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—— Abstract

We give an efficient deterministic algorithm that outputs an expanding generating set for any
finite abelian group. The size of the generating set is close to the randomized construction of Alon
and Roichman [9], improving upon various deterministic constructions in both the dependence on
the dimension and the spectral gap. By obtaining optimal dependence on the dimension we resolve
a conjecture of Azar, Motwani, and Naor [14] in the affirmative. Our technique is an extension of
the bias amplification technique of Ta-Shma [40], who used random walks on expanders to obtain
expanding generating sets over the additive group of F3. As a consequence, we obtain (i) randomness-
efficient constructions of almost k-wise independent variables, (ii) a faster deterministic algorithm for
the Remote Point Problem, (iii) randomness-efficient low-degree tests, and (iv) randomness-efficient
verification of matrix multiplication.
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1 Our Contributions

1.1 Main Result

A graph is an expander if there exists a constant a > 0 such that the spectral gap of its
adjacency matrix (namely, the difference between its top eigenvalue and its second eigenvalue)
is at least a. Such graphs are very well-connected in the sense that they lack sparse cuts.
Expanders that are additionally sparse are immensely important in computer science and
mathematics (see, e.g. the survey [28]).

Cayley graphs are an important class of graphs built from groups. Given a group G and
a generating set S C G, the graph Cay(G, S) has vertex set G and edges (g,g - s) for all
g € G, s € S. In addition to describing various well-known graphs such as the hypercube
and the torus, Cayley graphs of (non-abelian) groups gave the first explicit constructions
of near-optimal expander graphs [34]. Moreover, their algebraic structure makes Cayley
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Near-Optimal Cayley Expanders for Abelian Groups

graphs easier to analyze. In particular, the eigenvectors and eigenvalues of a Cayley graph
are well-understood through the Fourier transform on the group.

When is a Cayley graph an expander? Alon and Roichman showed that given a group
G, integer n > 1, and € > 0, taking a uniformly random subset S C G" of size O(%QGD)
gives an expander with spectral gap 1 — ¢, with high probability [9]. They also proved a
nearly matching lower bound of |S| = Q((%QGI))PO(U) when G is abelian. When G = Fy
the lower bound is Q(zy55757) (6] 2

An explicit construction with parameters matching the Alon-Roichman bound has re-
mained elusive, despite being widely studied in the pseudorandomness literature [32, 35, 6,
36, 1, 7, 26, 14, 23, 12, 17, 11].

The best known results achieve O((log(|G|) + Z—j)s) for arbitrary abelian G [12], O(’Z—j)
for abelian G where |G| < log(Z—j)O(l), and O(%GIDO(U) for general G [23]. For solvable
subgroups of permutation groups one can improve this to O(’Z—:) [11].

In this paper we give an explicit construction of expanding generating sets for abelian
groups whose size is near the Alon-Roichman bound.

» Theorem 1. There is a deterministic, polynomial-time algorithm which, given a generating
set of an abelian group G, integer n > 1, and € > 0, outputs a generating set S C G™ of size

nlog(|G)OM n
O(=5%voay—) such that Cay(G",S) has spectral gap 1 — e.

Our construction immediately improves parameters in several applications - see Section
1.3 for details. We remark that in most settings, one fixes a group G while n — oo and € — 0.
In this regime, since |G| is a constant, the size of the generating set in Theorem 1 is optimal
up to an ¢ °() factor. The o(1) term in the exponent approaches 0 as € — 0.

FExpanding Cayley graphs are equivalent to pseudorandom objects called e-biased sets.
These were originally defined over F§ by Naor and Naor [35]. A set S C F¥ is said to be
e-biased if for every non-empty T' C [n], we have ]ES[G} x]=1/2+e€

©€S €T

Naor and Naor initiated a long line of work culmingting in a recent breakthrough result
by Ta-Shma, that achieves [S| = O(7%qy) [40]. This construction approaches the Alon-
Roichman bound as ¢ — 0.

Ta-Shma’s construction follows previous work in using a 2-step “bias amplification”
approach. First, identify an explicit set Sy C F5 with constant bias, usually through
algebraic methods. Second, amplify the bias of Sy to any € > 0 by performing a random walk
on an expander graph. While this general method was already known, it could only achieve
|S| = O(=%y). To break this barrier, Ta-Shma identified a graph structure obtained from
a “wide replacement product", which was more effective for the bias amplification step and
resulted in S| = O( =t ).

Our main contribution is to show that the wide replacement walk is a near-optimal
“character sampler,” and therefore also amplifies bias well for abelian Cayley graphs.

1.2 Wide Replacement Walks are Near-Optimal Character Samplers

Random walks on expander graphs are useful for a variety of algorithmic purposes. A classical
fact is that expander walks are good approximate samplers, in the sense that a sufficiently
long random walk on an expander will visit sets of density J§ for approximately a § fraction

2 It is possible that this lower bound is tight. A candidate construction based on algebraic-geometric
codes could achieve this lower bound [17].
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of the steps. This is called the “expander Chernoff bound” and one can characterize this as
the property that expander walks fool a suitable test function.

Ta-Shma observed that expander walks fool the much more sensitive class of parity
functions on {0,1}" as well. Parity functions are sensitive to input perturbations - flipping a
single bit in the input can change the output. The classical expander Chernoff bound is not
fine-grained enough to prove that ¢-step expander walks fool parity functions. The fact that
they nevertheless do fool parity functions is therefore surprising, and Ta-Shma referred to
this fact as “expanders are good parity samplers” [40].

Since parity functions are just the characters of F5, we can ask: do expander walks also
fool the characters of more general classes of groups? We show that this is indeed true, and
therefore “expander walks are good character samplers.” Moreover, just as in the Fy case, a
random walk on a wide replacement product of expander graphs is a near-optimal type of
character sampler.

Character sampling explained: Let us precisely explain what we mean by “character
sampling.” A character of an abelian group is a homomorphism y : G — C*, where C* is
the multiplicative group of complex numbers. The eigenvalues of an abelian Cayley graph
Cay(G, S) are given by |E.~s x(x)| for all characters x. Note that the constant function
that maps all values to 1 is a character, and the eigenvalue associated with it is the top
eigenvalue. Therefore, we are interested in generating sets S such that [E;z~s x(x)| < € for
all non-constant y.

For simplicity, consider the case G = Zg for some d > 2. Let wy := exp(%). In this case
the characters are just the maps « — wy” for j =0,1,...,d — 1.

Now, suppose we have some ej-biased set Gog C G, where ¢y < 1 is a constant. First,
observe that taking ¢ independent samples from Gy and outputting their sum obtains a
distribution with bias (¢9). However, since independent sampling also results in a distribution
with support size |Go|?, there is no improvement in size as a function of bias.

The idea of the random walk approach is to derandomize independent sampling by taking
correlated samples. Specifically, identify G with the vertices of some degree-regular expander
graph I'. We need to show that taking a random walk of length ¢ on I' and then summing
the elements in the path gives a distribution with lower bias than Gj.

A t-step walk on I' gives a sequence of group elements (zg,...,x¢) € Gé“. We are
interested in the bias of the random group element ), x;. In general, we cannot hope that
(3=, @) is close to the uniform distribution in statistical distance. However, if I' is an expander
with second eigenvalue A, then for every non-constant character x the quantity [E[x(>_, ;)]
is at most (g + A)[*/2) where the expectation is over paths (z, ..., ;) in the graph. Notice
that Eqea[x(x)] = 0, so the random element (>, ;) is close to uniform in the weaker sense
of fooling characters. Therefore, the expander walk is a good “character sampler.”

Why expanders are character samplers: We express the bias of the random walk
distribution algebraically in terms of matrix norms corresponding to the random walk.

Abusing notation, let I' denote the random walk matrix of the graph I'. Let the character
X" : Zq — C be the worst-case character for the random-walk distribution. Partition G into
So, ..., Sa—1 depending on their values with respect to x*, so that € S, <= x*(z) = whk.

