichman bound has re-47

mained elusive, despite being widely studied in the pseudorandomness literature [32, 35, 6,48

36, 1, 7, 26, 14, 23, 12, 17, 11].49

The best known results achieve O((log(|G|) + n2

ε2 )5) for arbitrary abelian G [12], O(n
2

ε2 )50

for abelian G where |G| ≤ log(n
2

ε2 )O(1), and O(n log(|G|)O(1)

ε11 ) for general G [23]. For solvable51

subgroups of permutation groups one can improve this to O(n
2

ε8 ) [11].52

In this paper we give an explicit construction of expanding generating sets for abelian53

groups whose size is near the Alon-Roichman bound.54

I Theorem 1. There is a deterministic, polynomial-time algorithm which, given a generating55

set of an abelian group G, integer n ≥ 1, and ε > 0, outputs a generating set S ⊂ Gn of size56

O(n log(|G|)O(1)

ε2+o(1) ) such that Cay(Gn, S) has spectral gap 1− ε.57

Our construction immediately improves parameters in several applications - see Section58

1.3 for details. We remark that in most settings, one fixes a group G while n→∞ and ε→ 0.59

In this regime, since |G| is a constant, the size of the generating set in Theorem 1 is optimal60

up to an ε−o(1) factor. The o(1) term in the exponent approaches 0 as ε→ 0.61

Expanding Cayley graphs are equivalent to pseudorandom objects called ε-biased sets.62

These were originally defined over Fn2 by Naor and Naor [35]. A set S ⊆ Fn2 is said to be63

ε-biased if for every non-empty T ⊆ [n], we have E
x∈S

[
⊕
i∈T

xi] = 1/2± ε.64

Naor and Naor initiated a long line of work culminating in a recent breakthrough result65

by Ta-Shma, that achieves |S| = O( n
ε2+o(1) ) [40]. This construction approaches the Alon-66

Roichman bound as ε→ 0.67

Ta-Shma’s construction follows previous work in using a 2-step “bias amplification”68

approach. First, identify an explicit set S0 ⊂ Fn2 with constant bias, usually through69

algebraic methods. Second, amplify the bias of S0 to any ε > 0 by performing a random walk70

on an expander graph. While this general method was already known, it could only achieve71

|S| = O( n
ε4+o(1) ). To break this barrier, Ta-Shma identified a graph structure obtained from72

a “wide replacement product", which was more effective for the bias amplification step and73

resulted in |S| = O( n
ε2+o(1) ).74

Our main contribution is to show that the wide replacement walk is a near-optimal75

“character sampler,” and therefore also amplifies bias well for abelian Cayley graphs.76

1.2 Wide Replacement Walks are Near-Optimal Character Samplers77

Random walks on expander graphs are useful for a variety of algorithmic purposes. A classical78

fact is that expander walks are good approximate samplers, in the sense that a sufficiently79

long random walk on an expander will visit sets of density δ for approximately a δ fraction80

2 It is possible that this lower bound is tight. A candidate construction based on algebraic-geometric
codes could achieve this lower bound [17].
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of the steps. This is called the “expander Chernoff bound” and one can characterize this as81

the property that expander walks fool a suitable test function.82

Ta-Shma observed that expander walks fool the much more sensitive class of parity83

functions on {0, 1}n as well. Parity functions are sensitive to input perturbations - flipping a84

single bit in the input can change the output. The classical expander Chernoff bound is not85

fine-grained enough to prove that t-step expander walks fool parity functions. The fact that86

they nevertheless do fool parity functions is therefore surprising, and Ta-Shma referred to87

this fact as “expanders are good parity samplers” [40].88

Since parity functions are just the characters of Fn2 , we can ask: do expander walks also89

fool the characters of more general classes of groups? We show that this is indeed true, and90

therefore “expander walks are good character samplers.” Moreover, just as in the F2 case, a91

random walk on a wide replacement product of expander graphs is a near-optimal type of92

character sampler.93

Character sampling explained: Let us precisely explain what we mean by “character94

sampling.” A character of an abelian group is a homomorphism χ : G → C∗, where C∗ is95

the multiplicative group of complex numbers. The eigenvalues of an abelian Cayley graph96

Cay(G,S) are given by |Ex∼S χ(x)| for all characters χ. Note that the constant function97

that maps all values to 1 is a character, and the eigenvalue associated with it is the top98

eigenvalue. Therefore, we are interested in generating sets S such that |Ex∼S χ(x)| ≤ ε for99

all non-constant χ.100

For simplicity, consider the case G = Zd for some d ≥ 2. Let ωd := exp( 2πi
d ). In this case101

the characters are just the maps x 7→ ωx·jd for j = 0, 1, . . . , d− 1.102

Now, suppose we have some ε0-biased set G0 ⊂ G, where ε0 < 1 is a constant. First,103

observe that taking t independent samples from G0 and outputting their sum obtains a104

distribution with bias (ε0)t. However, since independent sampling also results in a distribution105

with support size |G0|t, there is no improvement in size as a function of bias.106

The idea of the random walk approach is to derandomize independent sampling by taking107

correlated samples. Specifically, identify G0 with the vertices of some degree-regular expander108

graph Γ. We need to show that taking a random walk of length t on Γ and then summing109

the elements in the path gives a distribution with lower bias than G0.110

A t-step walk on Γ gives a sequence of group elements (x0, . . . , xt) ∈ Gt+1
0 . We are111

interested in the bias of the random group element
∑
i xi. In general, we cannot hope that112

(
∑
i xi) is close to the uniform distribution in statistical distance. However, if Γ is an expander113

with second eigenvalue λ, then for every non-constant character χ the quantity |E[χ(
∑
i xi)]|114

is at most (ε0 + λ)bt/2c, where the expectation is over paths (x0, . . . , xt) in the graph. Notice115

that Ex∈G[χ(x)] = 0, so the random element (
∑
i xi) is close to uniform in the weaker sense116

of fooling characters. Therefore, the expander walk is a good “character sampler.”117

Why expanders are character samplers: We express the bias of the random walk118

distribution algebraically in terms of matrix norms corresponding to the random walk.119

Abusing notation, let Γ denote the random walk matrix of the graph Γ. Let the character120

χ∗ : Zd → C be the worst-case character for the random-walk distribution. Partition G0 into121

S0, . . . , Sd−1 depending on their values with respect to χ∗, so that x ∈ Sk ⇐⇒ χ∗(x) = ωkd .122

We need to track how often the walk enters S0, S1, . . . , Sd−1 ⊂ V (Γ). Identify each Si123

with an |Si|-dimensional subspace of CV (Γ). For i ∈ Zd let Πi : CV (Γ) → CV (Γ) be the124

projection onto this subspace. Finally, let Π =
∑
y∈Zd ω

y
dΠy be the weighted projection125

matrix.126

Given some initial distribution ~u on the vertices, the vector Γt~u tracks the distribution127

after taking a t-step walk on the graph. The matrix Π tracks how often the walk enters the128

FSTTCS 2021



40:4 Near-Optimal Cayley Expanders for Abelian Groups

sets S0, . . . , Sd−1, and so the bias of the random walk distribution can be bounded by the129

norm of (ΠΓ)t.130

Let V ‖ denote the subspace spanned by the all-ones vector ~1, and V ⊥ = (V ‖)⊥. For a131

vector v ∈ V ‖ ⊕ V ⊥, let v‖ and v⊥ denote the projections onto V ‖, V ⊥ respectively.132

While ‖ΠΓ‖ = 1 since ‖ΠΓ~1‖ = ‖Π~1‖ = 1, it turns out that ‖(ΠΓ)2‖ ≤ bias(G0) + 2λ(Γ),133

where λ(Γ) is the second eigenvalue of Γ in absolute value.134

To see this, notice that if ~v ∈ V ⊥ is a unit vector, then ‖ΠΓΠΓ~v‖ ≤ ‖ΠΓΠ‖λ(Γ)‖~v‖ ≤ λ(Γ).135

Therefore, the “bad” case is when ~v ∈ V ‖. Let u = 1√
|V (Γ)|

~1. Using the fact that ‖Π‖ = 1,136

‖ΠΓΠΓu‖ = ‖ΠΓΠu‖137

≤ ‖ΠΓ(Πu)‖‖+ ‖ΠΓ(Πu)⊥‖138

≤ ‖Π(Πu)‖‖+ λ(Γ)‖Π(Πu)⊥‖139

≤ ‖Π(Πu)‖‖+ λ(Γ)140
141

It remains to show that ‖Π(Πu)‖‖ ≤ bias(G0). To see this, notice that Π is a diagonal142

matrix and u is just ~1 scaled by a constant. Further, Π is a block-diagonal matrix of the form143

Π =


I|S0|

ωdI|S1|
. . .