We need to track how often the walk enters Sy, S1,...,S4-1 C V(I'). Identify each S;
with an |S;|-dimensional subspace of CV(™). For i € Zy let II; : CVT) — CV(™) be the
projection onto this subspace. Finally, let II = EyGZd wiIL, be the weighted projection
matrix.

Given some initial distribution # on the vertices, the vector I'*% tracks the distribution
after taking a t-step walk on the graph. The matrix II tracks how often the walk enters the
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sets Sp,...,S4_1, and so the bias of the random walk distribution can be bounded by the
norm of (TIT).

Let VIl denote the subspace spanned by the all-ones vector 1, and V1 = (V”)l. For a
vector v € VIl @ V+, let vl and v denote the projections onto VI, V1 respectively.

While ||TIT|| = 1 since || IITT|| = ||TIT|| = 1, it turns out that ||(TIT)?|| < bias(Go) + 2\(T),
where A\(I') is the second eigenvalue of I' in absolute value.

To see this, notice that if ¥ € V' is a unit vector, then ||[IITTITG|| < ||TICTI||A(T)||7]] < M(T).
Therefore, the “bad” case is when 7 € VII. Let u = ———T. Using the fact that ||TI|| = 1,

VIV

[TICTITw|| = |||
< [|TIT (TTa) V| + |[TIC (TT) |
< [T |+ A(D) [T () |
< [T+ A(T)

It remains to show that ||TI(TTu)!l|| < bias(Gy). To see this, notice that IT is a diagonal
matrix and u is just 1 scaled by a constant. Further, II is a block-diagonal matrix of the form

Iis,|
de|Sl|

d—1
Wy I|5d71|

Note that we have reordered the vertices of the graph in order of Sy, S; and so on.

If the blocks are exactly the same size, then ITu € V1, because Zyezd wy =0. In
general the blocks have different dimensions, but they are the same size up to the bias of Gy.
Therefore ||(Tu)!|| < bias(Gy).

It follows that a random walk on I is a good character sampler. However, this approach
can never amplify bias fast enough to achieve a generating set smaller than 0(64|f700(|1)) The
reason is because while we can bound ||(III")?||, we cannot bound |[IIT| below 1. Therefore,
we effectively only gain from one in every two steps.

Wide Replacement Walks are Near-Optimal Character Samplers: To circum-
vent the “2-step barrier” of expander walks outlined above, Ta-Shma used the wide replacement
walk on a product of two expander graphs [40]. The idea of the wide replacement walk is to
take the product of a Dq-regular graph I' as before with an “inner graph” H on D7 vertices,
for some s > 2. The product graph replaces every vertex of I' with a copy of H (called a
“cloud”) and then connects clouds to other clouds according to the edge structure of I'.

Analyzing the bias of the walk involves bounding the matrix norm of I H, where I" and
H are random walk matrices on the product corresponding to I, H.

Let VIl denote the subspace of vectors which are constant on the H-component of the
product, and let V+ = (VI)+.

Similar to the above case, one can show that III'H shrinks the norm of any v € V- by
a factor of A(H). The difficult case is when v € V. Here we arrive at the core idea of the
replacement product: if the inner graph H is pseudorandom with respect to I', then when
the walk is in VI, the next s steps approximate the ordinary random walk on T

This is enough to circumvent the “2-step barrier” since in even the “bad case” where the
walk is stuck in VI, we can shrink the bias as though it were taking an ordinary walk on T.
As we showed above, this shrinks the bias from some €y to (g + 2A(T))15/2] every s steps. If
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we select I', H such that ey + 2A(I') < A\(H)?, then we conclude that we shrink the bias by a
factor of A(H)*~9+(1) every s steps. So we gain from s — O(1) out of every s steps.

Going from the Fy-case to the case of general abelian groups simply requires a more
careful analysis of characters. We defer the full proof to Appendix 2.2.

Morally speaking, the only difference in the analysis is that the projection matrix IT
which tracks how often the walk enters each S; is different. This does not change the overall
argument much; in particular, we can use almost identical graphs I', H as in [40].

We conclude that a wide replacement walk allows us to amplify bias of a constant-biased
subset Gy C G™ of size O(nlog(|G|)°™M) (e.g. the construction of [11]) to an e-biased set of
size O(%ﬁlf?m), nearly matching the Alon-Roichman bound. For explicit parameters of
the construction, see Appendix C.

1.3 Applications

Explicit constructions of expander graphs are an essential component of algorithms, especially
for derandomization. Here we are interested in the setting of constructing an expanding
Cayley graph from a given abelian group G. Our construction achieves a near-optimal degree,
which improves parameters in various applications. We defer precise statements of these
results and the full proofs to the full version.

Almost k-wise independence: A distribution D ~ G™ is (e, k)-wise independent if
for every index set I C [n] of size k, the restriction of D to I is e-close to uniform in
statistical distance. Almost k-wise independent distributions are a fundamental object in
and of themselves. They also have a variety of applications in derandomization, including
load balancing [24], derandomization of Monte-Carlo simulations [24], derandomization
of CSP approximation algorithms [21], and pseudorandom generators [22]. We note that
certain applications (e.g. quantum ¢-designs [10]) really require almost k-wise independent
distributions over arbitrary alphabet size rather than just the binary alphabet, which
motivates our study of e-biased sets over arbitrary abelian groups.

Vazirani’s XOR Lemma asserts that an e-biased distribution D is also (e/|G|*, k)-wise

€

VIGF'

we also obtain explicit constructions of (e, k)-wise independent random variables on G™.

indepdent for all k& < n. Therefore, by constructing an €'-biased distribution where ¢’ =

» Proposition 2 (Almost k-wise independent sets over abelian groups). Let G be a finite abelian
group given by some generating set. For any e >0 andn > k > 1 there exists a deterministic,
polynomial-time algorithm whose output is an (¢, k)-wise independent distribution over G™.
A k+o(1)

The support size is O(%)

Remote Point Problem: A matrix A € FJ'*" is (k, d)-rigid iff for all rank-k matrices
R € F7"*" the matrix A — R has a row with at least d nonzero entries. Valiant initiated
the study of rigid matrices in circuit complexity, proving that an explicit construction of an

(Q(n), n¥M))-rigid matrix for m = O(n) would imply superlinear circuit lower bounds [43].

After more than four decades of research, state of the art constructions have yet to meet this
goal [19].

The Remote Point Problem was introduced by Alon, Panigrahy, and Yekhanin as an
intermediate problem in the overall program of rigid matrix constructions [8]. Arvind and
Srinivasan generalized the problem to any group [12].

Let G be a group, n > 1, and H < G™ a subgroup given by some generating set. For a
given G, H and integer r > 0, the Remote Point Problem is to find a point x € G™ such
that z has Hamming distance greater than r from all h € H, or else reject. In the case of
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G™ = F7}, this is a relaxation of the matrix rigidity problem, since rather than finding m
vectors x1, ..., %, € F§ whose linear span is far from all low-dimensional subspaces, we are
given a single subspace and must find just a single point far from it.

To find a remote point, existing algorithms first construct a collection of subgroups
Hy,...,H, < G™ whose union covers all points of distance at most r from H. In the Fy
case, [8] find a point = & |J H; by the method of pessimistic estimators. In the general case,

K3
[12] instead prove that any generating set S C G™ such that Cay(G",S) has sufficiently
good expansion must contain a point outside of | J H;. They find this remote point by

first constructing an expanding generating set S, anZd then exhaustively searching it. Their
argument implicitly uses the fact that small-bias sets correspond to rigid matrices, albeit
with weak parameters - this connection was developed further in [5].

The construction of [12] for small-bias sets over abelian groups has size O((log(|G|) + 7;—22)5)
in general, and for log(|G|) < log(%;)o(l) this is improved to O(Z—;) Our algorithm improves
the dependence on n from n? to n.