ωd−1
d I|Sd−1|

144

Note that we have reordered the vertices of the graph in order of S0, S1 and so on.145

If the blocks are exactly the same size, then Πu ∈ V ⊥, because
∑
y∈Zd ω

y
d = 0. In146

general the blocks have different dimensions, but they are the same size up to the bias of G0.147

Therefore ‖(Πu)‖‖ ≤ bias(G0).148

It follows that a random walk on Γ is a good character sampler. However, this approach149

can never amplify bias fast enough to achieve a generating set smaller than O( |G0|
ε4+o(1) ). The150

reason is because while we can bound ‖(ΠΓ)2‖, we cannot bound ‖ΠΓ‖ below 1. Therefore,151

we effectively only gain from one in every two steps.152

Wide Replacement Walks are Near-Optimal Character Samplers: To circum-153

vent the “2-step barrier” of expander walks outlined above, Ta-Shma used the wide replacement154

walk on a product of two expander graphs [40]. The idea of the wide replacement walk is to155

take the product of a D1-regular graph Γ as before with an “inner graph” H on Ds
1 vertices,156

for some s ≥ 2. The product graph replaces every vertex of Γ with a copy of H (called a157

“cloud”) and then connects clouds to other clouds according to the edge structure of Γ.158

Analyzing the bias of the walk involves bounding the matrix norm of Π̇Γ̇Ḣ, where Γ̇ and159

Ḣ are random walk matrices on the product corresponding to Γ, H.160

Let V ‖ denote the subspace of vectors which are constant on the H-component of the161

product, and let V ⊥ = (V ‖)⊥.162

Similar to the above case, one can show that Π̇Γ̇Ḣ shrinks the norm of any v ∈ V ⊥ by163

a factor of λ(H). The difficult case is when v ∈ V ‖. Here we arrive at the core idea of the164

replacement product: if the inner graph H is pseudorandom with respect to Γ, then when165

the walk is in V ‖, the next s steps approximate the ordinary random walk on Γ.166

This is enough to circumvent the “2-step barrier” since in even the “bad case” where the167

walk is stuck in V ‖, we can shrink the bias as though it were taking an ordinary walk on Γ.168

As we showed above, this shrinks the bias from some ε0 to (ε0 + 2λ(Γ))bs/2c every s steps. If169
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we select Γ, H such that ε0 + 2λ(Γ) ≤ λ(H)2, then we conclude that we shrink the bias by a170

factor of λ(H)s−Os(1) every s steps. So we gain from s−O(1) out of every s steps.171

Going from the F2-case to the case of general abelian groups simply requires a more172

careful analysis of characters. We defer the full proof to Appendix 2.2.173

Morally speaking, the only difference in the analysis is that the projection matrix Π174

which tracks how often the walk enters each Si is different. This does not change the overall175

argument much; in particular, we can use almost identical graphs Γ, H as in [40].176

We conclude that a wide replacement walk allows us to amplify bias of a constant-biased177

subset G0 ⊂ Gn of size O(n log(|G|)O(1)) (e.g. the construction of [11]) to an ε-biased set of178

size O(n log(|G|)O(1)

ε2+o(1) ), nearly matching the Alon-Roichman bound. For explicit parameters of179

the construction, see Appendix C.180

1.3 Applications181

Explicit constructions of expander graphs are an essential component of algorithms, especially182

for derandomization. Here we are interested in the setting of constructing an expanding183

Cayley graph from a given abelian group G. Our construction achieves a near-optimal degree,184

which improves parameters in various applications. We defer precise statements of these185

results and the full proofs to the full version.186

Almost k-wise independence: A distribution D ∼ Gn is (ε, k)-wise independent if187

for every index set I ⊂ [n] of size k, the restriction of D to I is ε-close to uniform in188

statistical distance. Almost k-wise independent distributions are a fundamental object in189

and of themselves. They also have a variety of applications in derandomization, including190

load balancing [24], derandomization of Monte-Carlo simulations [24], derandomization191

of CSP approximation algorithms [21], and pseudorandom generators [22]. We note that192

certain applications (e.g. quantum t-designs [10]) really require almost k-wise independent193

distributions over arbitrary alphabet size rather than just the binary alphabet, which194

motivates our study of ε-biased sets over arbitrary abelian groups.195

Vazirani’s XOR Lemma asserts that an ε-biased distribution D is also (ε
√
|G|k, k)-wise196

indepdent for all k ≤ n. Therefore, by constructing an ε′-biased distribution where ε′ = ε√
|G|k

,197

we also obtain explicit constructions of (ε, k)-wise independent random variables on Gn.198

I Proposition 2 (Almost k-wise independent sets over abelian groups). Let G be a finite abelian199

group given by some generating set. For any ε > 0 and n ≥ k ≥ 1 there exists a deterministic,200

polynomial-time algorithm whose output is an (ε, k)-wise independent distribution over Gn.201

The support size is O(n·|G|
k+o(1)

ε2+o(1) ).202

Remote Point Problem: A matrix A ∈ Fm×n2 is (k, d)-rigid iff for all rank-k matrices203

R ∈ Fm×n2 , the matrix A − R has a row with at least d nonzero entries. Valiant initiated204

the study of rigid matrices in circuit complexity, proving that an explicit construction of an205

(Ω(n), nΩ(1))-rigid matrix for m = O(n) would imply superlinear circuit lower bounds [43].206

After more than four decades of research, state of the art constructions have yet to meet this207

goal [19].208

The Remote Point Problem was introduced by Alon, Panigrahy, and Yekhanin as an209

intermediate problem in the overall program of rigid matrix constructions [8]. Arvind and210

Srinivasan generalized the problem to any group [12].211

Let G be a group, n ≥ 1, and H ≤ Gn a subgroup given by some generating set. For a212

given G,H and integer r > 0, the Remote Point Problem is to find a point x ∈ Gn such213

that x has Hamming distance greater than r from all h ∈ H, or else reject. In the case of214

FSTTCS 2021



40:6 Near-Optimal Cayley Expanders for Abelian Groups

Gn = Fn2 , this is a relaxation of the matrix rigidity problem, since rather than finding m215

vectors x1, . . . , xm ∈ Fn2 whose linear span is far from all low-dimensional subspaces, we are216

given a single subspace and must find just a single point far from it.217

To find a remote point, existing algorithms first construct a collection of subgroups218

H1, . . . ,Hm ≤ Gm whose union covers all points of distance at most r from H. In the F2219

case, [8] find a point x 6∈
⋃
i

Hi by the method of pessimistic estimators. In the general case,220

[12] instead prove that any generating set S ⊂ Gn such that Cay(Gn, S) has sufficiently221

good expansion must contain a point outside of
⋃
i

Hi. They find this remote point by222

first constructing an expanding generating set S, and then exhaustively searching it. Their223

argument implicitly uses the fact that small-bias sets correspond to rigid matrices, albeit224

with weak parameters - this connection was developed further in [5].225

The construction of [12] for small-bias sets over abelian groups has size O((log(|G|)+ n2

ε2 )5)226

in general, and for log(|G|) ≤ log(n
2

ε2 )O(1) this is improved to O(n
2

ε2 ). Our algorithm improves227

the dependence on n from n2 to n.228

Randomness-Efficient Low-Degree Testing: Let Fq be the finite field on q elements.229

Low-degree testing is a property testing problem in which, when given query access to a230

function f : Fnq → Fq and d ≥ 1, one must decide whether f is a degree d polynomial or231

far (in Hamming distance) from all degree d polynomials. These tests are a key ingredient232

in constructions of Locally Testable Codes (LTCs) and Probabilistically Checkable Proofs233

(PCPs) [18].234

To test whether f is a degree-d polynomial, a natural test is to sample x, y ∼ Fn and235

check whether f(x) agrees with the unique (degree-d, univariate) polynomial obtained by236

Lagrange interpolation along d+ 1 points on the line {x+ ty : t ∈ Fq}.237

Rubinfeld and Sudan introduced a low-degree test using this idea [38]. It is given238

query access to the function f , along with a line oracle function g. Let L denote all lines239

{~a+ t~b : t ∈ Fq} ⊂ Fnq , where ~a,~b ∈ Fn. Given a description of a line, the line oracle g returns240

a univariate polynomial of degree d defined on that line. Hence we write g : L→ Fq[t], where241

the image of g is understood to only contain degree-d polynomials.242

If f is indeed a degree-d polynomial, then one can set g(`) = f |` for all ` ∈ L, and the243

following two-query test clearly accepts.244

(i) Select x, y ∈ Fn independently, uniformly at random.245

(ii) Let ` be the line determined by {x+ ty : t ∈ F}. Accept iff f(x) agrees with g(`)(x).246

They also showed this test is sound: when f is far from degree-d polynomials, the test247

rejects with high probability.248

Ben-Sasson et al derandomized this test by replacing the second uniform sample y with a249

sample from an ε-biased set [18]. This modification improves the randomness efficiency of250

the tests, and therefore the length of the resulting LTC and PCP constructions. Moreover,251

they showed that the soundness guarantees of low-degree tests are almost unchanged due to252

the expansion properties of the Cayley graph on Fnq .253

Our constructions of small-bias sets immediately imply improved randomness-efficiency254

of this low-degree test.255

I Proposition 3 (Improved [18] Theorem 4.1). Let Fq be the finite field of q elements, n ≥ 1,256

f : Fnq → Fq a function, and g : L→ Fq[t] a line oracle. There exists a degree-d test which257

has sample space size O(qn · n log(q)O(1)

ε2+o(1) ). For d ≤ q/3 and sufficiently small δ > 0, if the test258

accepts with probability ≥ 1− δ then f has Hamming distance at most 4δ from a degree d259

polynomial.260
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Randomness-Efficient Verification of Matrix Multiplication: Let R denote some261

finite field Fq or cyclic group Zq for q ≥ 2. Given A,B,C ∈ Rn×n, the matrix multiplication262

verification problem asks whether AB = C.263

Naively, one could multiply A,B and then check whether AB = C entry-wise in O(nω)264

time, where ω ≈ 2.373 [2]. A classical result of Freivalds suggests the following much simpler265

quadratic-time randomized algorithm: Sample x ∈ Rn and check whether ABx = Cx [27].266

Observe that the entries of ABx and Cx are linear functions of x. Therefore, sampling x267

from a small-bias set gives a randomness-efficient version of Freivalds’ algorithm, at the cost268

of slightly higher error. Our construction therefore gives the following randomness efficient269

algorithm for verification of matrix multiplication.270

I Proposition 4. Let R denote a finite field Fq or cyclic group Z/qZ. Given matrices271

A,B,C ∈ Rn×n and ε-biased set S ⊂ Rn, there exists randomized algorithm to decide whether272

AB = C with one-sided error ( 1
q +ε). Its runtime is O(n2) and it uses log(n log(q)O(1)

ε2+o(1) ) random273

bits.274

We note that if R = Z, there exists a deterministic O(n2) time algorithm to verify matrix275

multiplication [33]. However, this result relies on the fact that Z has characteristic zero. For276

the analysis to hold in the case of Zq, we would need a very strong bound on the entries of277