Randomness-Efficient Low-Degree Testing: Let F, be the finite field on ¢ elements.
Low-degree testing is a property testing problem in which, when given query access to a
function f : Fj — F, and d > 1, one must decide whether f is a degree d polynomial or
far (in Hamming distance) from all degree d polynomials. These tests are a key ingredient
in constructions of Locally Testable Codes (LTCs) and Probabilistically Checkable Proofs
(PCPs) [18].

To test whether f is a degree-d polynomial, a natural test is to sample z,y ~ F" and
check whether f(x) agrees with the unique (degree-d, univariate) polynomial obtained by
Lagrange interpolation along d + 1 points on the line {z +ty : t € F,}.

Rubinfeld and Sudan introduced a low-degree test using this idea [38]. It is given
query access to the function f, along with a line oracle function g. Let I denote all lines
{a +th:te F,} C Fy, where @, b € F". Given a description of a line, the line oracle g returns
a univariate polynomial of degree d defined on that line. Hence we write g : L — F,[t], where
the image of g is understood to only contain degree-d polynomials.

If f is indeed a degree-d polynomial, then one can set g(¢) = f|, for all £ € L, and the
following two-query test clearly accepts.

(i) Select x,y € F™ independently, uniformly at random.

(i) Let ¢ be the line determined by {x +ty : ¢t € F}. Accept iff f(z) agrees with g(¢)(x).

They also showed this test is sound: when f is far from degree-d polynomials, the test
rejects with high probability.

Ben-Sasson et al derandomized this test by replacing the second uniform sample y with a
sample from an e-biased set [18]. This modification improves the randomness efficiency of
the tests, and therefore the length of the resulting LTC and PCP constructions. Moreover,
they showed that the soundness guarantees of low-degree tests are almost unchanged due to
the expansion properties of the Cayley graph on Fj.

Our constructions of small-bias sets immediately imply improved randomness-efficiency
of this low-degree test.

» Proposition 3 (Improved [18] Theorem 4.1). Let F, be the finite field of q elements, n > 1,
[ Fy = Fy a function, and g : L — F, [t] a line oracle. There exists a degree-d test which
has sample space size O(q"™ - %). For d < q/3 and sufficiently small 6 > 0, if the test
accepts with probability > 1 — § then f has Hamming distance at most 40 from a degree d
polynomial.
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Randomness-Efficient Verification of Matrix Multiplication: Let R denote some
finite field Fy or cyclic group Z, for ¢ > 2. Given A, B,C € R™*™, the matrix multiplication
verification problem asks whether AB = C.

Naively, one could multiply A, B and then check whether AB = C' entry-wise in O(n*)
time, where w & 2.373 [2]. A classical result of Freivalds suggests the following much simpler
quadratic-time randomized algorithm: Sample x € R™ and check whether ABx = Cx [27].

Observe that the entries of ABx and C'x are linear functions of x. Therefore, sampling x
from a small-bias set gives a randomness-efficient version of Freivalds’ algorithm, at the cost
of slightly higher error. Our construction therefore gives the following randomness efficient
algorithm for verification of matrix multiplication.

» Proposition 4. Let R denote a finite field F, or cyclic group Z/qZ. Given matrices

A, B,C € R™™™ and e-biased set S C R"™, there exists randomized algorithm to decide whether
o)

AB = C with one-sided error (%—f—e). Its runtime is O(n?) and it uses log(m:ﬂiﬂ%”) random

bits.

We note that if R = Z, there exists a deterministic O(n?) time algorithm to verify matrix
multiplication [33]. However, this result relies on the fact that Z has characteristic zero. For
the analysis to hold in the case of Z,, we would need a very strong bound on the entries of
A, B,C - namely, that rrl;z}x{|Ai7j|, |Bi jl,1Ci 1} < qﬁ.

1.4 Related Work

Explicit Constructions: Explicit constructions of expanding generating sets for Cayley
graphs have been mostly studied in the pseudorandomness literature in the context of
small-bias sets for derandomization. Naor and Naor gave a combinatorial construction over
[y of size O(Z) [35]. Alon, Goldreich, Hastad, and Peralta used algebraic arguments to
give constructions over finite fields F” of size O(Z—j), assuming the field size is bounded as
log(IF|) < togmytioeaye (6]

Resarchers in various communities have obtained constructions that achieve size
O(poly("l%(‘m))), but suboptimal exponents. In number theory and additive combinatorics

researchers studying the case of n = 1 gave constructions over Z, of size O((M)O(l)) [36],

€
o(1
O(RE=) (32, and O (o) (1]

Other constructions equivalent to small-bias sets include O(("%V)—sized e-discrepancy
sets over finite fields of prime order p when n < p [7], and e-balanced codes over finite fields,
corresponding to small-bias sets over I} of size O(n - ¢) with constant bias [31].

Ta-Shma’s tour de force gave the first explicit construction of expanding generating sets
of size O(%), nearly attaining the Alon-Roichman bound, but only for the special case
of G = Fy [40]. Our work is an extension of Ta-Shma’s bias amplification technique to the
more general setting of arbitrary abelian groups.

Azar, Motwani, and Naor generalized the study of small-bias sets to finite abelian groups
[14]. Over Z they used character sum estimates to give a construction of size O((d + Z—j)c),
where C < 5 is Linnik’s constant [45]. Assuming the Extended Riemann Hypothesis,
C <2+ 0(1) [15]. When log(d) < log(’g—j)O(C) they improve the size to O((1 + 0(1))2—;).

Arvind and Srinivasan proved that one can project small-bias sets over Z]; to any abelian
group G™ when d is the largest invariant factor of G. Therefore, using the construction
from [14] they obtain small-bias sets over G™ with the same bias and size as [14], with
a= O(log(|G])) [12].
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The most general setting is to consider Cayley graphs over non-abelian groups. Wigderson
and Xiao derandomized the Alon-Roichman construction using the method of pessimistic
estimators [44]. Arvind, Mukhopadhyay, and Nimbhorkhar later gave a derandomization
for both directed and undirected Cayley graphs using Erdos-Renyi sequences [13]. However,
both algorithms require the entire group table of G™ as input, rather than just a generating
set. Since generating sets are of size O(nlog(|G])), these algorithms are exponentially slower,
running in time O(poly(|G|™)) rather than O(poly(nlog(|G|)). Nevertheless, they have
applications to settings such as homomorphism testing [39], which Wigderson and Xiao
derandomized using their construction of expanding generating sets [44].

1 o(1) .
(%) over arbitrary

Chen, Moore, and Russell obtained generating sets of size O
groups G™ when |G| is a constant [23] . Like Ta-Shma, their technique is to use bias
amplification via expander graphs; specifically, they amplify bias via an iterated application
of a 1-step random walk on an expander graph. Alon in 1993, and later Rozenman and
Wigderson in 2004, had already noted that this technique amplifies bias for G = Fy [25].
Chen, Moore, and Russell generalized this analysis to all groups, using techniques from
harmonic analysis and random matrix theory [23].

Existing work seems far from obtanining constructions for non-abelian groups near the
Alon-Roichman bound. Known work tends to concentrate on special classes of non-abelian
groups with some useful algebraic structure. Chen, Moore, and Russell constructed generating
sets of size O((”k’g(ﬁ#) for smoothly solvable groups with constant-exponent abelian
quotients [23]. Their analysis exploits the structure of solvable groups via Clifford theory. It
also hinges on the assumption that the quotients in the derived series have constant exponent.

Arvind et al later gave a construction of size O(W) for solvable subgroups G of
permutation groups [11]. Their construction recursively generates expanding generating sets
for quotients in the derived series of the group, and uses the thin sets construction of [1] as
a base set. Unlike [23] they do not require successive quotients of the derived series to be
small; however, their argument does rely on an O(log(n)) upper bound on the length of the
derived series for any solvable G < S,,, which is not true for solvable groups in general.