A,B,C - namely, that max
i,j
{|Ai,j |, |Bi,j |, |Ci,j |} ≤ q

1
n−1 .278

1.4 Related Work279

Explicit Constructions: Explicit constructions of expanding generating sets for Cayley280

graphs have been mostly studied in the pseudorandomness literature in the context of281

small-bias sets for derandomization. Naor and Naor gave a combinatorial construction over282

Fn2 of size O( nε3 ) [35]. Alon, Goldreich, Hastad, and Peralta used algebraic arguments to283

give constructions over finite fields Fn of size O(n
2

ε2 ), assuming the field size is bounded as284

log(|F|) < n
log(n)+log(1/ε) [6].285

Resarchers in various communities have obtained constructions that achieve size286

O(poly(n log(|G|)
ε )), but suboptimal exponents. In number theory and additive combinatorics287

researchers studying the case of n = 1 gave constructions over Zd of size O(( log(d)
ε )O(1)) [36],288

O( log(d)O(1)

ε2 ) [32], and O( d
εO(log∗(d)) ) [1].289

Other constructions equivalent to small-bias sets include O( (n−1)2

ε2 )-sized ε-discrepancy290

sets over finite fields of prime order p when n ≤ p [7], and ε-balanced codes over finite fields,291

corresponding to small-bias sets over Fnq of size O(n · q) with constant bias [31].292

Ta-Shma’s tour de force gave the first explicit construction of expanding generating sets293

of size O(n log(|G|)
ε2+o(1) ), nearly attaining the Alon-Roichman bound, but only for the special case294

of G = F2 [40]. Our work is an extension of Ta-Shma’s bias amplification technique to the295

more general setting of arbitrary abelian groups.296

Azar, Motwani, and Naor generalized the study of small-bias sets to finite abelian groups297

[14]. Over Znd they used character sum estimates to give a construction of size O((d+ n2

ε2 )C),298

where C ≤ 5 is Linnik’s constant [45]. Assuming the Extended Riemann Hypothesis,299

C ≤ 2 + o(1) [15]. When log(d) ≤ log(n
2

ε2 )O(C) they improve the size to O((1 + o(1))n
2

ε2 ).300

Arvind and Srinivasan proved that one can project small-bias sets over Znd to any abelian301

group Gn when d is the largest invariant factor of G. Therefore, using the construction302

from [14] they obtain small-bias sets over Gn with the same bias and size as [14], with303

d = O(log(|G|)) [12].304

FSTTCS 2021
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The most general setting is to consider Cayley graphs over non-abelian groups. Wigderson305

and Xiao derandomized the Alon-Roichman construction using the method of pessimistic306

estimators [44]. Arvind, Mukhopadhyay, and Nimbhorkhar later gave a derandomization307

for both directed and undirected Cayley graphs using Erdos-Renyi sequences [13]. However,308

both algorithms require the entire group table of Gn as input, rather than just a generating309

set. Since generating sets are of size O(n log(|G|)), these algorithms are exponentially slower,310

running in time O(poly(|G|n)) rather than O(poly(n log(|G|)). Nevertheless, they have311

applications to settings such as homomorphism testing [39], which Wigderson and Xiao312

derandomized using their construction of expanding generating sets [44].313

Chen, Moore, and Russell obtained generating sets of size O(n log(|G|)O(1)

ε11 ) over arbitrary314

groups Gn when |G| is a constant [23] . Like Ta-Shma, their technique is to use bias315

amplification via expander graphs; specifically, they amplify bias via an iterated application316

of a 1-step random walk on an expander graph. Alon in 1993, and later Rozenman and317

Wigderson in 2004, had already noted that this technique amplifies bias for G = F2 [25].318

Chen, Moore, and Russell generalized this analysis to all groups, using techniques from319

harmonic analysis and random matrix theory [23].320

Existing work seems far from obtanining constructions for non-abelian groups near the321

Alon-Roichman bound. Known work tends to concentrate on special classes of non-abelian322

groups with some useful algebraic structure. Chen, Moore, and Russell constructed generating323

sets of size O( (n log(|G|))1+o(1)

εO(1) ) for smoothly solvable groups with constant-exponent abelian324

quotients [23]. Their analysis exploits the structure of solvable groups via Clifford theory. It325

also hinges on the assumption that the quotients in the derived series have constant exponent.326

Arvind et al later gave a construction of size Õ( log(|G|)2−o(1)

ε8 ) for solvable subgroups G of327

permutation groups [11]. Their construction recursively generates expanding generating sets328

for quotients in the derived series of the group, and uses the thin sets construction of [1] as329

a base set. Unlike [23] they do not require successive quotients of the derived series to be330

small; however, their argument does rely on an O(log(n)) upper bound on the length of the331

derived series for any solvable G ≤ Sn, which is not true for solvable groups in general.332

Lower Bounds: Alon and Roichman gave a randomized upper bound of O(n log(|G|)
ε2 ) on333

the size of a generating set for any finite Gn with spectral gap (1− ε) [9]. In the same paper,334

they gave a nearly matching lower bound when G is abelian, of Ω((n log(|G|)
ε2 )1−o(1)). This335

is a sharper version of the folklore result that an abelian group Gn requires O(n log(|G|))336

generators for its Cayley graph to be connected.337

For non-abelian groups, the existence of sparse expanders means the best lower bound338

in general is the Alon-Boppana bound. This removes the dependence on |G| and n, only339

requiring a generating set of size Ω( 1
ε2 ) [3] to achieve spectral gap of 1− ε. Indeed, explicit340

constructions of Ramanujan graphs can be built from Cayley graphs of non-abelian groups341

[34], and therefore attain this bound.342

Expander Walks: Random walks on expander graphs are an essential tool in computer343

science. Rather than surveying the vast literature, we refer the reader to the surveys [28, 42].344

Two remarks are in order.345

First, our use of wide replacement walks is essentially a way of building expander graphs346

from other expander graphs. This is thematic of several previous works, such as the zig-zag347

product [37]. Note that the zig-zag product is just a modification of the replacement product;348

indeed, the (wide) replacement product itself can be used to give explicit, combinatorial349

constructions of Ramanujan graphs [16]. Ta-Shma used wide replacement walks to amplify350

spectral gaps of Cayley graphs on Fn2 [40]; this construction relied on previous constructions351

of expander graphs, although the expander graphs were not required to be Cayley graphs352
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themselves.353

Second, the fact that “expanders are good character samplers” is surprising given that354

characters are sensitive to input perturbations. A recent work of Cohen, Peri, and Ta-Shma355

uses Fourier-analytic techniques to classify a large class of Boolean functions which can be356

fooled by expander walks, including all symmetric Boolean functions [25].357

1.5 Open Problems358

In this work, we gave an efficient deterministic algorithm to compute an expanding generating359

set of an abelian group. Our construction achieves optimal dependence on dimension and360

near-optimal dependence on error, resulting in improvements in various applications. Here,361

we discuss some natural open questions raised by our work.362

Expanding generating sets of optimal size: The Alon-Roichman theorem proves363

that every group Gn has an expanding generating set S ⊂ Gn of size |S| = O( log(|G|)
ε2 ) [9].364

This construction has not been fully derandomized for any group; even in the case of Gn = Fn2 ,365

Ta-Shma’s construction only asympotically approaches a size of O( nε2 ) as ε→ 0. The actual366

size of the generating set is O( n
ε2+o(1) ), and this o(1) term is seemingly unavoidable when367

using expander walks [40].368

Similarly, our algorithm gives an expanding generating S ⊂ Gn of size O(n log(|G|)O(1)

ε2+o(1) ), for369

finite abelian G. The additional poly log(|G|) factor comes from the bounds on constant-bias370

subsets of abelian groups; any construction of a constant-bias set S ⊂ Gn of size O(n log(|G|))371

would immediately give expanding generating sets of size O(n log(|G|)
ε2+o(1) ). To our knowledge,372

not even a candidate construction exists which would give constant-bias subsets of size373

O(n log(|G|)) for abelian groups; this is an interesting and potentially easier open problem,374

since it requires none of the expander walks machinery that we need to get arbitrarily small375

ε.376

There is a candidate construction that could beat the Alon-Roichman bound for G = F2,377

based on algebraic-geometric codes [17]. The code construction would give an ε-biased set378

S ⊂ Fn2 of size |S| = O( n
ε2 log(1/ε) ), assuming a conjecture in algebraic geometry. The authors379

themselves note that they have “no idea” whether this conjecture is valid [17].380

Expanding generating sets of non-abelian groups: While wide replacement walks381

amplify bias quite naturally for abelian groups, it is unclear whether they can do so for general382

groups. Dealing with matrix-valued irreducible representations, rather than scalar-valued383

characters, makes the analysis of bias amplification considerably more involved; hence even384

the analysis of the 1-step walk is nontrivial [23]. It would be very interesting to see whether385

one can place algebraic conditions on a group that are weaker than commutativity, but still386

ensure that the wide replacement walk amplifies bias.387

Existing works on expanding generating sets for non-abelian groups have studied solvable388

groups, which generalize abelian groups [23, 11]. However, if we restrict the algorithm to389

input instances which are all non-abelian groups, then existence results suggest that one390

should be able to beat the Alon-Roichman bound.391

For example, it is known that for every finite simple non-abelian group Gn, there exists a392

generating set S ⊂ Gn such that Cay(Gn, S) has spectral gap 1− ε, and |S| is independent393

of n [20]. Therefore, restricting input instances to simple groups seems too easy, while an394

algorithm for all groups seems too hard. Is there some natural natural class of non-abelian,395

non-simple groups for which algorithms can efficiently find expanding generating sets near396

(or even below) the Alon-Roichman bound?397

Decoding over any finite field: A recent work of Jeronimo et al gives a decoding398

algorithm for a modified version of Ta-Shma’s codes [30]. Since our work gives ε-balanced399
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codes over any finite field, it would be interesting to extend both the modification of the400

codes and the decoding algorithm of [30] to this general setting.401

Classifying the power of expander walks on groups: So far we have discussed402

how random walks on expanders are good samplers in various ways, such as the expander403

Chernoff bound, parity sampling, and character sampling. Cohen, Peri, and Ta-Shma study404

the class of all Boolean functions that expander walks fool [25]. It would be very interesting405

to extend their results to functions on groups, perhaps using similar tools from harmonic406

analysis and representation theory. For example, for which groups G besides F2 do expander407

walks fool all symmetric functions on Gn?408

1.6 Organization409

The rest of this paper is organized as follows. In Section 2 we prove that our wide replacement410

walk construction gives an expanding generating set over any finite abelian group with near-411

optimal degree. Due to space constraints we defer some proofs to the full version of the412

paper.413

Appendix C contains the precise parameters of the construction. Appendices A and B414

contain technical preliminaries on Cayley graphs and wide replacement walks, respectively.415

2 Expanding Generating Sets for Abelian Groups416

Throughout this section, let G be a finite abelian group and n ≥ 1. In this section, we417

will describe an efficient deterministic algorithm to construct a generating set S ⊂ Gn418

such that the Cayley graph Cay(Gn, S) has second eigenvalue at most ε. The degree is419

|S| = O(n log(|G|)O(1)

ε2+o(1) ).420

The inputs to our algorithm are a generating set G′ ⊂ G, integer n ≥ 1, and desired421

expansion ε > 0. The algorithm proceeds as follows:422

(i) Construct an ε0-biased set S0 ⊂ Gn with support size O(n log(|G|)O(1)) for a constant423

ε0 < 1.424

(ii) Perform a wide replacement walk to amplify the bias of S0 to ε. Specifically, we425

identify S0 with the vertices of an outer graph Γ, and then choose an inner graph H in a426

manner described later. We emphasize that while Γ is an expander graph whose vertex set is427

S0, it is not required to be a Cayley graph on S0. For the purposes of this step, the group428

structure of G is irrelevant.429

Let t ≥ 1 be the walk length, to be chosen later. The output ε-biased set S ⊂ Gn430

corresponds to length-t walks on the wide replacement product of Γ and H. Given a sequence431

of vertices (x0, ..., xt) ∈ V (Γ) × V (H), we add up the components corresponding to V (Γ),432

which are just elements of S0, to obtain some element of Gn. This gives the elements of S.433

Next, let us informally describe parameter choices (precise choices are in section C). Let434

D2 be the degree of H. At every step in the wide replacement walk we need to specify some435

i ∈ [D2] to take a step. It follows that S ⊂ Gn has a size of O(n log(|G|)O(1) ·Dt
2). We must436

choose t large enough to shrink the bias to ε. The choice t (walk length) and D2 (degree of437

the inner graph) will determine the overall size of the output generating set.438

These choices hinge on the bias amplification bound of the wide replacement walk. We439

show that the s-wide replacement walk shrinks the bias by a factor of O(s2 · λ(H)s−3) every440

s steps. However, the size of the walk distribution grows by a factor of O(Ds
2) every s steps.441

This imperfect bias amplification is why we cannot get optimal dependence on ε, as that442

would require that the bias shrinks by exactly O(λ(H)s) every s steps.443
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Therefore we cannot choose H to be an optimal spectral expander with λ(H) = Θ( 1√
D2

).444

Instead, optimizing for the size of the output distribution, we set s = Θ( log(1/ε)1/3

log log(1/ε)1/3 ),445

second eigenvalue λ(H) = Θ( s·log(D2)√
D2

), and the walk length t = Θ( log(1/ε)
log(1/λ(H)) ·

s2

s2−5s+1 ) =446

Θ(( log(1/ε)
log(1/λ(H)) )1+o(1)). This is exactly the reason our output set has a dependence of O( 1

ε2+o(1) )447

rather than exactly O( 1
ε2 ), and the same is true for [41].448

This section is organized as follows. In section 2.1, we describe how one can identify the449

elements S0 with the vertices of an expander graph, and then perform the ordinary random450

walk on the graph to amplify the bias of S0, albeit suboptimally. In section 2.2 we show how451

to express the bias of a wide replacement walk algebraically. In section 2.3 we prove an upper452

bound on this algebraic expression, therefore proving the bias amplification bound of the453

wide replacement walk. Finally, in section C we describe the details and exact parameters454

for the wide replacement walk, as well as the ε0-biased subset of Gn.455

2.1 The ordinary expander walk456

Let G be a finite abelian group. For ease of notation, we will refer to G rather than Gn until457

section C, when we need to discuss parameters. Since Hn is a finite abelian group for all458

abelian H, there is no loss of generality.459

In this section we will show how to amplify the bias of a small-bias set in G by performing a460

random walk on an expander. This will be a lemma in the analysis of our actual construction,461

which involves a wide replacement walk.462

To state the bias amplification theorem, we need some notation.463

Let G = Zd1 ⊕ · · · ⊕Zdk be the invariant factor decomposition of G. Notice that di|dj for464

any i < j. In particular, all di divide dk. For x ∈ G write x = (x1, ..., xk), so that xi ∈ Zdi465

for each i.466

Fix a nontrivial character χ : G → C∗ corresponding to a group element a ∈ G. Let467

a = (a1, ..., ak). Then for a given x ∈ G, χ(g) = ωa1·x
d1
· · ·ωak·xdk

. Since all di divide dk, we468

can write this as469

χ(g) = ω

∑k

i=1
( dkdi ai·xi) mod dk

dk
470

Now, let Sinit ⊂ G have bias ε0. Identify Sinit with the vertices of some degree-regular471

expander graph Γ. We write V := V (Γ) = Sinit. In order to understand the bias of a random472

walk on Γ with respect to χ, we have to track how often the walk enters vertices which map473

to ωdk , ω2
dk
, and so on.474

We will partition Sinit as follows. For y ∈ Zdk , let Sy be the elements of Sinit which are475

mapped to ωydk by χ. Formally, Sy = {x ∈ Sinit : y = (
∑k
i=1

dk
di
xi · ai) mod dk}. Observe476

that {Sy : y ∈ Zdk} is a partition of Sinit.477

Next, let t > 0 be the walk length. We will partition all length-(t+ 1) sequences in Sinit478

according to their sum. For y ∈ Zdk , let Ty = {b ∈ Zt+1
dk

: (
∑
i bi) mod dk = y}. Again,479

notice that {Ty : y ∈ Zdk} is a partition of Zt+1
dk

.480

Finally, fix y ∈ Zdk . The set Sy corresponds to some subset of the vertices of Γ. Therefore481

we can identify Sy with an |Sy|-dimensional subspace of CV . Let Πy : CV → CV be the482

projection matrix onto this subspace. Let Π =
∑
y∈Zdk

ωydkΠy. We write Π = Π(χ) to483

indicate the dependence on choice of χ.484

We can now state the bias amplification theorem for ordinary expander walks.485
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I Theorem 5 (Ordinary t-step expander walk). Let Sinit ⊂ G have bias ε0 and let Γ = (Sinit, E)486

be a d-regular expander graph with λ(Γ) = λ < 1. Suppose D ∼ G is the distribution induced487

by beginning at a uniform vertex and taking a t-step random walk (x(0), ..., x(t)) and then488

adding the results of the walk to get an element (
∑
i x

(i)) ∈ G.489

Let χ∗ : G → C∗ be the nontrivial character which maximizes the bias of D. Let490

Π = Π(χ∗), and ‖ · ‖ be the matrix operator norm. Finally, abusing notation, let Γ be the491

random walk matrix of Γ. Then,492

bias(D) = bias(χ∗) ≤ ‖(ΠΓ)tΠ‖493

Proof. Let u = 1√
|V (Γ)|

~1 be the normalized all-ones vector. Let a∗ ∈ G be the element494

corresponding to χ∗. Let (a∗1, ..., a∗k) ∈ Zd1 ⊕ · · · ⊕ Zdk denote a∗ written in the invariant495

factor decomposition.496

Let W ∼ V t+1 denote the distribution of all t-step walks on Γ. Let (x(0), ..., x(t)) ∼W be497

some sequence of random walk steps. So x(0) ∼ Sinit (since the walk begins at a uniformly498

random vertex) x(i+1) is a uniformly random neighbor of x(i). If ~v(i) ∈ CV is the distribution499

at step i, then ~v(i+1) = Γ~v(i).500

Recall that we use subscripts to denote invariant factors, so x = (x1, ..., xk) ∈
k⊕
i=1

Zdi .501

Bias(D) = BiasD(χ∗)502

=

∣∣∣∣∣ E
(x(0),...,x(t))∼W

k∏
i=1

ω
xi·a∗

i

di

∣∣∣∣∣503

=

∣∣∣∣∣∣∣∣ E
(x(0),...,x(t))∼W

ω

k∑
i=1

dk
di
xi·a∗

i

dk

∣∣∣∣∣∣∣∣504

=

∣∣∣∣∣∣
∑
y∈Zdk

ωydk P
(x(0),...,x(t))∼W

[y = (
t∑

j=0

k∑
i=1

dk
di
x

(j)
i · a

∗
i ) mod dk]

∣∣∣∣∣∣505

=

∣∣∣∣∣∣
∑
y∈Zdk

∑
b∈Ty

ωydk P
(x(0),...,x(t))∼W

[
t∧

j=0
(x(j) ∈ Sbj )]

∣∣∣∣∣∣506

=

∣∣∣∣∣∣
∑
y∈Zdk

ωydk(uT
∑
b∈Ty

ΠbtΓ · · ·Πb1ΓΠb0u)