Lower Bounds: Alon and Roichman gave a randomized upper bound of O(”I%QG'))
the size of a generating set for any finite G™ with spectral gap (1 —¢€) [9]. In the same paper,
they gave a nearly matching lower bound when G is abelian, of Q(("I%QGD)PO(”). This
is a sharper version of the folklore result that an abelian group G™ requires O(nlog(|G|))

generators for its Cayley graph to be connected.

on

For non-abelian groups, the existence of sparse expanders means the best lower bound
in general is the Alon-Boppana bound. This removes the dependence on |G| and n, only
requiring a generating set of size Q(%) [3] to achieve spectral gap of 1 — . Indeed, explicit
constructions of Ramanujan graphs can be built from Cayley graphs of non-abelian groups
[34], and therefore attain this bound.

Expander Walks: Random walks on expander graphs are an essential tool in computer
science. Rather than surveying the vast literature, we refer the reader to the surveys [28, 42].
Two remarks are in order.

First, our use of wide replacement walks is essentially a way of building expander graphs
from other expander graphs. This is thematic of several previous works, such as the zig-zag
product [37]. Note that the zig-zag product is just a modification of the replacement product;
indeed, the (wide) replacement product itself can be used to give explicit, combinatorial
constructions of Ramanujan graphs [16]. Ta-Shma used wide replacement walks to amplify
spectral gaps of Cayley graphs on F [40]; this construction relied on previous constructions
of expander graphs, although the expander graphs were not required to be Cayley graphs



353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

A. Jalan and D. Moshkovitz

themselves.

Second, the fact that “expanders are good character samplers” is surprising given that
characters are sensitive to input perturbations. A recent work of Cohen, Peri, and Ta-Shma
uses Fourier-analytic techniques to classify a large class of Boolean functions which can be
fooled by expander walks, including all symmetric Boolean functions [25].

1.5 Open Problems

In this work, we gave an efficient deterministic algorithm to compute an expanding generating
set of an abelian group. Our construction achieves optimal dependence on dimension and
near-optimal dependence on error, resulting in improvements in various applications. Here,
we discuss some natural open questions raised by our work.

Expanding generating sets of optimal size: The Alon-Roichman theorem proves

that every group G™ has an expanding generating set S C G™ of size |S| = O(logi#‘)) [9].

This construction has not been fully derandomized for any group; even in the case of G™ = F3,

Ta-Shma’s construction only asympotically approaches a size of O(E%) as € — 0. The actual
size of the generating set is O(t7y), and this o(1) term is seemingly unavoidable when
using expander walks [40].

Similarly, our algorithm gives an expanding generating S C G™ of size O(%ﬁ‘f?m), for
finite abelian G. The additional poly log(|G|) factor comes from the bounds on constant-bias
subsets of abelian groups; any construction of a constant-bias set S C G of size O(nlog(|G|))
would immediately give expanding generating sets of size O(%&L%D). To our knowledge,
not even a candidate construction exists which would give constant-bias subsets of size
O(nlog(|G])) for abelian groups; this is an interesting and potentially easier open problem,
since it requires none of the expander walks machinery that we need to get arbitrarily small
€.

There is a candidate construction that could beat the Alon-Roichman bound for G = Ty,
based on algebraic-geometric codes [17]. The code construction would give an e-biased set
S C FY of size |S| = O(m), assuming a conjecture in algebraic geometry. The authors
themselves note that they have “no idea” whether this conjecture is valid [17].

Expanding generating sets of non-abelian groups: While wide replacement walks
amplify bias quite naturally for abelian groups, it is unclear whether they can do so for general
groups. Dealing with matrix-valued irreducible representations, rather than scalar-valued
characters, makes the analysis of bias amplification considerably more involved; hence even
the analysis of the 1-step walk is nontrivial [23]. Tt would be very interesting to see whether
one can place algebraic conditions on a group that are weaker than commutativity, but still
ensure that the wide replacement walk amplifies bias.

Existing works on expanding generating sets for non-abelian groups have studied solvable
groups, which generalize abelian groups [23, 11]. However, if we restrict the algorithm to
input instances which are all non-abelian groups, then existence results suggest that one
should be able to beat the Alon-Roichman bound.

For example, it is known that for every finite simple non-abelian group G", there exists a
generating set S C G™ such that Cay(G",S) has spectral gap 1 — ¢, and |S| is independent
of n [20]. Therefore, restricting input instances to simple groups seems too easy, while an
algorithm for all groups seems too hard. Is there some natural natural class of non-abelian,
non-simple groups for which algorithms can efficiently find expanding generating sets near
(or even below) the Alon-Roichman bound?

Decoding over any finite field: A recent work of Jeronimo et al gives a decoding
algorithm for a modified version of Ta-Shma’s codes [30]. Since our work gives e-balanced
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codes over any finite field, it would be interesting to extend both the modification of the
codes and the decoding algorithm of [30] to this general setting.

Classifying the power of expander walks on groups: So far we have discussed
how random walks on expanders are good samplers in various ways, such as the expander
Chernoff bound, parity sampling, and character sampling. Cohen, Peri, and Ta-Shma study
the class of all Boolean functions that expander walks fool [25]. It would be very interesting
to extend their results to functions on groups, perhaps using similar tools from harmonic
analysis and representation theory. For example, for which groups G besides Fs do expander
walks fool all symmetric functions on G™?

1.6 Organization

The rest of this paper is organized as follows. In Section 2 we prove that our wide replacement
walk construction gives an expanding generating set over any finite abelian group with near-
optimal degree. Due to space constraints we defer some proofs to the full version of the
paper.

Appendix C contains the precise parameters of the construction. Appendices A and B
contain technical preliminaries on Cayley graphs and wide replacement walks, respectively.

2 Expanding Generating Sets for Abelian Groups

Throughout this section, let G be a finite abelian group and n > 1. In this section, we
will describe an efficient deterministic algorithm to construct a generating set S C G"
such that the Cayley graph Cay(G™,S) has second eigenvalue at most e. The degree is
51 = O(Eleh”),

The inputs to our algorithm are a generating set G’ C G, integer n > 1, and desired
expansion € > 0. The algorithm proceeds as follows:

(i) Construct an ey-biased set Sy C G™ with support size O(nlog(|G[)°™) for a constant
€ < 1.

(ii) Perform a wide replacement walk to amplify the bias of Sy to e. Specifically, we
identify Sy with the vertices of an outer graph I', and then choose an inner graph H in a
manner described later. We emphasize that while I' is an expander graph whose vertex set is
Sp, it is not required to be a Cayley graph on Sy. For the purposes of this step, the group
structure of G is irrelevant.

Let t > 1 be the walk length, to be chosen later. The output e-biased set S C G"
corresponds to length-t walks on the wide replacement product of I and H. Given a sequence
of vertices (zo,...,z¢) € V(I') x V(H), we add up the components corresponding to V(I'),
which are just elements of Sy, to obtain some element of G™. This gives the elements of S.

Next, let us informally describe parameter choices (precise choices are in section C). Let
D5 be the degree of H. At every step in the wide replacement walk we need to specify some
i € [Ds] to take a step. It follows that S C G™ has a size of O(nlog(|G)°™") - D). We must
choose t large enough to shrink the bias to e. The choice ¢ (walk length) and Dy (degree of
the inner graph) will determine the overall size of the output generating set.

These choices hinge on the bias amplification bound of the wide replacement walk. We
show that the s-wide replacement walk shrinks the bias by a factor of O(s? - A\(H)*~3) every
s steps. However, the size of the walk distribution grows by a factor of O(D3) every s steps.
This imperfect bias amplification is why we cannot get optimal dependence on €, as that
would require that the bias shrinks by exactly O(A(H)?®) every s steps.
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Therefore we cannot choose H to be an optimal spectral expander with A(H) = 9(\/%).

log(1/0)!/°

Instead, optimizing for the size of the output distribution, we set s = @(W

second eigenvalue A\(H) = @(S'IL\/%Z)), and the walk length ¢ = 9(1o§$51>\/(2)) T

@((%)Ho(l)). This is exactly the reason our output set has a dependence of O(—75ry)

rather than exactly O(%), and the same is true for [41].