∣∣∣∣∣∣507

=

∣∣∣∣∣∣∣uT (
∑

b∈Zt+1
dk

ω

∑
j
bj

dk
ΠbtΓ · · ·Πb1ΓΠb0)u

∣∣∣∣∣∣∣508

=

∣∣∣∣∣∣uT (
∑

bt∈Zdk

ωbtdkΠbt)Γ · · · (
∑

b1∈Zdk

ωb1
dk

Πb1)Γ(
∑

b0∈Zdk

ωb0
dk

Πb0)u

∣∣∣∣∣∣509

=
∣∣uT (ΠΓ)tΠu

∣∣510

≤ ‖(ΠΓ)tΠ‖511
512

J513
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We have thus obtained an algebraic expression for the bias of the walk distribution, which514

we will now upper-bound. We defer the proof to the full version.515

I Theorem 6 (Matrix norm bounds). Let Π,Γ be as before.516

(i) ‖Π‖ = 1.517

(ii) ‖(ΠΓ)2‖ ≤ ε0 + 2λ518

It follows that ‖(ΠΓ)tΠ‖ ≤ (ε0 + 2λ)bt/2c.519

Combining the two results in this section, it follows that a t-step walk amplifies the bias520

to (ε0 + 2λ)bt/2c.521

2.2 The wide replacement walk522

In this section and the subsequent one, we will show how the wide replacement walk amplifies523

bias more efficiently than an ordinary expander walk. We will proceed in a similar manner524

to the last section, by first obtaining an algebraic expression for the bias of the random walk525

distribution, and then upper-bounding the algebraic expression in section 2.3.526

2.2.1 Setup527

Let Γ = (Sinit, E) be a graph whose vertices are some constant-bias set Sinit ⊂ G as before.528

Suppose Γ is D1-regular. Let φΓ : [D1]→ [D1] be the local inversion function of Γ.529

Let s > 0 be an integer, and let H be a D2-regular expander graph on [D1]s vertices. We530

will abuse notation and use Γ, H to denote the random walk matrices of Γ, H respectively.531

Let V 1 = CSinit = CV (Γ) and V 2 = CDs1 = CV (H). We define three operators on V 1⊗V 2
532

that we need to describe the bias of the wide replacement walk. Let v1 ⊗ v2 ∈ V 1 ⊗ V 2.533

For i ∈ [s] define the projection matrix Pi : V 2 → CD1 as follows. Notice V 2 = CV (H) ∼=534

CDs1 . Identifying V (H) with ZsD1
, let Zi ⊂ V (H) correspond to {(0, ..., 0, ai, 0, ..., 0) ∈ ZsD1

:535

ai ∈ ZD1}. So we can identify Zi ⊂ V (H) with a D1-dimensional subspace of CV (H). Then536

let Pi : V 2 → CD1 be the projection onto this subspace.537

Given some v1 ∈ V 1 and j ∈ [D1], the vector v1[j] ∈ V 1 is a permutation of the538

coordinates of v1 based on the mapping of each vertex to its jth neighbor in Γ 3. This539

corresponds to taking a step in Γ, by moving along the edge numbered j incident to the540

current vertex. For w ∈ CD1 , let v1[w] =
∑D1
j=1 wj · v1[j].541

Finally, given the local inversion function φΓ : [D1] → [D1] of Γ and i ∈ [s], define542

ψ
(i)
Γ : [D1]s → [D1]s as the function which applies φΓ to the ith coordinate and leaves other543

coordinates unchanged. Since φΓ is a permutation on [D1], ψ(i)
Γ is a permutation on [D1]s.544

Abusing notation, let ψ(i)
Γ : CDs1 → CDs1 denote the permutation matrix which permutes545

coordinates according to ψ(i)
Γ .546

We are ready to define the three operators which describe the bias of the wide replacement547

walk.548

Ḣ(v1 ⊗ v2) = v1 ⊗H(v2)549

∀χ ∈ Ĝ, y ∈ Zd : Π̇y(χ)(v1 ⊗ v2) = Πy(χ)(v1)⊗ v2
550

551

3 This is well-defined as long as the graph Γ is d-regular, since its adjacency matrix is then just a sum of
d permutation matrices.
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∀` ∈ {0, 1, ..., s− 1} : Γ̇`(v1 ⊗ v2) = v1[P`(v2)]⊗ ψ(`)
Γ (v2)552

553

Note that each of these operators is a tensor product of operators on V 1, V 2, and hence554

preserves tensor products.555

Moreover, notice Ḣ, Γ̇t mod s are precisely the transition matrices of the H-step and556

Γ-step in the wide replacement walk at time t.557

For a character χ : G→ C∗ let Π̇(χ) =
∑
y∈Zdk

ωydkΠ̇y(χ). Π̇ plays the role of Π from the558

analysis of the ordinary expander walk.559

For notational convenience,560

L̇j(χ) := Π̇(χ)Γ̇jḢ561

2.2.2 Algebraic Expression for the Bias562

In this section we will express the bias of the wide replacement walk distribution in terms of563

the matrix norms of L̇0, ..., L̇s−1.564

I Proposition 7 (t-step s-wide replacement product walk). Let G be a finite abelian group.565

Let Sinit ⊂ G have bias ε0 and let Γ = (Sinit, E) be a D1-regular expander graph. Let H be a566

D2 regular expander on [D1]s vertices for some integer s ≥ 1.567

Let Dwalk ∼ G be the t-step s-wide replacement product walk distribution. It is defined by568

beginning at a uniform vertex and performing an t-step wide replacement wide on V (Γ)×V (H).569

Given a sequence of vertices ((a0, b0), ..., (at, bt)) ∈ V (Γ)× V (H) obtained from a walk, we570

output (
∑
i ai) ∈ G. Then Dwalk ∼ G is the distribution induced by taking all such t-step571

walks.572

We claim that if χ∗ : G → C∗ is the nontrivial character which maximizes the bias of573

Dwalk, and Π̇ = Π̇(χ∗), then using the notation from above,574

bias(Dwalk) = bias(Dwalk, χ
∗) ≤ ‖L̇s−1(χ∗) · · · L̇0(χ∗)‖bt/sc575

The proof is similar to that of Theorem 5. See the full version.576

It remains to be shown that this matrix norm is indeed bounded. To show that the577

wide replacement walk gains from s − O(1) out of every s steps, we need to show that578

‖L̇s−1 · · · L̇0‖ ≤ λ(H)s−O(1).579

2.3 Bounding the matrix norm580

In the previous section we showed that the bound the bias of the wide-replacement walk581

distribution, it suffices to bound the operator norm of the following matrix, defined with582

respect to the worst-case character χ∗ of the walk distribution:583

L̇s−1 · · · L̇0584

This is almost exactly the same matrix as the one analyzed in [41]. The difference is585

that the operator Π̇, instead of tracking how often the walk enters the sets in a bipartition586

of Sinit, now tracks how often the walk enters the sets in a dk-way partition of Sinit. Here587

dk = Ω(log(|G|)) is the largest invariant factor of G.588

As a consequence, the diagonal entries of Π̇ now come from the dkth roots of unity, rather589

than {±1}. The analysis of the matrix bound from [41] mostly carries through, although590

working over CV1 ⊗ CV 2 rather than the reals will require some care.591
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As in [41], our argument will proceed by considering arbitrary vectors v, w and analyazing592

〈v, L̇s1 · · · L̇0w〉. We will repeatedly decompose the vectors into their parallel and perpendic-593

ular components. Let V ‖ = V 1 ⊗~1 denote vectors whose H-component is a scalar multiple594

of ~1 (“parallel vectors”), and V ⊥ = (V ‖)⊥ (“perpendicular vectors”).595

Because of the spectral expansion of H, every time a vector is in V ⊥ we can show it596

shrinks by a factor of λ(H). The hard case is when vectors are in V ‖. Here, we will prove a597

technical lemma which is a straightforward generalization of the core lemma in [41]. The598

lemma shows if the walk distribution is in V ‖, then any sequence of s steps imitates a random599

walk of s steps on the outer graph Γ. This allows us to argue that the bias is amplified as600

though taking the ordinary random walk on Γ. If the bias so far is α, then this scales the601

bias by α 7→ (α+ 2λ(Γ))s/2 after s steps.602

This turns out to be enough. Let ε0 = bias(Sinit) be the bias of the initial set Sinit ⊂ G.603

Since ε0 is a constant, we can select graphs Γ, H such that ε0 + 2λ(Γ) ≤ λ(H)2. Therefore,604

while we do not gain a factor of (λ(Γ))s every s steps, we will gain according to a factor of605

(λ(H))s−O(1).606

Therefore, whether in the V ⊥ or V ‖ case, we shrink the bias by a factor of λ(H)s−O(1)
607

for every s steps.608

We begin by proving the technical lemma about parallel vectors. We will frequently use609

the following fact.610

I Proposition 8 (Operator-Averaging, [41] Claim 14). Let Ω be a finite set and P,Q probability611

distributions on Ω. Let ‖P −Q‖1 denote the difference of the distributions in the 1-norm.612

Further, let {Tx}x∈Ω be a family of linear operators on Cn indexed by Ω, such that for all613

x ∈ Ω, ‖Tx‖ ≤ 1. Let A = Ex∼P [Tx] and B = Ex∼Q[Tx]. We claim that for all v, w ∈ Cn614

that615

|〈Av,w〉 − 〈Bv,w〉| ≤ ‖P −Q‖1‖v‖‖w‖616

Next, we need to formalize the notion of the wide replacement walk “imitating” the617

ordinary random walk on the outer graph, which we do via the notion of a pseudorandom618

inner graph.619

I Definition 9. (Pseudorandom inner graph) Let Γ be a D1-regular graph with local inversion620

function φΓ : [D1]→ [D1]. Let H be a D2-regular graph on Ds
1 vertices. Let ζ ≥ 0. We say621

H is ζ-pseudorandom with respect to Γ if for all s-step sequences in the s-wide replacement622

walk, the corresponding V 1-instructions are ζ-close to Unif([D1]s) in `1-norm.623

Formally, let the adjacency matrix of H be H = 1
D2

∑D2
i=1 Ξi, where each Ξi is a per-624

mutation matrix 4. Let ξi : V (H)→ V (H) be the permutation map corresponding to Ξi. For625

0 ≤ k < s, let ψk : [D1]s → [D1]s be ψk(a0, ..., as−1) = (a0, ..., ak−1, φΓ(ak), ak+1, ..., as−1).626

Fix (j0, ..., js−1) ∈ [D2]s. For some (u1, u2) ∈ V (Γ)× V (H) let σj0(u2) = γj0(u2). For627

` > 0, let628

σj`,...,j0(u2) = γj`(ψ`−1(σj`−1,...,j0(u2)))629

We say (j0, ..., js−1) ∈ [D2]s is ζ-pseudorandom with respect to Γ if630

4 By the Birkhoff-von Neumann Theorem, the adjacency matrix of a d-regular graph is a sum of d
permutation matrices.
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‖(π0(σj0(Unif([D1]))), ..., πs−1(σjs−1,...,j0(Unif([D1]))))− Unif([D1]s)‖1 ≤ ζ631

We say the inner graph H is ζ-pseudorandom with respect to the outer graph Γ if for all632

(j0, ..., js−1) ∈ [D2]s, (j0, ..., js−1) is ζ-pseudorandom with respect to Γ.633

If we unravel the definition, this is simply requiring that H is compatible with the edge634

labeling of Γ in precisely the way that we want. Pseudorandomness is a strong condition on635

H which, by definition, guarantees the wide-replacement walk imitates the ordinary walk on636

Γ in a suitable sense.637

With this definition we can return to proving the lemma. We will begin by proving the638

pseudorandomness claim for the case where D2 = 1; the general case where D2 6= 1 follows639

from another application of operator averaging, viewing the matrix H as an average of D2640

permutation matrices. We defer the proofs to the full version.641

I Proposition 10 (Action on parallel vectors). Let ` ≤ s. Suppose that the sequence642

(j0, ..., j`−1) ∈ [D2]s is ζ-pseudoranom with respect to the local inversion function φ : [D1]→643

[D1]. Let Ξ̃j0 , ..., Ξ̃j`−1 denote the operators on V 1 ⊗ V 2 corresponding to the permutations644

ξj0 , ..., ξj`−1 on V (H). Let 1V (H) denote the normalized all-ones vector of length |V (H)|.645

For any τ = τ1 ⊗ 1V (H) and υ = υ1 ⊗ 1V (H),646

∣∣∣〈Π̇Γ̇`−1Ξ̃j`−1 · · · Π̇Γ̇0Ξ̃j0τ, υ〉 − 〈(πΓ)`τ1, υ1〉
∣∣∣ ≤ ζ‖τ‖‖υ‖647

I Corollary 11 (Generalized action on parallel vectors ([41] Theorem 27)). Suppose that648

H is ζ-pseudorandom with respect to the local inversion function φΓ of Γ. For every649

i1, i2 ∈ {0, 1, ..., s− 1}, and every τ, υ ∈ V ‖,650

∣∣∣〈L̇i2 · · · L̇i1τ, υ〉 − 〈(ΠΓ)i2−i1+1τ1, υ1〉
∣∣∣ ≤ ζ‖τ‖‖υ‖651

Now we are ready to prove bound the matrix norm of L̇s1 · · · L̇0, which expresses the bias652

of the wide replacement walk. Our argument will proceed by considering the quadratic form653

〈v, L̇s1 · · · L̇0w〉 for arbitrary v, w and then repeatedly decomposing v, w into their V ‖ and654

V ⊥ components. Because of the spectral expansion of H, every time a vector is in V ⊥ we655

can show it shrinks by a factor of λ2 = λ(H).656

The hard case is when vectors are in V ‖. Here, we will use Corollary 11 to argue that657

any sequence of s steps imitates a random walk on the outer graph Γ. This allows us to658

argue that the bias is amplified as though taking the ordinary random walk on Γ. This scales659

the bias by (ε0 + 2λ1)s/2 at every s steps.660

This is enough, as we can assume that ε0 + 2λ1 ≤ λ2
2. Therefore, while we do not gain a661

factor of (λ1)s every s steps, we will gain according to a factor of (λ2)s. Since λ2 < 1, the662

difference between gaining according to λ2 or λ1 does not matter asymptotically.663

I Theorem 12 (Bounding algebraic expression for bias). Suppose that:664

i) H is ζ-pseudorandom with respect to φΓ665

ii) ε0 + 2λ(Γ) ≤ λ(H)2
666

Then we obtain the following bound for the bias of the walk after s steps.667

‖L̇s−1 · · · L̇0‖ ≤ λ(H)s + sλ(H)s−1 + s2(λ(H)s−2 + ζ)668

We defer the proof to the full version.669



A. Jalan and D. Moshkovitz 40:17

References670

1 Miklós Ajtai, Henryk Iwaniec, János Komlós, János Pintz, and Endre Szemerédi. Construction671

of a thin set with small Fourier coefficients. Bull. London Math. Soc., 22(6):583–590, 1990.672

doi:10.1112/blms/22.6.583.673

2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix674

multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms675

(SODA), pages 522–539. SIAM, 2021.676

3 Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.677

4 Noga Alon. Explicit expanders of every degree and size. Combinatorica, pages 1–17, 2021.678

5 Noga Alon and Gil Cohen. On rigid matrices and u-polynomials. In 2013 IEEE Conference679

on Computational Complexity, pages 197–206. IEEE, 2013.680

6 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost681

k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.682

7 Noga Alon and Yishay Mansour. ε-discrepancy sets and their application for interpolation of683

sparse polynomials. Inform. Process. Lett., 54(6):337–342, 1995. doi:10.1016/0020-0190(95)684

00032-8.685

8 Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approximation algorithms686

for the nearest codeword problem. In Approximation, Randomization, and Combinatorial687

Optimization. Algorithms and Techniques, pages 339–351. Springer, 2009.688

9 Noga Alon and Yuval Roichman. Random Cayley graphs and expanders. Random Structures689

Algorithms, 5(2):271–284, 1994. doi:10.1002/rsa.3240050203.690

10 Andris Ambainis and Joseph Emerson. Quantum t-designs: t-wise independence in the691

quantum world. In Twenty-Second Annual IEEE Conference on Computational Complexity692

(CCC’07), pages 129–140. IEEE, 2007.693

11 V. Arvind, Partha Mukhopadhyay, Prajakta Nimbhorkar, and Yadu Vasudev. Expanding694

generating sets for solvable permutation groups. SIAM J. Discrete Math., 32(3):1721–1740,695

2018. doi:10.1137/17M1148979.696

12 V. Arvind and Srikanth Srinivasan. The remote point problem, small bias spaces, and697

expanding generator sets. In STACS 2010: 27th International Symposium on Theoretical698

Aspects of Computer Science, volume 5 of LIPIcs. Leibniz Int. Proc. Inform., pages 59–70.699

Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2010.700

13 Vikraman Arvind, Partha Mukhopadhyay, and Prajakta Nimbhorkar. Erdős-rényi sequences701

and deterministic construction of expanding cayley graphs. In Latin American Symposium on702

Theoretical Informatics, pages 37–48. Springer, 2012.703

14 Yossi Azar, Rajeev Motwani, and Joseph Naor. Approximating probability distributions using704

small sample spaces. Combinatorica, 18(2):151–171, 1998. doi:10.1007/PL00009813.705

15 Eric Bach and Jonathan Sorenson. Explicit bounds for primes in residue classes. Mathematics706

of Computation, 65(216):1717–1735, 1996.707

16 Avraham Ben-Aroya and Amnon Ta-Shma. A combinatorial construction of almost-ramanujan708

graphs using the zig-zag product. SIAM Journal on Computing, 40(2):267–290, 2011.709

17 Avraham Ben-Aroya and Amnon Ta-Shma. Constructing small-bias sets from algebraic-710

geometric codes. Theory Comput., 9:253–272, 2013. doi:10.4086/toc.2013.v009a005.711

18 Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient712

low degree tests and short PCPs via epsilon-biased sets. In Proceedings of the Thirty-Fifth713

Annual ACM Symposium on Theory of Computing, pages 612–621. ACM, New York, 2003.714

doi:10.1145/780542.780631.715

19 Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. Rigid matrices from716

rectangular pcps or: Hard claims have complex proofs. In 2020 IEEE 61st Annual Symposium717

on Foundations of Computer Science (FOCS), pages 858–869. IEEE, 2020.718

20 Emmanuel Breuillard and Alexander Lubotzky. Expansion in simple groups. arXiv preprint719

arXiv:1807.03879, 2018.720

FSTTCS 2021

https://doi.org/10.1112/blms/22.6.583
https://doi.org/10.1016/0020-0190(95)00032-8
https://doi.org/10.1016/0020-0190(95)00032-8
https://doi.org/10.1016/0020-0190(95)00032-8
https://doi.org/10.1002/rsa.3240050203
https://doi.org/10.1137/17M1148979
https://doi.org/10.1007/PL00009813
https://doi.org/10.4086/toc.2013.v009a005
https://doi.org/10.1145/780542.780631


40:18 Near-Optimal Cayley Expanders for Abelian Groups

21 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms for721

maximum constraint satisfaction problems. ACM Trans. Algorithms, 5(3):Art. 32, 14, 2009.722

doi:10.1145/1541885.1541893.723

22 Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom724

generators from polarizing random walks. Theory Comput., 15:Paper No. 10, 26, 2019.725

doi:10.4086/toc.2019.v015a010.726

23 Sixia Chen, Cristopher Moore, and Alexander Russell. Small-bias sets for nonabelian groups:727

derandomizations of the Alon-Roichman theorem. In Approximation, randomization, and728

combinatorial optimization, volume 8096 of Lecture Notes in Comput. Sci., pages 436–451.729