This section is organized as follows. In section 2.1, we describe how one can identify the
elements Sy with the vertices of an expander graph, and then perform the ordinary random
walk on the graph to amplify the bias of Sy, albeit suboptimally. In section 2.2 we show how
to express the bias of a wide replacement walk algebraically. In section 2.3 we prove an upper
bound on this algebraic expression, therefore proving the bias amplification bound of the
wide replacement walk. Finally, in section C we describe the details and exact parameters
for the wide replacement walk, as well as the ep-biased subset of G™.

2.1 The ordinary expander walk

Let G be a finite abelian group. For ease of notation, we will refer to G rather than G™ until
section C, when we need to discuss parameters. Since H" is a finite abelian group for all
abelian H, there is no loss of generality.

In this section we will show how to amplify the bias of a small-bias set in G by performing a
random walk on an expander. This will be a lemma in the analysis of our actual construction,
which involves a wide replacement walk.

To state the bias amplification theorem, we need some notation.

Let G = Zq, ®--- @ Zg, be the invariant factor decomposition of G. Notice that d;|d; for
any ¢ < j. In particular, all d; divide di. For x € G write x = (21, ..., 2x), so that z; € Zg,
for each 1.

Fix a nontrivial character x : G — C* corresponding to a group element a € G. Let
a = (a1, ...,ax). Then for a given z € G, x(g9) = wg!™ - wyt™”
can write this as

. Since all d; divide dj, we

Zf— (d—kalzl) mod dj,
X(g) — wdk, =1'd;

Now, let S;ni: C G have bias ¢g. Identify S;,;; with the vertices of some degree-regular
expander graph I'. We write V' := V(I') = S;pi;. In order to understand the bias of a random
walk on I" with respect to x, we have to track how often the walk enters vertices which map
to wdk,wflk, and so on.

We will partition S as follows. For y € Zg, , let S, be the elements of S;y,;; which are
mapped to wgk by x. Formally, S, = {& € Sinir 1 y = (Zle ‘fi—kxi ~a;) mod di}. Observe
that {S, : y € Zg, } is a partition of Sip.

Next, let ¢t > 0 be the walk length. We will partition all length-(¢ + 1) sequences in S;p;:
according to their sum. For y € Zg,, let T, = {b € thl : (32, bi) mod dy, = y}. Again,
notice that {7}, : y € Zg, } is a partition of Zg‘:l.

Finally, fix y € Zg, . The set S, corresponds to some subset of the vertices of I'. Therefore
we can identify S, with an |S,|-dimensional subspace of CV. Let IT, : C¥ — CV be the
projection matrix onto this subspace. Let II = Zyezdk wy I,. We write TT = TI(x) to
indicate the dependence on choice of .

We can now state the bias amplification theorem for ordinary expander walks.
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» Theorem 5 (Ordinary t-step expander walk). Let S;ni;: C G have bias ey and let T = (Sinit, F)
be a d-regular expander graph with A(I') = A < 1. Suppose D ~ G is the distribution induced
by beginning at a uniform vertexr and taking a t-step random walk (:1:(0), ...,x(t)) and then
adding the results of the walk to get an element (3", 2) € G.

Let x* : G — C* be the nontrivial character which mazimizes the bias of D. Let
IT =TI(x*), and || - | be the matriz operator norm. Finally, abusing notation, let T be the
random walk matriz of T'. Then,

bias(D) = bias(x*) < ||(IIT)*11||

Proof. Let u = T be the normalized all-ones vector. Let a* € G be the element

1
V()]
corresponding to x*. Let (af,...,a}) € Zq, @ - - & Zg, denote a* written in the invariant
factor decomposition.

Let W ~ V**+1 denote the distribution of all t-step walks on T'. Let (z(®),...,2®)) ~ W be
some sequence of random walk steps. So 2(?) ~ S;,.;; (since the walk begins at a uniformly
random vertex) 2(*1) is a uniformly random neighbor of (. If #(¥) € CV is the distribution
at step ¢, then 70+ = T5(®).

Recall that we use subscripts to denote invariant factors, so = (21, ...,zx) € @ Zy,.

Bias(D) = Biasp(x™)

k

- (.. 1_[1
k
PO

I(f))ww

‘“\
ol
‘“‘*

= E d
(2O, .z~ W

t
ZZ% @ ~al) mod dg]

j=0 i=1 "

= dek

yGZd (z(o) z(t)

<.

t

=2 D v, (A es,)

(37(0) l(t))NW _

YyE€Lq,, bET,
= E wdk E Hb, . Hb1 FHbou)
yEde beT

=" ( > wd Hbt - T, T, u

ber;’:l

= Z wZ‘ Hbt Z wgl Hb1 Z wgo Hbo
bi€Za,, b1€Zq, boEZa,,

= [ (IIT) ' TTu|

< ||(T) ]|
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We have thus obtained an algebraic expression for the bias of the walk distribution, which
we will now upper-bound. We defer the proof to the full version.

» Theorem 6 (Matrix norm bounds). Let II,T" be as before.
(i) 1| = 1.
(ii) |(TIC)?]| < eo +2A
It follows that ||(IID)!II|| < (eo + 2\) /2,

Combining the two results in this section, it follows that a t-step walk amplifies the bias
fo (e + 22)L0/2
2.2 The wide replacement walk

In this section and the subsequent one, we will show how the wide replacement walk amplifies
bias more efficiently than an ordinary expander walk. We will proceed in a similar manner
to the last section, by first obtaining an algebraic expression for the bias of the random walk
distribution, and then upper-bounding the algebraic expression in section 2.3.

2.2.1 Setup

Let T' = (Sinit, E') be a graph whose vertices are some constant-bias set S;,;: C G as before.

Suppose I' is Dy-regular. Let ¢r : [D1] — [D1] be the local inversion function of I'.

Let s > 0 be an integer, and let H be a Do-regular expander graph on [D]® vertices. We
will abuse notation and use I', H to denote the random walk matrices of I, H respectively.

Let V1 = CSnit = CY(D) and V2 = CP1 = CV(H). We define three operators on V! @ V2
that we need to describe the bias of the wide replacement walk. Let v! ® v? € V! @ V2.

For i € [s] define the projection matrix P; : V2 — CP1 as follows. Notice V2 = CV(H) =~
CPi. Identifying V(H) with Z%,, let Z; C V(H) correspond to {(0,...,0,a;,0,...,0) € Z3, :
ai € Zp, }. So we can identify Z; C V(H) with a D;-dimensional subspace of C¥ (/). Then
let P;: V2 — CP1 be the projection onto this subspace.

Given some v! € V! and j € [Dy], the vector v'[j] € V! is a permutation of the
coordinates of v! based on the mapping of each vertex to its j** neighbor in I' 3. This
corresponds to taking a step in I', by moving along the edge numbered j incident to the
current vertex. For w € CP1, let v'[w] = ijzll wj - v1[g].

Finally, given the local inversion function ¢r : [D1] — [Di1] of I and i € [s], define

I(f) : [D1]® — [D1]* as the function which applies ¢r to the i** coordinate and leaves other

coordinates unchanged. Since ¢r is a permutation on [D4], 1/11@ is a permutation on [D;]°.

Abusing notation, let wl(j) : CP1 — CP1 denote the permutation matrix which permutes
coordinates according to wl(f).

We are ready to define the three operators which describe the bias of the wide replacement
walk.

H(w' @v?) =o' @ H@?)

VX € Gy € Za : 1L, (xX) (v © ) = I, () (") @ 0°

3 This is well-defined as long as the graph I' is d-regular, since its adjacency matrix is then just a sum of
d permutation matrices.
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VEe{0,1,...,s — 1} : Ty(v! @ v?) = v [P(v%)] @ v (v2)

Note that each of these operators is a tensor product of operators on V1, V2, and hence
preserves tensor products.

Moreover, notice H,T; mod s are precisely the transition matrices of the H-step and
I'-step in the wide replacement walk at time t.

For a character y : G — C* let II(y) = Zyezdk wy, IT,(x). 11 plays the role of II from the
analysis of the ordinary expander walk.

For notational convenience,

2.2.2 Algebraic Expression for the Bias

In this section we will express the bias of the wide replacement walk distribution in terms of
the matrix norms of Ly, ..., Ls_1.

» Proposition 7 (¢-step s-wide replacement product walk). Let G be a finite abelian group.
Let S;nit C G have bias €9 and let T' = (Sinit, E) be a Dy-regular expander graph. Let H be a
Dy regular expander on [D1]® vertices for some integer s > 1.

Let Dyair ~ G be the t-step s-wide replacement product walk distribution. It is defined by
beginning at a uniform vertex and performing an t-step wide replacement wide on V(T')xV (H).
Given a sequence of vertices ((ag,bo), ..., (ay, b)) € V(I') x V(H) obtained from a walk, we
output (3, a;) € G. Then Dy, ~ G is the distribution induced by taking all such t-step
walks.

We claim that if x* : G — C* is the nontrivial character which mazimizes the bias of
Doyars, and I = f[(x*), then using the notation from above,

bias(Duwar) = bias(Dwak, X*) < | Ls—1(x*) - - Lo(x*)||1*/*]

The proof is similar to that of Theorem 5. See the full version.

It remains to be shown that this matrix norm is indeed bounded. To show that the
wide replacement walk gains from s — O(1) out of every s steps, we need to show that
| Ls—1 -+ Lol < A(H)*OW.

2.3 Bounding the matrix norm

In the previous section we showed that the bound the bias of the wide-replacement walk
distribution, it suffices to bound the operator norm of the following matrix, defined with
respect to the worst-case character x* of the walk distribution:

Le_1---Lo

This is almost exactly the same matrix as the one analyzed in [41]. The difference is
that the operator II, instead of tracking how often the walk enters the sets in a bipartition
of Sinst, now tracks how often the walk enters the sets in a di-way partition of S;,;;. Here
di, = Q(log(|G|)) is the largest invariant factor of G.

As a consequence, the diagonal entries of I1 now come from the dj" roots of unity, rather
than {£1}. The analysis of the matrix bound from [41] mostly carries through, although
working over C¥* @ CV” rather than the reals will require some care.
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As in [41], our argument will proceed by considering arbitrary vectors v, w and analyazing
(v, le e L0w>. We will repeatedly decompose the vectors into their parallel and perpendic-
ular components. Let VI = V! ® T denote vectors whose H-component is a scalar multiple
of 1 (“parallel vectors”), and V+ = (V1)L (“perpendicular vectors”).

Because of the spectral expansion of H, every time a vector is in V+ we can show it
shrinks by a factor of A(H). The hard case is when vectors are in V. Here, we will prove a
technical lemma which is a straightforward generalization of the core lemma in [41]. The
lemma shows if the walk distribution is in VI, then any sequence of s steps imitates a random
walk of s steps on the outer graph I'. This allows us to argue that the bias is amplified as
though taking the ordinary random walk on I'. If the bias so far is «, then this scales the
bias by a +— (a4 2\(T"))*/2 after s steps.

This turns out to be enough. Let ey = bias(Sini:) be the bias of the initial set S;n;: C G.
Since ¢ is a constant, we can select graphs I', H such that ey + 2A\(T') < A(H)?2. Therefore,
while we do not gain a factor of (A(T"))® every s steps, we will gain according to a factor of
(A(H))*=O),

Therefore, whether in the V+ or VI case, we shrink the bias by a factor of )\(H)S_O(l)
for every s steps.

We begin by proving the technical lemma about parallel vectors. We will frequently use
the following fact.

» Proposition 8 (Operator-Averaging, [41] Claim 14). Let 2 be a finite set and P, Q probability
distributions on Q. Let |P — Q|1 denote the difference of the distributions in the 1-norm.
Further, let {T,}zcq be a family of linear operators on C™ indexed by 2, such that for all
zeQ, ||T,|| <1. Let A =Ezp[Ty] and B = Ezg|Tw). We claim that for all v,w € C*
that

[{(Av, w) = (B, w)| < [|P = Qll1]lv][[w]|

Next, we need to formalize the notion of the wide replacement walk “imitating” the
ordinary random walk on the outer graph, which we do via the notion of a pseudorandom
inner graph.

» Definition 9. (Pseudorandom inner graph) Let ' be a D1 -regular graph with local inversion
function ¢r : [D1] — [D1]. Let H be a Dy-regular graph on D5 wvertices. Let ¢ > 0. We say
H is (-pseudorandom with respect to T" if for all s-step sequences in the s-wide replacement
walk, the corresponding V*-instructions are (-close to Unif([D1]*) in {1-norm.

Formally, let the adjacency matrix of H be H = %2 ZZD:21 =;, where each Z; is a per-
mutation matriz *. Let & : V(H) — V(H) be the permutation map corresponding to =Z;. For
0<k<s, let iy : [Dl]s — [Dl]s be wk(am ...7(15,1) = ((LQ, ...,ak,1,¢r(ak),ak+1, ...,asfl).

Fiz (jo, ..., js—1) € [Da2]*. For some (u',u?) € V(T') x V(H) let o;,(u?) = ~;,(u?). For
£>0, let

Ojig,....j50 (UQ) = Yje (wl—l(gjul,--wjo (U'Q)))

We say (jo, ..., Js—1) € [D2]® is (-pseudorandom with respect to T if

4 By the Birkhoff-von Neumann Theorem, the adjacency matrix of a d-regular graph is a sum of d
permutation matrices.
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(o (0o (Unif([D1]))), s ms—1(05, y,.jo (Uni f([D1])))) — Unif([D1]*)]l1 < €

We say the inner graph H is (-pseudorandom with respect to the outer graph T' if for all
(Joy -y Gs—1) € [D2]®, (Jos -y js—1) s C-pseudorandom with respect to T.

If we unravel the definition, this is simply requiring that H is compatible with the edge
labeling of I" in precisely the way that we want. Pseudorandomness is a strong condition on
H which, by definition, guarantees the wide-replacement walk imitates the ordinary walk on
I" in a suitable sense.

With this definition we can return to proving the lemma. We will begin by proving the
pseudorandomness claim for the case where Dy = 1; the general case where Dy #£ 1 follows
from another application of operator averaging, viewing the matrix H as an average of Dy
permutation matrices. We defer the proofs to the full version.

» Proposition 10 (Action on parallel vectors). Let ¢ < s. Suppose that the sequence

(Jo, -y Je—1) € [D2]® is ¢-pseudoranom with respect to the local inversion function ¢ : [Dq] —

[D1]. Let Zj,,...,Z,_, denote the operators on V' @ V2 corresponding to the permutations

ior - Ejey on V(H). Let 1y gy denote the normalized all-ones vector of length |V (H)|.
Foranyt=71'® vy and v = vl ® vy,

(ITy_1Zj,_, - TToE;,7,v) — ((aD)'r, o) < ¢ )l|v]

» Corollary 11 (Generalized action on parallel vectors ([41] Theorem 27)). Suppose that
H is (-pseudorandom with respect to the local inversion function ¢r of I'. For every
i1,i2 € {0,1,...,5 — 1}, and every T,v € V1,

(Liy - Liy7,0) = (UD) 270 b o) < (o]

Now we are ready to prove bound the matrix norm of le -+ Lo, which expresses the bias
of the wide replacement walk. Our argument will proceed by considering the quadratic form
(v, L, - - - Low) for arbitrary v,w and then repeatedly decomposing v,w into their VIl and
V+ components. Because of the spectral expansion of H, every time a vector is in V+ we
can show it shrinks by a factor of Ay = A\(H).