Springer, Heidelberg, 2013. doi:10.1007/978-3-642-40328-6_31.730

24 Tobias Christiani and Rasmus Pagh. Generating k-independent variables in constant time.731

In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 196–205.732

IEEE, 2014.733

25 Gil Cohen, Noam Peri, and Amnon Ta-Shma. Expander random walks: A fourier-analytic734

approach. In Electron. Colloquium Comput. Complex, volume 27, page 6, 2020.735

26 Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Veličković. Efficient736

approximation of product distributions. Random Structures Algorithms, 13(1):1–16, 1998.737

doi:10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W.738

27 Rusins Freivalds. Probabilistic machines can use less running time. In IFIP congress, volume739

839, page 842, 1977.740

28 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.741

Bulletin of the American Mathematical Society, 43(4):439–561, 2006.742

29 Akhil Jalan and Dana Moshkovitz. Near-optimal cayley expanders for abelian groups. arXiv743

preprint arXiv:2105.01149, 2021.744

30 Fernando Granha Jeronimo, Dylan Quintana, Shashank Srivastava, and Madhur Tulsiani.745

Unique decoding of explicit epsilon-balanced codes near the gilbert-varshamov bound. In 2020746

IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 434–445.747

IEEE, 2020.748

31 Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Transactions749

on Information Theory, 18(5):652–656, 1972.750

32 Nicholas M. Katz. An estimate for character sums. J. Amer. Math. Soc., 2(2):197–200, 1989.751

doi:10.2307/1990974.752

33 Ivan Korec and Jiří Wiedermann. Deterministic verification of integer matrix multiplication753

in quadratic time. In International Conference on Current Trends in Theory and Practice of754

Informatics, pages 375–382. Springer, 2014.755

34 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,756

8(3):261–277, 1988.757

35 Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and758

applications. SIAM J. Comput., 22(4):838–856, 1993. doi:10.1137/0222053.759

36 A. Razborov, E. Szemerédi, and A. Wigderson. Constructing small sets that are uniform760

in arithmetic progressions. Combin. Probab. Comput., 2(4):513–518, 1993. doi:10.1017/761

S0963548300000870.762

37 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,763

and new constant-degree expanders and extractors. In Proceedings 41st Annual Symposium on764

Foundations of Computer Science, pages 3–13. IEEE, 2000.765

38 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications766

to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.767

39 Amir Shpilka and Avi Wigderson. Derandomizing homomorphism testing in general groups.768

SIAM Journal on Computing, 36(4):1215–1230, 2006.769

40 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In STOC’17—Proceedings770

of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 238–251. ACM,771

New York, 2017. doi:10.1145/3055399.3055408.772

https://doi.org/10.1145/1541885.1541893
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.1007/978-3-642-40328-6_31
https://doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
https://doi.org/10.2307/1990974
https://doi.org/10.1137/0222053
https://doi.org/10.1017/S0963548300000870
https://doi.org/10.1017/S0963548300000870
https://doi.org/10.1017/S0963548300000870
https://doi.org/10.1145/3055399.3055408


A. Jalan and D. Moshkovitz 40:19

41 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In TR 17-041. Electronic773

Colloqium on Computational Complexity, 2017.774

42 Salil Vadhan. Pseudorandomness, volume 7. Now Delft, 2012.775

43 Leslie G Valiant. Graph-theoretic arguments in low-level complexity. In International Sym-776

posium on Mathematical Foundations of Computer Science, pages 162–176. Springer, 1977.777

44 Avi Wigderson and David Xiao. Derandomizing the ahlswede-winter matrix-valued chernoff778

bound using pessimistic estimators, and applications. Theory of Computing, 4(1):53–76, 2008.779

45 Triantafyllos Xylouris. Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste780

Primzahl in einer arithmetischen Progression, volume 404 of Bonner Mathematische Schriften781

[Bonn Mathematical Publications]. Universität Bonn, Mathematisches Institut, Bonn, 2011.782

Dissertation for the degree of Doctor of Mathematics and Natural Sciences at the University783

of Bonn, Bonn, 2011.784

A Cayley Graphs and Expanders785

We begin with some preliminaries on graphs and group theory.786

I Definition 13 (Spectral expander graph). Let G = ([n], E, w) be a weighted, d-regular787

undirected graph. By d-regular we mean that for all u ∈ V ,
∑
v∈V w({u, v}) = d.788

Let A ∈ Cn×n be the (weighted) adjacency operator of G, and let M = 1
dA be the789

normalized adjacency operator, also known as the random walk matrix. Let the eigenvalues of790

M be denoted λn ≤ ... ≤ λ2 ≤ λ1 = 1, counting multiplicity. Then G is a one-sided spectral791

expander if λ2 < 1−Ω(1), and G is a two-sided spectral expander if max{|λn| , |λ2|} < 1−Ω(1).792

Let λ(G) := max{|λn| , |λ2|}. The two-sided spectral gap of G is 1− λ(G).793

Next, we define Cayley graphs.794

I Definition 14. (Symmetric generating set) Let G be a group and S ⊂ G. We say that S795

is symmetric if for all s ∈ S, s−1 ∈ S. Further, S is a generating set if for all g ∈ G there796

exist s1, ..., sk ∈ S (possibly repeated) such that sk · · · s1 = g.797

We write 〈S〉 = G.798

I Definition 15. (Cayley Graph) Let G be a group and S ⊂ G be a symmetric generatring799

set, and w : S → R≥0 a weight function. The Cayley graph Cay(G,S,w) is the graph with800

vertex set G and edge set {{g, g · s} : g ∈ G, s ∈ S}. The weight of an edge {g, g · s} is w(s).801

We will require the total weight of S to be normalized to |S| by convention. Notice that802

since S is symmetric, we can consider the graph Cay(G,S) to be an undirected and weighted803

|S|-regular multigraph.804

The eigenvectors of abelian Cayley graphs are described by their group characters.805

I Definition 16 (Characters of abelian group). Let C∗ be the multiplicative group of nonzero806

complex numbers. For any finite abelian group G, the characters of G, denoted Ĝ, are the807

set of all homomorphisms χ : G→ C∗.808

I Proposition 17. Let G be a finite abelian group and S ⊂ G a symmetric generating set.809

Then the eigenvalues of Cay(G,S) are given by810

{| E
x∼S

[χ(x)]| : χ ∈ Ĝ}811

Notice that any group has a trivial character χ : G → C∗ such that χ(g) = 1 for all g.812

The eigenvalue corresponding to the trivial character is always 1. Therefore, for a Cayley813

graph to be an expander we need bounds on all of its nontrivial characters.814
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I Definition 18 (Small-bias distributions for abelian groups). Let G be a finite abelian group815

and D ∼ G a random variable. For any character χ of G, the bias of D with respect to χ is816

Biasχ(D) := | E
x∼D

[χ(x)]|817

Let χ0 denote the trivial character. The bias of D is its maximum bias with respect to818

nontrivial characters.819

Bias(D) := max
χ 6=χ0

Biasχ(D)820

If S ⊂ G, then bias(S) is the bias of the uniform distribution on S. If S is a symmetric821

generating set, λ(Cay(G,S)) = Bias(S).822

Notice that if S is non-negatively weighted, we can normalize weights to sum to 1 and823

obtain a (not necessarily uniform) distribution on S. Then the bias of S is just the bias of824

this distribution.825

Finally, we will need a few more facts about characters of abelian groups.826

I Proposition 19. (Characters of cyclic groups) Let Zd be the cyclic group on d ≥ 2 elements.827

Let ωd := exp( 2πi
d ). The characters of Zd are the maps χj(x) = ωj·xd for j = 0, 1, ..., d− 1.828

I Definition 20. (Direct sum of groups) Let A,B be abelian groups. The direct sum829

A ⊕ B is the abelian group whose elements belong to the Cartesian product A × B. For830

(a1, b1), (a2, b2) ∈ A×B, the group operation is (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2).831

Notice that the direct sum is associative.832

I Proposition 21. (Fundamental theorem of finite abelian groups) Let G be a finite abelian833

group. Then G is isomorphic to a direct sum of cyclic groups. That is, there exist d1, ..., dk ≥ 2834

such that835

G ∼= Zd1 ⊕ · · · ⊕ Zdk836

Moreover, di|dj for all i < j.837

We refer to Zd1 ⊕ · · · ⊕ Zdk as the invariant factor decomposition of G. The integers838

d1, ..., dk are the invariant factors.839

From the above propositions one can show that the characters of a finite abelian group840

are products of maps of the form x 7→ ωj·xdi . This structure is crucial to our overall argument.841

B Wide Replacement Walks842

In this section we define what it means to take a wide replacement walk.843

Let G be a D1-regular graph on N1 vertices and H be a D2-regular graph on D1 vertices.844

The replacement product G r©H is a (D2 + 1)-regular graph on N1 ·D1 vertices. Each vertex845

of G (the “outer graph”) is replaced by a copy of H (the “inner graph”). We call these copies846

clouds.847

The intra-cloud edges in each cloud of G r©H are just the edges from H. However, G r©H848

also has inter-cloud edges which arise by identifying the D1 vertices of H with the D1849

incident edges of a vertex v ∈ V (G). This identification requires that we number the edges850

of every vertex in G. We formalize this with the concept of a rotation map.851
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I Definition 22. (Rotation map) Let G be a D-reguluar graph such that the edges incident852

to every v ∈ V (G) are numbered 1, ..., D. Formally there is a function N : V × [D]→ V such853

that N(v, i) = w iff w is the ith neighbor of v.854

Then a rotation map is a function Rot : V × [D]→ V × [D] such that for all v, w ∈ V855

and i, j ∈ [D], Rot(v, i) = (w, j) iff the ith neighbor of v is w and the jth neighbor of w is v.856

For technical reasons, we need a special kind of rotation map called a local inversion857

function. This is a rotation map where if (v, i) maps to (w, j) then j only depends on i.858

I Definition 23. (Local inversion function) Let G be a D-regular graph with a rotation map859

Rot : V × [D]→ V × [D]. A local inversion function φG : [D]→ [D] is a permutation on [D]860

such that for all v ∈ V, i ∈ [D],861

Rot(v, i) = (N(v, i), φG(i))862

We are ready to define the wide replacement product walk. Instead of the usual inner863

graph H we use a “wide” inner graph on Ds
1 vertices for some integer s ≥ 1. The vertices of864