The hard case is when vectors are in VII. Here, we will use Corollary 11 to argue that
any sequence of s steps imitates a random walk on the outer graph I". This allows us to
argue that the bias is amplified as though taking the ordinary random walk on I'. This scales
the bias by (e + 2A1)*/? at every s steps.

This is enough, as we can assume that €y + 2X; < A3. Therefore, while we do not gain a
factor of (A1)® every s steps, we will gain according to a factor of (A2)®. Since Ay < 1, the
difference between gaining according to Ay or A; does not matter asymptotically.

» Theorem 12 (Bounding algebraic expression for bias). Suppose that:
i) H is (-pseudorandom with respect to ¢r
ii) €0 + 2X(T) < A\(H)?
Then we obtain the following bound for the bias of the walk after s steps.

L+ Loll < ACH)® + sACH)* " + s*(A(H)* "2 + ()

We defer the proof to the full version.
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A Cayley Graphs and Expanders

We begin with some preliminaries on graphs and group theory.

» Definition 13 (Spectral expander graph). Let G = ([n], E,w) be a weighted, d-regular
undirected graph. By d-regular we mean that for allu eV, Y ., w({u,v}) = d.

Let A € C" " be the (weighted) adjacency operator of G, and let M = éA be the
normalized adjacency operator, also known as the random walk matriz. Let the eigenvalues of
M be denoted \,, < ... < Ao < A\ = 1, counting multiplicity. Then G is a one-sided spectral
expander if Ay < 1—Q(1), and G is a two-sided spectral expander if max{|\,|, |A2|} < 1-Q(1).

Let A\(G) := max{|An|,|A2|}. The two-sided spectral gap of G is 1 — A(G).

Next, we define Cayley graphs.

» Definition 14. (Symmetric generating set) Let G be a group and S C G. We say that S
is symmetric if for all s € S, s~ € S. Further, S is a generating set if for all g € G there
exist 81, ...,8p € S (possibly repeated) such that sy ---s1 = g.

We write (S) = G.

» Definition 15. (Cayley Graph) Let G be a group and S C G be a symmetric generatring
set, and w : S — Rxo a weight function. The Cayley graph Cay(G, S, w) is the graph with
vertex set G and edge set {{g,g-s}:g € G,s € S}. The weight of an edge {g,q - s} is w(s).

We will require the total weight of S to be normalized to |S| by convention. Notice that
since S is symmetric, we can consider the graph Cay(G, S) to be an undirected and weighted
|S|-regular multigraph.

The eigenvectors of abelian Cayley graphs are described by their group characters.

» Definition 16 (Characters of abelian group). Let C* be the multiplicative group of nonzero
complex numbers. For any finite abelian group G, the characters of G, denoted G, are the
set of all homomorphisms x : G — C*.

» Proposition 17. Let G be a finite abelian group and S C G a symmetric generating set.
Then the eigenvalues of Cay(G,S) are given by

{| B @) x € G)

Notice that any group has a trivial character x : G — C* such that x(g) = 1 for all g.
The eigenvalue corresponding to the trivial character is always 1. Therefore, for a Cayley
graph to be an expander we need bounds on all of its nontrivial characters.
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» Definition 18 (Small-bias distributions for abelian groups). Let G be a finite abelian group
and D ~ G a random variable. For any character x of G, the bias of D with respect to x is

Biasy (D) := |xLED[X(93)]|

Let xo denote the trivial character. The bias of D is its maximum bias with respect to
nontrivial characters.

Bias(D) := max Biasy (D)
XF#X0
If S C G, then bias(S) is the bias of the uniform distribution on S. If S is a symmetric
generating set, A(Cay(G, S)) = Bias(S).

Notice that if S is non-negatively weighted, we can normalize weights to sum to 1 and
obtain a (not necessarily uniform) distribution on S. Then the bias of S is just the bias of
this distribution.

Finally, we will need a few more facts about characters of abelian groups.

» Proposition 19. (Characters of cyclic groups) Let Zg be the cyclic group on d > 2 elements.

2mi

Let wq = exp(<F*). The characters of Zq are the maps x;(v) = wf{x forj=0,1,....d—1.

» Definition 20. (Direct sum of groups) Let A, B be abelian groups. The direct sum
A @ B is the abelian group whose elements belong to the Cartesian product A x B. For
(a1,b1), (az,b2) € A x B, the group operation is (a1,b1) + (az,b2) = (a1 + az,b1 + ba).

Notice that the direct sum is associative.

» Proposition 21. (Fundamental theorem of finite abelian groups) Let G be a finite abelian
group. Then G is isomorphic to a direct sum of cyclic groups. That is, there existdy, ..., dy > 2
such that

G2Zg @ - ® Ly,

Moreover, d;|d; for all i < j.
We refer to Za, ® --- ® Zg, as the invariant factor decomposition of G. The integers
dy,...,dy are the invariant factors.

From the above propositions one can show that the characters of a finite abelian group
are products of maps of the form x — wé;x. This structure is crucial to our overall argument.

B Wide Replacement Walks

In this section we define what it means to take a wide replacement walk.

Let G be a Dy-regular graph on Ny vertices and H be a Ds-regular graph on D; vertices.
The replacement product G@H is a (Do + 1)-regular graph on N; - Dy vertices. Each vertex
of G (the “outer graph”) is replaced by a copy of H (the “inner graph”). We call these copies
clouds.

The intra-cloud edges in each cloud of G@H are just the edges from H. However, G@©H
also has inter-cloud edges which arise by identifying the D; vertices of H with the D,
incident edges of a vertex v € V(G). This identification requires that we number the edges
of every vertex in G. We formalize this with the concept of a rotation map.
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» Definition 22. (Rotation map) Let G be a D-reguluar graph such that the edges incident
to every v € V(G) are numbered 1, ..., D. Formally there is a function N : V x [D] = V such
that N(v,i) = w iff w is the i*" neighbor of v.

Then a rotation map is a function Rot : V x [D] = V x [D] such that for all v,w € V
and i,j € [D], Rot(v,i) = (w,j) iff the it" neighbor of v is w and the j*" neighbor of w is v.

For technical reasons, we need a special kind of rotation map called a local inversion
function. This is a rotation map where if (v,¢) maps to (w,j) then j only depends on 1.

» Definition 23. (Local inversion function) Let G be a D-reqular graph with a rotation map
Rot : V x [D] = V x [D]. A local inversion function ¢ : [D] — [D] is a permutation on [D)]
such that for allv € V,i € [D],

Rot(v,i) = (N(v,1), ¢c(i))

We are ready to define the wide replacement product walk. Instead of the usual inner
graph H we use a “wide” inner graph on D7 vertices for some integer s > 1. The vertices of
H correspond to s-tuples that define s local inversion functions. The walk cycles through
them.

To take a step in the usual replacement product walk, we start at some vertex v € G H
then compose two steps: an intra-cloud step which changes the H-component, and an
inter-cloud step which changes the G-component. Every vertex in G@H is incident to a
unique inter-cloud edge; therefore, there is only one choice of neighboring cloud, and so the
position after the intra-cloud step determines the entire step.

The s-wide replacement walk modifies the inter-cloud step so that there are s choices
during inter-cloud step. If G is D;-regular, then a vertex of H corresponds to some vector
(ag, ..., as—1) € [D1]®. The wide replacement walk maintains a clock which tracks how many
steps have been taken. At time step ¢, the clock is set to £ = ¢ mod s, and the inter-cloud
step moves to a neighboring cloud according to the value of a, € [Dy].

After deciding which neighboring cloud to move to, the choice of which vertex in the cloud
to land in is also determined by a,. The walk updates the H-component by feeding the ¢t"
coordinate to the local inversion function ¢¢ : [D1] — [D1] of G, and leaving all other coordin-
ates unchanged. So (ag,...,as—1) € [D1]® is mapped to (ag, ..., ar—1, ¢c(ar), Aps1y -y Gs—1).
This completes the inter-cloud step.

The utility of the wide replacement walk is that the H-component of a vertex now stores
O(slog(Dy)) bits of information, rather than just O(log(D;)) bits. As we discussed in the
introduction, the barrier to bias amplification is when the walk distribution is uniform within
clouds.

Now, the values of the H-component are precisely the instructions for the inter-cloud
steps of the walk; therefore, the fact that the H-component is uniform is no longer bad news,
since it means that the inter-cloud steps of the replacement walk imitate the truly random
walk on the outer graph for the next s steps.

» Definition 24. Let G be a D1-regqular graph with local inversion function ¢ : [D1] — [D1].
Let H be a Dy-regular graph on D3 wvertices, for integer s > 1. A random step in the wide
replacement product is determined as follows.

Let (vD,v®) € V(G) x V(H) be the current state of the walk at time t € N. Sample
random i € [Ds]. Then the time-t step according to i, denoted Stepi7t(v(1), v®)) is given by
the composition of two steps:
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(i) Intra-cloud step: Leave the G-component v unchaged. Move the v(?) component to
its it" neighbor in H. Formally, set

w® = M
w?® = 3@ [4]

(i) Inter-cloud step: Identifying V(H) with [D1]®, let m; : [D1]° — [D1] be projection
onto the j*" coordinate. Write w® € V(H) as w® = (mo(w®), ..., ms_1(w®)) € [Dy]°.

Let £ =t mod s. Move to the neighbor of w") in G that is numbered by ﬂg(w@)) € D;.
Then, update the (' coordinate of H-component w® by the local inversion function ¢¢
[D1] — [D1] and leave other coordinates unchaged. Formally, let v, : [D1]° — [D1]® be

w@(a/(h ceny a/s—l) = (a/Oa vy A1, ¢G(a()7 Ap41, "'70‘8—1)

Set

Stepi (v, v®)) = (0D [re(w?)], o (w®))

A few remarks are in order. First, notice that the number of random bits needed to
specify a random step is only O(log(Dz)), despite the fact that we are moving on a graph
with V(G) x V(H) vertices. This will be crucial in the analysis of the tradeoff between bias
amplification and size increase of the small-bias set.

Second, once a value of t is fixed, so the clock is set to £ =t mod s, the wide replacement
walk can be regarded as taking a usual step in the usual replacement walk. The intra-
cloud step is unchaged, and the inter-cloud step depends only on the £** coordinate of the
H-component.

Since we have specified what it means to take a random step, this is sufficient to describe
the walk. We simply initialize at a uniform vertex of V(G) x V(H) and then take some
number of steps, to be chosen later.

C Parameters of the Construction

In this section we describe how to optimize parameters such that the wide replacement walk
construction achieves our desired support size. Our construction and hence the parameters
we choose are almost identical to those discussed in Section 5 of [41].

The algorithm is given integer n > 1, desired second eigenvalue € > 0, and an arbitrary

generating set for a group G.
o(1)
It first generates an €p-biased set S;p;r C G™ of size O(%

concreteness we set g = 0.1.

) for a constant ey. For

» Proposition 25. There exists a deterministic, polynomial time algorithm which, given a
generating set for an abelian group G and integer n > 1, outputs a generating set Sinit C G™
of size O(n(log(|G]))°™M) such that the Cayley graph has second eigenvalue at most 0.1.

Proof. First, by Theorem 4 of [23], we can construct a generating set S C G with second
eigenvalue (1 — m + f3) for a parameter 3 and universal constant C. Its size will be

5] = O(*5E5) = O(nlog(|G])?). Setting 5 =

c
(1~ 3Tog10a00T))-
Next, we can amplify the bias of .S to 0.1 by taking a t-step ordinary expander walk. By the

results of section 3.1, if we take a walk on a D-regular expander graph with second eigenvalue

C s .
TToglog(aT)” Ve obtain second eigenvalue
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A and D = O(1), then the t-step walk will amplify the bias to ((1 — m) +2))L#/2),

For this quantity to be at most 0.1, it suffices to set ¢t > %(1 +2)) = O(loglog(|G))).
Therefore, after t steps we obtain a generating set Sy C G™ with bias 0.1, whose size is

[Sol - D = O(=2US . 90Uoglos(IG)) = O(n(log(|G) D). 4

Next, the algorithm performs a wide replacement walk. We must specify the inner and
outer graphs as well as the number of steps. Our parameters are almost identical to [41].

Let a = @((M)l/ 3). We will show that the wide replacement walk amplifies bias to

log(7)
. . 1 o(1) 1 o(1)
¢ and produces a generating set of size O(“ Z%ﬂg(‘l) )=0(= Ofﬁlf(‘f) ).

Let the “width” s = %
Inner Graph: Let D, be the least power of two such that Dy > s*. Let by =
45v/2log(Dy). Let Dy = D3. Let m = log(Dy).

Let H = Cay(Z5**, A) for a generating set of size |A| = D5 (found, e.g via [41]) such that
ba

VD'

Outer graph: Let D; = Dj. Find a D;-regular expander graph T' with A(I') = ©(—2A—)

(using, e.g. [4]). Identify its vertices with the ep-biased set Sjnit.
Walk length: Finally, set ¢ to be the least integer such that A(H )1 ~4)(1=a)t < ¢ and

the second eigenvalue is A(H) =

§

t>

Qe

» Proposition 26. The t-step wide replacement walk distribution is e-biased.

Proof. The bias after ¢ steps is given by (A(H)® 4+ sA(H)*~! + s?A(H)*~2)l¥/5] Therefore,

(ACH)® + sA(H)* ™! + s A(H)*~2)L1/*)

IN

IN

(252)\(H)873) [t/s]
(282>\(H)573)t/871
()\(H>s—4)t/s—1

IN

A(H) = (=9
)\(H)(l—%)(l—‘%)t
A(H)

) (1—4a)(1-a)t

IN A

™

The last step follows by assumption on . <

» Proposition 27. The support size of the wide replacement walk distribution is O(|Sinat| -
ﬁ), where Sinit s the initial constant-bias set.

Proof. Recall that we identify our initial 0.1-biased distribution with the vertices of the
nlo om . .
outer graph I'. Therefore N; = |[V(T')| = O(%) for constant eg, ¢ > 0. Since ¢q is
0

constant we can assume Dy > € ! The walk begins at a uniform vertex of the replacement
product, so the initial support size is Ny Na. After ¢ steps it increases by a factor of D&.
Therefore

nlog(|G|)°™
€
nlog(|G|)°™

C
€0

NN, Db = O( N, Db)

=o( DY DY)

40:23

FSTTCS 2021



40:24 Near-Optimal Cayley Expanders for Abelian Groups

O(nlog(|G|)°™") - Dy*++<)
(n 10g(|G|)O(1) . D;Lat-‘rt-‘rc)
(nlog(|G)°M) - DY)

975

976 <O
O

IN

977

978
979

980 Next, notice by = 4v/2slog(Ds) = 4v/2-4s% log(s) < s* for sufficiently large s (equivalently,
s small enough ). Therefore, Dy > (s4)* > b3 = by/®. Therefore D3/*™* < \(H)~! = ‘/b—fi.
082 It follows that for small enough « (equivalently, small enough ¢), that

o3 DY < (MH)™ D)7 = (A\(H) ")) Ttm = (e L) Tama—an Tt < (¢~1)2(1+80)

984

085 Finally, D;(HM) < (e71)20+8a)(1450) < ((—1)2(1+14a)

o(1)
986 Therefore, the overall size of the generating set is O(%). In particular, since

nlog(|GD°™ )

wr «— 0ase— 0, the size is O( el <
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