H correspond to s-tuples that define s local inversion functions. The walk cycles through865

them.866

To take a step in the usual replacement product walk, we start at some vertex v ∈ G r©H867

then compose two steps: an intra-cloud step which changes the H-component, and an868

inter-cloud step which changes the G-component. Every vertex in G r©H is incident to a869

unique inter-cloud edge; therefore, there is only one choice of neighboring cloud, and so the870

position after the intra-cloud step determines the entire step.871

The s-wide replacement walk modifies the inter-cloud step so that there are s choices872

during inter-cloud step. If G is D1-regular, then a vertex of H corresponds to some vector873

(a0, ..., as−1) ∈ [D1]s. The wide replacement walk maintains a clock which tracks how many874

steps have been taken. At time step t, the clock is set to ` = t mod s, and the inter-cloud875

step moves to a neighboring cloud according to the value of a` ∈ [D1].876

After deciding which neighboring cloud to move to, the choice of which vertex in the cloud877

to land in is also determined by a`. The walk updates the H-component by feeding the `th878

coordinate to the local inversion function φG : [D1]→ [D1] of G, and leaving all other coordin-879

ates unchanged. So (a0, ..., as−1) ∈ [D1]s is mapped to (a0, ..., a`−1, φG(a`), a`+1, ..., as−1).880

This completes the inter-cloud step.881

The utility of the wide replacement walk is that the H-component of a vertex now stores882

O(s log(D1)) bits of information, rather than just O(log(D1)) bits. As we discussed in the883

introduction, the barrier to bias amplification is when the walk distribution is uniform within884

clouds.885

Now, the values of the H-component are precisely the instructions for the inter-cloud886

steps of the walk; therefore, the fact that the H-component is uniform is no longer bad news,887

since it means that the inter-cloud steps of the replacement walk imitate the truly random888

walk on the outer graph for the next s steps.889

I Definition 24. Let G be a D1-regular graph with local inversion function φG : [D1]→ [D1].890

Let H be a D2-regular graph on Ds
1 vertices, for integer s ≥ 1. A random step in the wide891

replacement product is determined as follows.892

Let (v(1), v(2)) ∈ V (G)× V (H) be the current state of the walk at time t ∈ N. Sample893

random i ∈ [D2]. Then the time-t step according to i, denoted Stepi,t(v(1), v(2)) is given by894

the composition of two steps:895
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(i) Intra-cloud step: Leave the G-component v(1) unchaged. Move the v(2) component to896

its ith neighbor in H. Formally, set897

w(1) = v(1)
898

w(2) = v(2)[i]899
900

(ii) Inter-cloud step: Identifying V (H) with [D1]s, let πj : [D1]s → [D1] be projection901

onto the jth coordinate. Write w(2) ∈ V (H) as w(2) = (π0(w(2)), ..., πs−1(w(2))) ∈ [D1]s.902

Let ` = t mod s. Move to the neighbor of w(1) in G that is numbered by π`(w(2)) ∈ D1.903

Then, update the `th coordinate of H-component w(2) by the local inversion function φG :904

[D1]→ [D1] and leave other coordinates unchaged. Formally, let ψ` : [D1]s → [D1]s be905

ψ`(a0, ..., as−1) = (a0, ..., a`−1, φG(a`), a`+1, ..., as−1)906

Set907

Stepi,t(v(1), v(2)) = (w(1)[π`(w(2))], ψ`(w(2)))908
909

A few remarks are in order. First, notice that the number of random bits needed to910

specify a random step is only O(log(D2)), despite the fact that we are moving on a graph911

with V (G)× V (H) vertices. This will be crucial in the analysis of the tradeoff between bias912

amplification and size increase of the small-bias set.913

Second, once a value of t is fixed, so the clock is set to ` = t mod s, the wide replacement914

walk can be regarded as taking a usual step in the usual replacement walk. The intra-915

cloud step is unchaged, and the inter-cloud step depends only on the `th coordinate of the916

H-component.917

Since we have specified what it means to take a random step, this is sufficient to describe918

the walk. We simply initialize at a uniform vertex of V (G) × V (H) and then take some919

number of steps, to be chosen later.920

C Parameters of the Construction921

In this section we describe how to optimize parameters such that the wide replacement walk922

construction achieves our desired support size. Our construction and hence the parameters923

we choose are almost identical to those discussed in Section 5 of [41].924

The algorithm is given integer n ≥ 1, desired second eigenvalue ε > 0, and an arbitrary925

generating set for a group G.926

It first generates an ε0-biased set Sinit ⊂ Gn of size O(n log(|G|)O(1)

poly(ε0) ) for a constant ε0. For927

concreteness we set ε0 = 0.1.928

I Proposition 25. There exists a deterministic, polynomial time algorithm which, given a929

generating set for an abelian group G and integer n ≥ 1, outputs a generating set Sinit ⊂ Gn930

of size O(n(log(|G|))O(1)) such that the Cayley graph has second eigenvalue at most 0.1.931

Proof. First, by Theorem 4 of [23], we can construct a generating set S ⊂ G with second932

eigenvalue (1− C
log log(|G|) + β) for a parameter β and universal constant C. Its size will be933

|S| = O(n log(|G|)
βO(1) ) = O(n log(|G|)2). Setting β = C

2 log log(|G|) , we obtain second eigenvalue934

(1− C
2 log log(|G|) ).935

Next, we can amplify the bias of S to 0.1 by taking a t-step ordinary expander walk. By the936

results of section 3.1, if we take a walk on a D-regular expander graph with second eigenvalue937
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λ and D = O(1), then the t-step walk will amplify the bias to ((1− C
2 log log(|G|) ) + 2λ)bt/2c.938

For this quantity to be at most 0.1, it suffices to set t > log log(|G|)
C (1 + 2λ) = Θ(log log(|G|)).939

Therefore, after t steps we obtain a generating set S0 ⊂ Gn with bias 0.1, whose size is940

|S0| ·Dt = O(n log(|G|)2

(0.1)O(1) · 2Θ(log log(|G|))) = O(n(log(|G|))O(1)). J941

Next, the algorithm performs a wide replacement walk. We must specify the inner and942

outer graphs as well as the number of steps. Our parameters are almost identical to [41].943

Let α = Θ(( log log( 1
ε )

log( 1
ε ) )1/3). We will show that the wide replacement walk amplifies bias to944

ε and produces a generating set of size O(n log(|G|)O(1)

ε2+O(α) ) = O(n log(|G|)O(1)

ε2+o(1) ).945

Let the “width” s = 1
α .946

Inner Graph: Let D2 be the least power of two such that D2 ≥ s4s. Let b2 =947

4s
√

2 log(D2). Let D1 = D4
2. Let m = log(D1).948

Let H = Cay(Zms2 , A) for a generating set of size |A| = D2 (found, e.g via [41]) such that949

the second eigenvalue is λ(H) = b2√
D2

.950

Outer graph: Let D1 = D4
2. Find a D1-regular expander graph Γ with λ(Γ) = Θ( 1√

D1
)951

(using, e.g. [4]). Identify its vertices with the ε0-biased set Sinit.952

Walk length: Finally, set t to be the least integer such that λ(H)(1−4α)(1−α)t ≤ ε and953

t ≥ s
α .954

I Proposition 26. The t-step wide replacement walk distribution is ε-biased.955

Proof. The bias after t steps is given by (λ(H)s + sλ(H)s−1 + s2λ(H)s−2)bt/sc. Therefore,956

(λ(H)s + sλ(H)s−1 + s2λ(H)s−2)bt/sc ≤ (2s2λ(H)s−3)bt/sc957

≤ (2s2λ(H)s−3)t/s−1
958

≤ (λ(H)s−4)t/s−1
959

= λ(H)
s−4
s (t−s)

960

= λ(H)(1− 4
s )(1− st )t

961

≤ λ(H)(1−4α)(1−α)t
962

≤ ε963
964

The last step follows by assumption on t. J965

I Proposition 27. The support size of the wide replacement walk distribution is O(|Sinit| ·966

1
ε2+O(α) ), where Sinit is the initial constant-bias set.967

Proof. Recall that we identify our initial 0.1-biased distribution with the vertices of the968

outer graph Γ. Therefore N1 = |V (Γ)| = O(n log(|G|)O(1)

εc0
) for constant ε0, c > 0. Since ε0 is969

constant we can assume D2 ≥ ε−1
0 . The walk begins at a uniform vertex of the replacement970

product, so the initial support size is N1N2. After t steps it increases by a factor of Dt
2.971

Therefore972

N1N2D
t
2 = O(n log(|G|)O(1)

εc0
N2D

t
2)973

= O(n log(|G|)O(1)

εc0
D4s

2 D
t
2)974
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= O(n log(|G|)O(1) ·D4s+t+c
2 )975

≤ O(n log(|G|)O(1) ·D4αt+t+c
2 )976

≤ O(n log(|G|)O(1) ·Dt(1+5α)
2 )977

978
979

Next, notice b2 = 4
√

2s log(D2) = 4
√

2·4s2 log(s) ≤ s4 for sufficiently large s (equivalently,980

small enough ε). Therefore, D2 ≥ (s4)s ≥ bs2 = b
1/α
2 . Therefore D1/2−α

2 ≤ λ(H)−1 =
√
D2
b2

.981

It follows that for small enough α (equivalently, small enough ε), that982

Dt
2 ≤ (λ(H)−1)

t
1/2−α = (λ(H)−1)

2t
1−2α = (ε−1)

1
(1−4α)(1−α)t

2t
1−2α ≤ (ε−1)2(1+8α)

983
984

Finally, Dt(1+5α)
2 ≤ (ε−1)2(1+8α)(1+5α) ≤ (ε−1)2(1+14α).985

Therefore, the overall size of the generating set is O(n log(|G|)O(1)

ε2+O(α) ). In particular, since986

α→ 0 as ε→ 0, the size is O(n log(|G|)O(1)

ε2+o(1) ). J987
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